301
|
Optimal Management of Patients with Advanced NSCLC Harboring High PD-L1 Expression and Driver Mutations. Curr Treat Options Oncol 2020; 21:60. [PMID: 32588244 DOI: 10.1007/s11864-020-00750-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OPINION STATEMENT Patients with stage IV or recurrent/metastatic non-small cell lung cancer (NSCLC) whose tumors harbor high PD-L1 expression and driver mutations with approved targeted treatments (EGFR, ALK, BRAFV600E, ROS1) should receive initial therapy with targeted therapy based on impressive clinical activity. PD-(L)1 inhibitors have demonstrated minimal activity in many driver mutation subsets including EGFR and ALK and appears to have more benefit in smoking-associated oncogenic drivers (KRAS, BRAF). For KRAS-driven tumors, co-mutations such as STK11/LKB1 are negative predictive markers of immunotherapy with or without chemotherapy. Therefore, driver mutations need to be evaluated before pursuing immunotherapy independent of PD-L1 expression level. Caution should be used with TKIs following or concurrent with immunotherapy owing to potentially increased toxicity. New immunotherapy combinations are needed especially for oncogene-driven tumors associated with never or light smoking history.
Collapse
|
302
|
Bylicki O, Paleiron N, Assié JB, Chouaïd C. Targeting the MET-Signaling Pathway in Non-Small-Cell Lung Cancer: Evidence to Date. Onco Targets Ther 2020; 13:5691-5706. [PMID: 32606781 PMCID: PMC7306460 DOI: 10.2147/ott.s219959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022] Open
Abstract
The c-MET proto-oncogene (MET) plays an important role in lung oncogenesis, affecting cancer-cell survival, growth and invasiveness. The MET receptor in non-small-cell lung cancer (NSCLC) is a potential therapeutic target. The development of high-output next-generation sequencing techniques has enabled better identification of anomalies in the MET pathway, like the MET exon-14 (METex14) mutation. Moreover, analyses of epidermal growth factor-receptor (EGFR) and mechanisms of resistance to tyrosine-kinase inhibitors (TKIs) demonstrated the importance of MET amplification as an escape mechanism in patients with TKI-treated EGFR-mutated NSCLCs. This review summarizes the laboratory findings on MET and its anomalies, trial results on METex14 alterations and MET amplification in non-EGFR mutated NSCLCs, and acquired resistance to TKI in EGFR-mutated NSCLCs. The outcomes of the first trials with anti-MET agents on non-selected NSCLC patients or those selected for MET overexpression were disappointing. Two situations seem the most promising today for the use of anti-MET agents to treat these patients: tumors harboring METex14 and those EGFR-sensitive mutation mutated under TKI-EGFR with a MET-amplification mechanism of resistance or EGFR-resistance mutation.
Collapse
Affiliation(s)
- Olivier Bylicki
- Respiratory Disease Unit, HIA Sainte Anne, Toulon, France
- University Paris–Est Créteil (UPEC), CEpiA (Clinical Epidemiology and Ageing), EA 7376- IMRB, UPEC, Créteil, France
| | | | - Jean-Baptiste Assié
- University Paris–Est Créteil (UPEC), CEpiA (Clinical Epidemiology and Ageing), EA 7376- IMRB, UPEC, Créteil, France
- Pneumology Department, Centre Hospitalier Intercommunal De Créteil, Créteil, France
- Cordeliers Research Center, Inserm, Functional Genomics of Solid Tumors Laboratory, Sorbonne University, University of Paris, Paris, France
| | - Christos Chouaïd
- University Paris–Est Créteil (UPEC), CEpiA (Clinical Epidemiology and Ageing), EA 7376- IMRB, UPEC, Créteil, France
- Pneumology Department, Centre Hospitalier Intercommunal De Créteil, Créteil, France
| |
Collapse
|
303
|
Davies KD, Merrick DT. Skipping Expected Mechanisms of MET-Mediated Oncogenesis. J Thorac Oncol 2020; 15:9-11. [PMID: 31864551 DOI: 10.1016/j.jtho.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Kurtis D Davies
- Department of Pathology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
| | - Daniel T Merrick
- Department of Pathology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
304
|
Cerasuolo A, Buonaguro L, Buonaguro FM, Tornesello ML. The Role of RNA Splicing Factors in Cancer: Regulation of Viral and Human Gene Expression in Human Papillomavirus-Related Cervical Cancer. Front Cell Dev Biol 2020; 8:474. [PMID: 32596243 PMCID: PMC7303290 DOI: 10.3389/fcell.2020.00474] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The spliceosomal complex components, together with the heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins, regulate the process of constitutive and alternative splicing, the latter leading to the production of mRNA isoforms coding multiple proteins from a single pre-mRNA molecule. The expression of splicing factors is frequently deregulated in different cancer types causing the generation of oncogenic proteins involved in cancer hallmarks. Cervical cancer is caused by persistent infection with oncogenic human papillomaviruses (HPVs) and constitutive expression of viral oncogenes. The aberrant activity of hnRNPs and SR proteins in cervical neoplasia has been shown to trigger the production of oncoproteins through the processing of pre-mRNA transcripts either derived from human genes or HPV genomes. Indeed, hnRNP and SR splicing factors have been shown to regulate the production of viral oncoprotein isoforms necessary for the completion of viral life cycle and for cell transformation. Target-therapy strategies against hnRNPs and SR proteins, causing simultaneous reduction of oncogenic factors and inhibition of HPV replication, are under development. In this review, we describe the current knowledge of the functional link between RNA splicing factors and deregulated cellular as well as viral RNA maturation in cervical cancer and the opportunity of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumouri IRCCS–Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
305
|
Guo R, Luo J, Chang J, Rekhtman N, Arcila M, Drilon A. MET-dependent solid tumours - molecular diagnosis and targeted therapy. Nat Rev Clin Oncol 2020; 17:569-587. [PMID: 32514147 DOI: 10.1038/s41571-020-0377-z] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Attempts to develop MET-targeted therapies have historically focused on MET-expressing cancers, with limited success. Thus, MET expression in the absence of a genomic marker of MET dependence is a poor predictor of benefit from MET-targeted therapy. However, owing to the development of more sensitive methods of detecting genomic alterations, high-level MET amplification and activating MET mutations or fusions are all now known to be drivers of oncogenesis. MET mutations include those affecting the kinase or extracellular domains and those that result in exon 14 skipping. The activity of MET tyrosine kinase inhibitors varies by MET alteration category. The likelihood of benefit from MET-targeted therapies increases with increasing levels of MET amplification, although no consensus exists on the optimal diagnostic cut-off point for MET copy number gains identified using fluorescence in situ hybridization and, in particular, next-generation sequencing. Several agents targeting exon 14 skipping alterations are currently in clinical development, with promising data available from early-phase trials. By contrast, the therapeutic implications of MET fusions remain underexplored. Here we summarize and evaluate the utility of various diagnostic techniques and the roles of different classes of MET-targeted therapies in cancers with MET amplification, mutation and fusion, and MET overexpression.
Collapse
Affiliation(s)
- Robin Guo
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jia Luo
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Drilon
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
306
|
Wu S, Li G, Zhao X, Xiang J, Lizaso A, Ye J, Shi C, Chen L. High-level gain of mesenchymal-epithelial transition factor (MET) copy number using next-generation sequencing as a predictive biomarker for MET inhibitor efficacy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:685. [PMID: 32617305 PMCID: PMC7327325 DOI: 10.21037/atm-20-2741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background In clinical oncology, targeted next-generation sequencing (NGS) has become an integral part of the routine molecular diagnostics repertoire. However, a consensus is yet to be agreed on the optimal mesenchymal-epithelial transition factor (MET) copy number (CN) cut-off value based on NGS data that could predict the MET-amplified non-small cell lung cancer (NSCLC) patients who could benefit from MET tyrosine kinase inhibitor (TKI) therapy. In this study, we aimed to identify the criteria to define MET amplification derived from NGS data. Methods Sequencing data from matched plasma and tissue samples from 40 MET-amplified NSCLC patients were used to derive a normalization method, referred to as adjusted copy number (adCN). Clinical outcomes from an additional 18 MET TKI-treated NSCLC patients with solely MET-amplified cancers were analyzed to validate the adCN cut-offs. Results AdCN, calculated as the absolute CN generated from NGS relative to the maximum mutant allele fraction (maxMAF) per sample, was demonstrated to have a high correlation with MET CN in tissue and plasma samples (R2=0.73). Using a cut-off value of 5.5 and 13, tertile stratification of adCN was able to distinguish patients with high-level MET amplification. The MET TKI-treated patients with adCN >13, categorized as high-level amplification, had significantly longer progression-free survival (PFS) than those with adCN <13 (P=0.009), suggesting that adCN positively correlated with the response to MET TKI. Conclusions We derived a normalization method that could reflect the relative CN and distinguish MET-amplified NSCLC patients with high-level gene amplification who were sensitive to crizotinib, suggesting adCN could potentially serve as a predictive biomarker for MET TKI response.
Collapse
Affiliation(s)
- Shibo Wu
- Department of Respiratory Medicine, Lihuili Hospital, Ningbo Medical Center, Ningbo, China
| | - Guodong Li
- Department of Interventional Therapy, Fudan University Shanghai Cancer Center, Shanghai China
| | - Xin Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | - Junyi Ye
- Burning Rock Biotech, Guangzhou, China
| | - Chunlei Shi
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lingxiang Chen
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
307
|
Schuler M, Berardi R, Lim WT, de Jonge M, Bauer TM, Azaro A, Gottfried M, Han JY, Lee DH, Wollner M, Hong DS, Vogel A, Delmonte A, Akimov M, Ghebremariam S, Cui X, Nwana N, Giovannini M, Kim TM. Molecular correlates of response to capmatinib in advanced non-small-cell lung cancer: clinical and biomarker results from a phase I trial. Ann Oncol 2020; 31:789-797. [PMID: 32240796 PMCID: PMC9720758 DOI: 10.1016/j.annonc.2020.03.293] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Dysregulation of receptor tyrosine kinase MET by various mechanisms occurs in 3%-4% of non-small-cell lung cancer (NSCLC) and is associated with unfavorable prognosis. While MET is a validated drug target in lung cancer, the best biomarker strategy for the enrichment of a susceptible patient population still remains to be defined. Towards this end we analyze here primary data from a phase I dose expansion study of the MET inhibitor capmatinib in patients with advanced MET-dysregulated NSCLC. PATIENTS AND METHODS Eligible patients [≥18 years; Eastern Cooperative Oncology Group (ECOG) performance status ≤2] with MET-dysregulated advanced NSCLC, defined as either (i) MET status by immunohistochemistry (MET IHC) 2+ or 3+ or H-score ≥150, or MET/centromere ratio ≥2.0 or gene copy number (GCN) ≥5, or (ii) epidermal growth factor receptor wild-type (EGFRwt) and centrally assessed MET IHC 3+, received capmatinib at the recommended dose of 400 mg (tablets) or 600 mg (capsules) b.i.d. The primary objective was to determine safety and tolerability; the key secondary objective was to explore antitumor activity. The exploratory end point was the correlation of clinical activity with different biomarker formats. RESULTS Of 55 patients with advanced MET-dysregulated NSCLC, 40/55 (73%) had received two or more prior systemic therapies. All patients discontinued treatment, primarily due to disease progression (69.1%). The median treatment duration was 10.4 weeks. The overall response rate per RECIST was 20% (95% confidence interval, 10.4-33.0). In patients with MET GCN ≥6 (n = 15), the overall response rate by both the investigator and central assessments was 47%. The median progression-free survival per investigator for patients with MET GCN ≥6 was 9.3 months (95% confidence interval, 3.8-11.9). Tumor responses were observed in all four patients with METex14. The most common toxicities were nausea (42%), peripheral edema (33%), and vomiting (31%). CONCLUSIONS MET GCN ≥6 and/or METex14 are suited to predict clinical activity of capmatinib in patients with NSCLC (NCT01324479).
Collapse
Affiliation(s)
- M Schuler
- Department of Medical Oncology, West German Cancer Center, University Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - R Berardi
- Clinica Oncologica, Università Politecnica delle Marche-Ospedali Riuniti, Ancona, Italy
| | - W-T Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - M de Jonge
- Medical Oncology, Erasmus MC Cancer Center, Rotterdam, The Netherlands
| | - T M Bauer
- Drug Development Unit, Sarah Cannon Research Institute, and Tennessee Oncology, PLCC, Nashville, USA
| | - A Azaro
- Medical Oncology, Molecular Therapeutics Research Unit, Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Pharmacology Department, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M Gottfried
- Department of Oncology, Oncology Institute of Meir Medical Center, Tel-Aviv, Israel
| | - J-Y Han
- Center for Lung Cancer, National Cancer Center, Seoul
| | - D H Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - M Wollner
- Thoracic Service Oncology Department, Rambam Health Care Campus, Haifa, Israel
| | - D S Hong
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, USA
| | - A Vogel
- Gastroenterology, Hepatology, Endocrinology, Hannover Medical School, Hannover, Germany
| | - A Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - M Akimov
- Oncology Global Development, Novartis Pharma AG, Basel, Switzerland
| | | | - X Cui
- Novartis Institutes for Biomedical Research
| | | | - M Giovannini
- Oncology Global Development, Novartis Pharmaceuticals Corporation, East Hanover, USA
| | - T M Kim
- Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
308
|
Overbeck TR, Cron DA, Schmitz K, Rittmeyer A, Körber W, Hugo S, Schnalke J, Lukat L, Hugo T, Hinterthaner M, Reuter-Jessen K, Rosenthal T, Moecks J, Bleckmann A, Schildhaus HU. Top-level MET gene copy number gain defines a subtype of poorly differentiated pulmonary adenocarcinomas with poor prognosis. Transl Lung Cancer Res 2020; 9:603-616. [PMID: 32676323 PMCID: PMC7354108 DOI: 10.21037/tlcr-19-339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background MET amplifications occur in human tumors, including non-small cell lung cancer (NSCLC). MET inhibitors have demonstrated some clinical activity in MET amplified NSCLC, presumably with a gene dose effect. However, the definition of MET positivity or MET amplification as a potential oncogenic driver is still under debate. In this study, we aimed to establish the molecular subgroup of NSCLC with the highest unequivocal MET amplification level and to describe the prevalence, and histologic and clinical phenotype of this subgroup. Methods A total of 373 unselected patients with NSCLC were consecutively tested for MET gene copy number (GCN) by FISH. Mean GCN, MET/CEN7 ratio and other FISH parameters were identified and correlated with morphological and molecular pathological characteristics of the tumors as well as with clinical data. Results Based on the variability of obtained data a top-level category of MET amplification was newly defined (>90th percentile of average GCN; ≥10 MET gene copies per tumor cell). This criterion was fulfilled in 2% of analyzed tumors. These tumors were exclusively poorly differentiated adenocarcinomas with a predominant solid subtype and pleomorphic features. Rarely, co-alterations were detected (KRAS mutation or MET exon 14 skipping mutation). In this top-level group, there were no EGFR mutations or ALK or ROS1 alterations. The most important clinical feature was a significantly shortened overall survival (HR 3.61; median OS 8.2 vs. 23.6 months). Worse prognosis did not depend on initial stage or treatment. Conclusions The newly defined top-level category of MET amplification in NSCLC defines a specific subgroup of pulmonary adenocarcinoma with adverse prognosis and characteristic morphological features. Lower levels of MET gene copy number seem to have probably no specific value as a prognostic or predictive biomarker.
Collapse
Affiliation(s)
- Tobias Raphael Overbeck
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany.,Lungentumorzentrum Universität Göttingen and Göttingen Comprehensive Cancer Center (G-CCC), Göttingen, Germany
| | - Dana Alina Cron
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Katja Schmitz
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.,Innpath GmbH, Innsbruck, Austria
| | - Achim Rittmeyer
- Lungentumorzentrum Universität Göttingen and Göttingen Comprehensive Cancer Center (G-CCC), Göttingen, Germany.,Lungenfachklinik Immenhausen, Immenhausen, Germany
| | - Wolfgang Körber
- Lungentumorzentrum Universität Göttingen and Göttingen Comprehensive Cancer Center (G-CCC), Göttingen, Germany.,Abteilung Pneumologie, Beatmungsmedizin und Schlaflabor, Evangelisches Krankenhaus Weende, Göttingen, Germany
| | - Sara Hugo
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Juliane Schnalke
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Laura Lukat
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Tabea Hugo
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Marc Hinterthaner
- Lungentumorzentrum Universität Göttingen and Göttingen Comprehensive Cancer Center (G-CCC), Göttingen, Germany.,Department of Heart, Thoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Kirsten Reuter-Jessen
- Lungentumorzentrum Universität Göttingen and Göttingen Comprehensive Cancer Center (G-CCC), Göttingen, Germany.,Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Tessa Rosenthal
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Annalen Bleckmann
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany.,Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | - Hans-Ulrich Schildhaus
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Pathology, University Hospital Essen, Essen, Germany.,West German Cancer Center (WTZ), Essen, Germany
| |
Collapse
|
309
|
Brown NA, Elenitoba-Johnson KSJ. Enabling Precision Oncology Through Precision Diagnostics. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:97-121. [PMID: 31977297 DOI: 10.1146/annurev-pathmechdis-012418-012735] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomic testing enables clinical management to be tailored to individual cancer patients based on the molecular alterations present within cancer cells. Genomic sequencing results can be applied to detect and classify cancer, predict prognosis, and target therapies. Next-generation sequencing has revolutionized the field of cancer genomics by enabling rapid and cost-effective sequencing of large portions of the genome. With this technology, precision oncology is quickly becoming a realized paradigm for managing the treatment of cancer patients. However, many challenges must be overcome to efficiently implement the transition of next-generation sequencing from research applications to routine clinical practice, including using specimens commonly available in the clinical setting; determining how to process, store, and manage large amounts of sequencing data; determining how to interpret and prioritize molecular findings; and coordinating health professionals from multiple disciplines.
Collapse
Affiliation(s)
- Noah A Brown
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA;
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
310
|
A newly developed capture-based sequencing panel for genomic assay of lung cancer. Genes Genomics 2020; 42:751-759. [PMID: 32449066 DOI: 10.1007/s13258-020-00949-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND The increase in genetic alterations targeted by specific chemotherapy in lung cancer has led to the need for universal use of more comprehensive genetic testing, which has highlighted the development of a lung cancer diagnostic panel using next-generation sequencing. OBJECTIVE We developed a hybridization capture-based massively parallel sequencing assay named Friendly, Integrated, Research-based, Smart and Trustworthy (FIRST)-lung cancer panel (LCP), and evaluated its performance. METHODS FIRST-LCP comprises 64 lung cancer-related genes to test for various kinds of genetic alterations including single nucleotide variations (SNVs), insertions and deletions (indels), copy number variations (CNVs), and structural variations. To assess the performance of FIRST-LCP, we compiled test sets using HapMap samples or tumor cell lines with disclosed genetic information, and also tested our clinical lung cancer samples whose genetic alterations were known by conventional methods. RESULTS FIRST-LCP accomplished high sensitivity (99.4%) and specificity (100%) of the detection of SNVs. High precision was also achieved, with intra- or inter-run concordance rate of 0.99, respectively. FIRST-LCP detected indels and CNVs close to the expected allele frequency and magnitude, respectively. Tests with samples from lung cancer patients also identified all SNVs, indels and fusions. CONCLUSION Based on the current state of the art, continuous application of the panel design and analysis pipeline following up-to-date knowledge could ensure precision medicine for lung cancer patients.
Collapse
|
311
|
Progress on treatment of MET signaling pathway in non-small cell lung cancer. Int J Clin Oncol 2020; 25:1450-1458. [PMID: 32440811 DOI: 10.1007/s10147-020-01702-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/30/2020] [Indexed: 01/13/2023]
Abstract
MET activation includes gene mutation, amplification, and protein overexpression. Clinical evidence suggests that MET activation is both a primary oncogenic driver in lung cancer, and a secondary driver after acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Several small molecule TKIs have already shown to be effective in the MET pathway. However, the activation form and the diagnostic criteria of MET oncogene are still controversial, especially in patients resistant to EGFR TKIs or ALK TKIs. With the development of new MET inhibitors, a quantity of emerging trials has focused on the mechanism of acquired resistance to MET TKIs and therapeutic strategies after resistance.
Collapse
|
312
|
Chen Z, Yang X, Bi G, Liang J, Hu Z, Zhao M, Li M, Lu T, Zheng Y, Sui Q, Yang Y, Zhan C, Jiang W, Wang Q, Tan L. Ligand-receptor interaction atlas within and between tumor cells and T cells in lung adenocarcinoma. Int J Biol Sci 2020; 16:2205-2219. [PMID: 32549766 PMCID: PMC7294944 DOI: 10.7150/ijbs.42080] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/02/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose: Lung adenocarcinoma (LUAD) is the leading cause of cancer-related deaths worldwide. Although tumor cell-T cell interactions are known to play a fundamental role in promoting tumor progression, these interactions have not been explored in LUAD. Methods: The 10x genomics single-cell RNA sequencing (scRNA-seq) and gene expression data of LUAD patients were obtained from ArrayExpress, TCGA, and GEO databases. scRNA-seq data were analyzed and infiltrating tumor cells, epithelial cells, and T cells were identified in the tumor microenvironment. Differentially expressed ligand-receptor pairs were identified in tumor cells/normal epithelial cells and tumor T cells/non-tumor T cells based on corresponding scRNA-seq and gene expression data, respectively. These important interactions inside/across cancer cells and T cells in LUAD were systematically analyzed. Furthermore, a valid prognostic machine-learning model based on ligand-receptor interactions was built to predict the prognosis of LUAD patients. Flow cytometry and qRT-PCR were performed to validate the significantly differently expressed ligand-receptor pairs. Results: Overall, 39,692 cells in scRNA-seq data were included in our study after quality filtering. A total of 65 ligand-receptor pairs (17 upregulated and 48 downregulated), including LAMB1-ITGB1, CD70-CD27, and HLA-B-LILRB2, and 96 ligand-receptor pairs (41 upregulated and 55 downregulated), including CCL5-CCR5, SELPLG-ITGB2, and CXCL13-CXCR5, were identified in LUAD cancer cells and T cells, respectively. To explore the crosstalk between cancer cells and T cells, 114 ligand-receptor pairs, including 11 ligand-receptor pair genes that could significantly affect survival outcomes, were identified in our research. A machine-learning model was established to accurately predict the prognosis of LUAD patients and ITGB4, CXCR5, and MET were found to play an important role in prognosis in our model. Flow cytometry and qRT-PCR analyses indicated the reliability of our study. Conclusion: Our study revealed functionally significant interactions within and between cancer cells and T cells. We believe these observations will improve our understanding of potential mechanisms of tumor microenvironment contributions to cancer progression and help identify potential targets for immunotherapy in the future.
Collapse
Affiliation(s)
- Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Yuansheng Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qihai Sui
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yong Yang
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
313
|
Yasuda H. Targeting Co-Occurring Genomic Alterations in MET Exon 14 Skipping Mutation-Positive NSCLC. J Thorac Oncol 2020; 15:679-680. [DOI: 10.1016/j.jtho.2020.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
|
314
|
Gini B, Thomas N, Blakely CM. Impact of concurrent genomic alterations in epidermal growth factor receptor ( EGFR)-mutated lung cancer. J Thorac Dis 2020; 12:2883-2895. [PMID: 32642201 PMCID: PMC7330397 DOI: 10.21037/jtd.2020.03.78] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Comprehensive characterization of the genomic landscape of epidermal growth factor receptor (EGFR)-mutated lung cancers have identified patterns of secondary mutations beyond the primary oncogenic EGFR mutation. These include concurrent pathogenic alterations affecting p53 (60–65%), RTKs (5–10%), PIK3CA/KRAS (3–23%), Wnt (5–10%), and cell cycle (7–25%) pathways as well as transcription factors such as MYC and NKX2-1 (10–15%). The majority of these co-occurring alterations were detected or enriched in samples collected from patients at resistance to tyrosine kinase inhibitor (TKI) treatment, indicating a potential functional role in driving resistance to therapy. Of note, these co-occurring tumor genomic alterations are not necessarily mutually exclusive, and evidence suggests that multiple clonal and sub-clonal cancer cell populations can co-exist and contribute to EGFR TKI resistance. Computational tools aimed to classify, track and predict the evolution of cancer clonal populations during therapy are being investigated in pre-clinical models to guide the selection of combination therapy switching strategies that may delay the development of treatment resistance. Here we review the most frequently identified tumor genomic alterations that co-occur with mutated EGFR and the evidence that these alterations effect responsiveness to EGFR TKI treatment.
Collapse
Affiliation(s)
- Beatrice Gini
- Department of Medicine, University of California, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Nicholas Thomas
- Department of Medicine, University of California, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| |
Collapse
|
315
|
Champagnac A, Bringuier PP, Barritault M, Isaac S, Watkin E, Forest F, Maury JM, Girard N, Brevet M. Frequency of MET exon 14 skipping mutations in non-small cell lung cancer according to technical approach in routine diagnosis: results from a real-life cohort of 2,369 patients. J Thorac Dis 2020; 12:2172-2178. [PMID: 32642122 PMCID: PMC7330338 DOI: 10.21037/jtd.2020.04.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background Mesenchymal epithelial transition receptor (MET) alterations, including MET exon 14 skipping mutation, are oncogenic in non-small cell lung cancer (NSCLC) and may confer sensitivity to targeted therapy. Given the rarity and the diversity of exon 14 skipping mutations, diagnosis may be challenging on small-biopsy specimens. Methods Between March 2014 and May 2018, tissue samples from patients with metastatic NSCLC were analysed for MET exon 14 skipping mutation as part of routine practice in the Pathology Department of the Hospices Civils de Lyon, France. Over the study period, Sanger sequencing and/or two different DNA-based next generation sequencing (NGS) assays were used. Results Genomic alterations of MET exon 14 were detected in 2.6% (62/2,369) samples of NSCLC analysed for MET exon 14 mutations. Patients were mainly women (38/62, 61%) without smoking history (22/39, 56%) and the median age was 75 years. MET exon 14 skipping mutations were diagnosed by NGS in 50 cases and by classical Sanger sequencing in 12 cases. The frequency of MET mutations was 15.4% when Sanger sequencing was performed at the request of the clinician and 4.1% when the DNA-based NGS assay coverage included the 3' and 5' parts of the MET exon 14 and performed systematically. Conclusions The frequency of genomic alterations is highly dependent on patient selection and the technical approach.
Collapse
Affiliation(s)
- Anne Champagnac
- Pathology Department, Hospices Civils de Lyon, Bron, France.,Lyon 1 University, Lyon, France
| | - Pierre-Paul Bringuier
- Pathology Department, Hospices Civils de Lyon, Bron, France.,Lyon 1 University, Lyon, France
| | - Marc Barritault
- Pathology Department, Hospices Civils de Lyon, Bron, France.,Lyon 1 University, Lyon, France
| | - Sylvie Isaac
- Lyon 1 University, Lyon, France.,Pathology Department, Lyon University Hospital, Pierre-Bénite, France
| | | | - Fabien Forest
- Pathology Department, Saint Etienne University Hospital-Site Nord, Saint Etienne, France
| | - Jean-Michel Maury
- Lyon 1 University, Lyon, France.,Thoracic Surgery Department, Hospices Civils de Lyon, Bron, France
| | - Nicolas Girard
- Lyon 1 University, Lyon, France.,Institut of Thorax Curie-Montsouris, Institut Curie, Paris, France
| | - Marie Brevet
- Pathology Department, Hospices Civils de Lyon, Bron, France.,Lyon 1 University, Lyon, France
| |
Collapse
|
316
|
Huang C, Zou Q, Liu H, Qiu B, Li Q, Lin Y, Liang Y. Management of Non-small Cell Lung Cancer Patients with MET Exon 14 Skipping Mutations. Curr Treat Options Oncol 2020; 21:33. [PMID: 32306194 DOI: 10.1007/s11864-020-0723-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OPINION STATEMENT The MET exon 14 skipping mutation is found in approximately 3% of lung adenocarcinomas and slightly more than 2% of lung squamous cell carcinomas. In recent years, more and more evidence has shown that MET inhibitors have achieved good anti-tumor effect in patients with MET exon 14 skipping mutation, suggesting that MET exon 14 skipping mutation may be a new target for NSCLC patients. Patients with positive MET exon 14 skipping mutation are recommended to be administered MET inhibitors, and crizotinib is recommended by the NCCN guideline. Due to the presence of gene amplification, second site mutation, bypass activation, and pathological type transformation, one of the inevitable problems of targeted therapy is drug resistance. If type I MET inhibitors (crizotinib, capmatinib, tepotinib, savolitinib) drug resistance is developed, type II MET inhibitors (cabozantinib, glesatinib, merestinib) can be considered.
Collapse
Affiliation(s)
- Caiwen Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Qihua Zou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Hui Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Bo Qiu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Qiwen Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yongbin Lin
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Ying Liang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
317
|
Roles and mechanisms of alternative splicing in cancer - implications for care. Nat Rev Clin Oncol 2020; 17:457-474. [PMID: 32303702 DOI: 10.1038/s41571-020-0350-x] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Removal of introns from messenger RNA precursors (pre-mRNA splicing) is an essential step for the expression of most eukaryotic genes. Alternative splicing enables the regulated generation of multiple mRNA and protein products from a single gene. Cancer cells have general as well as cancer type-specific and subtype-specific alterations in the splicing process that can have prognostic value and contribute to every hallmark of cancer progression, including cancer immune responses. These splicing alterations are often linked to the occurrence of cancer driver mutations in genes encoding either core components or regulators of the splicing machinery. Of therapeutic relevance, the transcriptomic landscape of cancer cells makes them particularly vulnerable to pharmacological inhibition of splicing. Small-molecule splicing modulators are currently in clinical trials and, in addition to splice site-switching antisense oligonucleotides, offer the promise of novel and personalized approaches to cancer treatment.
Collapse
|
318
|
Russo A, Lopes AR, McCusker MG, Garrigues SG, Ricciardi GR, Arensmeyer KE, Scilla KA, Mehra R, Rolfo C. New Targets in Lung Cancer (Excluding EGFR, ALK, ROS1). Curr Oncol Rep 2020; 22:48. [PMID: 32296961 DOI: 10.1007/s11912-020-00909-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Over the last two decades, the identification of targetable oncogene drivers has revolutionized the therapeutic landscape of non-small cell lung cancer (NSCLC). The extraordinary progresses made in molecular biology prompted the identification of several rare molecularly defined subgroups. In this review, we will focus on the novel and emerging actionable oncogenic drivers in NSCLC. RECENT FINDINGS Recently, novel oncogene drivers emerged as promising therapeutic targets besides the well-established EGFR mutations, and ALK/ROS1 rearrangements, considerably expanding the list of potential exploitable genetic aberrations. However, the therapeutic algorithm in these patients is far less defined. The identification of uncommon oncogene drivers is reshaping the diagnostic and therapeutic approach to NSCLC. The introduction of novel highly selective inhibitors is expanding the use of targeted therapies to rare and ultra-rare subsets of patients, further increasing the therapeutic armamentarium of advanced NSCLC.
Collapse
Affiliation(s)
- Alessandro Russo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA.,Medical Oncology Unit, A.O. Papardo & Department of Human Pathology, University of Messina, Contrada Papardo, 98158, Messina, Italy
| | - Ana Rita Lopes
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA.,Portuguese Institute of Oncology (IPO), Porto, Portugal
| | - Michael G McCusker
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA
| | - Sandra Gimenez Garrigues
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA
| | - Giuseppina R Ricciardi
- Medical Oncology Unit, A.O. Papardo & Department of Human Pathology, University of Messina, Contrada Papardo, 98158, Messina, Italy
| | - Katherine E Arensmeyer
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA
| | - Katherine A Scilla
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA
| | - Ranee Mehra
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA.
| |
Collapse
|
319
|
Steeghs EMP, Kroeze LI, Tops BBJ, van Kempen LC, Ter Elst A, Kastner-van Raaij AWM, Hendriks-Cornelissen SJB, Hermsen MJW, Jansen EAM, Nederlof PM, Schuuring E, Ligtenberg MJL, Eijkelenboom A. Comprehensive routine diagnostic screening to identify predictive mutations, gene amplifications, and microsatellite instability in FFPE tumor material. BMC Cancer 2020; 20:291. [PMID: 32264863 PMCID: PMC7137451 DOI: 10.1186/s12885-020-06785-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background Sensitive and reliable molecular diagnostics is needed to guide therapeutic decisions for cancer patients. Although less material becomes available for testing, genetic markers are rapidly expanding. Simultaneous detection of predictive markers, including mutations, gene amplifications and MSI, will save valuable material, time and costs. Methods Using a single-molecule molecular inversion probe (smMIP)-based targeted next-generation sequencing (NGS) approach, we developed an NGS panel allowing detection of predictive mutations in 33 genes, gene amplifications of 13 genes and microsatellite instability (MSI) by the evaluation of 55 microsatellite markers. The panel was designed to target all clinically relevant single and multiple nucleotide mutations in routinely available lung cancer, colorectal cancer, melanoma, and gastro-intestinal stromal tumor samples, but is useful for a broader set of tumor types. Results The smMIP-based NGS panel was successfully validated and cut-off values were established for reliable gene amplification analysis (i.e. relative coverage ≥3) and MSI detection (≥30% unstable loci). After validation, 728 routine diagnostic tumor samples including a broad range of tumor types were sequenced with sufficient sensitivity (2.4% drop-out), including samples with low DNA input (< 10 ng; 88% successful), low tumor purity (5–10%; 77% successful), and cytological material (90% successful). 75% of these tumor samples showed ≥1 (likely) pathogenic mutation, including targetable mutations (e.g. EGFR, BRAF, MET, ERBB2, KIT, PDGFRA). Amplifications were observed in 5.5% of the samples, comprising clinically relevant amplifications (e.g. MET, ERBB2, FGFR1). 1.5% of the tumor samples were classified as MSI-high, including both MSI-prone and non-MSI-prone tumors. Conclusions We developed a comprehensive workflow for predictive analysis of diagnostic tumor samples. The smMIP-based NGS analysis was shown suitable for limited amounts of histological and cytological material. As smMIP technology allows easy adaptation of panels, this approach can comply with the rapidly expanding molecular markers.
Collapse
Affiliation(s)
- Elisabeth M P Steeghs
- Department of Pathology, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Leonie I Kroeze
- Department of Pathology, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Bastiaan B J Tops
- Department of Pathology, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, the Netherlands.,Department of Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Leon C van Kempen
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arja Ter Elst
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Mandy J W Hermsen
- Department of Pathology, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Erik A M Jansen
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Petra M Nederlof
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ed Schuuring
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Pathology, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, the Netherlands.,Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Astrid Eijkelenboom
- Department of Pathology, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, the Netherlands.
| |
Collapse
|
320
|
Brisudova A, Skarda J. Gene rearrangement detection by next-generation sequencing in patients with non-small cell lung carcinoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:127-132. [PMID: 32284620 DOI: 10.5507/bp.2020.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related deaths worldwide. Various molecular markers in NSCLC patients have been developed, including gene rearrangements, currently used in therapeutic strategies. With increasing number of these molecular biomarkers of NSCLC, there is a demand for highly efficient methods for detecting mutations and translocations in treatable targets. Those currently available U.S. Food and Drug Administration (FDA) approved approaches, for example imunohistochemisty (IHC) and fluorescence in situ hybridization (FISH), are inadequate, due to sufficient quantity of material and long time duration. Next-generation massive parallel sequencing (NGS), with the ability to perform and capture data from millions of sequencing reactions simultaneously could resolve the problem. Thanks to gradual NGS introduction into clinical laboratories, screening time should be considerably shorter, which is very important for patients with advanced NSCLC. Moreover, only a minimum sample input is needed for achieving adequate results. NGS was compared to the current detection methods of ALK, ROS1, c-RET and c-MET rearrangements in NSCLC and a significant match, between IHC, FISH and NGS results, was found. Recent available researches have been carried out on a small numbers of patients. Verifying these results on larger patients cohort is important. This review sumarizes the literature on this subject and compares current possibilities of predictive gene rearrangements detection in patients with NSCLC.
Collapse
Affiliation(s)
- Aneta Brisudova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jozef Skarda
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
321
|
He HJ, Das B, Cleveland MH, Chen L, Camalier CE, Liu LC, Norman KL, Fellowes AP, McEvoy CR, Lund SP, Almeida J, Steffen CR, Karlovich C, Williams PM, Cole KD. Development and interlaboratory evaluation of a NIST Reference Material RM 8366 for EGFR and MET gene copy number measurements. Clin Chem Lab Med 2020; 57:1142-1152. [PMID: 31112502 PMCID: PMC6875440 DOI: 10.1515/cclm-2018-1306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/21/2019] [Indexed: 01/04/2023]
Abstract
Background The National Institute of Standards and Technology (NIST) Reference Material RM 8366 was developed to improve the quality of gene copy measurements of EGFR (epidermal growth factor receptor) and MET (proto-oncogene, receptor tyrosine kinase), important targets for cancer diagnostics and treatment. The reference material is composed of genomic DNA prepared from six human cancer cell lines with different levels of amplification of the target genes. Methods The reference values for the ratios of the EGFR and MET gene copy numbers to the copy numbers of reference genes were measured using digital PCR. The digital PCR measurements were confirmed by two additional laboratories. The samples were also characterized using Next Generation Sequencing (NGS) methods including whole genome sequencing (WGS) at three levels of coverage (approximately 1 ×, 5 × and greater than 30 ×), whole exome sequencing (WES), and two different pan-cancer gene panels. The WES data were analyzed using three different bioinformatic algorithms. Results The certified values (digital PCR) for EGFR and MET were in good agreement (within 20%) with the values obtained from the different NGS methods and algorithms for five of the six components; one component had lower NGS values. Conclusions This study shows that NIST RM 8366 is a valuable reference material to evaluate the performance of assays that assess EGFR and MET gene copy number measurements.
Collapse
Affiliation(s)
- Hua-Jun He
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD 20899, USA, Phone: +301-975-2169, Fax: +301-330-3447
| | - Biswajit Das
- Molecular Characterization and Clinical Assay Development Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Megan H Cleveland
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Li Chen
- Molecular Characterization and Clinical Assay Development Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Corinne E Camalier
- Molecular Characterization and Clinical Assay Development Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | | | - Steve P Lund
- Statistical Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Jamie Almeida
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Carolyn R Steffen
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Chris Karlovich
- Molecular Characterization and Clinical Assay Development Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - P Mickey Williams
- Molecular Characterization and Clinical Assay Development Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kenneth D Cole
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD 20899, USA, Phone: +301-975-2169, Fax: +301-330-3447
| |
Collapse
|
322
|
Shimokawa M, Nosaki K, Seto T, Ohashi K, Morise M, Horinouchi H, Sakakibara J, Murakami H, Yano S, Satouchi M, Matsumoto S, Goto K, Yoh K. Phase II, open-label, multicenter trial of crizotinib in Japanese patients with advanced non-small cell lung cancer harboring a MET gene alteration: Co-MET study. Trials 2020; 21:298. [PMID: 32228679 PMCID: PMC7104510 DOI: 10.1186/s13063-020-4221-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND MET-deregulated non-small cell lung cancer represents an urgent clinical need because of the lack of specific therapies. Although recent studies have suggested a potential role for crizotinib in patients harboring MET gene alterations, no conclusive data are currently available. Therefore, we designed the Co-MET study, a single-arm phase II study to assess the efficacy and safety of crizotinib in patients with advanced non-small cell lung cancers harboring MET gene alterations. METHODS Co-MET is an open-label, multi-center, single-arm, phase II trial to assess the safety and efficacy of oral crizotinib in patients with advanced non-small cell lung cancer harboring MET exon 14 skipping mutation (cohort 1) or a high MET gene copy number of ≥ 7 (cohort 2). We will identify MET gene alterations using RT-PCR and/or next-generation sequencing. Oral crizotinib 250 mg BID will be administered until disease progression or unacceptable toxicity. A radiology committee will review tumor scans according to the RECIST criteria. The primary endpoint is the objective response rate. Assuming a null hypothesis of 20% objective response rate and an alternative hypothesis of 50% objective response rate for cohort 1, and a one-sided alpha error of 0.05 and 80% power based on the exact binomial distribution, the required number of evaluable patients is 19. We set the exploratory sample size for cohort 2 at 10 patients. DISCUSSION The results of this study are expected to provide evidence regarding the usefulness of oral crizotinib for advanced MET exon 14 skipping mutation-positive or MET high gene copy number-positive non-small cell lung cancer. TRIAL REGISTRATION This study was registered with the University Hospital Medical Information Network Clinical Trials Registry as UMIN000031623 on 3 March 2018.
Collapse
Affiliation(s)
- Mototsugu Shimokawa
- Cancer Biostatistics Laboratory, Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan. .,Department of Biostatistics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Kaname Nosaki
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan.,Department of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Takashi Seto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kadoaki Ohashi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Masahiro Morise
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Jun Sakakibara
- First Department of Medicine, Hokkaido University Hospital, Hokkaido, Japan
| | - Haruyasu Murakami
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Miyako Satouchi
- Department of Thoracic Oncology, Hyogo Cancer Center, Hyogo, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan
| |
Collapse
|
323
|
Wagner BJ, Buettner R. [Immunohistochemical and molecular pathological diagnosis of lung carcinoma]. DER PATHOLOGE 2020; 41:3-13. [PMID: 31932944 DOI: 10.1007/s00292-019-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The therapy of lung cancer has revolutionarily changed within the last 15 years. The prognosis of patients has dramatically improved due to targeted therapies, for instance tyrosine kinase inhibitors (TKI). Current recruiting studies are testing new MET-, KRAS-, ROS1-, RET- and NTRK-inhibitors. The first clinical data are promising, emphasizing that it remains a future challenge for pathologists and oncologists to keep an eye on all facets of therapy options. Today, precise lung cancer classification via immunohistochemistry and molecular pathology is crucial for the therapy and prognosis of patients. Further, new biopsy technologies lead to very small tumor tissue samples and cytological samples of high diagnostic quality. Therefore, the complexity of diagnosis needs a strategic procedure to minimize loss of tissue material. This assay gives an overview of efficient and target-orientated diagnostic procedures in consideration of current clinical trials.
Collapse
Affiliation(s)
- Britta Janina Wagner
- Institut für Pathologie, Universitätsklinikum und Centrum für Integrierte Onkologie (CIO) Köln, Kerpener Straße 62, 50937, Köln, Deutschland.
| | - Reinhard Buettner
- Institut für Pathologie, Universitätsklinikum und Centrum für Integrierte Onkologie (CIO) Köln, Kerpener Straße 62, 50937, Köln, Deutschland
| |
Collapse
|
324
|
Liang H, Wang M. MET Oncogene in Non-Small Cell Lung Cancer: Mechanism of MET Dysregulation and Agents Targeting the HGF/c-Met Axis. Onco Targets Ther 2020; 13:2491-2510. [PMID: 32273721 PMCID: PMC7104217 DOI: 10.2147/ott.s231257] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/16/2020] [Indexed: 12/24/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide and has a poor prognosis. Current treatments for advanced NSCLC included traditional chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The efficacy of targeted therapy relies on oncogene addiction. Mesenchymal-epithelial transition factor (MET) gene can encode unconventional receptor tyrosine kinases with pleiotropic functions, when signals are abnormally activated, it can initiate and maintain tumor transformation, promote cell proliferation, survival, tumor invasion and angiogenesis. Thus, it is a promising therapeutic target. Previous studies have shown that elevated levels of HGF and/or overexpression of c-Met are associated with poor prognosis in lung cancer. In preclinical and clinical trials, c-MET inhibitors have shown some antitumor activity in NSCLC. Although the efficacy results of MET inhibitors in Phase III clinical trials are disappointing, given the molecular heterogeneity of NSCLC, only subgroups of patients with MET gene alterations may benefit from c-MET inhibitors. The challenge for the future is to screen out the potential beneficiaries. To solve this problem, there is need for large data analysis for the detection methods and treatment effects, to establish standards that meet the MET activation status, and determine reliable thresholds to achieve effective patient stratification and clinical decision making. This article summarized the structure of the hepatocyte growth factor (HGF)/c-Met axis, the different mechanisms of MET addiction, as well as MET amplification as acquired resistance mechanism to epidermal growth factor receptor-tyrosine kinase inhibitors, the latest advances of MET inhibitors, and immuotherapy in the treatment of NSCLC with MET alterations.
Collapse
Affiliation(s)
- Hongge Liang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, People’s Republic of China
| | - Mengzhao Wang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, People’s Republic of China
| |
Collapse
|
325
|
Alterations in the PI3K Pathway Drive Resistance to MET Inhibitors in NSCLC Harboring MET Exon 14 Skipping Mutations. J Thorac Oncol 2020; 15:741-751. [PMID: 32169477 DOI: 10.1016/j.jtho.2020.01.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 12/18/2022]
Abstract
Hepatocyte growth factor receptor (MET) tyrosine kinase inhibitors (MET TKIs) have been found to have efficacy against advanced NSCLC with mutations causing MET exon 14 skipping (METex14 mutations), but primary resistance seems frequent, as response rates are lower than those for targeted TKIs of other oncogene-addicted NSCLCs. Given the known interplay between MET and phosphoinositide 3-kinases (PI3K), we hypothesized that in METex14 NSCLC, PI3K pathway alterations might contribute to primary resistance to MET TKIs. We reviewed clinical data from 65 patients with METex14 NSCLC, assessing PI3K pathway alterations by targeted next-generation sequencing (mutations) and immunohistochemistry (loss of phosphatase and tensin homolog [PTEN]). Using a cell line derived from a patient with primary resistance to a MET TKI and cell lines harboring both a METex14 mutation and a PI3K pathway alteration, we assessed sensitivity to MET TKIs used alone or with a PI3K inhibitor and investigated relevant signaling pathways. We found a phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) mutation in two of 65 samples (3%) and loss of PTEN in six of 26 samples (23%). All three of the MET TKI-treated patients with a PI3K pathway alteration had been found to have progressive disease at first assessment. Likewise, MET TKIs had no effect on the proliferation of METex14-mutated cell lines with a PI3K pathway alteration, including the PTEN-lacking patient-derived cell line. Treatment combining a MET TKI with a PI3K inhibitor caused inhibition of both PI3K and MAPK signaling and restored sensitivity to MET TKIs. PI3K pathway alterations are common in METex14 NSCLC and may confer primary resistance to MET TKIs. In preclinical models, PI3K inhibition restores sensitivity to MET TKIs.
Collapse
|
326
|
Abstract
Lung cancer is a heterogeneous genomic disease. Smoking remains the primary cause. Genetic susceptibility and environmental exposures are responsible for 10% to 15% of cases. Targeted therapies improve survival in patients with tumors with oncogenic drivers. It is critical to expand our understanding of genetic alterations in non-small cell lung cancer to increase the available targeted therapies. Alterations beyond epidermal growth factor receptor (EGFR), ALK, and ROS1 exemplify lung cancer's complexity and the need for investments in precision therapy to extend patient survival and improve outcomes. This article covers genetic targets beyond EGFR, ALK and ROS1, their novel agents, challenges, and future directions.
Collapse
Affiliation(s)
- Karen L Reckamp
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
327
|
Isaksson S, Hazem B, Jönsson M, Reuterswärd C, Karlsson A, Griph H, Engleson J, Oskarsdottir G, Öhman R, Holm K, Rosengren F, Annersten K, Jönsson G, Borg Å, Edsjö A, Levéen P, Brunnström H, Lindquist KE, Staaf J, Planck M. Clinical Utility of Targeted Sequencing in Lung Cancer: Experience From an Autonomous Swedish Health Care Center. JTO Clin Res Rep 2020; 1:100013. [PMID: 34589915 PMCID: PMC8474272 DOI: 10.1016/j.jtocrr.2020.100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Mutation analysis by massive parallel sequencing (MPS) is routinely performed in the clinical management of lung cancer in Sweden. We describe the clinical and mutational profiles of lung cancer patients subjected to the first 1.5 years of treatment predictive MPS testing in an autonomous regional health care region. METHODS Tumors from all patients with lung cancer who had an MPS test from January 2015 to June 2016 in the Skåne health care region in Sweden (1.3 million citizens) were included. Six hundred eleven tumors from 599 patients were profiled using targeted sequencing with a 26-gene exon-focused panel. Data on disease patterns and characteristics of the patients subjected to testing were assembled, and correlations between mutational profiles and clinical features were analyzed. RESULTS MPS with the 26-gene panel revealed alterations in 92% of the 611 lung tumors, with the most frequent mutations detected in the nontargetable genes TP53 (62%) and KRAS (37%). Neither KRAS nor TP53 mutations were associated with disease pattern, chemotherapy response, progression-free survival, or overall survival in advanced-stage disease treated with platinum-based doublet chemotherapy as a first-line treatment. Among targetable genes, EGFR driver mutations were detected in 10% of the tumors, and BRAF p.V600 variants in 2.3%. For the 71 never smokers (12%), targetable alterations (EGFR mutations, BRAF p.V600, MET exon 14 skipping, or ALK/ROS1 rearrangement) were detected in 59% of the tumors. CONCLUSION Although the increasing importance of MPS as a predictor of response to targeted therapies is indisputable, its role in prognostics or as a predictor of clinical course in nontargetable advanced stage lung cancer requires further investigation.
Collapse
Affiliation(s)
- Sofi Isaksson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Bassam Hazem
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Mats Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Christel Reuterswärd
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anna Karlsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Håkan Griph
- Department of Respiratory Medicine, Skane University Hospital, Lund, Sweden
| | - Jens Engleson
- Department of Oncology, Skane University Hospital, Lund, Sweden
| | - Gudrun Oskarsdottir
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Respiratory Medicine, Skane University Hospital, Lund, Sweden
| | - Ronny Öhman
- Department of Respiratory Medicine, Skane University Hospital, Lund, Sweden
| | - Karolina Holm
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Frida Rosengren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Karin Annersten
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Åke Borg
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders Edsjö
- Department of Pathology, Regional Laboratories Region Skane, Lund, Sweden
| | - Per Levéen
- Department of Pathology, Regional Laboratories Region Skane, Lund, Sweden
| | - Hans Brunnström
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Pathology, Regional Laboratories Region Skane, Lund, Sweden
| | - Kajsa Ericson Lindquist
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Pathology, Regional Laboratories Region Skane, Lund, Sweden
| | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Maria Planck
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Respiratory Medicine, Skane University Hospital, Lund, Sweden
| |
Collapse
|
328
|
Quantitation of capmatinib, a mesenchymal-epithelial transition factor inhibitor by UPLC-MS/MS in rat plasma and its application to a pharmacokinetic study. Bioanalysis 2020; 12:285-293. [PMID: 32186402 DOI: 10.4155/bio-2020-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: Capmatinib is an orally bioavailable mesenchymal-epithelial transition factor inhibitor with anticancer activity, which has proved preclinical activity in multiple cancer trials. The present study aimed to develop a fast and reliable assay approach to quantify capmatinib in rat plasma. Methodology & results: After protein precipitation with acetonitrile, the chromatographic separation was achieved with an Acquity UPLC BEH C18 column, and subsequently detected with positive electrospray ionization via a triple quadrupole tandem mass spectrometer. The target quantitative ion pairs m/z 412.99 → 381.84 for capmatinib and 387.00 → 355.81 for the internal standard, respectively. The calibration curve for the assay was linear over the range of 1.0-4000 ng/ml. Conclusion: The method shows an excellent performance in linearity, accuracy, precision, stability, and has been successfully applied to a pharmacokinetic study after oral administration of capmatinib at three doses (5, 10 and 20 mg/kg) in rats.
Collapse
|
329
|
MET targeting: time for a rematch. Oncogene 2020; 39:2845-2862. [PMID: 32034310 DOI: 10.1038/s41388-020-1193-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
MET, the receptor tyrosine kinase (RTK) for hepatocyte growth factor, is a proto-oncogene involved in embryonic development and throughout life in homeostasis and tissue regeneration. Deregulation of MET signaling has been reported in numerous malignancies, prompting great interest in MET targeting for cancer therapy. The present review offers a summary of the biology of MET and its known functions in normal physiology and carcinogenesis, followed by an overview of the most relevant MET-targeting strategies and corresponding clinical trials, highlighting both past setbacks and promising future prospects. By placing their efforts on a more precise stratification strategy through the genetic analysis of tumors, modern trials such as the NCI-MATCH trial could revive the past enthusiasm for MET-targeted therapy.
Collapse
|
330
|
Recondo G, Bahcall M, Spurr LF, Che J, Ricciuti B, Leonardi GC, Lo YC, Li YY, Lamberti G, Nguyen T, Milan MSD, Venkatraman D, Umeton R, Paweletz CP, Albayrak A, Cherniack AD, Price KS, Fairclough SR, Nishino M, Sholl LM, Oxnard GR, Jänne PA, Awad MM. Molecular Mechanisms of Acquired Resistance to MET Tyrosine Kinase Inhibitors in Patients with MET Exon 14-Mutant NSCLC. Clin Cancer Res 2020; 26:2615-2625. [PMID: 32034073 DOI: 10.1158/1078-0432.ccr-19-3608] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/03/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Molecular mechanisms of acquired resistance to MET tyrosine kinase inhibitors (TKI) are poorly understood. We aimed to characterize the genomic mechanisms of resistance to type I and type II MET TKIs and their impact on sequential MET TKI therapy outcomes in patients with metastatic MET exon 14-mutant NSCLC. EXPERIMENTAL DESIGN Genomic alterations occurring at the time of progression on MET TKIs were studied using plasma and tissue next-generation sequencing (NGS). RESULTS A total of 20 patients had tissue or plasma available for analysis at the time of acquired resistance to a MET TKI. Genomic alterations known or suspected to be mechanisms of resistance were detected in 15 patients (75%). On-target acquired mechanisms of resistance, including single and polyclonal MET kinase domain mutations in codons H1094, G1163, L1195, D1228, Y1230, and high levels of amplification of the MET exon 14-mutant allele, were observed in 7 patients (35%). A number of off-target mechanisms of resistance were detected in 9 patients (45%), including KRAS mutations and amplifications in KRAS, EGFR, HER3, and BRAF; one case displayed both on- and off-target mechanisms of resistance. In 2 patients with on-target resistant mutations, switching between type I and type II MET TKIs resulted in second partial responses. CONCLUSIONS On-target secondary mutations and activation of bypass signaling drive resistance to MET TKIs. A deeper understanding of these molecular mechanisms can support the development of sequential or combinatorial therapeutic strategies to overcome resistance.
Collapse
Affiliation(s)
- Gonzalo Recondo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Magda Bahcall
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Liam F Spurr
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Giulia C Leonardi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Ying-Chun Lo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yvonne Y Li
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Giuseppe Lamberti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Tom Nguyen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Marina S D Milan
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Deepti Venkatraman
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Renato Umeton
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, Massachusetts.,Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Cloud P Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adem Albayrak
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew D Cherniack
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Geoffrey R Oxnard
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
331
|
Titmarsh HF, O'Connor R, Dhaliwal K, Akram AR. The Emerging Role of the c-MET-HGF Axis in Non-small Cell Lung Cancer Tumor Immunology and Immunotherapy. Front Oncol 2020; 10:54. [PMID: 32117721 PMCID: PMC7016210 DOI: 10.3389/fonc.2020.00054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Study of the c-Met-HGF axis in non-small cell lung cancer (NSCLC) has focused on the roles of c-MET signaling in neoplastic epithelial cells and the secretion of its ligand hepatocyte growth factor (HGF) by tumor stromal cells. However, there is increasing evidence that some leukocyte sub-sets also express c-MET raising the possibility of an immunomodulatory role for this axis. Consequently, the role of the c-MET- HGF axis in immunoncology is an active area of ongoing research. This review summarizes current knowledge of c-MET expression in NSCLC, the prognostic significance of these findings and the mechanisms by which the c-MET-HGF axis might act in NSCLC, focusing on the emerging evidence for an immunoregulatory role.
Collapse
Affiliation(s)
- Helen F. Titmarsh
- EPSRC and MRC CDT in Optical Medical Imaging, Universities of Edinburgh and Strathclyde, Edinburgh, United Kingdom
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Richard O'Connor
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
332
|
Identification of Novel CD74-NRG2α Fusion From Comprehensive Profiling of Lung Adenocarcinoma in Japanese Never or Light Smokers. J Thorac Oncol 2020; 15:948-961. [PMID: 32036070 DOI: 10.1016/j.jtho.2020.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Studies are yet to characterize the differences in molecular profiles of lung adenocarcinoma (LUAD) among divergent ethnic groups. Herein, we conducted comprehensive molecular profiling of LUAD in never or light smokers from Asia to discover novel targetable mutations and prognostic biomarkers of this distinct disease entity. METHODS We analyzed 996 cases of Japanese LUAD and performed whole-exome sequencing and RNA-seq in 125 cases of Japanese LUAD negative for the driver oncogenes defined by conventional laboratory testing. We also investigated the clinical and pathologic characteristics among the 996 cases. RESULTS Driver oncogenes were identified in 88 cases (70.4%) with specific hotspot mutations differing from those in The Cancer Genome Atlas study. Two actionable novel fusions of FGFR2 and NRG2α were also identified. Clustering on the basis of mRNA expression profiles, but not genetic mutational ones, could predict patient prognosis. The risk score generated by the expression of a three-gene set was a strong prognostic marker for overall survival and progression-free survival in our cohort, and was further validated using The Cancer Genome Atlas cohort. Among the 996 cases, each driver alteration is distributed across all histologic subtypes. Adenocarcinoma in situ was identified to harbor driver mutations, suggesting that these alterations are early events in the pathogenesis of LUAD. ERBB2 mutations were over-represented in young adults. CONCLUSIONS This study indicates the value of applying gene expression profiling for predicting the prognosis after a surgical operation, and that the identification of actionable mutations is important for optimizing targeted drugs in Japanese LUAD.
Collapse
|
333
|
Chin TM, Boopathy GTK, Man EP, Clohessy JG, Csizmadia E, Quinlan MP, Putti T, Wan SC, Xie C, Ali A, Wai FC, Ong YS, Goh BC, Settleman J, Hong W, Levantini E, Tenen DG. Targeting microtubules sensitizes drug resistant lung cancer cells to lysosomal pathway inhibitors. Am J Cancer Res 2020; 10:2727-2743. [PMID: 32194831 PMCID: PMC7052910 DOI: 10.7150/thno.38729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022] Open
Abstract
Oncogene-addicted cancers are predominantly driven by specific oncogenic pathways and display initial exquisite sensitivity to designer therapies, but eventually become refractory to treatments. Clear understanding of lung tumorigenic mechanisms is essential for improved therapies. Methods: Lysosomes were analyzed in EGFR-WT and mutant cells and corresponding patient samples using immunofluorescence or immunohistochemistry and immunoblotting. Microtubule organization and dynamics were studied using immunofluorescence analyses. Also, we have validated our findings in a transgenic mouse model that contain EGFR-TKI resistant mutations. Results: We herein describe a novel mechanism that a mutated kinase disrupts the microtubule organization and results in a defective endosomal/lysosomal pathway. This prevents the efficient degradation of phosphorylated proteins that become trapped within the endosomes and continue to signal, therefore amplifying downstream proliferative and survival pathways. Phenotypically, a distinctive subcellular appearance of LAMP1 secondary to microtubule dysfunction in cells expressing EGFR kinase mutants is seen, and this may have potential diagnostic applications for the detection of such mutants. We demonstrate that lysosomal-inhibitors re-sensitize resistant cells to EGFR tyrosine-kinase inhibitors (TKIs). Identifying the endosome-lysosome pathway and microtubule dysfunction as a mechanism of resistance allows to pharmacologically intervene on this pathway. Conclusions: We find that the combination of microtubule stabilizing agent and lysosome inhibitor could reduce the tumor progression in EGFR TKI resistant mouse models of lung cancer.
Collapse
|
334
|
Bang Y, Su W, Schuler M, Nam D, Lim WT, Bauer TM, Azaro A, Poon RTP, Hong D, Lin C, Akimov M, Ghebremariam S, Zhao S, Giovannini M, Ma B. Phase 1 study of capmatinib in MET-positive solid tumor patients: Dose escalation and expansion of selected cohorts. Cancer Sci 2020; 111:536-547. [PMID: 31778267 PMCID: PMC7004521 DOI: 10.1111/cas.14254] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023] Open
Abstract
Capmatinib is an oral, ATP-competitive, and highly potent, type 1b MET inhibitor. Herein, we report phase 1 dose-escalation results for capmatinib in advanced MET-positive solid tumor patients and dose expansion in advanced non-lung tumors. Capmatinib was well tolerated with a manageable safety profile across all explored doses. Dose-limiting toxicities (DLT) occurred at 200 mg twice daily (bid), 250 mg bid, and 450 mg bid capsules; however, no DLT were reported at 600 mg bid (capsules). Capmatinib tablets at 400 mg bid had comparable tolerability and exposure to that of 600 mg bid capsules. Maximum tolerated dose was not reached; recommended phase 2 dose was 400 mg bid tablets/600 mg bid capsules; at this dose, Ctrough >EC90 (90% inhibition of c-MET phosphorylation in animal models) is expected to be achieved and maintained. Among the dose-expansion patients (N = 38), best overall response across all cohorts was stable disease (gastric cancer 22%, hepatocellular carcinoma 46%, other indications 28%); two other indication patients with gene copy number (GCN) ≥6 achieved substantial tumor reduction. Near-complete immunohistochemically determined phospho-MET inhibition (H-score = 2) was shown following capmatinib 450 mg bid capsule in paired biopsies obtained from one advanced colorectal cancer patient. Incidence of high-level MET GCN (GCN ≥6) and MET-overexpressing (immunohistochemistry 3+) tumors in the expansion cohorts was 8% and 13%, respectively; no MET mutations were observed. Thus, the recommended phase 2 dose (RP2D) of capmatinib was 600 mg bid capsule/400 mg bid tablet. Capmatinib was well tolerated and showed antitumor activity and acceptable safety profile at the RP2D. (ClinicalTrials.gov Identifier: NCT01324479).
Collapse
Affiliation(s)
- Yung‐Jue Bang
- Seoul National University College of MedicineSeoulKorea
| | - Wu‐Chou Su
- National Cheng Kung University HospitalTainanTaiwan
| | - Martin Schuler
- Department of Medical OncologyWest German Cancer CenterUniversity Duisburg‐Essen and German Cancer Consortium (DKTK), Partner Site University Hospital EssenEssenGermany
| | | | | | - Todd M. Bauer
- Sarah Cannon Research Institute/Tennessee OncologyPLLCNashvilleTennesseeUSA
| | - Analia Azaro
- Department of Medical OncologyMolecular Therapeutics Research UnitVall d’Hebron University HospitalBarcelonaSpain
- Pharmacology DepartmentThe Autonomous University of Barcelona(UAB)BarcelonaSpain
| | | | - David Hong
- University of Texas/MD Anderson Cancer CenterHoustonTexasUSA
| | | | | | | | - Sylvia Zhao
- China Novartis Institutes for BioMedical ResearchShanghaiChina
| | | | - Brigette Ma
- State Key Laboratory of Translational Oncology, Phase 1 Clinical Trial CentreThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
335
|
Cohen D, Hondelink LM, Solleveld-Westerink N, Uljee SM, Ruano D, Cleton-Jansen AM, von der Thüsen JH, Ramai SRS, Postmus PE, Graadt van Roggen JF, Hoppe BPC, Clahsen PC, Maas KW, Ahsmann EJM, Ten Heuvel A, Smedts F, van Rossem RN, van Wezel T. Optimizing Mutation and Fusion Detection in NSCLC by Sequential DNA and RNA Sequencing. J Thorac Oncol 2020; 15:1000-1014. [PMID: 32014610 DOI: 10.1016/j.jtho.2020.01.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Frequently, patients with locally advanced or metastatic NSCLC are screened for mutations and fusions. In most laboratories, molecular workup includes a multitude of tests: immunohistochemistry (ALK, ROS1, and programmed death-ligand 1 testing), DNA sequencing, in situ hybridization for fusion, and amplification detection. With the fast-emerging new drugs targeting specific fusions and exon-skipping events, this procedure harbors a growing risk of tissue exhaustion. METHODS In this study, we evaluated the benefit of anchored, multiplexed, polymerase chain reaction-based targeted RNA sequencing (RNA next-generation sequencing [NGS]) in the identification of gene fusions and exon-skipping events in patients, in which no pathogenic driver mutation was found by DNA-based targeted cancer hotspot NGS (DNA NGS). We analyzed a cohort of stage IV NSCLC cases from both in-house and referral hospitals, consisting 38.5% cytology samples and 61.5% microdissected histology samples, mostly core needle biopsies. We compared molecular findings in a parallel workup (DNA NGS and RNA NGS, cohort 1, n = 198) with a sequential workup (DNA NGS followed by RNA NGS in selected cases, cohort 2, n = 192). We hypothesized the sequential workup to be the more efficient procedure. RESULTS In both cohorts, a maximum of one oncogenic driver mutation was found per case. This is in concordance with large, whole-genome databases and suggests that it is safe to omit RNA NGS when a clear oncogenic driver is identified in DNA NGS. In addition, this reduced the number of necessary RNA NGS to only 53% of all cases. The tumors of never smokers, however, were enriched for fusions and exon-skipping events (32% versus 4% in former and current smokers, p = 0.00), and therefore benefited more often from the shorter median turnaround time of the parallel approach (15 d versus only 9 d in the parallel workup). CONCLUSIONS We conclude that sequentially combining DNA NGS and RNA NGS is the most efficient strategy for mutation and fusion detection in smoking-associated NSCLC, whereas for never smokers we recommend a parallel approach. This approach was shown to be feasible on small tissue samples including for cytology tests, can drastically reduce the complexity and cost of molecular workup, and also provides flexibility in the constantly evolving landscape of actionable targets in NSCLC.
Collapse
Affiliation(s)
- Danielle Cohen
- Department of Pathology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands.
| | - Liesbeth M Hondelink
- Department of Pathology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | | | - Sandra M Uljee
- Department of Pathology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | | | - Jan H von der Thüsen
- Department of Pathology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - S Rajen S Ramai
- Department of Pulmonology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Pieter E Postmus
- Department of Pulmonology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | | | - Bart P C Hoppe
- Department of Pulmonology, Alrijne Hospital, Leiderdorp, The Netherlands
| | - Pieter C Clahsen
- Department of Pathology, Haaglanden Medical Centre (HMC), Den Haag, The Netherlands
| | - Klaartje W Maas
- Department of Pulmonology, Haaglanden Medical Centre (HMC), Den Haag, The Netherlands
| | - Els J M Ahsmann
- Department of Pathology, Groene Hart Hospital (GHZ), Gouda, The Netherlands
| | | | - Frank Smedts
- Department of Pathology, Reinier de Graaf gasthuis (RdGG), Delft, The Netherlands
| | - Ronald N van Rossem
- Department of Pulmonology, Reinier de Graaf gasthuis (RdGG), Delft, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| |
Collapse
|
336
|
Chu QS. Targeting non-small cell lung cancer: driver mutation beyond epidermal growth factor mutation and anaplastic lymphoma kinase fusion. Ther Adv Med Oncol 2020; 12:1758835919895756. [PMID: 32047535 PMCID: PMC6984433 DOI: 10.1177/1758835919895756] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
The identification of driver mutations in epidermal growth factor receptor, anaplastic lymphoma kinase, the BRAF and ROS1 genes and subsequent successful clinical development of kinase inhibitors not only significantly improves clinical outcomes but also facilitates the discovery of other novel driver mutations in non-small cell lung cancer. These driver mutations can be categorized into mutations in or near the kinase domain, gene amplification or fusion. In this review, BRAF V600E, EGFR and HER-2 exon 20 mutation, FGFR1-4, K-RAS, MET, neuregulin-1, NRTK, PI3K/AKT/mTOR, RET and ROS1 gene aberration and their therapeutics will be discussed.
Collapse
Affiliation(s)
- Quincy S. Chu
- Division of Medical Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| |
Collapse
|
337
|
Genova C, Rossi G, Tagliamento M, Rijavec E, Biello F, Cerbone L, Zullo L, Grossi F. Targeted therapy of oncogenic-driven advanced non-small cell lung cancer: recent advances and new perspectives. Expert Rev Respir Med 2020; 14:367-383. [DOI: 10.1080/17476348.2020.1714441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Carlo Genova
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanni Rossi
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Italy
| | - Marco Tagliamento
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Erika Rijavec
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Biello
- Oncology Unit, Ospedale Maggiore della Carità, Novara, Italy
| | - Luigi Cerbone
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lodovica Zullo
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Grossi
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
338
|
Lung Carcinoma. Genomic Med 2020. [DOI: 10.1007/978-3-030-22922-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
339
|
Tafe LJ. Non-Small Cell Lung Cancer as a Precision Oncology Paradigm: Emerging Targets and Tumor Mutational Burden (TMB). Adv Anat Pathol 2020; 27:3-10. [PMID: 31567128 DOI: 10.1097/pap.0000000000000244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Non-small cell lung cancer (NSCLC), since the recognition of epidermal growth factor receptor (EGFR) mutations that sensitized tumors to EGFR tyrosine kinase inhibitors, has been a poster child for precision oncology in solid tumors. The emergence of resistance to the EGFR tyrosine kinase inhibitors led to the unveiling of multiple resistance mechanisms that are now recognized to be frequent mechanisms across multiple tumor types. Coevolution of technological advancements in testing methods available to clinical laboratories now has identified a growing number of molecularly defined subsets of NSCLC that have new therapeutic implications. In addition, identifying patients eligible for immunotherapy is another goal for precision oncology. Recently, studies suggest that TMB may be a promising biomarker for selecting patients with NSCLC for immunotherapy. This review focuses on emerging potentially targetable alterations specifically in RET, ERBB2 (HER2), MET, and KRAS and current evidence and controversies surrounding TMB testing.
Collapse
|
340
|
Kim BJ, Kim D, Kim JH, Kim HS, Jang HJ. The efficacy and safety of onartuzumab in patients with solid cancers: A meta-analysis of randomized trials. Indian J Cancer 2020; 58:232-240. [PMID: 33402588 DOI: 10.4103/ijc.ijc_797_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Onartuzumab, a humanized monovalent monoclonal antibody to the MET protein, has been tested in various cancers. We conducted a meta-analysis of randomized phase II and III clinical trials to investigate the efficacy and safety of onartuzumab in solid cancers. Methods We searched PubMed, PMC, EMBASE, and the Cochrane library databases. We included randomized phase II or III trials that evaluated the additional benefits of onartuzumab in comparison with the standard treatments. Data on progression-free survival (PFS), overall survival (OS), and adverse events (AEs) were pooled and analyzed. Results From nine studies, a total of 2,138 patients were included in the meta-analysis. The addition of onartuzumab to the standard treatment resulted in no improvement of PFS (hazard ratio (HR) = 1.00 [95% confidence interval (CI), 0.90-1.11], P = 0.93) and OS (HR = 1.08 [95% CI, 0.94-1.23], P = 0.29). In the subgroup analysis with patients with non-small-cell lung cancer (NSCLC), onartuzumab was not associated with a significant improvement of OS (HR = 1.12 [95% CI, 0.93-1.34], P = 0.23) and PFS (HR = 1.05 [95% CI, 0.91-1.21], P = 0.52). With respect to AEs, onartuzumab increased the incidence of hypoalbuminemia (odds ratio (OR) = 14.8 [95% CI, 3.49-62.71], P < 0.001), peripheral edema (OR = 6.52 [95% CI, 3.60-11.81], P < 0.001), neutropenia (OR = 1.36 [95% CI, 1.03-1.79], P = 0.03), thrombocytopenia (OR = 1.98 [95% CI, 1.03-3.81], P = 0.04), and venous thrombotic events (OR = 3.05 [95% CI, 1.39-6.71], P = 0.006). Conclusion This meta-analysis indicates that the addition of onartuzumab to the standard treatments had no definite survival benefit with increased severe toxicities in patients with solid cancer.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Dalyong Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Jung Han Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Su Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hyun Joo Jang
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
341
|
Drilon A, Clark JW, Weiss J, Ou SHI, Camidge DR, Solomon BJ, Otterson GA, Villaruz LC, Riely GJ, Heist RS, Awad MM, Shapiro GI, Satouchi M, Hida T, Hayashi H, Murphy DA, Wang SC, Li S, Usari T, Wilner KD, Paik PK. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med 2020; 26:47-51. [PMID: 31932802 PMCID: PMC8500676 DOI: 10.1038/s41591-019-0716-8] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/24/2019] [Indexed: 12/26/2022]
Abstract
MET exon 14 alterations are oncogenic drivers of non-small-cell lung cancers (NSCLCs)1. These alterations are associated with increased MET activity and preclinical sensitivity to MET inhibition2. Crizotinib is a multikinase inhibitor with potent activity against MET3. The antitumor activity and safety of crizotinib were assessed in 69 patients with advanced NSCLCs harboring MET exon 14 alterations. Objective response rate was 32% (95% confidence interval (CI), 21-45) among 65 response-evaluable patients. Objective responses were observed independent of the molecular heterogeneity that characterizes these cancers and did not vary by splice-site region and mutation type of the MET exon 14 alteration, concurrent increased MET copy number or the detection of a MET exon 14 alteration in circulating tumor DNA. The median duration of response was 9.1 months (95% CI, 6.4-12.7). The median progression-free survival was 7.3 months (95% CI, 5.4-9.1). MET exon 14 alteration defines a molecular subgroup of NSCLCs for which MET inhibition with crizotinib is active. These results address an unmet need for targeted therapy in people with lung cancers with MET exon 14 alterations and adds to an expanding list of genomically driven therapies for oncogenic subsets of NSCLC.
Collapse
Affiliation(s)
- Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| | | | - Jared Weiss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | - Liza C Villaruz
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | - Mark M Awad
- Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | - Paul K Paik
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
342
|
Zhang R, Gao X, Zuo J, Hu B, Yang J, Zhao J, Chen J. STMN1 upregulation mediates hepatocellular carcinoma and hepatic stellate cell crosstalk to aggravate cancer by triggering the MET pathway. Cancer Sci 2019; 111:406-417. [PMID: 31785057 PMCID: PMC7004522 DOI: 10.1111/cas.14262] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
STMN1 has been regarded as an oncogene and its upregulation is closely associated with malignant behavior and poor prognosis in multiple cancers. However, the detailed functions and underlying mechanisms of STMN1 are still largely unknown in hepatocellular carcinoma (HCC) development. Herein, we analyzed STMN1 expression and the related clinical significance in HCC by using well‐established Protein Atlas, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cancer databases. Analysis indicated that STMN1 was highly expressed in HCC and closely associated with vascular invasion, higher histological grade, advanced clinical grade and shorter survival time in HCC patients. Overexpressing and silencing STMN1 in HCC cell lines showed that STMN1 could regulate cell proliferation, migration, drug resistance, cancer stem cell properties in vitro as well as tumor growth in vivo. Further experiments showed that STMN1 mediated intricate crosstalk between HCC and hepatic stellate cells (HSC) by triggering the hepatocyte growth factor (HGF)/MET signal pathway. When HSC were cocultured with HCC cells, HSC secreted more HGF to stimulate the expression of STMN1 in HCC cells. Mutually, STMN1 upregulation in HCC cells facilitated HSC activation to acquire cancer‐associated fibroblast (CAF) features. The MET inhibitor crizotinib significantly blocked this crosstalk and slowed tumor growth in vivo. In conclusion, our findings shed new insight on STMN1 function, and suggest that STMN1 may be used as a potential marker to identify patients who may benefit from MET inhibitor treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Department of General Surgery, Fudan University, Shanghai, China
| | - Xiaomei Gao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jieliang Zuo
- Department of General Surgery, Fudan University, Shanghai, China
| | - Beiyuan Hu
- Department of General Surgery, Fudan University, Shanghai, China
| | - Jimeng Yang
- Department of General Surgery, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of General Surgery, Fudan University, Shanghai, China
| | - Jinhong Chen
- Department of General Surgery, Fudan University, Shanghai, China
| |
Collapse
|
343
|
Papadopoulou E, Tsoulos N, Tsantikidi K, Metaxa-Mariatou V, Stamou PE, Kladi-Skandali A, Kapeni E, Tsaousis G, Pentheroudakis G, Petrakis D, Lampropoulou DI, Aravantinos G, Varthalitis I, Kesisis G, Boukovinas I, Papakotoulas P, Katirtzoglou N, Athanasiadis E, Stavridi F, Christodoulou C, Koumarianou A, Eralp Y, Nasioulas G. Clinical feasibility of NGS liquid biopsy analysis in NSCLC patients. PLoS One 2019; 14:e0226853. [PMID: 31860648 PMCID: PMC6924668 DOI: 10.1371/journal.pone.0226853] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background Analysis of circulating tumor nucleic acids in plasma of Non-Small Cell Lung Cancer (NSCLC) patients is the most widespread and documented form of "liquid biopsy" and provides real-time information on the molecular profile of the tumor without an invasive tissue biopsy. Methods Liquid biopsy analysis was requested by the referral physician in 121 NSCLC patients at diagnosis and was performed using a sensitive Next Generation Sequencing assay. Additionally, a comparative analysis of NSCLC patients at relapse following EGFR Tyrosine Kinase Inhibitor (TKIs) treatment was performed in 50 patients by both the cobas and NGS platforms. Results At least one mutation was identified in almost 49% of the cases by the NGS approach in NSCLC patients analyzed at diagnosis. In 36 cases with paired tissue available a high concordance of 86.11% was observed for clinically relevant mutations, with a Positive Predictive Value (PPV) of 88.89%. Furthermore, a concordance rate of 82% between cobas and the NGS approach for the EGFR sensitizing mutations (in exons 18, 19, 21) was observed in patients with acquired resistance to EGFR TKIs, while this concordance was 94% for the p.T790M mutation, with NGS being able to detect this mutation in three 3 additional patients. Conclusions This study indicates the feasibility of circulating tumor nucleic acids (ctNA) analysis as a tumor biopsy surrogate in clinical practice for NSCLC personalized treatment decision making. The use of new sensitive NGS techniques can reliably detect tumor-derived mutations in liquid biopsy and provide clinically relevant information both before and after targeted treatment in patients with NSCLC. Thus, it could aid physicians in treatment decision making in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - George Pentheroudakis
- Department of Medical Oncology, School of Medicine, Ioannina, Greece
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | - Dimitrios Petrakis
- Department of Medical Oncology, School of Medicine, Ioannina, Greece
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | | | - Gerasimos Aravantinos
- Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | | | - George Kesisis
- Oncology Department, Saint Luke Private Hospital, Thessaloniki, Greece
| | | | - Pavlos Papakotoulas
- First Department of Clinical Oncology, Theagenio Hospital, Thessaloniki, Greece
| | | | | | - Flora Stavridi
- Fourth Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | | | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Yeşim Eralp
- Department of Medical Oncology, Istanbul University School of Medicine, İstanbul, Turkey
| | | |
Collapse
|
344
|
DaSilva JO, Yang K, Perez Bay AE, Andreev J, Ngoi P, Pyles E, Franklin MC, Dudgeon D, Rafique A, Dore A, Delfino FJ, Potocky TB, Babb R, Chen G, MacDonald D, Olson WC, Thurston G, Daly C. A Biparatopic Antibody That Modulates MET Trafficking Exhibits Enhanced Efficacy Compared with Parental Antibodies in MET-Driven Tumor Models. Clin Cancer Res 2019; 26:1408-1419. [PMID: 31848185 DOI: 10.1158/1078-0432.ccr-19-2428] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/01/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent clinical data demonstrate that tumors harboring MET genetic alterations (exon 14 skip mutations and/or gene amplification) respond to small-molecule tyrosine kinase inhibitors, validating MET as a therapeutic target. Although antibody-mediated blockade of the MET pathway has not been successful in the clinic, the failures are likely the result of inadequate patient selection strategies as well as suboptimal antibody design. Thus, our goal was to generate a novel MET blocking antibody with enhanced efficacy. EXPERIMENTAL DESIGN Here, we describe the activity of a biparatopic MET×MET antibody that recognizes two distinct epitopes in the MET Sema domain. We use a combination of in vitro assays and tumor models to characterize the effect of our antibody on MET signaling, MET intracellular trafficking, and the growth of MET-dependent cells/tumors. RESULTS In MET-driven tumor models, our biparatopic antibody exhibits significantly better activity than either of the parental antibodies or the mixture of the two parental antibodies and outperforms several clinical-stage MET antibodies. Mechanistically, the biparatopic antibody inhibits MET recycling, thereby promoting lysosomal trafficking and degradation of MET. In contrast to the parental antibodies, the biparatopic antibody fails to activate MET-dependent biological responses, consistent with the observation that it recycles inefficiently and induces very transient downstream signaling. CONCLUSIONS Our results provide strong support for the notion that biparatopic antibodies are a promising therapeutic modality, potentially having greater efficacy than that predicted from the properties of the parental antibodies.
Collapse
Affiliation(s)
| | - Katie Yang
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | - Peter Ngoi
- UC Santa Cruz, Program for Biomedical Sciences and Engineering, Santa Cruz, California
| | - Erica Pyles
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Anthony Dore
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | - Robert Babb
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Gang Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | | | | |
Collapse
|
345
|
Digumarthy SR, Mendoza DP, Zhang EW, Lennerz JK, Heist RS. Clinicopathologic and Imaging Features of Non-Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. Cancers (Basel) 2019; 11:cancers11122033. [PMID: 31861060 PMCID: PMC6966679 DOI: 10.3390/cancers11122033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
MET exon 14 (METex14) skipping mutations are an emerging potentially targetable oncogenic driver mutation in non-small-cell lung cancer (NSCLC). The imaging features and patterns of metastasis of NSCLC with primary METex14 skipping mutations (METex14-mutated NSCLC) are not well described. Our goal was to determine the clinicopathologic and imaging features that may suggest the presence of METex14 skipping mutations in NSCLC. This IRB-approved retrospective study included NSCLC patients with primary METex14 skipping mutations and pre-treatment imaging data between January 2013 and December 2018. The clinicopathologic characteristics were extracted from electronic medical records. The imaging features of the primary tumor and metastases were analyzed by two thoracic radiologists. In total, 84 patients with METex14-mutated NSCLC (mean age = 71.4 ± 10 years; F = 52, 61.9%, M = 32, 38.1%; smokers = 47, 56.0%, nonsmokers = 37, 44.0%) were included in the study. Most tumors were adenocarcinoma (72; 85.7%) and presented as masses (53/84; 63.1%) that were peripheral in location (62/84; 73.8%). More than one in five cancers were multifocal (19/84; 22.6%). Most patients with metastatic disease had only extrathoracic metastases (23/34; 67.6%). Fewer patients had both extrathoracic and intrathoracic metastases (10/34; 29.4%), and one patient had only intrathoracic metastases (1/34, 2.9%). The most common metastatic sites were the bones (14/34; 41.2%), the brain (7/34; 20.6%), and the adrenal glands (7/34; 20.6%). Four of the 34 patients (11.8%) had metastases only at a single site. METex14-mutated NSCLC has distinct clinicopathologic and radiologic features.
Collapse
Affiliation(s)
- Subba R. Digumarthy
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (D.P.M.); (E.W.Z.)
- Correspondence: ; Tel.: +1-617-724-4254; Fax: +1-617-724-0046
| | - Dexter P. Mendoza
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (D.P.M.); (E.W.Z.)
| | - Eric W. Zhang
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (D.P.M.); (E.W.Z.)
| | - Jochen K. Lennerz
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Rebecca S. Heist
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
| |
Collapse
|
346
|
Falchook GS, Kurzrock R, Amin HM, Xiong W, Fu S, Piha-Paul SA, Janku F, Eskandari G, Catenacci DV, Klevesath M, Bruns R, Stammberger U, Johne A, Bladt F, Friese-Hamim M, Girard P, El Bawab S, Hong DS. First-in-Man Phase I Trial of the Selective MET Inhibitor Tepotinib in Patients with Advanced Solid Tumors. Clin Cancer Res 2019; 26:1237-1246. [PMID: 31822497 DOI: 10.1158/1078-0432.ccr-19-2860] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/01/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Tepotinib is an oral, potent, highly selective MET inhibitor. This first-in-man phase I trial investigated the MTD of tepotinib to determine the recommended phase II dose (RP2D). PATIENTS AND METHODS Patients received tepotinib orally according to one of three dose escalation regimens (R) on a 21-day cycle: R1, 30-400 mg once daily for 14 days; R2, 30-315 mg once daily 3 times/week; or R3, 300-1,400 mg once daily. After two cycles, treatment could continue in patients with stable disease until disease progression or unacceptable toxicity. The primary endpoint was incidence of dose-limiting toxicity (DLT) and treatment-emergent adverse events (TEAE). Secondary endpoints included safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor effects. RESULTS One hundred and forty-nine patients received tepotinib (R1: n = 42; R2: n = 45; R3: n = 62). Although six patients reported DLTs [one patient in R1 (115 mg), three patients in R2 (60, 100, 130 mg), two patients in R3 (1,000, 1,400 mg)], the MTD was not reached at the highest tested dose of 1,400 mg daily. The RP2D of tepotinib was established as 500 mg once daily, supported by translational modeling data as sufficient to achieve ≥95% MET inhibition in ≥90% of patients. Treatment-related TEAEs were mostly grade 1 or 2 fatigue, peripheral edema, decreased appetite, nausea, vomiting, and lipase increase. The best overall response in R3 was partial response in two patients, both with MET overexpression. CONCLUSIONS Tepotinib was well tolerated with clinical activity in MET-dysregulated tumors. The RP2D of tepotinib was established as 500 mg once daily. MET abnormalities can drive tumorigenesis. This first-in-man trial demonstrated that the potent, highly selective MET inhibitor tepotinib can reduce or stabilize tumor burden and is well tolerated at doses up to 1,400 mg once daily. An RP2D of 500 mg once daily, as determined from translational modeling and simulation integrating human population pharmacokinetic and pharmacodynamic data in tumor biopsies, is being used in ongoing clinical trials.
Collapse
Affiliation(s)
| | - Razelle Kurzrock
- University of California San Diego Moores Cancer Center, San Diego, California
| | | | - Wenyuan Xiong
- Merck Institute of Pharmacometrics, Merck Serono SA, Lausanne, Switzerland
| | - Siqing Fu
- MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Daniel V Catenacci
- The University of Chicago Medical Center & Biological Sciences, Chicago, Illinois
| | | | | | | | | | | | | | - Pascal Girard
- Merck Institute of Pharmacometrics, Merck Serono SA, Lausanne, Switzerland
| | | | | |
Collapse
|
347
|
Abstract
Introduction: The HGF/MET axis is a key therapeutic pathway in cancer; it is aberrantly activated because of mutations, fusions, amplification or aberrant ligand production. Extensive efforts have been made to discover predictive factors of anti-MET therapeutic efficacy, but they have mostly unsuccessful. An understanding of the intrinsic and acquired mechanism of MET resistance will be fundamental for the development of new therapeutic interventions.Areas covered: This article provides a systematic review of phase II randomized and phase III clinical trials investigating the use of MET inhibitors in the treatment of cancer. We discuss preliminary findings on efficacy and methodologic design flaws in these trials.Expert opinion: MET inhibitors showed poor activity in unselected patients or patients selected by MET expression, p-MET or high HGF basal levels. The efficacy in advanced solid tumors is very modest and in phase III clinical trials, survival differences did not fulfill the stringent requirements of ESMO-Magnitude Clinical Benefit Score (MCBS). Prospective novel liquid biomarker-driven studies and novel trial designs such as Umbrella and Basket trials are necessary to progress MET inhibitor development.
Collapse
Affiliation(s)
- Helena Oliveres
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, University of Barcelona, Barcelona, Spain
| | - Estela Pineda
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, University of Barcelona, Barcelona, Spain
| | - Joan Maurel
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
348
|
Baldovini C, Rossi G, Ciarrocchi A. Approaches to Tumor Classification in Pulmonary Sarcomatoid Carcinoma. LUNG CANCER-TARGETS AND THERAPY 2019; 10:131-149. [PMID: 31824199 PMCID: PMC6901065 DOI: 10.2147/lctt.s186779] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
Pulmonary sarcomatoid carcinoma (PSC) is a heterogeneous category of primary lung cancer accounting from 0.3% to 3% of all primary lung malignancies. According to the most recent 2015 World Health Organization (WHO) classification, PSC includes several different variants of malignant epithelial tumors (carcinomas) histologically mimicking sarcomas showing or entirely lacking a conventional component of non-small cell lung cancer (NSCLC). Thus, this rare subheading of lung neoplasms includes pleomorphic carcinoma, spindle cell carcinoma, giant cell carcinoma, pulmonary blastoma, and carcinosarcoma. A diagnosis of PSC may be suspected on small biopsy or cytology, but commonly requires a surgical resection to reach a conclusive definition. The majority of patients with PSC consists of elderly, smoking men with a large, peripheral mass characterized by well-defined margins. However, presentation with a central, polypoid endobronchial lesion is well-documented, particularly in pleomorphic carcinoma and carcinosarcoma showing a squamous cell carcinoma component. As expected, PSC may pose diagnostic problems and immunohistochemistry is largely used when pathologists deal these tumors in routine practice. Indeed, PSC tends to overexpress molecules associated with the epithelial-to-mesenchymal transition, such as vimentin, but the panel of immunostains also includes epithelial markers (cytokeratins, EMA), TTF-1, p40 and negative markers (e.g., melanocytic, mesothelial and sarcoma-related primary antibodies). Although rare, PSC has increased their interest among oncologist community for different reasons: a. identification of the epithelial-to-mesenchymal phenomenon as a major mechanism of secondary resistance to tyrosine kinase inhibitors; b. over-expression of PD-L1 and effective treatment with immunotherapy; c. identification of c-MET exon 14 skipping mutation representing an effective target to crizotinib and other specific inhibitors. In this review, the feasibility of the diagnosis of PSC, its differential diagnosis and novel molecular findings characterizing this group of lung tumor are discussed.
Collapse
Affiliation(s)
- Chiara Baldovini
- Operative Unit of Pathologic Anatomy, Azienda USL della Romagna, Hospital S. Maria delle Croci, Ravenna, Italy
| | - Giulio Rossi
- Operative Unit of Pathologic Anatomy, Azienda USL della Romagna, Hospital S. Maria delle Croci, Ravenna, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS Reggio Emilia, Reggio Emilia 42123, Italy
| |
Collapse
|
349
|
Moro-Sibilot D, Cozic N, Pérol M, Mazières J, Otto J, Souquet PJ, Bahleda R, Wislez M, Zalcman G, Guibert SD, Barlési F, Mennecier B, Monnet I, Sabatier R, Bota S, Dubos C, Verriele V, Haddad V, Ferretti G, Cortot A, De Fraipont F, Jimenez M, Hoog-Labouret N, Vassal G. Crizotinib in c-MET- or ROS1-positive NSCLC: results of the AcSé phase II trial. Ann Oncol 2019; 30:1985-1991. [PMID: 31584608 DOI: 10.1093/annonc/mdz407] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In 2013, the French National Cancer Institute initiated the AcSé program to provide patients with secure access to targeted therapies outside of their marketed approvals. Efficacy and safety was then assessed using a two-stage Simon phase II trial design. When the study design was designed, crizotinib was approved only as monotherapy for adults with anaplastic lymphoma kinase plus non-small-cell lung cancers (NSCLC). PATIENTS AND METHODS Advanced NSCLC patients with c-MET ≥6 copies, c-MET-mutated, or ROS-1-translocated tumours were enrolled in one of the three cohorts. Patients were treated with crizotinib 250 mg twice daily. Efficacy was assessed using the objective response rate (ORR) after two cycles of crizotinib as primary outcome. Secondary outcomes included disease control rate at four cycles, best ORR, progression-free survival, overall survival, and drug tolerance. RESULTS From August 2013 to March 2018, 5606 patients had their tumour tested for crizotinib targeted molecular alterations: 252 patients had c-MET ≥6 copies, 74 c-MET-mutation, and 78 ROS-1-translocated tumour. Finally, 25 patients in the c-MET ≥6 copies cohort, 28 in the c-MET-mutation cohort, and 37 in the ROS-1-translocation cohort were treated in the phase II trial. The ORR was 16% in the c-MET ≥6 copies cohort, 10.7% in the mutated, and 47.2% in the ROS-1 cohort. The best ORR during treatment was 32% in the c-MET-≥6 copies cohort, 36% in the c-MET-mutated, and 69.4% in the ROS-1-translocation cohort. Safety data were consistent with that previously reported. CONCLUSIONS Crizotinib activity in patients with ROS1-translocated tumours was confirmed. In the c-MET-mutation and c-MET ≥6 copies cohorts, despite insufficient ORR after two cycles of crizotinib, there are signs of late response not sufficient to justify the development of crizotinib in this indication. The continued targeting of c-MET with innovative therapies appears justified. CLINICAL TRIAL NUMBER NCT02034981.
Collapse
Affiliation(s)
- D Moro-Sibilot
- Thoracic Oncology Unit, Grenoble-Alpes University Hospital, Grenoble; Intergroupe Francophone de Cancérologie Thoracique (IFCT), Paris.
| | - N Cozic
- Department of Biostatistics and Epidemiology, Gustave Roussy Cancer Campus, INSERM U1018, ESP, Paris-Saclay and Paris-Sud Universities, Villejuif
| | - M Pérol
- Department of Medical Oncology, Léon Bérard Cancer Centre, Lyon
| | - J Mazières
- Pneumology Department, Toulouse University Hospital and Paul Sabatier University, Toulouse
| | - J Otto
- Department of Medicine, Antoine Lacassagne Cancer Centre, Nice
| | - P J Souquet
- Department of Pneumology and Thoracic Oncology, Lyon Sud Hospital Center, Hospices Civils de Lyon, Pierre Bénite
| | - R Bahleda
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif
| | - M Wislez
- Pneumology Department, Tenon Hospital, AP-HP and "Pierre and Marie Curie" University, Paris
| | - G Zalcman
- Thoracic Oncology Department-CIC INSERM 1425, Bichat University Hospital, AP-HP, Paris; Paris-Diderot University, Paris
| | | | - F Barlési
- Multidisciplinary Oncology & Therapeutic Innovations Department, APHM and Aix Marseille University, INSERM, CNRS, CRCM, Marseille
| | - B Mennecier
- Pneumology Department, Strasbourg University Hospital, Strasbourg
| | - I Monnet
- Pneumology Department, CHIC Creteil, Créteil
| | - R Sabatier
- Department of Medical Oncology, Inserm 1068, CNRS UMR7258, CRCM, Paoli-Calmettes Institute and Aix-Marseille University, Marseille
| | - S Bota
- Pneumology Department, Charles Nicolle Hospital, Rouen University Hospital, Rouen
| | - C Dubos
- Pneumology Department, François Baclesse Cancer Centre, Caen
| | - V Verriele
- Anatomy and Pathological Cytologies Department, Paul Papin Cancer Centre, ICO, Angers
| | - V Haddad
- Department of Tumour Biology, Léon Bérard Cancer Centre, Lyon
| | - G Ferretti
- Radiology and Medical Imaging Department, Grenoble-Alpes University Hospital, Grenoble
| | - A Cortot
- Department of Thoracic Oncology, Lille University Hospital and University of Lille, Lille
| | - F De Fraipont
- Molecular Genetic Unit: Hereditary Diseases and Oncology, Grenoble-Alpes University Hospital, Grenoble
| | - M Jimenez
- Research and Development UNICANCER, Paris
| | | | - G Vassal
- Clinical Research Division, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
350
|
Moosavi F, Giovannetti E, Saso L, Firuzi O. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Crit Rev Clin Lab Sci 2019; 56:533-566. [PMID: 31512514 DOI: 10.1080/10408363.2019.1653821] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/13/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
Abstract
Cancer is a major cause of death worldwide. MET tyrosine kinase receptor [MET, c-MET, hepatocyte growth factor (HGF) receptor] pathway activation is associated with the appearance of several hallmarks of cancer. The HGF/MET pathway has emerged as an important actionable target across many solid tumors; therefore, biomarker discovery becomes essential in order to guide clinical intervention and patient stratification with the aim of moving towards personalized medicine. The focus of this review is on how the aberrant activation of the HGF/MET pathway in tumor tissue or the circulation can provide diagnostic and prognostic biomarkers and predictive biomarkers of drug response. Many meta-analyses have shown that aberrant activation of the MET pathway in tumor tissue, including MET gene overexpression, gene amplification, exon 14 skipping and other activating mutations, is almost invariably associated with shorter survival and poor prognosis. Most meta-analyses have been performed in non-small cell lung cancer (NSCLC), breast, head and neck cancers as well as colorectal, gastric, pancreatic and other gastrointestinal cancers. Furthermore, several studies have shown the predictive value of MET biomarkers in the identification of patients who gain the most benefit from HGF/MET targeted therapies administered as single or combination therapies. The highest predictive values have been observed for response to foretinib and savolitinib in renal cancer, as well as tivantinib in NSCLC and colorectal cancer. However, some studies, especially those based on MET expression, have failed to show much value in these stratifications. This may be rooted in lack of standardization of methodologies, in particular in scoring systems applied in immunohistochemistry determinations or absence of oncogenic addiction of cancer cells to the MET pathway, despite detection of overexpression. Measurements of amplification and mutation aberrations are less likely to suffer from these pitfalls. Increased levels of MET soluble ectodomain (sMET) in circulation have also been associated with poor prognosis; however, the evidence is not as strong as it is with tissue-based biomarkers. As a diagnostic biomarker, sMET has shown its value in distinguishing cancer patients from healthy individuals in prostate and bladder cancers and in melanoma. On the other hand, increased circulating HGF has also been presented as a valuable prognostic and diagnostic biomarker in many cancers; however, there is controversy on the predictive value of HGF as a biomarker. Other biomarkers such as circulating tumor DNA (ctDNA) and tumor HGF levels have also been briefly covered. In conclusion, HGF/MET aberrations can provide valuable diagnostic, prognostic and predictive biomarkers and represent vital assets for personalized cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza Onlus , Pisa , Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology, "Vittorio Erspamer," Sapienza University , Rome , Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|