301
|
Ciena AP, de Almeida SRY, Alves PHDM, Bolina-Matos RDS, Dias FJ, Issa JPM, Iyomasa MM, Watanabe IS. Histochemical and ultrastructural changes of sternomastoid muscle in aged Wistar rats. Micron 2011; 42:871-6. [PMID: 21767955 DOI: 10.1016/j.micron.2011.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 12/25/2022]
Abstract
The aim of this study was to evaluate histochemically and ultrastructurally the sternomastoid muscle (SM) of adults and aged rats, employing histochemic (NADH-TR reaction) and transmission electron microscopic methods. It was used 20 rats, divided into two groups: adults (n=10), animals with 4 months of age, and aged group (n=10), animals with 24 months of age. Five animals from each group were anesthetized with an overdose of urethane (3g/kg i.p.), and the muscles dissected after the samples processing for histochemical reaction (NADH-TR). Three types of fibers were identified by their metabolic characteristics: fibers with high oxidative capacity (O), intermediate oxidative capacity (OG) and low oxidative capacity (G). For transmission electron microscopic method, the animals were anesthetized and perfused by modified Karnovsky solution and the tissues were postfixed in 1% osmium tetroxide solution, dehydrated and embedded in Spurr resin. It was performed ultra-thin sections for transmission electron microscopic analysis. The SM showed heterogeneity in their composition according to the fiber types, with significant difference (p<0.05) when comparing the fibers types between the superficial and deep regions and between the adult and aged groups. It was observe a decrease between the comparison of the total fibers density and GO fiber, and an increase of the O fiber in aged group. Ultrastructural characteristics of muscle cells in aged group showed typical morphological changes, characterizing muscular atrophy. We conclude based on physiological ageing process, changes in muscle fibers classification, and ultrastructuraly, morphological alterations on muscle cells, characterizing a muscular atrophy.
Collapse
Affiliation(s)
- Adriano Polican Ciena
- Department of Anatomy, Institute of Biomedical Sciences-ICB, University of São Paulo, Av. Prof. Lineu Prestes, 2415 Butantã, 05508-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
302
|
Konopka AR, Trappe TA, Jemiolo B, Trappe SW, Harber MP. Myosin heavy chain plasticity in aging skeletal muscle with aerobic exercise training. J Gerontol A Biol Sci Med Sci 2011; 66:835-41. [PMID: 21659340 DOI: 10.1093/gerona/glr088] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
To assess myosin heavy chain (MHC) plasticity in aging skeletal muscle with aerobic exercise training, MHC composition was measured at the messenger RNA (mRNA) level and protein level in mixed-muscle homogenates and single myofibers. Muscle samples were obtained from eight nonexercising women (70 ± 2 years) before and after 12 weeks of training (20-45 minutes of cycle exercise per session at 60%-80% heart rate reserve, three to four sessions per week). Training elevated MHC I mRNA (p < .10) and protein (p < .05) in mixed-muscle (54% ± 4% to 61% ± 2%) and single myofibers (42% ± 4% to 52% ± 3%). The increase in MHC I protein was positively correlated (p < .05) with improvements in whole muscle power. Training resulted in a general downregulation of MHC IIa and IIx at the mRNA and protein levels. The training-induced increase in MHC I protein and mRNA demonstrates the maintenance of skeletal muscle plasticity with aging. Furthermore, these data suggest that a shift toward an oxidative MHC phenotype may be beneficial for metabolic and functional health in older individuals.
Collapse
Affiliation(s)
- Adam R Konopka
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA
| | | | | | | | | |
Collapse
|
303
|
Expresión y localización del factor de transcripción Yin Yang 1 en el músculo cuádriceps en la enfermedad pulmonar obstructiva crónica. Arch Bronconeumol 2011; 47:296-302. [DOI: 10.1016/j.arbres.2011.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2010] [Revised: 01/21/2011] [Accepted: 02/28/2011] [Indexed: 12/31/2022]
|
304
|
Roberts MD, Dalbo VJ, Sunderland K, Poole C, Hassell SE, Kerksick CM. Myogenic mRNA markers in young and old human skeletal muscle prior to and following sequential exercise bouts. Appl Physiol Nutr Metab 2011; 36:96-106. [PMID: 21326383 DOI: 10.1139/h10-090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023]
Abstract
This study examined how multiple bouts of conventional resistance training affected the mRNA expression of transcripts and a protein associated with satellite cell activity in human skeletal muscle. Ten younger men (means ± SE; age, 21.0 ± 0.5 years; body mass, 82.3 ± 4.2 kg; height, 178.4 ± 2.2 cm; percent body fat, 15.4% ± 2.9%) and 10 older men (age, 66.4 ± 1.6 years; body mass, 94.2 ± 3.7 kg; height, 180.9 ± 2.2 cm; percent body fat, 27.4% ± 1.8%) completed 3 lower-body workouts (Monday, Wednesday, Friday; 9 sets of 10 repetitions at 80% 1 repetition maximum). Vastus lateralis muscle biopsies were collected prior to intervention (T1), 48 h following workout 1 (T2), 48 h following workout 2 (T3), and 24 h following workout 3 (T4). Real-time reverse transcription-polymerase chain reaction was performed to assess genes of interest, and muscle proliferating cell nuclear antigen (PCNA) was assessed using Western blotting. The CYCLIN D1 gene was expressed more highly in the older vs. younger men (p < 0.05), whereas the expression of all other genes and muscle PCNA were similar between age groups. MYOD mRNA expression increased at T2 (p < 0.05) and MHCEMB gene expression modestly increased (p < 0.05) at T4 relative to baseline expression values in the younger men. Baseline elevations in CYCLIN D1 mRNA expression in older persons may indicate that a compensatory expression of this transcript is occurring in an attempt to retain the muscle's proliferative potential. Increases in MYOD and MHCEMB indicate that 1 week of conventional resistance exercise may i crease myogenic activity, including satellite cell proliferation and differentiation, respectively, in younger men.
Collapse
Affiliation(s)
- Michael D Roberts
- Applied Biochemistry and Molecular Physiology Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, OK 73109, USA
| | | | | | | | | | | |
Collapse
|
305
|
Candow DG, Chilibeck PD, Abeysekara S, Zello GA. Short-term heavy resistance training eliminates age-related deficits in muscle mass and strength in healthy older males. J Strength Cond Res 2011; 25:326-33. [PMID: 20375740 DOI: 10.1519/jsc.0b013e3181bf43c8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Abstract
The objective of this investigation was to determine whether short-term heavy resistance training (RT) in healthy older men could eliminate deficits in muscle mass and strength (ST) compared with healthy younger men. Seventeen older men (60-71 yr) performed supervised RT for 22 weeks. Before and after RT, measurements were made for lean tissue mass (LTM), muscle thickness (MT), and ST (leg and bench press 1 repetition maximum) and were compared with values of younger men (n = 22-60 for the different measures, 18-31 yr). Before training, older men had significantly lower (p < 0.05) LTM (58.4 ± 7.0 kg), MT (3.4 ± 0.7 cm), and ST (leg press = 168 ± 33 kg; bench press = 75 ± 18 kg) compared with younger men (LTM 64.3 ± 7.1 kg; MT 4.0 ± 0.8 cm; leg press = 231 ± 54 kg; bench press = 121 ± 31 kg). All deficits were eliminated after 22 weeks of RT (LTM = 60.5 ± 7.6 kg; MT = 4.0 ± 0.7 cm; leg press = 222 ± 48 kg; bench press = 107 ± 19 kg). Short-term, heavy RT in healthy older men is sufficient to overcome deficits in muscle mass and ST when compared with healthy younger men. The practical application from this research is that healthy older men can be prescribed a whole-body heavy RT program to substantially increase muscle mass and ST to levels similar to young, active individuals.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada.
| | | | | | | |
Collapse
|
306
|
Nehlin JO, Just M, Rustan AC, Gaster M. Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism. Biogerontology 2011; 12:349-65. [PMID: 21512720 DOI: 10.1007/s10522-011-9336-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2010] [Accepted: 04/06/2011] [Indexed: 12/23/2022]
Abstract
Adult stem cells are known to have a finite replication potential. Muscle biopsy-derived human satellite cells (SCs) were grown at different passages and differentiated to human myotubes in culture to analyze the functional state of various carbohydrate and lipid metabolic pathways. As the proliferative potential of myoblasts decreased dramatically with passage number, a number of cellular functions were altered: the capacity of myoblasts to fuse and differentiate into myotubes was reduced, and metabolic processes in myotubes such as glucose uptake, glycogen synthesis, glucose oxidation and fatty acid β-oxidation became gradually impaired. Upon insulin stimulation, glucose uptake and glycogen synthesis increased but as the cellular proliferative capacity became gradually exhausted, the response dropped concomitantly. Palmitic acid incorporation into lipids in myotubes decreased with passage number and could be explained by reduced incorporation into diacyl- and triacylglycerols. The levels of long-chain acyl-CoA esters decreased with increased passage number. Late-passage, non-proliferating, myoblast cultures showed strong senescence-associated β-galactosidase activity indicating that the observed metabolic defects accompany the induction of a senescent state. The main function of SCs is regeneration and skeletal muscle-build up. Thus, the metabolic defects observed during aging of SC-derived myotubes could have a role in sarcopenia, the gradual age-related loss of muscle mass and strength.
Collapse
Affiliation(s)
- Jan O Nehlin
- Center for Stem Cell Treatment, Department of Clinical Immunology, Odense University Hospital & University of Southern Denmark, Odense, Denmark.
| | | | | | | |
Collapse
|
307
|
Candow DG. Sarcopenia: current theories and the potential beneficial effect of creatine application strategies. Biogerontology 2011; 12:273-81. [DOI: 10.1007/s10522-011-9327-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2009] [Accepted: 10/30/2009] [Indexed: 12/25/2022]
|
308
|
van der Meer SF, Jaspers RT, Jones DA, Degens H. Time-course of changes in the myonuclear domain during denervation in young-adult and old rat gastrocnemius muscle. Muscle Nerve 2011; 43:212-22. [DOI: 10.1002/mus.21822] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
|
309
|
Verdijk LB, Snijders T, Beelen M, Savelberg HHCM, Meijer K, Kuipers H, Van Loon LJC. Characteristics of muscle fiber type are predictive of skeletal muscle mass and strength in elderly men. J Am Geriatr Soc 2010; 58:2069-75. [PMID: 21054286 DOI: 10.1111/j.1532-5415.2010.03150.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To investigate the relationship between skeletal muscle fiber type-specific characteristics, circulating hormone concentrations, and skeletal muscle mass and strength in older men. DESIGN Cross-sectional analyses. SETTING University research center. PARTICIPANTS Forty-one community dwelling elderly men (≥ 65). MEASUREMENTS Leg strength (1-repetition maximum, 1RM) and whole-body and limb muscle mass were determined, and muscle fiber type composition, cross-sectional area (CSA), myonuclear content, and satellite cell (SC) content were assessed in skeletal muscle biopsy samples. In addition, blood samples were collected to determine serum testosterone, sex hormone-binding globulin, insulinlike growth factor (IGF)-1, and IGF binding protein-3 concentrations. RESULTS Muscle mass correlated with muscle strength (0.41 ≤ correlation coefficient (r) ≤ 0.72; P < .01). Muscle fiber CSA, myonuclear content, and SC content were significantly lower in type II than in type I muscle fibers. Myonuclear and SC content were positively correlated with muscle fiber CSA. Furthermore, greater muscle fiber CSA (type I and II) was associated with greater thigh muscle area and muscle strength (0.30 ≤ r ≤ 0.45; P < .05). Testosterone concentration was positively correlated with muscle mass and muscle fiber CSA. Regression analysis showed that SC content, myonuclear content, and testosterone concentration are predictive of muscle fiber CSA. Furthermore, muscle mass and type II muscle fiber CSA are predictive of muscle strength. CONCLUSION Skeletal muscle mass and strength in elderly men are positively correlated with muscle fiber type-specific CSA, myonuclear content, and SC content. These findings support the assumption that a decline in SC content plays an important role in age-related decline in muscle mass and strength.
Collapse
Affiliation(s)
- Lex B Verdijk
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
310
|
Mackey AL, Andersen LL, Frandsen U, Suetta C, Sjøgaard G. Distribution of myogenic progenitor cells and myonuclei is altered in women with vs. those without chronically painful trapezius muscle. J Appl Physiol (1985) 2010; 109:1920-9. [DOI: 10.1152/japplphysiol.00789.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023] Open
Abstract
It is hypothesized that repeated recruitment of low-threshold motor units is an underlying cause of chronic pain in trapezius myalgia. This study investigated the distribution of satellite cells (SCs), myonuclei, and macrophages in muscle biopsies from the trapezius muscle of 42 women performing repetitive manual work, diagnosed with trapezius myalgia (MYA; 44 ± 8 yr; mean ± SD) and 20 matched healthy controls (CON; 45 ± 9 yr). Our hypothesis was that muscle of MYA, in particular type I fibers, would demonstrate higher numbers of SCs, myonuclei, and macrophages compared with CON. SCs were identified on muscle cross sections by combined immunohistochemical staining for Pax7, type I myosin, and laminin, allowing the number of SCs associated with type I and II fibers to be determined. We observed a pattern of SC distribution in MYA previously only reported for individuals above 70 yr of age. Compared with CON, MYA demonstrated 19% more SCs per fiber associated with type I fibers (MYA 0.098 ± 0.039 vs. CON 0.079 ± 0.031; P < 0.05) and 40% fewer SCs associated with type II fibers (MYA 0.047 ± 0.017 vs. CON 0.066 ± 0.035; P < 0.05). The finding of similar numbers of macrophages between the two groups was not in line with our hypothesis and suggests that the elevated SC content of MYA was not due to heightened inflammatory cell contents, but rather to provide new myonuclei. The findings of greater numbers of SCs in type I fibers of muscle subjected to repeated low-intensity work support our hypothesis and provide new insight into stimuli capable of regulating SC content.
Collapse
Affiliation(s)
- Abigail L. Mackey
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, and Centre for Healthy Ageing, Faculty of Health Sciences, University of Copenhagen, and
| | - Lars L. Andersen
- National Research Centre for the Working Environment, Copenhagen; and
| | - Ulrik Frandsen
- Institute of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Charlotte Suetta
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, and Centre for Healthy Ageing, Faculty of Health Sciences, University of Copenhagen, and
| | - Gisela Sjøgaard
- Institute of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
311
|
Snijders T, Verdijk LB, Hansen D, Dendale P, van Loon LJC. Continuous endurance-type exercise training does not modulate satellite cell content in obese type 2 diabetes patients. Muscle Nerve 2010; 43:393-401. [PMID: 21321955 DOI: 10.1002/mus.21891] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 08/18/2010] [Indexed: 11/09/2022]
Abstract
Endurance-type exercise training represents a cornerstone in type 2 diabetes treatment. However, the effects of prolonged continuous, endurance-type exercise on muscle fiber characteristics remain equivocal. Fifteen obese male type 2 diabetes patients (61 ± 6 years) participated in a 6-month continuous, endurance-type exercise program. Muscle biopsies were collected before, and after 2 and 6 months of intervention. Muscle fiber type-specific composition, size, and satellite cell (SC) and myonuclear content were determined by immunohistochemistry. Although continuous endurance-type exercise training lowered total body weight and reduced fat mass, no changes were observed in leg lean mass. At baseline, SC content was significantly lower in type II compared with type I muscle fibers. No change in SC content was observed after exercise training. Continuous endurance-type exercise training lowers fat mass, but it does not increase leg lean mass and/or modulate muscle fiber characteristics in type 2 diabetes patients.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | | | | | | | | |
Collapse
|
312
|
Abstract
Ageing is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk for developing chronic metabolic diseases such as diabetes. The age-related loss of skeletal muscle mass results from a chronic disruption in the balance between muscle protein synthesis and degradation. As basal muscle protein synthesis rates are likely not different between healthy young and elderly human subjects, it was proposed that muscles from older adults lack the ability to regulate the protein synthetic response to anabolic stimuli, such as food intake and physical activity. Indeed, the dose-response relationship between myofibrillar protein synthesis and the availability of essential amino acids and/or resistance exercise intensity is shifted down and to the right in elderly human subjects. This so-called 'anabolic resistance' represents a key factor responsible for the age-related decline in skeletal muscle mass. Interestingly, long-term resistance exercise training is effective as a therapeutic intervention to augment skeletal muscle mass, and improves functional performance in the elderly. The consumption of different types of proteins, i.e. protein hydrolysates, can have different stimulatory effects on muscle protein synthesis in the elderly, which may be due to their higher rate of digestion and absorption. Current research aims to elucidate the interactions between nutrition, exercise and the skeletal muscle adaptive response that will define more effective strategies to maximise the therapeutic benefits of lifestyle interventions in the elderly.
Collapse
|
313
|
Stevens-Lapsley JE, Ye F, Liu M, Borst SE, Conover C, Yarasheski KE, Walter GA, Sweeney HL, Vandenborne K. Impact of viral-mediated IGF-I gene transfer on skeletal muscle following cast immobilization. Am J Physiol Endocrinol Metab 2010; 299:E730-40. [PMID: 20739512 PMCID: PMC2980362 DOI: 10.1152/ajpendo.00230.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/19/2010] [Accepted: 08/17/2010] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor I (IGF-I) is a potent myogenic factor that plays a critical role in muscle regeneration and muscle hypertrophy. The purpose of this study was to evaluate the effect of IGF-I overexpression on the recovery of muscle size and function during reloading/reambulation after a period of cast immobilization in predominantly fast twitch muscles. In addition, we investigated concomitant molecular responses in IGF-I receptor and binding proteins (BPs). Recombinant adeno-associated virus vector for IGF-I (rAAV-IGF-IA) was injected into the anterior compartment of one of the hindlimbs of young (3 wk) C57BL6 female mice. At 20 wk of age, both hindlimbs were cast immobilized in a shortened position for 2 wk to unload the tibialis anterior (TA) and extensor longus digitorum (EDL) muscles. The TA and EDL muscles were removed bilaterally after 2 wk of cast immobilization and after 1 and 3 wk of free cage reambulation. Increases in IGF-I mRNA and protein levels with IGF-I overexpression were associated with significant increases in muscle wet weight, fiber size, and tetanic force, although overexpression did not protect against cast immobilization-induced muscle atrophy. After 1 wk of reambulation, evidence of enhanced muscle regeneration was noted in IGF-I-overexpressing muscles with an increased prevalence of central nuclei, embryonic myosin, and Pax7 positive fibers. We also observed larger relative gains in muscle size (wet weight and fiber area), but not force, during the 3-wk reambulation period in hindlimb muscles overexpressing IGF-I compared with contralateral control legs. Changes in IGFBP-5 mRNA expression during cast immobilization and reambulation paralleled those of IGF-I, whereas IGFBP-3 expression changed inversely to IGFBP-5.
Collapse
|
314
|
Malatesta M, Meola G. Structural and functional alterations of the cell nucleus in skeletal muscle wasting: the evidence in situ. Eur J Histochem 2010; 54:e44. [PMID: 21263743 PMCID: PMC3167325 DOI: 10.4081/ejh.2010.e44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 11/22/2022] Open
Abstract
The histochemical and ultrastructural analysis of the nuclear components involved in RNA transcription and splicing can reveal the occurrence of cellular dysfunctions eventually related to the onset of a pathological phenotype. In recent years, nuclear histochemistry at light and electron microscopy has increasingly been used to investigate the basic mechanisms of skeletal muscle diseases; the in situ study of nuclei of myofibres and satellite cells proved to be crucial for understanding the pathogenesis of skeletal muscle wasting in sarcopenia, myotonic dystrophy and laminopathies.
Collapse
Affiliation(s)
- M Malatesta
- Dipartimento di Scienze Neurologiche, Neuropsicologiche, Morfologiche e Motorie, Sezione di Anatomia e Istologia, Università di Verona, Italy.
| | | |
Collapse
|
315
|
Buford TW, Anton SD, Judge AR, Marzetti E, Wohlgemuth SE, Carter CS, Leeuwenburgh C, Pahor M, Manini TM. Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res Rev 2010; 9:369-83. [PMID: 20438881 PMCID: PMC3788572 DOI: 10.1016/j.arr.2010.04.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 12/25/2022]
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass, is a significant public health concern that continues to grow in relevance as the population ages. Certain conditions have the strong potential to coincide with sarcopenia to accelerate the progression of muscle atrophy in older adults. Among these conditions are co-morbid diseases common to older individuals such as cancer, kidney disease, diabetes, and peripheral artery disease. Furthermore, behaviors such as poor nutrition and physical inactivity are well-known to contribute to sarcopenia development. However, we argue that these behaviors are not inherent to the development of sarcopenia but rather accelerate its progression. In the present review, we discuss how these factors affect systemic and cellular mechanisms that contribute to skeletal muscle atrophy. In addition, we describe gaps in the literature concerning the role of these factors in accelerating sarcopenia progression. Elucidating biochemical pathways related to accelerated muscle atrophy may allow for improved discovery of therapeutic treatments related to sarcopenia.
Collapse
Affiliation(s)
- Thomas W. Buford
- Institute on Aging, University of Florida, Gainesville, FL 32611
| | - Stephen D. Anton
- Institute on Aging, University of Florida, Gainesville, FL 32611
| | - Andrew R. Judge
- Institute on Aging, University of Florida, Gainesville, FL 32611
| | | | | | | | | | - Marco Pahor
- Institute on Aging, University of Florida, Gainesville, FL 32611
| | - Todd M. Manini
- Institute on Aging, University of Florida, Gainesville, FL 32611
| |
Collapse
|
316
|
Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi E, Esser KA, Rasmussen BB. Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics 2010; 43:595-603. [PMID: 20876843 DOI: 10.1152/physiolgenomics.00148.2010] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
A common characteristic of aging is loss of skeletal muscle (sarcopenia), which can lead to falls and fractures. MicroRNAs (miRNAs) are novel posttranscriptional modulators of gene expression with potential roles as regulators of skeletal muscle mass and function. The purpose of this study was to profile miRNA expression patterns in aging human skeletal muscle with a miRNA array followed by in-depth functional and network analysis. Muscle biopsy samples from 36 men [young: 31 ± 2 (n = 19); older: 73 ± 3 (n = 17)] were 1) analyzed for expression of miRNAs with a miRNA array, 2) validated with TaqMan quantitative real-time PCR assays, and 3) identified (and later validated) for potential gene targets with the bioinformatics knowledge base software Ingenuity Pathways Analysis. Eighteen miRNAs were differentially expressed in older humans (P < 0.05 and >500 expression level). Let-7 family members Let-7b and Let-7e were significantly elevated and further validated in older subjects (P < 0.05). Functional and network analysis from Ingenuity determined that gene targets of the Let-7s were associated with molecular networks involved in cell cycle control such as cellular proliferation and differentiation. We confirmed with real-time PCR that mRNA expression of cell cycle regulators CDK6, CDC25A, and CDC34 were downregulated in older compared with young subjects (P < 0.05). In addition, PAX7 mRNA expression was lower in older subjects (P < 0.05). These data suggest that aging is characterized by a higher expression of Let-7 family members that may downregulate genes related to cellular proliferation. We propose that higher Let-7 expression may be an indicator of impaired cell cycle function possibly contributing to reduced muscle cell renewal and regeneration in older human muscle.
Collapse
Affiliation(s)
- Micah J Drummond
- Department of Physical Therapy, University of Texas Medical Branch, Galveston, TX 77555-1144, USA.
| | | | | | | | | | | | | |
Collapse
|
317
|
Abstract
Satellite cells are quiescent cells located under the basal lamina of skeletal muscle fibers that contribute to muscle growth, maintenance, repair, and regeneration. Mouse satellite cells have been shown to be muscle stem cells that are able to regenerate muscle fibers and self-renew. As human skeletal muscle is also able to regenerate following injury, we assume that the human satellite cell is, like its murine equivalent, a muscle stem cell. In this review, we compare human and mouse satellite cells and highlight their similarities and differences. We discuss gaps in our knowledge of human satellite cells, compared with that of mouse satellite cells, and suggest ways in which we may advance studies on human satellite cells, particularly by finding new markers and attempting to re-create the human satellite cell niche in vitro.
Collapse
Affiliation(s)
- Luisa Boldrin
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom.
| | | | | |
Collapse
|
318
|
McKay BR, Toth KG, Tarnopolsky MA, Parise G. Satellite cell number and cell cycle kinetics in response to acute myotrauma in humans: immunohistochemistry versus flow cytometry. J Physiol 2010; 588:3307-20. [PMID: 20624792 DOI: 10.1113/jphysiol.2010.190876] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023] Open
Abstract
In humans, muscle satellite cell (SC) enumeration is an important measurement used to determine the myogenic response to various stimuli. To date, the standard practice for enumeration is immunohistochemistry (IHC) using antibodies against common SC markers (Pax7, NCAM). Flow cytometry (FC) analysis may provide a more rapid and quantitative determination of changes in the SC pool with potential for additional analysis not easily achievable with standard IHC. In this study, FC analysis revealed that the number of Pax7(+) cells per milligram isolated from 50 mg of fresh tissue increased 36% 24 h after exercise-induced muscle injury (300 unilateral maximal eccentric contractions). IHC analysis of Pax7 and neural cell adhesion molecule (NCAM) appeared to sufficiently and similarly represent the expansion of SCs after injury (28-36% increase). IHC and FC data illustrated that Pax7 was the most widely expressed SC marker in muscle cross-sections and represented the majority of positive cells, while NCAM was expressed to a lesser degree. Moreover, FC and IHC demonstrated a similar percentage change 24 h after injury (36% increase, Pax7; 28% increase, NCAM). FC analysis of isolated SCs revealed that the number of Pax7(+) cells per milligram in G(2)/M phase of the cell cycle increased 202% 24 h after injury. Number of cells per milligram in G(0)/G(1) and cells in S-phase increased 32% and 59% respectively. Here we illustrate the use of FC as a method for enumerating SC number on a per milligram tissue basis, providing a more easily understandable relation to muscle mass (vs. percentage of myonuclei or per myofibre). Although IHC is a powerful tool for SC analysis, FC is a fast, reliable and effective method for SC quantification as well as a more informative method for cell cycle kinetics of the SC population in humans.
Collapse
Affiliation(s)
- Bryon R McKay
- Departments of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4L8
| | | | | | | |
Collapse
|
319
|
Pre-mRNA processing is partially impaired in satellite cell nuclei from aged muscles. J Biomed Biotechnol 2010; 2010:410405. [PMID: 20490357 PMCID: PMC2872765 DOI: 10.1155/2010/410405] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2009] [Accepted: 02/03/2010] [Indexed: 01/25/2023] Open
Abstract
Satellite cells are responsible for the capacity of mature mammalian skeletal muscles to repair and maintain mass. During aging, skeletal muscle mass as well as the muscle strength and endurance progressively decrease, leading to a condition termed sarcopenia. The causes of sarcopenia are manifold and remain to be completely elucidated. One of them could be the remarkable decline in the efficiency of muscle regeneration; this has been associated with decreasing amounts of satellite cells, but also to alterations in their activation, proliferation, and/or differentiation. In this study, we investigated the satellite cell nuclei of biceps and quadriceps muscles from adult and old rats; morphometry and immunocytochemistry at light and electron microscopy have been combined to assess the organization of the nuclear RNP structural constituents involved in different steps of mRNA formation. We demonstrated that in satellite cells the RNA pathways undergo alterations during aging, possibly hampering their responsiveness to muscle damage.
Collapse
|
320
|
Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int 2010; 21:543-59. [PMID: 19779761 PMCID: PMC2832869 DOI: 10.1007/s00198-009-1059-y] [Citation(s) in RCA: 487] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/25/2009] [Accepted: 08/18/2009] [Indexed: 02/07/2023]
Abstract
The aging process is associated with loss of muscle mass and strength and decline in physical functioning. The term sarcopenia is primarily defined as low level of muscle mass resulting from age-related muscle loss, but its definition is often broadened to include the underlying cellular processes involved in skeletal muscle loss as well as their clinical manifestations. The underlying cellular changes involve weakening of factors promoting muscle anabolism and increased expression of inflammatory factors and other agents which contribute to skeletal muscle catabolism. At the cellular level, these molecular processes are manifested in a loss of muscle fiber cross-sectional area, loss of innervation, and adaptive changes in the proportions of slow and fast motor units in muscle tissue. Ultimately, these alterations translate to bulk changes in muscle mass, strength, and function which lead to reduced physical performance, disability, increased risk of fall-related injury, and, often, frailty. In this review, we summarize current understanding of the mechanisms underlying sarcopenia and age-related changes in muscle tissue morphology and function. We also discuss the resulting long-term outcomes in terms of loss of function, which causes increased risk of musculoskeletal injuries and other morbidities, leading to frailty and loss of independence.
Collapse
Affiliation(s)
- T Lang
- Department of Radiology and Biomedical Imaging, University of California, UCSF, San Francisco, CA 94143-0946, USA.
| | | | | | | | | | | |
Collapse
|
321
|
Huang JH, Joseph AM, Ljubicic V, Iqbal S, Hood DA. Effect of age on the processing and import of matrix-destined mitochondrial proteins in skeletal muscle. J Gerontol A Biol Sci Med Sci 2010; 65:138-46. [PMID: 20045872 DOI: 10.1093/gerona/glp201] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023] Open
Abstract
Deregulation of muscle mitochondrial biogenesis may explain the altered mitochondrial properties associated with aging. Maintenance of the mitochondrial network requires the continuous incorporation of nascent proteins into their subcompartments via the protein import pathway. We examined whether this pathway was impaired in muscle of aged animals, focusing on the subsarcolemmal and intermyofibrillar mitochondrial populations. Our results indicate that the import of proteins into the mitochondrial matrix was unaltered with age. Interestingly, import assays supplemented with the cytosolic fraction illustrated an attenuation of protein import, and this effect was similar between age groups. We observed a 2.5-fold increase in protein degradation in the presence of the cytosolic fraction obtained from aged animals. Thus, the reduction of mitochondrial content and/or function observed with aging may not rely on altered activity of the import pathway but rather on the availability of preproteins that are susceptible to elevated rates of degradation by cytosolic factors.
Collapse
Affiliation(s)
- Julianna H Huang
- School of Kinesiology & Health Science, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
322
|
The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Res Rev 2009; 8:328-38. [PMID: 19464390 DOI: 10.1016/j.arr.2009.05.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2009] [Revised: 05/04/2009] [Accepted: 05/13/2009] [Indexed: 12/22/2022]
Abstract
It has been well-established that the age-related loss of muscle mass and strength, or sarcopenia, impairs skeletal muscle function and reduces functional performance at a more advanced age. Skeletal muscle satellite cells (SC), as precursors of new myonuclei, have been suggested to be involved in the development of sarcopenia. In accordance with the type II muscle fiber atrophy observed in the elderly, recent studies report a concomitant fiber type specific reduction in SC content. Resistance type exercise interventions have proven effective to augment skeletal muscle mass and improve muscle function in the elderly. In accordance, recent work shows that resistance type exercise training can augment type II muscle fiber size and reverse the age-related decline in SC content. The latter is supported by an increase in SC activation and proliferation factors that generally appear following exercise training. Present findings strongly suggest that the skeletal muscle SC control myogenesis and have an important, but yet unresolved, function in the loss of muscle mass with aging. This review discusses the contribution of skeletal muscle SC in the age-related loss of muscle mass and the efficacy of exercise training as a means to attenuate and/or reverse this process.
Collapse
|
323
|
Taylor JR, Zheng Z, Wang ZM, Payne AM, Messi ML, Delbono O. Increased CaVbeta1A expression with aging contributes to skeletal muscle weakness. Aging Cell 2009; 8:584-94. [PMID: 19663902 DOI: 10.1111/j.1474-9726.2009.00507.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
Ca2+ release from the sarcoplasmic reticulum (SR) into the cytosol is a crucial part of excitation-contraction (E-C) coupling. Excitation-contraction uncoupling, a deficit in Ca2+ release from the SR, is thought to be responsible for at least some of the loss in specific force observed in aging skeletal muscle. Excitation-contraction uncoupling may be caused by alterations in expression of the voltage-dependent calcium channel alpha1s (CaV1.1) and beta1a (CaVbeta1a) subunits, both of which are necessary for E-C coupling to occur. While previous studies have found CaV1.1 expression declines in old rodents, CaVbeta1a expression has not been previously examined in aging models. Western blot analysis shows a substantial increase of CaVbeta1a expression over the full lifespan of Friend Virus B (FVB) mice. To examine the specific effects of CaVbeta1a overexpression, a CaVbeta1a-YFP plasmid was electroporated in vivo into young animals. The resulting increase in expression of CaVbeta1a corresponded to decline of CaV1.1 over the same time period. YFP fluorescence, used as a measure of CaVbeta1a-YFP expression in individual fibers, also showed an inverse relationship with charge movement, measured using the whole-cell patch-clamp technique. Specific force was significantly reduced in young CaVbeta1a-YFP electroporated muscle fibers compared with sham-electroporated, age-matched controls. siRNA interference of CaVbeta1a in young muscles reduced charge movement, while charge movement in old was restored to young control levels. These studies imply CaVbeta1a serves as both a positive and negative regulator CaV1.1 expression, and that endogenous overexpression of CaVbeta1a during old age may play a role in the loss of specific force.
Collapse
Affiliation(s)
- Jackson R Taylor
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, 1 Medical Center Boulvard, Winston Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
324
|
Kadi F, Ponsot E. The biology of satellite cells and telomeres in human skeletal muscle: effects of aging and physical activity. Scand J Med Sci Sports 2009; 20:39-48. [PMID: 19765243 DOI: 10.1111/j.1600-0838.2009.00966.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
The decline in the neuromuscular function affects the physical performance and is a threat for independent living in later life. The age-related decrease in muscle satellite cells observed by the age of 70 can be specific to type II fibers in some muscles. Several studies have shown that different forms of exercise induce the expansion of satellite cell pool in human skeletal muscle of young and elderly. Exercise is a powerful non-pharmacological tool inducing the renewal of the satellite cell pool in skeletal muscles. Skeletal muscle is not a stable tissue as satellite cells are constantly recruited during normal daily activities. Satellite cells and the length of telomeres are important in the context of muscle regeneration. It is likely that the regulation of telomeres in vitro cannot fully mimic the behavior of telomeres in human tissues. New insights suggest that telomeres in skeletal muscle are dynamic structures under the influence of their environment. When satellite cells are heavily recruited for regenerative events as in the skeletal muscle of athletes, telomere length has been found to be either dramatically shortened or maintained and even longer than in non-trained individuals. This suggests the existence of mechanisms allowing the control of telomere length in vivo.
Collapse
Affiliation(s)
- F Kadi
- School of Health and Medical Sciences, Division of Sport Sciences, Orebro University, Orebro, Sweden.
| | | |
Collapse
|
325
|
Kerksick CM, Wilborn CD, Campbell BI, Roberts MD, Rasmussen CJ, Greenwood M, Kreider RB. Early-phase adaptations to a split-body, linear periodization resistance training program in college-aged and middle-aged men. J Strength Cond Res 2009; 23:962-71. [PMID: 19387379 DOI: 10.1519/jsc.0b013e3181a00baf] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
An 8-week, split-body, linear periodized resistance training program was completed by college-aged (CA: 18-22 years; n = 24) and middle-aged (MA: 35-50 years; n = 25) men to determine early-phase adaptations in body composition and upper- and lower-body strength. Participants completed 2 upper-body and 2 lower-body resistance training workouts each week. During weeks 1-4, subjects completed 3-6 sets at a 10-repetition maximum (RM) intensity and increased to 8RM for weeks 5-8. The 1RM strength levels were determined on the bench press and leg press, and 30-second Wingate tests were assessed at baseline and after 8 weeks of resistance training. Body composition was assessed using dual-energy X-ray absorptiometry (DXA). For selected data, delta values (post - pre values) were calculated and reported as mean +/- SEM. No changes (p > 0.05) were reported for peak and average Wingate power. Bench press (CA, 3.2 +/- 1.9 kg; MA, 6.2 +/- 3.3 kg; p < 0.001) and leg press (CA, 25.0 +/- 4.4 kg; MA, 18.2 +/- 13.3 kg; p < 0.001) 1RM significantly increased in both groups over time. Lean mass significantly increased over time in both groups (CA, 0.9 +/- 2.4 kg; MA, 1.1 +/- 1.9 kg; p < 0.001). Significant group x time effects were seen for fat mass changes (CA, 0.5 +/- 1.3 kg; MA, -0.5 +/- 1.1 kg; p = 0.01) and % body fat changes (CA, 0.4 +/- 1.4%; MA, -0.7 +/- 1.1%; p = 0.01). These results indicate that performing a split-body, linearly periodized resistance training program for 8 weeks significantly increases bench press 1RM, leg press 1RM, and DXA lean mass in CA and MA men. Furthermore, MA men lost significantly more fat mass and significantly decreased % body fat compared with CA men. A split-body, linearly periodized resistance training program may be used as an effective program to increase strength and lean mass in both young and MA populations.
Collapse
Affiliation(s)
- Chad M Kerksick
- Health and Exercise Science Department, Applied Biochemistry and Molecular Physiology Laboratory, University of Oklahoma, Norman, Oklahoma, USA.
| | | | | | | | | | | | | |
Collapse
|
326
|
Up-regulation of calcium-dependent proteolysis in human myoblasts under acute oxidative stress. Exp Cell Res 2009; 316:115-25. [PMID: 19651121 DOI: 10.1016/j.yexcr.2009.07.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 12/30/2022]
Abstract
The reduced regenerative potential of muscle fibres, most likely due to a decreased number and/or function of satellite cells, could play a significant role in the progression of muscle ageing. Accumulation of reactive oxygen species has been clearly correlated to sarcopenia and could contribute to the impairment of satellite cell function. In this work we have investigated the effect of oxidative stress generated by hydrogen peroxide in cultured human skeletal muscle satellite cells. We specifically focused on the activity and regulation of calpains. These calcium-dependent proteases are known to regulate many transduction pathways including apoptosis and play a critical role in satellite cell function. In our experimental conditions, which induce an increase in calcium concentration, protein oxidation and apoptotic cell death, a significant up-regulation of calpain expression and activity were observed and ATP synthase, a major component of the respiratory chain, was identified as a calpain target. Interestingly we were able to protect the cells from these H(2)O(2)-induced effects and prevent calpain up-regulation with a natural antioxidant extracted from pine bark (Oligopin). These data strongly suggest that oxidative stress could impair satellite cell functionality via calpain-dependent pathways and that an antioxidant such as Oligopin could prevent apoptosis and calpain activation.
Collapse
|
327
|
Lee S, Van Remmen H, Csete M. Sod2 overexpression preserves myoblast mitochondrial mass and function, but not muscle mass with aging. Aging Cell 2009; 8:296-310. [PMID: 19627269 DOI: 10.1111/j.1474-9726.2009.00477.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
Mice lacking superoxide dismutase-2 (SOD2 or MnSOD) die during embryonic or early neonatal development, with diffuse superoxide-induced mitochondrial damage. Although stem and progenitor cells are exquisitely sensitive to oxidant stress, they have not been well studied in MnSOD2-manipulated mouse models. Patterns of proliferation and differentiation of cultured myoblasts (muscle progenitor cells), PI3-Akt signaling during differentiation, and the maintenance of mitochondrial mass with aging using myoblasts from young (3-4 week old) and aged (27-29 months old) MnSOD2-overexpressing (Sod2-Tg) and heterozygote (Sod2(+/-)) mice were characterized by us. Overexpression of MnSOD2 in myoblasts had a protective effect on mitochondrial DNA abundance and some aspects of mitochondrial function with aging, and preservation of differentiation potential. Sod2 deficiency resulted in defective signaling in the PI3-Akt pathway, specifically impaired phosphorylation of Akt at Ser473 and Thr308 in young myoblasts, and decreased differentiation potential. Compared with young myoblasts, aged myoblast Akt was constitutively phosphorylated, unresponsive to mitogen signaling, and indifferent to MnSOD2 levels. These data suggest that specific sites in the PI3K-Akt pathway are more sensitive to increased superoxide levels than to the increased hydrogen peroxide levels generated in Sod2-transgenic myoblasts. In wild-type myoblasts, aging was associated with significant loss of mitochondrial DNA relative to chromosomal DNA, but MnSOD2 overexpression was associated with maintained myoblast mitochondrial DNA with aging.
Collapse
Affiliation(s)
- Sukkyoo Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
328
|
New multiple labelling method for improved satellite cell identification in human muscle: application to a cohort of power-lifters and sedentary men. Histochem Cell Biol 2009; 132:141-57. [PMID: 19484472 DOI: 10.1007/s00418-009-0606-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/04/2009] [Indexed: 01/24/2023]
Abstract
Presently applied methods to identify and quantify human satellite cells (SCs) give discrepant results. We introduce a new immunofluorescence method that simultaneously monitors two SC markers (NCAM and Pax7), the basal lamina and nuclei. Biopsies from power-lifters, power-lifters using anabolic substances and untrained subjects were re-examined. Significantly different results from those with staining for NCAM and nuclei were observed. There were three subtypes of SCs; NCAM(+)/Pax7(+) (94%), NCAM(+)/Pax7(-) (4%) and NCAM(-)/Pax7(+) (1%) but large individual variability existed. The proportion of SCs per nuclei within the basal lamina of myofibres (SC/N) was similar for all groups reflecting a balance between the number of SCs and myonuclei to maintain homeostasis. We emphasise that it is important to quantify both SC/N and the number of SCs per fibre. Our multiple marker method is more reliable for SC identification and quantification and can be used to evaluate other markers of muscle progenitor cells.
Collapse
|
329
|
Verhoeven S, Vanschoonbeek K, Verdijk LB, Koopman R, Wodzig WKWH, Dendale P, van Loon LJC. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr 2009; 89:1468-75. [PMID: 19321567 DOI: 10.3945/ajcn.2008.26668] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND It has been reported that the blunted muscle protein synthetic response to food intake in the elderly can be normalized by increasing the leucine content of a meal. OBJECTIVE The objective was to assess the effect of 3 mo of leucine supplementation on muscle mass and strength in healthy elderly men. DESIGN Thirty healthy elderly men with a mean (+/-SEM) age of 71 +/- 4 y and body mass index (BMI; in kg/m(2)) of 26.1 +/- 0.5 were randomly assigned to either a placebo-supplemented (n = 15) or leucine-supplemented (n = 15) group. Leucine or placebo (2.5 g) was administered with each main meal during a 3-mo intervention period. Whole-body insulin sensitivity, muscle strength (one-repetition maximum), muscle mass (measured by computed tomography and dual-energy X-ray absorptiometry), myosin heavy chain isoform distribution, and plasma amino acid and lipid profiles were assessed before, during, and/or after the intervention period. RESULTS No changes in skeletal muscle mass or strength were observed over time in either the leucine- or placebo-supplemented group. No improvements in indexes of whole-body insulin sensitivity (oral glucose insulin sensitivity index and the homeostasis model assessment of insulin resistance), blood glycated hemoglobin content, or the plasma lipid profile were observed. CONCLUSION Long-term leucine supplementation (7.5 g/d) does not augment skeletal muscle mass or strength and does not improve glycemic control or the blood lipid profile in healthy elderly men. This trial was registered at clinicaltrials.gov as NCT00807508.
Collapse
Affiliation(s)
- Suzanne Verhoeven
- Department of Human Movement Sciences, Nutrition and Toxicology Research Institute, Maastricht, Maastricht University, Maastricht, Netherlands
| | | | | | | | | | | | | |
Collapse
|
330
|
Malatesta M, Perdoni F, Muller S, Zancanaro C, Pellicciari C. Nuclei of aged myofibres undergo structural and functional changes suggesting impairment in RNA processing. Eur J Histochem 2009; 53:e12. [PMID: 19683983 PMCID: PMC3167280 DOI: 10.4081/ejh.2009.e12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/28/2009] [Indexed: 12/25/2022] Open
Abstract
Advancing adult age is associated with a progressive decrease in skeletal muscle mass, strength and quality known as sarcopenia. The mechanisms underlying age-related skeletal muscle wasting and weakness are manifold and still remain to be fully elucidated. Despite the increasing evidence that the progress of muscle diseases leading to muscle atrophy/dystrophy may be related to defective RNA processing, no data on the morpho-functional features of skeletal muscle nuclei in sarcopenia are available at present. In this view, we have investigated, by combining morphometry and immunocytochemistry at light and electron microscopy, the fine structure of myonuclei as well as the distribution and amount of RNA processing factors in skeletal myofibres of biceps brachii and quadriceps femoris from adult and old rats. Results demonstrate that the myonuclei of aged type II fibres show an increased amount of condensed chromatin and lower amounts of phosphorylated polymerase II and DNA/RNA hybrid molecules, clearly indicating a decrease in pre-mRNA transcription rate compared to adult animals. In addition, myonuclei of aged fibres show decreased amounts of nucleoplasmic splicing factors and an accumulation of cleavage factors, polyadenilated RNA and perichromatin granules, suggesting a reduction in the processing and transport rate of premRNA. During ageing, it seems therefore that in rat myonuclei the entire production chain of mRNA, from synthesis to cytoplasmic export, is less efficient. This failure likely contributes to the reduced responsiveness of muscle cells to anabolic stimuli in the elderly.
Collapse
Affiliation(s)
- M Malatesta
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Anatomia e Istologia, University of Verona, Italy.
| | | | | | | | | |
Collapse
|
331
|
Nehlin JO, Barington T. Strategies for future histocompatible stem cell therapy. Biogerontology 2009; 10:339-76. [PMID: 19219637 DOI: 10.1007/s10522-009-9213-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2008] [Accepted: 01/19/2009] [Indexed: 02/07/2023]
Abstract
Stem cell therapy based on the safe and unlimited self-renewal of human pluripotent stem cells is envisioned for future use in tissue or organ replacement after injury or disease. A gradual decline of regenerative capacity has been documented among the adult stem cell population in some body organs during the aging process. Recent progress in human somatic cell nuclear transfer and inducible pluripotent stem cell technologies has shown that patient-derived nuclei or somatic cells can be reprogrammed in vitro to become pluripotent stem cells, from which the three germ layer lineages can be generated, genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within a developmental lineage, would facilitate the transplantation of organ/tissue-specific adult stem cells or terminally differentiated somatic cells to improve the function of diseased organs or tissues in an individual. Here, we present an overview of various experimental cell therapy technologies based on the use of patient-histocompatible stem cells, the pending issues needed to be dealt with before clinical trials can be initiated, evidence for the loss and/or aging of the stem cell pool and some of the possible uses of human pluripotent stem cell-derivatives aimed at curing disease and improving health.
Collapse
Affiliation(s)
- Jan O Nehlin
- Center for Stem Cell Treatment, Department of Clinical Immunology, University of Southern Denmark, Denmark.
| | | |
Collapse
|
332
|
Verdijk LB, Gleeson BG, Jonkers RAM, Meijer K, Savelberg HHCM, Dendale P, van Loon LJC. Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. J Gerontol A Biol Sci Med Sci 2009; 64:332-9. [PMID: 19196907 DOI: 10.1093/gerona/gln050] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022] Open
Abstract
We determined muscle fiber type-specific hypertrophy and changes in satellite cell (SC) content following a 12-week resistance training program in 13 healthy, elderly men (72 +/- 2 years). Leg strength and body composition (dual-energy X-ray absorptiometry and computed tomography) were assessed, and muscle biopsy samples were collected. Leg strength increased 25%-30% after training (p < .001). Leg lean mass and quadriceps cross-sectional area increased 6%-9% (p < .001). At baseline, mean fiber area and SC content were smaller in the Type II versus Type I muscle fibers (p < .01). Following training, Type II muscle fiber area increased from 5,438 +/- 319 to 6,982 +/- 503 microm(2) (p < .01). Type II muscle fiber SC content increased from 0.048 +/- 0.003 to 0.084 +/- 0.008 SCs per fiber (p < .001). No changes were observed in the Type I muscle fibers. In older adults, skeletal muscle tissue is still capable of inducing SC proliferation and differentiation, resulting in Type II muscle fiber hypertrophy.
Collapse
Affiliation(s)
- Lex B Verdijk
- Department of Human Movement Sciences, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
333
|
Verdijk LB, Jonkers RAM, Gleeson BG, Beelen M, Meijer K, Savelberg HHCM, Wodzig WKWH, Dendale P, van Loon LJC. Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men. Am J Clin Nutr 2009; 89:608-16. [PMID: 19106243 DOI: 10.3945/ajcn.2008.26626] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Considerable discrepancy exists in the literature on the proposed benefits of protein supplementation on the adaptive response of skeletal muscle to resistance-type exercise training in the elderly. OBJECTIVE The objective was to assess the benefits of timed protein supplementation on the increase in muscle mass and strength during prolonged resistance-type exercise training in healthy elderly men who habitually consume adequate amounts of dietary protein. DESIGN Healthy elderly men (n = 26) aged 72 +/- 2 y were randomly assigned to a progressive, 12-wk resistance-type exercise training program with (protein group) or without (placebo group) protein provided before and immediately after each exercise session (3 sessions/wk, 20 g protein/session). One-repetition maximum (1RM) tests were performed regularly to ensure a progressive workload during the intervention. Muscle hypertrophy was assessed at the whole-body (dual-energy X-ray absorptiometry), limb (computed tomography), and muscle fiber (biopsy) level. RESULTS The 1RM strength increased approximately 25-35% in both groups (P < 0.001). Dual-energy X-ray absorptiometry and computed tomography scans showed similar increases in leg muscle mass (6 +/- 1% in both groups; P < 0.001) and in the quadriceps (9 +/- 1% in both groups), from 75.9 +/- 3.7 and 73.8 +/- 3.2 to 82.4 +/- 3.9 and 80.0 +/- 3.0 cm2 in the placebo and protein groups, respectively (P < 0.001). Muscle fiber hypertrophy was greater in type II (placebo: 28 +/- 6%; protein: 29 +/- 4%) than in type I (placebo: 5 +/- 4%; protein: 13 +/- 6%) fibers, but the difference between groups was not significant. CONCLUSION Timed protein supplementation immediately before and after exercise does not further augment the increase in skeletal muscle mass and strength after prolonged resistance-type exercise training in healthy elderly men who habitually consume adequate amounts of dietary protein. This trial was registered at clinicaltrials.gov as NCT00744094.
Collapse
Affiliation(s)
- Lex B Verdijk
- Department of Human Movement Sciences, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Melnyk JA, Rogers MA, Hurley BF. Effects of strength training and detraining on regional muscle in young and older men and women. Eur J Appl Physiol 2009; 105:929-38. [PMID: 19153759 DOI: 10.1007/s00421-008-0979-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/29/2008] [Indexed: 02/07/2023]
Abstract
To examine the effects of 9 weeks of strength training (ST) and 31 weeks of detraining on regional muscle area in young and older men and women, three regions of the quadriceps muscle area (proximal, middle, and distal) were measured via MRI in 11 men ages 20-30, 11 men ages 65-75, 10 women ages 20-30, and 11 women ages 65-75. These effects were assessed by determining the difference between the control limb and the trained limb (T-UT) at all three time points. This design provided control for possible influences of biological, methodological, seasonal variations, as well as influences due to attention or genetic differences that commonly occur between experimental and control groups. There were no significant differences in any of the three regions at any of the three time points, when comparing subjects by age. However, men had significantly greater T-UT CSA at the after ST time point [6.9 (3.7) cm(2)] when compared with women [2.8 (3.7) cm(2), P < 0.05]. Baseline T-UT CSA was higher than after detraining T-UT CSA for young men in the proximal and middle regions [0.1 (3.6), 0.4 (3.6) cm(2) vs. 2.8 (4.0), 2.4 (3.6) cm(2), P < 0.05], but there were no significant differences within the other three groups. These data indicate that sex may influence changes in regional CSA after ST, whereas age does not influence regional muscle gain or loss due to ST or detraining.
Collapse
Affiliation(s)
- Jason A Melnyk
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA.
| | | | | |
Collapse
|
335
|
Abstract
Aging is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk of developing chronic metabolic disease. The age-related loss of skeletal muscle mass is attributed to a disruption in the regulation of skeletal muscle protein turnover, resulting in an imbalance between muscle protein synthesis and degradation. As basal (fasting) muscle protein synthesis rates do not seem to differ substantially between the young and elderly, many research groups have started to focus on the muscle protein synthetic response to the main anabolic stimuli, i.e., food intake and physical activity. Recent studies suggest that the muscle protein synthetic response to food intake is blunted in the elderly. The latter is now believed to represent a key factor responsible for the age-related decline in skeletal muscle mass. Physical activity and/or exercise stimulate postexercise muscle protein accretion in both the young and elderly. However, the latter largely depends on the timed administration of amino acids and/or protein before, during, and/or after exercise. Prolonged resistance type exercise training represents an effective therapeutic strategy to augment skeletal muscle mass and improve functional performance in the elderly. The latter shows that the ability of the muscle protein synthetic machinery to respond to anabolic stimuli is preserved up to very old age. Research is warranted to elucidate the interaction between nutrition, exercise, and the skeletal muscle adaptive response. The latter is needed to define more effective strategies that will maximize the therapeutic benefits of lifestyle intervention in the elderly.
Collapse
Affiliation(s)
- René Koopman
- Department of Human Movement Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|
336
|
Mallinson J, Meissner J, Chang KC. Chapter 2. Calcineurin signaling and the slow oxidative skeletal muscle fiber type. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:67-101. [PMID: 19766967 DOI: 10.1016/s1937-6448(09)77002-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
Calcineurin, also known as protein phosphatase 2B (PP2B), is a calcium-calmodulin-dependent phosphatase. It couples intracellular calcium to dephosphorylate selected substrates resulting in diverse biological consequences depending on cell type. In mammals, calcineurin's functions include neuronal growth, development of cardiac valves and hypertrophy, activation of lymphocytes, and the regulation of ion channels and enzymes. This chapter focuses on the key roles of calcineurin in skeletal muscle differentiation, regeneration, and fiber type conversion to an oxidative state, all of which are crucial to muscle development, metabolism, and functional adaptations. It seeks to integrate the current knowledge of calcineurin signaling in skeletal muscle and its interactions with other prominent regulatory pathways and their signaling intermediates to form a molecular overview that could provide directions for possible future exploitations in human metabolic health.
Collapse
Affiliation(s)
- Joanne Mallinson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | | | | |
Collapse
|
337
|
Fulco M, Sartorelli V. Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues. Cell Cycle 2008; 7:3669-79. [PMID: 19029811 DOI: 10.4161/cc.7.23.7164] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022] Open
Abstract
The ability to adapt and respond to nutrients is an ancient cellular function, conserved from unicellular to the most complex multicellular organisms, including mammals. Mammals adapt to changes in nutritional status through the modulation of tissue-specific metabolic pathways so as to maintain energy homeostasis. At least two proteins are activated in response to reduced nutrient availability: AMP-activated protein kinase (AMPK) and NAD(+)-dependent deacetylase SIRT1. AMPK functions as a sensor of cellular energy status and as a master regulator of metabolism. When ATP levels decrease, AMPK is activated to boost ATP production and to inhibit ATP usage, thus restoring energy balance. Similarly, SIRT1 is activated in response to changes in the energy status to promote transcription of genes that mediate the metabolic response to stress, starvation or calorie restriction. Several observations support a model where, in response to stress and reduced nutrients, a metabolic pathway is activated within which AMPK and SIRT1 concordantly function to ensure an appropriate cellular response and adaptation to environmental modifications. In this perspective, we compare and contrast the roles of SIRT1 and AMPK in several metabolic tissues and propose a working model of how the AMPK-SIRT1 axis may be regulated to control functions relevant to organismal physiology and pathophysiology.
Collapse
Affiliation(s)
- Marcella Fulco
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
338
|
Schneider SM, Boirie Y, Zeanandin G, Mothe-Satney I, Hébuterne X. Métabolisme et apports en acides aminés chez le sujet âgé. NUTR CLIN METAB 2008. [DOI: 10.1016/j.nupar.2008.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
|
339
|
Verney J, Kadi F, Charifi N, Féasson L, Saafi MA, Castells J, Piehl-Aulin K, Denis C. Effects of combined lower body endurance and upper body resistance training on the satellite cell pool in elderly subjects. Muscle Nerve 2008; 38:1147-54. [PMID: 18671293 DOI: 10.1002/mus.21054] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Abstract
To distinguish the respective potential of endurance and resistance training to increase the satellite cell pool, we investigated the effects of 14 weeks of concurrent lower body endurance and upper body resistance training (3 sessions/week) on vastus lateralis (VLat) and deltoid (Del) muscles of 10 active elderly men. NCAM+ satellite cells and myonuclear number were assessed in VLat and Del. After 14 weeks of training the NCAM+ satellite cell pool increased similarly (+38%) in both muscles, mainly in type II muscle fibers (P < 0.05). There was no significant change in myonuclear number or myonuclear domain in either muscle. Combining resistance training in the upper limbs with endurance training in the lower limbs is an efficient strategy to enhance the satellite cell pool in upper and lower body muscles in elderly subjects. Our results provide a practical reference for the determination of optimal exercise protocols to improve muscle function and regeneration in the elderly.
Collapse
Affiliation(s)
- Julien Verney
- Laboratory of Physiology and Physiopathology of Exercise and Handicap, University Jean Monnet, University Hospital, Saint Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
340
|
Abstract
OBJECTIVE The paper addresses the degree to which the attainment of the status as an elite athlete in different sports ameliorates the known age-related losses in skeletal muscle structure and function. DESIGN The retrospective design, based on comparisons of published data on former elite and masters athletes and data on control subjects, assessed the degree to which the attainment of elite and masters athlete status ameliorated the known age-related changes in skeletal muscle structure and function. SETTING Institutional. PARTICIPANTS Elite male athletes. INTERVENTIONS Participation in selected individual and team sports. MAIN OUTCOME MEASUREMENTS Strength, power, VO2max, and performance. RESULTS For elite athletes in all sports, as for the general population, age-related muscle atrophy begins at about 50 years of age. Despite the loss of muscle mass, elite athletes who maintain an active lifestyle age gracefully with few health problems. Conversely, those who lapse into inactivity regress toward general population norms for fitness, weight control, and health problems. Elite athletes in the dual and team sports have careers that rarely extend into their 30s. CONCLUSIONS Lifelong physical activity does not appear to have any impact on the loss in fiber number. The loss of fibers can be buffered to some degree by hypertrophy of fibers that remain. It is surprising that the performance of elite athletes in all sports appears to be impaired before the onset of the fiber loss. Even with major losses in physical capacity and muscle mass, the performance of elite and masters athletes is remarkable.
Collapse
|
341
|
Rathbone CR, Booth FW, Lees SJ. Sirt1 increases skeletal muscle precursor cell proliferation. Eur J Cell Biol 2008; 88:35-44. [PMID: 18922599 DOI: 10.1016/j.ejcb.2008.08.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2008] [Revised: 08/02/2008] [Accepted: 08/02/2008] [Indexed: 11/18/2022] Open
Abstract
It is important to understand the mechanisms that control muscle precursor cell (MPC) proliferation for the development of countermeasures to offset the deleterious effects of the aging-related loss of skeletal muscle mass (and myonuclei) and the impaired ability of old muscle to regrow and regenerate. Over-expression of the NAD+-dependent histone deacetylase Sirt1 increased MPC proliferation and cell cycle progression as evidenced by increased 5-bromo-2'-deoxyuridine (BrdU) incorporation, an increase in cell number, proliferating cell nuclear antigen expression, and the phosphorylation of retinoblastoma protein. Associated with the Sirt1-mediated increase in MPC cycle progression were the bidirectional decreases and increases in the expression of the cyclin-dependent kinase inhibitors p21(Waf/Cip1) and p27(Kip1), respectively. Based upon our recent observation that lowering oxygen (O2) in culture from ambient (20%) to estimated physiological levels (5%) increased MPC proliferation, we next measured Sirt1 protein at 5% and 20% O2. Interestingly, in addition to increased proliferation in MPCs cultured at 5% O2, Sirt1 expression increased, compared to 20% O2. Using O2 levels as a platform to modulate basal Sirt1 protein, activation of Sirt1 activity with resveratrol in 20% O2 increased MPC proliferation while inhibition of Sirt1 with nicotinamide in 5% O2 lowered proliferation. For the first time, Sirt1 has been shown to increase MPC proliferation. These findings could have clinical significance since MPC proliferation has important implications in regulating skeletal muscle growth, maintenance, and repair, and the aging-related loss of skeletal muscle mass.
Collapse
Affiliation(s)
- Christopher R Rathbone
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
342
|
Colman RJ, Beasley TM, Allison DB, Weindruch R. Attenuation of sarcopenia by dietary restriction in rhesus monkeys. J Gerontol A Biol Sci Med Sci 2008; 63:556-9. [PMID: 18559628 DOI: 10.1093/gerona/63.6.556] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023] Open
Abstract
Sarcopenia, the loss of muscle mass with normal aging, devastates quality of life-and related healthcare expenditures are enormous. The prevention or attenuation of sarcopenia would be an important medical advance. Dietary restriction (DR) is the only dietary intervention that consistently extends median and maximum life span, as well as health span in rodents. Evidence suggests that DR will have a similar effect in primates. Furthermore, DR opposes sarcopenia in rodents. We tested the hypothesis that DR will reduce age-related sarcopenia in a nonhuman primate. Thirty adult male rhesus monkeys, half fed a normal calorie intake and half reduced by 30% in caloric intake, were examined over 17 years for changes in dual-energy X-ray absorptiometry-estimated skeletal muscle mass. Body weight-adjusted skeletal muscle mass declined somewhat in both groups but was far more rapid in the control group. We have shown that moderate, adult-onset DR can attenuate sarcopenia in a nonhuman primate model.
Collapse
Affiliation(s)
- Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Ct., Madison, WI 53715, USA.
| | | | | | | |
Collapse
|
343
|
Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology 2008; 9:213-28. [PMID: 18299960 DOI: 10.1007/s10522-008-9131-0] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2007] [Accepted: 02/06/2008] [Indexed: 01/02/2023]
Abstract
Some of the most serious consequences of ageing are its effects on skeletal muscle. The term 'sarcopenia' describes the slow but progressive loss of muscle mass with advancing age and is characterised by a deterioration of muscle quantity and quality leading to a gradual slowing of movement and a decline in strength. The loss of muscle mass and strength is thought to be attributed to the progressive atrophy and loss of individual muscle fibres associated with the loss of motor units, and a concomitant reduction in muscle 'quality' due to the infiltration of fat and other non-contractile material. These age-related changes in skeletal muscle can be largely attributed to the complex interaction of factors affecting neuromuscular transmission, muscle architecture, fibre composition, excitation-contraction coupling, and metabolism. Given the magnitude of the growing public health problems associated with sarcopenia, there is considerable interest in the development and evaluation of therapeutic strategies to attenuate, prevent, or ultimately reverse age-related muscle wasting and weakness. The aim is to review our current understanding of some of the cellular and molecular mechanisms responsible for age-related changes in skeletal muscle.
Collapse
|
344
|
Dennis RA, Przybyla B, Gurley C, Kortebein PM, Simpson P, Sullivan DH, Peterson CA. Aging alters gene expression of growth and remodeling factors in human skeletal muscle both at rest and in response to acute resistance exercise. Physiol Genomics 2007; 32:393-400. [PMID: 18073271 DOI: 10.1152/physiolgenomics.00191.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023] Open
Abstract
The purpose of this investigation was to compare expression of genes that function in inflammation and stress, cell structure and signaling, or remodeling and growth in skeletal muscle of young (32 +/- 7 yr, n = 15) and elderly (72 +/- 5 yr, n = 16) healthy subjects before and after a bout of resistance leg exercises. A real-time RT-PCR method was used to screen 100 transcripts in v. lateralis biopsies obtained before and 72 h postexercise. The screen identified 15 candidates for differential expression due to aging and/or exercise that were measured quantitatively. The median levels of four mRNAs (insulin-like growth factor-1 and its binding protein IGFBP5, ciliary neurotrophic factor, and the metallopeptidase MMP2) were significantly affected by aging and were greater (1.6- to 2.3-fold, P </= 0.05) in the young than elderly muscle at both time points. The median levels of three mRNAs were significantly (P </= 0.05) affected by exercise in the young. The metallopeptidase inhibitor TIMP1 and alpha-cardiac actin mRNAs increased 2-fold and 6.5-fold, respectively, and GDF8 (myostatin) mRNA decreased by 50%. However, elderly muscle did not display any significant changes in gene expression postexercise. Thus, aging muscle shows decreased levels at rest and an impaired response to exercise for a number of mRNAs for factors potentially involved in muscle growth and remodeling. Future studies must determine the functional importance of these gene expression changes to protein synthesis, satellite cell activity, and other processes that are directly involved in the mechanisms of muscle hypertrophy.
Collapse
Affiliation(s)
- Richard A Dennis
- Central Arkansas Veterans Healthcare System, North Little Rock GRECC, 2200 Fort Roots Dr. (Bldg. 170, 3J/157), North Little Rock, AR 72114-1706, USA.
| | | | | | | | | | | | | |
Collapse
|
345
|
Allouh MZ, Yablonka-Reuveni Z, Rosser BWC. Pax7 reveals a greater frequency and concentration of satellite cells at the ends of growing skeletal muscle fibers. J Histochem Cytochem 2007; 56:77-87. [PMID: 17938281 DOI: 10.1369/jhc.7a7301.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
The main sites of longitudinal growth in skeletal muscle are the ends of the fibers. This study tests the hypothesis that satellite cells (SCs) are at a greater frequency (#SC nuclei/all nuclei within basal laminae) and concentration (closer together) within growing fiber ends of posthatch chicken pectoralis. SCs were localized by their Pax7 expression, and fiber ends were identified by their retention of neonatal myosin heavy chains and small cross-sectional profiles. Whereas SC frequency decreased from about 20% at 9 days posthatch to <5% at 115 days, fiber ends retained a frequency of approximately 16%. Calculated mean area of sarcolemma per SC revealed higher concentrations of SCs at fiber ends. There was also a strong inverse correlation between SC frequency and fiber profile cross-sectional size throughout development. This study suggests that SCs at fiber ends play a key role in the longitudinal growth of muscle fibers, and that fiber profile size may impact SC distribution.
Collapse
Affiliation(s)
- Mohammed Z Allouh
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Health Science Building, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | |
Collapse
|
346
|
Mackey AL, Kjaer M, Dandanell S, Mikkelsen KH, Holm L, Døssing S, Kadi F, Koskinen SO, Jensen CH, Schrøder HD, Langberg H. The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol (1985) 2007; 103:425-31. [PMID: 17463304 DOI: 10.1152/japplphysiol.00157.2007] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The consumption of nonsteroidal anti-inflammatory drugs (NSAIDs) is widespread among athletes when faced with muscle soreness or injury, but the effects of NSAIDs on satellite cell activity in humans are unknown. To investigate this, 14 healthy male endurance athletes (mean peak oxygen consumption 62 ml·kg−1·min−1) volunteered for the study, which involved running 36 km. They were divided into two groups and received either 100 mg indomethacin per day or placebo. Muscle biopsies collected before the run and on days 1, 3, and 8 afterward were analyzed for satellite cells by immunohistochemistry with the aid of neural cell adhesion molecule (NCAM) and fetal antigen-1 (FA1) antibodies. Muscle biopsies were also collected from untrained individuals for comparison. Compared with preexercise levels, a 27% increase in the number of NCAM+ cells was observed on day 8 postexercise in the placebo group ( P < 0.05), while levels remained similar at all time points in the NSAID group. No change was seen in the proportion of FA1+ cells, although lower levels were found in the muscle of endurance-trained athletes compared with untrained individuals ( P < 0.05). These results suggest that ingestion of anti-inflammatory drugs attenuates the exercise-induced increase in satellite cell number, supporting the role of the cyclooxygenase pathway in satellite cell activity.
Collapse
Affiliation(s)
- Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Bldg. 8, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Gonzalez JM, Carter JN, Johnson DD, Ouellette SE, Johnson SE. Effect of ractopamine-hydrochloride and trenbolone acetate on longissimus muscle fiber area, diameter, and satellite cell numbers in cull beef cows1. J Anim Sci 2007; 85:1893-901. [PMID: 17468415 DOI: 10.2527/jas.2006-624] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the effects of coadministration of ractopamine-HCl (RAC) and trenbolone acetate plus estradiol (TBA) on LM fiber cross-sectional area (CSA), diameter, fiber-associated myonuclei, and satellite cell number. Culled crossbred beef cows (n = 98; 11 +/- 1.8 yr old; BCS 4.3 +/- 0.03) from a single ranch in south Florida were fed a concentrate diet for 92 d in a 2 x 2, randomized block design. Cows were blocked by BW on arrival into light (initial BW = 369.75 +/- 2.68 kg and end BW = 501.96 +/- 6.90 kg) and heavy (initial BW = 418.31 +/- 2.75 kg and end BW = 522.15 +/- 7.09 kg) groups before assignment to treatment. Factors included dietary treatment (0 or 15 ppm) and implant status (0 or 80 mg of trenbolone acetate + 16 mg of estradiol). Ractopamine was provided in the diet to 2 pens or half the treatments during the final 35 d of feeding. Cows were slaughtered on d 92. Forty-eight hours postmortem, the 6th-rib portions of the LM were obtained from 10 randomly selected carcasses from each treatment group (n = 40). Cryosections (12 mum) were immunostained for dystrophin and myosin heavy chain I or II for the measurement of fiber CSA and type, respectively. Fiber-associated nuclei and satellite cell numbers were measured in serial cryosections. There was a RAC x TBA interaction (P < 0.05). Type I fiber CSA and diameter were increased (P < 0.05) by TBA and RAC. Type I CSA and diameter were larger (P < 0.05) in TBA + RAC than RAC only. Type II fiber CSA and diameter were not affected by TBA (P = 0.48), RAC (P = 0.15), or TBA + RAC (P = 0.60). Satellite cell numbers and fiber-associated nuclei were not affected (P > 0.05) by implant status or ractopamine supplementation. These results indicate that TBA and RAC preferentially increase the size of type I fibers in cull cows.
Collapse
Affiliation(s)
- J M Gonzalez
- Department of Animal Sciences, University of Florida, Gainesville 32611, USA
| | | | | | | | | |
Collapse
|