301
|
Siddiqi S, Gude N, Hosoda T, Muraski J, Rubio M, Emmanuel G, Fransioli J, Vitale S, Parolin C, D'Amario D, Schaefer E, Kajstura J, Leri A, Anversa P, Sussman MA. Myocardial induction of nucleostemin in response to postnatal growth and pathological challenge. Circ Res 2008; 103:89-97. [PMID: 18519946 DOI: 10.1161/circresaha.107.169334] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cell-specific proteins and regulatory pathways that determine self-renewal and differentiation have become of fundamental importance in understanding regenerative and reparative processes in the myocardium. One such regulatory protein, named nucleostemin, has been studied in the context of stem cells and several cancer cell lines, where expression is associated with proliferation and maintenance of a primitive cellular phenotype. We find nucleostemin is present in young myocardium and is also induced following cardiomyopathic injury. Nucleostemin expression in cardiomyocytes is induced by fibroblast growth factor-2 and accumulates in response to Pim-1 kinase activity. Cardiac stem cells also express nucleostemin that is diminished in response to commitment to a differentiated phenotype. Overexpression of nucleostemin in cultured cardiac stem cells increases proliferation while preserving telomere length, providing a mechanistic basis for potential actions of nucleostemin in promotion of cell survival and proliferation as seen in other cell types.
Collapse
Affiliation(s)
- Sailay Siddiqi
- San Diego State University Heart Institute and Department of Biology, San Diego State University, CA 92182, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Karbownik-Lewinska M, Kokoszko A, Lewandowski KC, Shalet SM, Lewinski A. GH replacement reduces increased lipid peroxidation in GH-deficient adults. Clin Endocrinol (Oxf) 2008; 68:957-64. [PMID: 18031310 DOI: 10.1111/j.1365-2265.2007.03142.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND GH replacement improves numerous metabolic abnormalities in GH-deficient patients; increased lipid peroxidation (LPO) has been observed in GH-deficient patients; however, it is unknown if LPO is influenced by GH replacement. AIM AND METHODS To evaluate the extent to which GH replacement might reverse the increased LPO in GH-deficient adults and to analyse if this phenomenon might be involved in the improvement of metabolic disturbances due to GH treatment. Serum concentrations of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA), as an index of LPO, were measured at baseline, and after 12 and 24 months of GH replacement in 40 adult patients with severe GH deficiency (both in adult- and childhood-onset) and in 40 healthy volunteers, matched for sex, age and body mass index (BMI). Correlations were evaluated between LPO and lipids, IGF-I, metalloproteinase-2 and -9 (MMP-2, -9), vascular endothelial growth factor (VEGF), BMI and GH dose. RESULTS LPO values in GH-deficient patients were several-fold higher than in controls [55.36 +/- 2.27 vs. 4.19 +/- 0.42 nmol/mg protein (mean +/- SEM), P < 0.0001] and decreased significantly over time with GH replacement to 38.61 +/- 2.15 nmol/mg protein (i.e. by approximately 30%), though still remaining markedly elevated compared with controls (P < 0.0001). The proatherogenic lipid profile parameters correlated positively with LPO in the childhood-onset subgroup before GH replacement. GH replacement restored the positive correlation between LPO and age in male patients (r = 0.57, P = 0.013; r = 0.8, P < 0.001, at 12 and 24 months of GH replacement, respectively). CONCLUSIONS GH replacement partially reverses the grossly abnormal LPO in GH-deficient adults. It is highly probable, therefore, that oxidative mechanisms are involved in the overall improvement of metabolic changes due to GH replacement.
Collapse
|
303
|
High insulinlike growth factor binding protein 1 level predicts incident congestive heart failure in the elderly. Am Heart J 2008; 155:1006-12. [PMID: 18513511 DOI: 10.1016/j.ahj.2007.12.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 12/26/2007] [Indexed: 01/19/2023]
Abstract
BACKGROUND Low levels of insulinlike growth factor 1 (IGF-I) may influence the development of age-related cardiovascular diseases including congestive heart failure (CHF). Insulinlike growth factor binding protein 1 (IGFBP-1), which increases during catabolic states and inhibits anabolic IGF-I effects, is increased in patients with CHF and has been associated prospectively with increased mortality among older adults and survivors of myocardial infarction. We investigated the association between fasting plasma levels of IGF-I, IGFBP-1, IGFBP-3, and insulin and risk of incident CHF in the prospective Cardiovascular Health Study. METHODS From among 5,888 adults 65 years old and older in the Cardiovascular Health Study, we studied 566 incident CHF cases and 1,072 comparison subjects after exclusion of underweight individuals (body mass index <18.5 kg/m(2)) and insulin users. Hazard ratios (HRs) with 95% CIs for CHF were estimated after adjustment for age, race, sex, hypertension, systolic blood pressure, lipid levels, left ventricular hypertrophy, coronary disease, C-reactive protein, health status, diabetes, and body mass index. RESULTS High baseline IGFBP-1 level was a significant predictor of CHF, independent of established CHF risk factors and inflammation markers. The HR per SD of IGFBP-1 was 1.22 (95% CI 1.07-1.39, P < .01). Relative to the lowest IGFBP-1 tertile, the HR was 1.29 (95% CI 0.96-1.74, P = .09) for the second IGFBP-1 tertile and 1.47 (95% CI 1.06-2.04; P = .02) for the highest IGFBP-1 tertile (tertile cut points 19.5 and 35.8 ng/mL). Total IGF-I, IGFBP-3, or insulin levels had no association with CHF after adjustment for CHF risk factors. CONCLUSIONS High circulating IGFBP-1 level may be a CHF risk factor among older adults.
Collapse
|
304
|
Westhoff JH, Hilgers KF, Steinbach MP, Hartner A, Klanke B, Amann K, Melk A. Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a. Hypertension 2008; 52:123-9. [PMID: 18504326 DOI: 10.1161/hypertensionaha.107.099432] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There is increasing evidence for a role of somatic cellular senescence in physiological aging but also in injury and disease. Cell cycle inhibitor p16(INK4a) is the key mediator for stress and aberrant signaling induced senescence. Here we report that elevated blood pressure markedly induced p16(INK4a) expression in rat kidneys and hearts, as well as in human kidneys. In kidneys from deoxycorticosterone acetate-salt-treated rats, p16(INK4a) induction was found in tubular, glomerular, interstitial, and vascular cells and correlated with the typical histopathologic features of hypertensive target organ damage. p16(INK4a) expression also correlated with phospho-p38, a positive upstream regulator of p16(INK4a) expression. In left ventricles, increased p16(INK4a) expression was found in myocardium and cardiac arteries. Antihypertensive medication consistent of hydrochlorothiazide, hydralazine, and reserpine ameliorated the histopathologic changes and attenuated p16(INK4a) expression in kidneys of deoxycorticosterone acetate-salt-treated rats. Nonantihypertensive administration of spironolactone also reduced kidney damage and p16(INK4a) expression. p16(INK4a) induction was further observed in kidneys from hypertensive transgenic rats heterozygous for the mouse Ren-2 gene and was prevented by the angiotensin II type 1 receptor blocker losartan. In human kidney biopsies showing hypertensive nephrosclerosis, increased p16(INK4a) expression was found compared with age-matched normotensive control subjects. Thus, hypertension induces cellular senescence via p16(INK4a), possibly through p38, thereby contributing to hypertensive target organ damage. This detrimental effect can be overcome by different therapeutic drug strategies.
Collapse
Affiliation(s)
- Jens H Westhoff
- Division of Pediatric Nephrology, University Children's Hospital, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
305
|
Jeyapalan JC, Sedivy JM. Cellular senescence and organismal aging. Mech Ageing Dev 2008; 129:467-74. [PMID: 18502472 DOI: 10.1016/j.mad.2008.04.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/27/2008] [Accepted: 04/06/2008] [Indexed: 01/22/2023]
Abstract
Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.
Collapse
Affiliation(s)
- Jessie C Jeyapalan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
306
|
Yang DG, Liu L, Zheng XY. Cyclin-dependent kinase inhibitor p16(INK4a) and telomerase may co-modulate endothelial progenitor cells senescence. Ageing Res Rev 2008; 7:137-46. [PMID: 18343732 DOI: 10.1016/j.arr.2008.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
Abstract
Endothelial cells (ECs) damage is an initial and pivotal step in the formation of atherosclerosis. Endothelial progenitor cells (EPCs), which have been considered as the precursor of ECs, can migrate and home to the site of injured ECs to divide into mature ECs and keep the integrity of the endothelial monolayer. It has been shown that the number and function of EPCs are negatively correlated with various atherosclerotic risk factors. This finding may be explained partly by accelerated senescence of EPCs induced by telomere attrition or shortening owning to oxidative stress and accumulative ROS. However, elevated telomerase activity which extends the telomere cannot lead to cellular immortal in the presence of the cyclin-dependent kinase inhibitor p16(INK4a). Researchers have the opinion that senescence is the balance between the regeneration and cancer. High expression of phosphorylated p16(INK4a), which is caused by oxidative stress and accumulative ROS, can prevent tumor cells from unlimited division and becoming malignant ones by accelerating premalignant cells premature senescence. It has been demonstrated that the expression of p16(INK4a) increases remarkably with age due to oxidative stress and accumulative ROS in some stem and progenitor cells, and regulates these cells age-dependent senescence. It is observed that telomeres shortening exists in these cells. Therefore, it can be hypothesized that p16(INK4a), together with telomerase, may co-modulate EPCs senescence.
Collapse
|
307
|
Przyklenk K, Maynard M, Darling CE, Whittaker P. Aging Mouse Hearts Are Refractory to Infarct Size Reduction With Post-Conditioning. J Am Coll Cardiol 2008; 51:1393-8. [DOI: 10.1016/j.jacc.2007.11.070] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/15/2007] [Accepted: 11/19/2007] [Indexed: 11/25/2022]
|
308
|
Henning RJ, Burgos JD, Vasko M, Alvarado F, Sanberg CD, Sanberg PR, Morgan MB. Human cord blood cells and myocardial infarction: effect of dose and route of administration on infarct size. Cell Transplant 2008; 16:907-17. [PMID: 18293889 DOI: 10.3727/096368907783338299] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is no consensus regarding the optimal dose of stem cells or the optimal route of administration for the treatment of acute myocardial infarction. Bone marrow cells, containing hematopoietic and mesenchymal stem cells, in doses of 0.5 x 10(6) to >30 x 10(6) have been directly injected into the myocardium or into coronary arteries or infused intravenously in subjects with myocardial infarctions to reduce infarct size and improve heart function. Therefore, we determined the specific effects of different doses of human umbilical cord blood mononuclear cells (HUCBC), which contain hematopoietic and mesenchymal stem cells, on infarct size. In order to determine the optimal technique for stem cell administration, HUCBC were injected directly into the myocardium (IM), or into the LV cavity with the ascending aorta transiently clamped to facilitate coronary artery perfusion (IA), or injected intravenously (IV) in rats 1-2 h after the left anterior coronary artery was permanently ligated. Immune suppressive therapy was not given to any rat. One month later, the infarct size in control rat hearts treated with only Isolyte averaged 23.7 +/- 1.7% of the LV muscle area. Intramyocardial injection of HUCBC reduced the infarct size by 71% with 0.5 x 10(6) HUCBC and by 93% with 4 x 10(6) HUCBC in comparison with the controls (p < 0.001). Intracoronary injection reduced the infarction size by 47% with 0.5 x 10(6) HUCBC and by 80% with 4 x 10(6) HUCBC (p < 0.001), and IV HUCBC reduced infarct size by 51% with 0.5 x 10(6) and by 75-77% with 16-32 million HUCBC (p < 0.001) in comparison with control hearts. With 4 x 10(6) HUCBC, infarction size was 65% smaller with IM HUCBC than with IA HUCBC and 78% smaller than with IV HUCBC (p < 0.05). Nevertheless, IM, IA, and IV HUCBC all produced significant reductions in infarct size in comparison with Isolyte-treated infarcted hearts without requirements for host immune suppression. The present experiments demonstrate that the optimal dose of HUCBC for reduction of infarct size in the rat is 4 x 10(6) IM, 4 x 10(6) IA, and 16 x 10(6) IV, and that the IM injection of HUCBC is the most effective technique for reduction in infarct size.
Collapse
Affiliation(s)
- Robert J Henning
- Department of Medicine of the James A. Haley VA Hospital, University of South Florida College of Medicine, Tampa, FL, USA.
| | | | | | | | | | | | | |
Collapse
|
309
|
Ungvari Z, Parrado-Fernandez C, Csiszar A, de Cabo R. Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res 2008; 102:519-28. [PMID: 18340017 DOI: 10.1161/circresaha.107.168369] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review focuses on the emerging evidence that attenuation of the production of reactive oxygen species and inhibition of inflammatory pathways play a central role in the antiaging cardiovascular effects of caloric restriction. Particular emphasis is placed on the potential role of the plasma membrane redox system in caloric restriction-induced pathways responsible for sensing oxidative stress and increasing cellular oxidative stress resistance. We propose that caloric restriction increases bioavailability of NO, decreases vascular reactive oxygen species generation, activates the Nrf2/antioxidant response element pathway, inducing reactive oxygen species detoxification systems, exerts antiinflammatory effects, and, thereby, suppresses initiation/progression of vascular disease that accompany aging.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Physiology, New York Medical College, Valhalla, USA
| | | | | | | |
Collapse
|
310
|
Gonzalez A, Rota M, Nurzynska D, Misao Y, Tillmanns J, Ojaimi C, Padin-Iruegas ME, Müller P, Esposito G, Bearzi C, Vitale S, Dawn B, Sanganalmath SK, Baker M, Hintze TH, Bolli R, Urbanek K, Hosoda T, Anversa P, Kajstura J, Leri A. Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan. Circ Res 2008; 102:597-606. [PMID: 18202313 DOI: 10.1161/circresaha.107.165464] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heart failure is the leading cause of death in the elderly, but whether this is the result of a primary aging myopathy dictated by depletion of the cardiac progenitor cell (CPC) pool is unknown. Similarly, whether current lifespan reflects the ineluctable genetic clock or heart failure interferes with the genetically determined fate of the organ and organism is an important question. We have identified that chronological age leads to telomeric shortening in CPCs, which by necessity generate a differentiated progeny that rapidly acquires the senescent phenotype conditioning organ aging. CPC aging is mediated by attenuation of the insulin-like growth factor-1/insulin-like growth factor-1 receptor and hepatocyte growth factor/c-Met systems, which do not counteract any longer the CPC renin-angiotensin system, resulting in cellular senescence, growth arrest, and apoptosis. However, pulse-chase 5-bromodeoxyuridine-labeling assay revealed that the senescent heart contains functionally competent CPCs that have the properties of stem cells. This subset of telomerase-competent CPCs have long telomeres and, following activation, migrate to the regions of damage, where they generate a population of young cardiomyocytes, reversing partly the aging myopathy. The senescent heart phenotype and heart failure are corrected to some extent, leading to prolongation of maximum lifespan.
Collapse
Affiliation(s)
- Arantxa Gonzalez
- Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
|
312
|
Maejima Y, Adachi S, Ito H, Hirao K, Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell 2008; 7:125-36. [PMID: 18031568 DOI: 10.1111/j.1474-9726.2007.00358.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cellular senescence is an important phenomenon in decreased cellular function. Recently, it was shown that cellular senescence is induced in proliferating cells within a short period of time by oxidative stresses. This phenomenon is known as premature senescence. However, it is still unknown whether premature senescence can be also induced in cardiomyocytes. The aim of the present study was to investigate whether a senescence-like phenotype can be induced in cardiomyocytes by oxidative stress. In cardiomyocytes obtained from aged rats (24 months of age), the staining for senescence-associated beta-galactosidase increased significantly and the protein or RNA levels of cyclin-dependent kinase inhibitors increased compared to those of young rats. Decreased cardiac troponin I phosphorylation and telomerase activity were also observed in aged cardiomyocytes. Treatment of cultured neonatal rat cardiomyocytes with a low concentration of doxorubicin (DOX) (10(-7) mol L(-1)) did not induce apoptosis but did induce oxidative stress, which was confirmed by 2',7'-dichlorofluorescin diacetate staining. In DOX-treated neonatal cardiomyocytes, increased positive staining for senescence-associated beta-galactosidase, cdk-I expression, decreased cardiac troponin I phosphorylation, and decreased telomerase activity were observed, as aged cardiomyocytes. Alterations in mRNA expression typically seen in aged cells were observed in DOX-treated neonatal cardiomyocytes. We also found that promyelocytic leukemia protein and acetylated p53, key proteins involved in stress-induced premature senescence in proliferating cells, were associated with cellular alterations of senescence in DOX-treated cardiomyocytes. In conclusion, cardiomyocytes treated with DOX showed characteristic changes similar to cardiomyocytes of aged rats. promyelocytic leukemia-related p53 acetylation may be an underlying mechanism of senescence-like alterations in cardiomyocytes. These findings indicate a novel mechanism of myocardial dysfunction induced by oxidative stress.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
313
|
Sussman M. "AKT"ing lessons for stem cells: regulation of cardiac myocyte and progenitor cell proliferation. Trends Cardiovasc Med 2008; 17:235-40. [PMID: 17936205 DOI: 10.1016/j.tcm.2007.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/15/2007] [Accepted: 08/23/2007] [Indexed: 12/13/2022]
Abstract
Cardiac development and postnatal growth depend on activation of AKT, but initial strategies to improve myocardial repair using AKT were stymied by undesirable corollary alterations in myocardial structure and function. These unfortunate precedents were based on high-level expression of constitutively activated AKT, predominantly in the cytoplasm of the cell. Based on subsequent studies establishing that activated AKT accumulates in the nucleus, we reasoned that the location of AKT, not simply the activity level, would be a critical determinant of the phenotypic outcome resulting from AKT activation. Using myocardial-specific expression of nuclear-targeted AKT (AKT/nuc), the proliferation of myocardial stem and progenitor cell populations is enhanced, casting new light on the implementation of AKT activity as a molecular interventional approach for treatment of cardiomyopathic damage resulting from acute injury, chronic stress, or the debilitating changes of aging.
Collapse
Affiliation(s)
- Mark Sussman
- Department of Biology, SDSU Heart Institute, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
314
|
Susic D, Frohlich ED. The aging hypertensive heart: a brief update. ACTA ACUST UNITED AC 2008; 5:104-10. [PMID: 18223542 DOI: 10.1038/ncpcardio1091] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 10/04/2007] [Indexed: 11/09/2022]
Abstract
Hypertension and aging are major independent risk factors for cardiovascular-related morbidity and mortality. Although independent, these two entities are closely related and operate simultaneously to adversely affect the cardiovascular system. In many aspects the morphologic and functional changes that occur in the cardiovascular system with aging and hypertension are similar; both include left ventricular hypertrophy, fibrosis and dysfunction. In this report we briefly summarize the primary pathophysiology of cardiovascular aging and hypertension and describe the clinical and therapeutic impact that hypertension and aging combined have on the cardiovascular system.
Collapse
Affiliation(s)
- Dinko Susic
- Division of Research, Ochsner Clinic Foundation, New Orleans, LA 70121, USA.
| | | |
Collapse
|
315
|
Abstract
BACKGROUND Aging per se is a risk factor for reduced cardiac function and heart diseases, even when adjusted for aging-associated cardiovascular risk factors. Accordingly, aging-related biochemical and cell-biological changes lead to pathophysiological conditions, especially reduced heart function and heart disease. OBJECTIVE In this review, we summarize the changes that occur as the heart ages from youth to old age on the basis of the cardiac myocyte. Aging phenotypes and underlying mechanisms shall be discussed that affect cardiomyocyte repair, signaling, structure, and function. METHODS Review of the literature. RESULTS The following factors play vital roles in the aging of cardiomyocytes: oxidative stress, inflammation, cellular protection and repair, telomere integrity, survival and death, metabolism, post-translational modifications, and altered gene expression. Importantly, non-cardiomyocyte-based aging processes (vascular, fibroblast, extracellular matrix, etc.) in the heart will interfere with cardiomyocyte aging and cardiac function. CONCLUSION Based on our analyses, we postulate that the physiological aging process of the heart and of the cardiomyocyte is primarily driven by intrinsic aging factors. However, extrinsic aging factors, e.g. smoking, also make an important contribution to pathologically accelerated aging of the heart.
Collapse
Affiliation(s)
- D Bernhard
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria.
| | | |
Collapse
|
316
|
Yu Y, Fukuda N, Yao EH, Matsumoto T, Kobayashi N, Suzuki R, Tahira Y, Ueno T, Matsumoto K. Effects of an ARB on endothelial progenitor cell function and cardiovascular oxidation in hypertension. Am J Hypertens 2008; 21:72-7. [PMID: 18091747 DOI: 10.1038/ajh.2007.5] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Angiotensin II (Ang II) receptor blocker (ARB) has been reported to have protective effects on the cardiovascular system independent of blood pressure reduction. Endothelial progenitor cells (EPCs) play a significant role in neovascularization of ischemic tissue. The average lifespan of EPCs was recently reported to be shortened by oxidative stress and regulated by anti-oxidative mechanisms. It has been reported that EPCs are present in peripheral blood and have the ability to repair cardiovascular damage. We investigated the effects of an ARB, candesartan, on EPC function and cardiovascular oxidation in salt-loaded, stroke-prone, spontaneously hypertensive rats (SHR-SP) in vivo. METHODS Salt-loaded SHR-SP were treated with candesartan (1 mg/kg/day), a diuretic (trichlormethiazide, TCM, 1.6 mg/kg/day), or an antioxidant (tempol, 5 mg/kg/day) for 2 weeks. Peripheral blood mononuclear cells (MNCs) were isolated and cultured to assay EPC colony formation and migration. Oxidative stress in EPCs was evaluated by thiobarbituric acid reactive substance (TBARS) assay. We evaluated messenger RNA (mRNA) expression of c-kit in the heart, the renin-angiotensin system (RAS) in EPC colonies, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit in cardiovascular organs. RESULTS Candesartan and tempol, but not TCM, markedly increased EPC colony number in SHR-SP and reduced TBARS. Candesartan also significantly decreased mRNA expression of NADPH oxidase subunits in cardiovascular organs and increased cardiac c-kit mRNA expression. EPCs expressed mRNAs of renin, cathepsin D, chymase, and Ang II type 1 and type 2 receptors. CONCLUSIONS Candesartan, an ARB, improves EPC dysfunction and increases cardiac c-kit expression through the anti-oxidative mechanism in hypertension. The local RAS induces oxidative stress and regulates the EPC functions.
Collapse
|
317
|
Dai Y, Ashraf M, Zuo S, Uemura R, Dai YS, Wang Y, Haider HK, Li T, Xu M. Mobilized bone marrow progenitor cells serve as donors of cytoprotective genes for cardiac repair. J Mol Cell Cardiol 2007; 44:607-17. [PMID: 18221754 DOI: 10.1016/j.yjmcc.2007.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 11/13/2007] [Accepted: 11/28/2007] [Indexed: 01/05/2023]
Abstract
We proposed here that mobilized progenitor cells (MPCs) from the bone marrow are special cell types which carry cytoprotective proteins for cardiac repair following ischemia. Myocardial ischemia was induced by ligation of the left anterior descending coronary artery (LAD) in mice. Progenitor cells in peripheral blood were analyzed by fluorescence-activated cell sorting (FACS). The expression of cytoprotective genes was assayed by ELISA, RT-PCR, and/or real-time PCR. G-CSF was markedly up-regulated in the ischemic myocardium. A good correlation was observed between serum G-CSF and progenitor cells in circulation following LAD ligation. MPCs overexpressed cardiac transcription factor, GATA-4, and anti-apoptotic factor, Bcl-2, besides expression of the surface markers of bone marrow stem cells (BMSCs). Transplantation of cultured MPCs into the ischemic border area significantly improved cardiac function by reducing infarction size. More importantly, MPCs significantly protected cardiomyocytes against apoptosis when co-cultured with cardiomyocytes. The cardiac protection by MPCs was blocked by Bcl-2 neutralizing antibody and GATA-4 siRNA. In contrast, transfection of BMSCs with GATA-4 provided increased protection of myocytes against apoptosis. It is concluded that MPCs are highly cytoprotective and carry protective genes responsible for cardiac repair.
Collapse
Affiliation(s)
- Ying Dai
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Csiszar A, Labinskyy N, Zhao X, Hu F, Serpillon S, Huang Z, Ballabh P, Levy RJ, Hintze TH, Wolin MS, Austad SN, Podlutsky A, Ungvari Z. Vascular superoxide and hydrogen peroxide production and oxidative stress resistance in two closely related rodent species with disparate longevity. Aging Cell 2007; 6:783-97. [PMID: 17925005 DOI: 10.1111/j.1474-9726.2007.00339.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vascular aging is characterized by increased oxidative stress, impaired nitric oxide (NO) bioavailability and enhanced apoptotic cell death. The oxidative stress hypothesis of aging predicts that vascular cells of long-lived species exhibit lower production of reactive oxygen species (ROS) and/or superior resistance to oxidative stress. We tested this hypothesis using two taxonomically related rodents, the white-footed mouse (Peromyscus leucopus) and the house mouse (Mus musculus), that show a more than twofold difference in maximum lifespan potential (MLSP = 8 and 3.5 years, respectively). We compared interspecies differences in endothelial superoxide (O2-) and hydrogen peroxide (H2O2) production, NAD(P)H oxidase activity, mitochondrial ROS generation, expression of pro- and antioxidant enzymes, NO production, and resistance to oxidative stress-induced apoptosis. In aortas of P. leucopus, NAD(P)H oxidase expression and activity, endothelial and H2O2 production, and ROS generation by mitochondria were less than in mouse vessels. In P. leucopus, there was a more abundant expression of catalase, glutathione peroxidase 1 and hemeoxygenase-1, whereas expression of Cu/Zn-SOD and Mn-SOD was similar in both species. NO production and endothelial nitric oxide synthase expression was greater in P. leucopus. In mouse aortas, treatment with oxidized low-density lipoprotein (oxLDL) elicited substantial oxidative stress, endothelial dysfunction and endothelial apoptosis (assessed by TUNEL assay, DNA fragmentation and caspase 3 activity assays). According to our prediction, vessels of P. leucopus were more resistant to the proapoptotic effects of oxidative stressors (oxLDL and H2O2). Primary fibroblasts from P. leucopus also exhibited less H2O2-induced DNA damage (comet assay) than mouse cells. Thus, increased lifespan potential in P. leucopus is associated with a decreased cellular ROS generation and increased oxidative stress resistance, which accords with the prediction of the oxidative stress hypothesis of aging.
Collapse
Affiliation(s)
- Anna Csiszar
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N, Esposito G, Delucchi F, Arcarese M, Alvarez R, Siddiqi S, Emmanuel GN, Wu W, Fischer K, Martindale JJ, Glembotski CC, Leri A, Kajstura J, Magnuson N, Berns A, Beretta RM, Houser SR, Schaefer EM, Anversa P, Sussman MA. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 2007; 13:1467-75. [PMID: 18037896 DOI: 10.1038/nm1671] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 09/24/2007] [Indexed: 01/11/2023]
Abstract
The serine-threonine kinases Pim-1 and Akt regulate cellular proliferation and survival. Although Akt is known to be a crucial signaling protein in the myocardium, the role of Pim-1 has been overlooked. Pim-1 expression in the myocardium of mice decreased during postnatal development, re-emerged after acute pathological injury in mice and was increased in failing hearts of both mice and humans. Cardioprotective stimuli associated with Akt activation induced Pim-1 expression, but compensatory increases in Akt abundance and phosphorylation after pathological injury by infarction or pressure overload did not protect the myocardium in Pim-1-deficient mice. Transgenic expression of Pim-1 in the myocardium protected mice from infarction injury, and Pim-1 expression inhibited cardiomyocyte apoptosis with concomitant increases in Bcl-2 and Bcl-X(L) protein levels, as well as in Bad phosphorylation levels. Relative to nontransgenic controls, calcium dynamics were significantly enhanced in Pim-1-overexpressing transgenic hearts, associated with increased expression of SERCA2a, and were depressed in Pim-1-deficient hearts. Collectively, these data suggest that Pim-1 is a crucial facet of cardioprotection downstream of Akt.
Collapse
Affiliation(s)
- John A Muraski
- San Diego State University Heart Institute, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Ballard VLT, Edelberg JM. Targets for regulating angiogenesis in the ageing endothelium. Expert Opin Ther Targets 2007; 11:1385-99. [DOI: 10.1517/14728222.11.11.1385] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
321
|
|
322
|
Qian H, Yang Y, Huang J, Gao R, Dou K, Yang G, Li J, Shen R, He Z, Lu M, Zhao S. Intracoronary delivery of autologous bone marrow mononuclear cells radiolabeled by 18F-fluoro-deoxy-glucose: tissue distribution and impact on post-infarct swine hearts. J Cell Biochem 2007; 102:64-74. [PMID: 17407141 DOI: 10.1002/jcb.21277] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intracoronary injection of the bone marrow-derived mononuclear cells (MNCs) is emerging as a potentially novel therapy for ischemic heart failure. This study was aimed at assessing the efficacy of intracoronary MNC delivery in the myocardium. The in vivo distribution and myocardial homing of intracoronarily delivered MNCs in experimental Chinese swine with acute myocardial infarction (AMI) created by occlusion of left anterior descending (LAD) coronary artery for 90 min. MNCs radiolabeled with 18F-fluoro-deoxy-glucose (18F-FDG) were delivered using a coronary catheter into the infarct-related coronary artery 1 week after AMI. Dual-nuclide single photon emission computed tomography (SPECT) revealed that 1 h after cell infusion, 6.8 +/- 1.8% of 18F-FDG-labeled MNCs occurred in the infarcted myocardium with the remaining activity found primarily in the liver and spleen. In the heart, MNCs were detected predominantly in the under-perfused myocardium. The infused cells retained in the hearts at a rate highly correlated with the under-perfused lesional sizes. Pathological examination further demonstrated that 6 weeks after infusion, compared to controls, the hearts receiving MNCs exhibited less fibrosis and inflammatory infiltrate, more viable tissue, and higher vascular density. Cardiac function was significantly improved in the MNC-infused hearts. Thus, 18F-FDG labeling and dual-nuclide SPECT imaging is capable of monitoring in vivo distribution and homing of MNCs after intracoronary infusion. MNC coronary delivery may improve cardiac function and positive ventricular remodeling in the heart with AMI.
Collapse
Affiliation(s)
- Haiyan Qian
- Department of Cardiology, Fuwai Hospital and Cardiovascular Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Abstract
Advanced age is a strong independent predictor for death, disability, and morbidity in patients with structural heart disease. With the projected increase in the elderly population and the prevalence of age-related cardiovascular disabilities worldwide, the need to understand the biology of the aging heart, the mechanisms for age-mediated cardiac vulnerability, and the development of strategies to limit myocardial dysfunction in the elderly have never been more urgent. Experimental evidence in animal models indicate attenuation in cardioprotective pathways with aging, yet limited information is available regarding age-related changes in the human heart. Human cardiac aging generates a complex phenotype, only partially replicated in animal models. Here, we summarize current understanding of the aging heart stemming from clinical and experimental studies, and we highlight targets for protection of the vulnerable senescent myocardium. Further progress mandates assessment of human tissue to dissect specific aging-associated genomic and proteomic dynamics, and their functional consequences leading to increased susceptibility of the heart to injury, a critical step toward designing novel therapeutic interventions to limit age-related myocardial dysfunction and promote healthy aging.
Collapse
Affiliation(s)
- Arshad Jahangir
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, and Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
324
|
Abstract
HYPOTHESIS Damage to heart mitochondrial structure and function occur with aging, and in heart failure (HF). However, the extent of mitochondrial dysfunction, the expression of mitochondrial and nuclear genes, and their cross-talk is not known. OBSERVATIONS Several observations have suggested that somatic mutations in mitochondrial DNA (mtDNA), induced by reactive oxygen species (ROS), appear to be the primary cause of energy decline, and that the generation of ROS is mainly the product of the mitochondrial respiratory chain. The free radical theory of aging, that could also be applied to HF, and in particular the targeting of mtDNA is supported by a plurality of observations from both animal and clinical studies showing decreased mitochondrial function, increased ROS levels and mtDNA mutations in the aging heart. DISCUSSION Aging and HF with their increased ROS-induced defects in mtDNA, including base modifications and frequency of mtDNA deletions, might be expected to cause increased errors or mutations in mtDNA-encoded enzyme subunits, resulting in impaired oxidative phosphorylation and defective electron transport chain (ETC) activity which in turn creates more ROS. These events in both the aging and failing heart involve substantial nuclear-mitochondrial interaction, which is further illustrated in the progression of myocardial apoptosis. In this review the cross-talk between the nucleus and the mitochondrial organelle will be examined based on a number of animal and clinical studies, including our own.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, Highland Park, NJ 08904, USA.
| | | | | |
Collapse
|
325
|
Cao JJ, Kurimoto P, Boudignon B, Rosen C, Lima F, Halloran BP. Aging impairs IGF-I receptor activation and induces skeletal resistance to IGF-I. J Bone Miner Res 2007; 22:1271-9. [PMID: 17488198 DOI: 10.1359/jbmr.070506] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
UNLABELLED IGF-I plays an important anabolic role in stimulating bone formation and maintaining bone mass. We show that the pro-proliferative, anti-apoptotic, and functional responses to IGF-I in bone and BMSCs decrease with aging. These changes are associated with impaired receptor activation and signal transduction through the MAPK and PI3K pathways. INTRODUCTION IGF-I is a potent anabolic agent having effects across diverse tissues and cell types. With aging, bone becomes resistant to the anabolic actions of IGF-I. To examine the effects of aging on bone responsiveness to IGF-I, we measured the pro-proliferative, anti-apoptotic, and functional responses of bone and bone marrow stromal cells (BMSCs) to IGF-I and evaluated IGF-I signal transduction in young, adult, and old mice. MATERIALS AND METHODS Male C57BL/6 mice 6 wk (young), 6 mo (adult), and 24 mo (old) were treated with IGF-I for 2 wk using osmotic minipumps, and osteoblast proliferation (BrdU labeling) in vivo, and osteoprogenitor number (BMSC culture and calcium nodule formation) were measured. Proliferation, apoptosis, and expression of key osteoblast factors (alkaline phosphatase, collagen, osteocalcin, RANKL, osteoprotegerin (OPG), macrophage-colony stimulating factor [M-CSF]) and IGF-I signaling elements and their activation in IGF-I-treated cells were studied using QRT-PCR and Western blot analysis. Data were analyzed using ANOVA. RESULTS Aging decreased the basal and IGF-I-stimulated number of BrdU-labeled osteoblasts and reduced the ability of IGF-I to stimulate osteoprogenitor formation (calcium nodule number) by 50%. The pro-proliferative and anti-apoptotic actions of IGF-I were blunted in cells from old animals. These changes were accompanied by age-related alterations in the ability of IGF-I to regulate alkaline phosphatase, collagen, osteocalcin, RANKL, OPG, and M-CSF expression. IGF-I binding was normal, but IGF-I receptor mRNA and protein expression was increased in aged animals by 2- and 10-fold, respectively. The age-related changes in proliferation, apoptosis, and function were accompanied by loss of IGF-I-induced signaling at the receptor level and at key regulatory sites along the MAPK (ERK1/2) and PI3K (AKT) pathways. CONCLUSIONS Our data show that aging is accompanied by loss of bone and BMSC/osteoblast responsiveness to IGF-I and that these changes are associated with resistance to IGF-I signaling that involve receptor activation and downstream signaling events.
Collapse
Affiliation(s)
- Jay J Cao
- Division of Endocrinology, Veterans Affairs Medical Center, and Department of Medicine, University of California, San Francisco, California 94121, USA
| | | | | | | | | | | |
Collapse
|
326
|
Rota M, Hosoda T, De Angelis A, Arcarese ML, Esposito G, Rizzi R, Tillmanns J, Tugal D, Musso E, Rimoldi O, Bearzi C, Urbanek K, Anversa P, Leri A, Kajstura J. The young mouse heart is composed of myocytes heterogeneous in age and function. Circ Res 2007; 101:387-99. [PMID: 17601802 DOI: 10.1161/circresaha.107.151449] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The recognition that the adult heart continuously renews its myocyte compartment raises the possibility that the age and lifespan of myocytes does not coincide with the age and lifespan of the organ and organism. If this were the case, myocyte turnover would result at any age in a myocardium composed by a heterogeneous population of parenchymal cells which are structurally integrated but may contribute differently to myocardial performance. To test this hypothesis, left ventricular myocytes were isolated from mice at 3 months of age and the contractile, electrical, and calcium cycling characteristics of these cells were determined together with the expression of the senescence-associated protein p16(INK4a) and telomere length. The heart was characterized by the coexistence of young, aged, and senescent myocytes. Old nonreplicating, p16(INK4a)-positive, hypertrophied myocytes with severe telomeric shortening were present together with young, dividing, p16(INK4a)-negative, small myocytes with long telomeres. A class of myocytes with intermediate properties was also found. Physiologically, evidence was obtained in favor of the critical role that action potential (AP) duration and I(CaL) play in potentiating Ca(2+) cycling and the mechanical behavior of young myocytes or in decreasing Ca(2+) transients and the performance of senescent hypertrophied cells. The characteristics of the AP appeared to be modulated by the transient outward K(+) current I(to) which was influenced by the different expression of the K(+) channels subunits. Collectively, these observations at the physiological and structural cellular level document that by necessity the heart has to constantly repopulate its myocyte compartment to replace senescent poorly contracting myocytes with younger more efficient cells. Thus, cardiac homeostasis and myocyte turnover regulate cardiac function.
Collapse
Affiliation(s)
- Marcello Rota
- Cardiovascular Research Institute, Department of Medicine, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Jorgensen ND, Andresen JM, Pitt JE, Swenson MA, Zoghbi HY, Orr HT. Hsp70/Hsc70 regulates the effect phosphorylation has on stabilizing ataxin-1. J Neurochem 2007; 102:2040-2048. [PMID: 17540008 DOI: 10.1111/j.1471-4159.2007.04678.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an inherited neurodegenerative disorder. The mutation causing SCA1 is an expansion in the polyglutamine tract of the ATXN1 protein. Previous work demonstrated that phosphorylation of mutant ATXN1 at serine 776 (S776), a putative Akt phosphorylation site, is critical for pathogenesis. To examine this pathway further, we utilized a cell-transfection system that allowed the targeting of Akt to either the cytoplasm or the nucleus. In contrast to HeLa cells, we found that Akt targeted to the cytoplasm increased the degradation of ATXN1 in Chinese hamster ovary cells. However, Akt targeted to the cytoplasm failed to destabilize ATXN1 if Hsp70/Hsc70 was present. Thus, Hsp70/Hsc70 can regulate ATXN1 levels in concert with phosphorylation of ATXN1 at S776.
Collapse
Affiliation(s)
- Nathan D Jorgensen
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USAInstitute of Human Genetics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USAHoward Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| | - J Michael Andresen
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USAInstitute of Human Genetics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USAHoward Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Jason E Pitt
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USAInstitute of Human Genetics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USAHoward Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Melissa A Swenson
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USAInstitute of Human Genetics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USAHoward Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Huda Y Zoghbi
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USAInstitute of Human Genetics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USAHoward Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Harry T Orr
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USAInstitute of Human Genetics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USAHoward Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
328
|
Ahuja P, Sdek P, Maclellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 2007; 87:521-44. [PMID: 17429040 PMCID: PMC2708177 DOI: 10.1152/physrev.00032.2006] [Citation(s) in RCA: 424] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle soon after birth in mammals. Although the extent to which adult cardiac myocytes are capable of cell cycle reentry is controversial and species-specific differences may exist, it appears that for the vast majority of adult cardiac myocytes the predominant form of growth postnatally is an increase in cell size (hypertrophy) not number. Unfortunately, this limits the ability of the heart to restore function after any significant injury. Interest in novel regenerative therapies has led to the accumulation of much information on the mechanisms that regulate the rapid proliferation of cardiac myocytes in utero, their cell cycle exit in the perinatal period, and the permanent arrest (terminal differentiation) in adult myocytes. The recent identification of cardiac progenitor cells capable of giving rise to cardiac myocyte-like cells has challenged the dogma that the heart is a terminally differentiated organ and opened new prospects for cardiac regeneration. In this review, we summarize the current understanding of cardiomyocyte cell cycle control in normal development and disease. In addition, we also discuss the potential usefulness of cardiomyocyte self-renewal as well as feasibility of therapeutic manipulation of the cardiac myocyte cell cycle for cardiac regeneration.
Collapse
Affiliation(s)
| | | | - W. Robb Maclellan
- Corresponding author: W. Robb MacLellan, Cardiovascular Research Laboratories, David Geffen school of Medicine at UCLA, 675 C.E. Young Dr., MRL 3-645, Los Angeles, California, 90095-1760; Phone: (310) 825-2556; Fax: (310) 206-5777; e-mail:
| |
Collapse
|
329
|
Abstract
It is well established that cardiovascular repair mechanisms become progressively impaired with age and that advanced age is itself a significant risk factor for cardiovascular disease. Although therapeutic developments have improved the prognosis for those with cardiovascular disease, mortality rates have nevertheless remained virtually unchanged in the last twenty years. Clearly, there is a need for alternative strategies for the treatment of cardiovascular disease. In recent years, the idea that the heart is capable of regeneration has raised the possibility that cell-based therapies may provide such an alternative to conventional treatments. Cells that have the potential to generate cardiomyocytes and vascular cells have been identified in both the adult heart and peripheral tissues, and in vivo experiments suggest that these cardiovascular stem cells and cardiovascular progenitor cells, including endothelial progenitor cells, are capable of replacing damaged myocardium and vascular tissues. Despite these findings, the endogenous actions of cardiovascular stem cells and cardiovascular progenitor cells appear to be insufficient to protect against cardiovascular disease in older individuals. Because recent evidence suggests that cardiovascular stem cells and cardiovascular progenitor cells are subject to age-associated changes that impair their function, these changes may contribute to the dysregulation of endogenous cardiovascular repair mechanisms in the aging heart and vasculature. Here we present the evidence for the impact of aging on cardiovascular stem cell/cardiovascular progenitor cell function and its potential importance in the increased severity of cardiovascular pathophysiology observed in the geriatric population.
Collapse
Affiliation(s)
- Victoria L T Ballard
- Department of Medicine, Weill Medical College of Cornell University, New York, USA
| | | |
Collapse
|
330
|
Csiszar A, Labinskyy N, Orosz Z, Xiangmin Z, Buffenstein R, Ungvari Z. Vascular aging in the longest-living rodent, the naked mole rat. Am J Physiol Heart Circ Physiol 2007; 293:H919-27. [PMID: 17468332 DOI: 10.1152/ajpheart.01287.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The naked mole rat (NMR; Heterocephalus glaber) is the longest-living rodent known [maximum lifespan potential (MLSP): >28 yr] and is a unique model of successful aging showing attenuated declines in most physiological function. This study addresses age-related changes in endothelial function and production of reactive oxygen species in NMR arteries and vessels of shorter-living Fischer 344 rats (MLSP: approximately 3 yr). Rats exhibit a significant age-dependent decline in acetylcholine-induced responses in carotid arteries over a 2-yr age range. In contrast, over a 10-yr age range nitric oxide (NO)-mediated relaxation responses to acetylcholine and to the NO donor S-nitrosopencillamine (SNAP) were unaltered in NMRs. Cellular superoxide anion (O(2)(*-)) and H(2)O(2) production significantly increased with age in rat arteries, whereas they did not change substantially with age in NMR vessels. Indicators of apoptotic cell death (DNA fragmentation rate, caspase 3/7 activity) were significantly enhanced ( approximately 250-300%) in arteries of 2-yr-old rats. In contrast, vessels from 12-yr-old NMRs exhibited only a approximately 50% increase in apoptotic cell death. In the hearts of NMRs (2 to 26 yr old), expression of endothelial NO synthase, antioxidant enzymes (Cu,Zn-SOD, Mn-SOD, catalase, and glutathione peroxidase), the NAD(P)H oxidase subunit gp91(phox), and mitochondrial proteins (COX-IV, ATP synthase, and porin, an indicator of mitochondrial mass) did not change significantly with age. Thus long-living NMRs can maintain a youthful vascular function and cellular oxidant-antioxidant phenotype relatively longer and are better protected against aging-induced oxidative stress than shorter-living rats.
Collapse
Affiliation(s)
- Anna Csiszar
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
331
|
Ellison GM, Torella D, Karakikes I, Nadal-Ginard B. Myocyte death and renewal: modern concepts of cardiac cellular homeostasis. ACTA ACUST UNITED AC 2007; 4 Suppl 1:S52-9. [PMID: 17230216 DOI: 10.1038/ncpcardio0773] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 11/13/2006] [Indexed: 12/20/2022]
Abstract
The adult mammalian myocardium has a robust intrinsic regenerative capacity because of the presence of cardiac stem cells (CSCs). Despite being mainly composed of terminally differentiated myocytes that cannot re-enter the cell cycle, the heart is not a postmitotic organ and maintains some capacity to form new parenchymal cells during the lifespan of the organism. Myocyte death and formation of new myocytes by the CSCs are the two processes that enable this organ to maintain a proper and uninterrupted cardiac output from birth to adulthood and into old age. CSCs are activated in response to pathological or physiological stimuli, whereby they enter the cell cycle and differentiate into new myocytes (and vessels) that significantly contribute to changes in myocardial mass. The future of regenerative cardiovascular medicine is arguably dependent on our success in dissecting the biology and mechanisms regulating the number, growth, differentiation, and aging of CSCs. This information will generate the means to manipulate CSC growth, survival, and differentiation and, therefore, will provide the tools for the design of more physiologically relevant clinical regeneration protocols. In this article, we review the developments in cardiac cell biology that might, in our opinion, have a broad impact on cardiovascular medicine.
Collapse
Affiliation(s)
- Georgina M Ellison
- Cardiovascular Institute and Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
332
|
Dai Y, Xu M, Wang Y, Pasha Z, Li T, Ashraf M. HIF-1alpha induced-VEGF overexpression in bone marrow stem cells protects cardiomyocytes against ischemia. J Mol Cell Cardiol 2007; 42:1036-44. [PMID: 17498737 PMCID: PMC1995444 DOI: 10.1016/j.yjmcc.2007.04.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/26/2007] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
Hypoxia inducible factor-1alpha (HIF-1alpha) is a proangiogenic transcription factor stabilized and activated under hypoxia. It regulates the expression of numerous target genes, including vascular endothelial growth factor (VEGF) and other cytoprotective proteins. In this study, we hypothesized that bone marrow stem cells (BMSCs) secrete growth factors which protect cardiomyocytes via HIF-1alpha pathway. BMSCs were obtained from transgenic mice overexpressing green fluorescent protein (GFP). The study was carried out in vitro using co-culture of BMSCs with cardiomyocytes. LDH release, MTT uptake, DNA fragmentation and annexin-V positive cells were used as cell injury markers. The level of HIF-1alpha protein as well as its activated form and VEGF were measured by ELISA. The expression of HIF-1alpha and VEGF in BMSCs was analyzed by quantitative PCR and cellular localization was determined by immunohistochemistry. LDH release was increased and MTT uptake was decreased after exposure of cardiomyocytes to hypoxia for 30 h, which were prevented by co-culturing cardiomyocytes with BMSCs. Cardiomyocyte apoptosis induced by hypoxia and H(2)O(2) was also reduced by co-culture with BMSCs. VEGF release from BMSCs was significantly increased in parallel with high level of HIF-1alpha in BMSCs following anoxia or hypoxia in a time-dependent manner. Although no significant up-regulation could be seen in HIF-1alpha mRNA, HIF-1alpha protein and its activated form were markedly increased and translocated to the nucleus or peri-nuclear area. The increase and translocation of HIF-1alpha in BMSCs were completely blocked by 2-methoxyestradiol (2-ME2; 5 mumol), a HIF-1alpha inhibitor. Moreover, the protection of cardiomyocytes by BMSC and VEGF secretion was abolished by neutralizing HIF-1alpha antibody in a concentration dependent manner (200-3200 ng/ml). Bone marrow stem cells protect cardiomyocytes by up-regulation of VEGF via activating HIF-1alpha.
Collapse
Affiliation(s)
- Ying Dai
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Chongqing University of Medical Science, P.R. China
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267
- * Corresponding author: Dr. Meifeng Xu, Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, Phone: (513)-558-4725, Fax: (513)-558-0807,
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267
| | - Zeeshan Pasha
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Center of Excellence in Molecular Biology, Pakistan
| | - Tingyu Li
- Chongqing University of Medical Science, P.R. China
| | - Muhammad Ashraf
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267
| |
Collapse
|
333
|
Jesmin S, Zaedi S, Shimojo N, Iemitsu M, Masuzawa K, Yamaguchi N, Mowa CN, Maeda S, Hattori Y, Miyauchi T. Endothelin antagonism normalizes VEGF signaling and cardiac function in STZ-induced diabetic rat hearts. Am J Physiol Endocrinol Metab 2007; 292:E1030-40. [PMID: 17148754 DOI: 10.1152/ajpendo.00517.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abnormal alterations in cardiac expression of vascular endothelial growth factor (VEGF) as well as its receptors and impairment in the development of coronary collaterals have recently been reported in diabetic subjects. However, the presence of pharmacological intervention on these defects in diabetes remains unsettled. Here, we studied the effect of endothelin (ET) receptor blockade on cardiac VEGF signaling pathways and cardiac function in Sprague-Dawley rats 5 wk after induction of type I diabetes with streptozotocin (65 mg/kg ip) in comparison with age-matched control rats. After streptozotocin (1 wk), some diabetic rats were treated with the ET receptor antagonist SB-209670 (1 mg/day) for 4 wk. VEGF, its receptors, and its angiogenic signaling molecules [phosphorylated Akt and endothelial nitric-oxide synthase (eNOS)] were analyzed by Western blot, ELISA, real-time PCR, and immunohistochemistry, and cardiac function was evaluated by echocardiography. Coronary capillary morphology was assessed by lectin and enzymatic double staining. We found significant decreases in cardiac expression of VEGF, its receptors, phosphorylation of Akt and eNOS, and coronary capillary density in diabetic rats compared with controls. Treatment of diabetic rats with SB-209670 reversed these alterations to the control levels and ameliorated impairment of cardiac function. From a molecular point of view, the present study is the first to indicate the potential usefulness of an ET receptor antagonist in the treatment of cardiac dysfunction in type I diabetes.
Collapse
Affiliation(s)
- Subrina Jesmin
- Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Germani A, Di Rocco G, Limana F, Martelli F, Capogrossi MC. Molecular mechanisms of cardiomyocyte regeneration and therapeutic outlook. Trends Mol Med 2007; 13:125-33. [PMID: 17257896 DOI: 10.1016/j.molmed.2007.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/21/2006] [Accepted: 01/16/2007] [Indexed: 12/15/2022]
Abstract
Differently from some lower vertebrates, which can completely regenerate their heart, in higher vertebrates cardiac injury generally leads to progressive failure. Induction of cycle re-entry in terminally differentiated cardiomyocytes and stem-cell transplantation are strategies to increase the regenerative potential of the heart. As experimental and clinical studies progress, demonstrating that adult stem-cell administration has a favorable impact on myocardial function, the identification of cardiac stem cells suggests that some endogenous repair mechanisms actually exist in the mammalian heart. However, a deeper understanding of the mechanism that drives cardiomyocyte proliferation and stem-cell-mediated cardiac repair is required to translate such strategies into effective therapies.
Collapse
Affiliation(s)
- Antonia Germani
- Laboratorio di Biologia Vascolare e Terapia Genica, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Parea 4, 20138 Milan, Italy
| | | | | | | | | |
Collapse
|
335
|
Ellison GM, Torella D, Karakikes I, Purushothaman S, Curcio A, Gasparri C, Indolfi C, Cable NT, Goldspink DF, Nadal-Ginard B. Acute beta-adrenergic overload produces myocyte damage through calcium leakage from the ryanodine receptor 2 but spares cardiac stem cells. J Biol Chem 2007; 282:11397-409. [PMID: 17237229 PMCID: PMC2276680 DOI: 10.1074/jbc.m607391200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A hyperadrenergic state is a seminal aspect of chronic heart failure. Also, "Takotsubo stress cardiomyopathy," is associated with increased plasma catecholamine levels. The mechanisms of myocyte damage secondary to excess catecholamine exposure as well as the consequence of this neurohumoral burst on cardiac stem cells (CSCs) are unknown. Cardiomyocytes and CSCs were exposed to high doses of isoproterenol (ISO), in vivo and in vitro. Male Wistar rats received a single injection of ISO (5 mg kg-1) and were sacrificed 1, 3, and 6 days later. In comparison with controls, LV function was impaired in rats 1 day after ISO and started to improve at 3 days. The fraction of dead myocytes peaked 1 day after ISO and decreased thereafter. ISO administration resulted in significant ryanodine receptor 2 (RyR2) hyperphosphorylation and RyR2-calstabin dissociation. JTV519, a RyR2 stabilizer, prevented the ISO-induced death of adult myocytes in vitro. In contrast, CSCs were resistant to the acute neurohumoral overload. Indeed, CSCs expressed a decreased and inverted complement of beta1/beta2-adrenoreceptors and absence of RyR2, which may explain their survival to ISO insult. Thus, a single injection of ISO causes diffuse myocyte death through Ca2+ leakage secondary to the acutely dysfunctional RyR2. CSCs are resistant to the noxious effects of an acute hyperadrenergic state and through their activation participate in the response to the ISO-induced myocardial injury. The latter could contribute to the ability of the myocardium to rapidly recover from acute hyperadrenergic damage.
Collapse
Affiliation(s)
- Georgina M. Ellison
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, New York 10029
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 2ET, United Kingdom
| | - Daniele Torella
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 2ET, United Kingdom
- Laboratory of Molecular and Cellular Cardiology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Ioannis Karakikes
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, New York 10029
| | - Saranya Purushothaman
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, New York 10029
| | - Antonio Curcio
- Laboratory of Molecular and Cellular Cardiology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Cosimo Gasparri
- Laboratory of Molecular and Cellular Cardiology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Ciro Indolfi
- Laboratory of Molecular and Cellular Cardiology, Magna Graecia University, 88100 Catanzaro, Italy
| | - N. Tim Cable
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 2ET, United Kingdom
| | - David F. Goldspink
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 2ET, United Kingdom
| | - Bernardo Nadal-Ginard
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, New York 10029
- Centro Nacional de Investigaciones Cardiovasculares, E-28029 Madrid, Spain
- To whom correspondence should be addressed: Zena and Michael A. Wiener Cardiovascular Institute and Marie-Jose and Henry R. Kravis Center for Cardiovascular Health, Box 1030, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029. Tel.: 212-241-6543; Fax: 212-241-1873; E-mail:
| |
Collapse
|
336
|
Thum T, Hoeber S, Froese S, Klink I, Stichtenoth DO, Galuppo P, Jakob M, Tsikas D, Anker SD, Poole-Wilson PA, Borlak J, Ertl G, Bauersachs J. Age-dependent impairment of endothelial progenitor cells is corrected by growth-hormone-mediated increase of insulin-like growth-factor-1. Circ Res 2007; 100:434-43. [PMID: 17234973 DOI: 10.1161/01.res.0000257912.78915.af] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging is associated with an increased risk for atherosclerosis. A possible cause is low numbers and dysfunction of endothelial progenitor cells (EPC) which insufficiently repair damaged vascular walls. We hypothesized that decreased levels of insulin-like growth factor-1 (IGF-1) during age contribute to dysfunctional EPC. We measured the effect of growth hormone (GH), which increases endogenous IGF-1 levels, on EPC in mice and human subjects. We compared EPC number and function in healthy middle-aged male volunteers (57.4+/-1.4 years) before and after a 10 day treatment with recombinant GH (0.4 mg/d) with that of younger and elderly male subjects (27.5+/-0.9 and 74.1+/-0.9 years). Middle-aged and elderly subjects had lower circulating CD133(+)/VEGFR-2(+) EPC with impaired function and increased senescence. GH treatment in middle-aged subjects elevated IGF-1 levels (126.0+/-7.2 ng/mL versus 241.1+/-13.8 ng/mL; P<0.0001), increased circulating EPC with improved colony forming and migratory capacity, enhanced incorporation into tube-like structures, and augmented endothelial nitric oxide synthase expression in EPC comparable to that of the younger group. EPC senescence was attenuated, whereas telomerase activity was increased after GH treatment. Treatment of aged mice with GH (7 days) or IGF-1 increased IGF-1 and EPC levels and improved EPC function, whereas a two day GH treatment did not alter IGF-1 or EPC levels. Ex vivo treatment of EPC from elderly individuals with IGF-1 improved function and attenuated cellular senescence. IGF-1 stimulated EPC differentiation, migratory capacity and the ability to incorporate into forming vascular networks in vitro via the IGF-1 receptor. IGF-1 increased telomerase activity, endothelial nitric oxide synthase expression, phosphorylation and activity in EPC in a phosphoinositide-3-kinase/Akt dependent manner. Small interference RNA-mediated knockdown of endothelial nitric oxide synthase in EPC abolished the IGF-1 effects. Growth hormone-mediated increase in IGF-1 reverses age-related EPC dysfunction and may be a novel therapeutic strategy against vascular disorders with impairment of EPC.
Collapse
Affiliation(s)
- Thomas Thum
- Universität Würzburg, Medizinische Klinik I (Kardiologie), Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Labinskyy N, Csiszar A, Orosz Z, Smith K, Rivera A, Buffenstein R, Ungvari Z. Comparison of endothelial function, O2-* and H2O2 production, and vascular oxidative stress resistance between the longest-living rodent, the naked mole rat, and mice. Am J Physiol Heart Circ Physiol 2007; 291:H2698-704. [PMID: 17090784 DOI: 10.1152/ajpheart.00534.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular aging is characterized by decreased nitric oxide (NO) bioavailability, oxidative stress, and enhanced apoptotic cell death. We hypothesized that interspecies comparative assessment of vascular function among rodents with disparate longevity may offer insight into the mechanisms determining successful vascular aging. We focused on four rodents that show approximately an order of magnitude range in maximum longevity (ML). The naked mole rat (NMR; Heterocephalus glaber) is the longest-living rodent known (ML > 28 yr), Damara mole rats (DMRs, Cryptomys damarensis; ML approximately 16 yr) and guinea pigs (GPs, Cavia porcellus; ML approximately 6 yr) have intermediate longevity, whereas laboratory mice are short living (ML approximately 3.5 yr). We compared interspecies differences in endothelial function, O(2)(-)* and H(2)O(2) production, and resistance to apoptotic stimuli in blood vessels. Sensitivity to acetylcholine-induced, NO-mediated relaxation was smaller in carotid arteries from NMRs, GPs, and DMRs than in mouse vessels. Measurements of production of O(2)(-)* (lucigenin chemiluminescence and ethidium bromide fluorescence) and H(2)O(2) (dichlorofluorescein fluorescence) showed that free radical production in vascular endothelial and smooth muscle cells is comparable in vessels of the three longer-living species and in arteries of shorter-living mice. In mouse arteries, H(2)O(2) (from 10(-6) to 10(-3) mol/l) and heat exposure (42 degrees C for 15-45 min) enhanced apoptotic cell death, as indicated by an increased DNA fragmentation rate and increased caspase 3/7 activity. In NMR vessels, only the highest doses of H(2)O(2) enhanced apoptotic cell death, whereas heat exposure did not increase DNA fragmentation rate. Interspecies comparison showed there is a negative correlation between H(2)O(2)-induced apoptotic cell death and ML. Thus endothelial vasodilator function and vascular production of reactive oxygen species do not correlate with maximal lifespan, whereas increased lifespan potential is associated with an increased vascular resistance to proapoptotic stimuli.
Collapse
Affiliation(s)
- Nazar Labinskyy
- Dept. of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
338
|
Abstract
Health care for the elderly in western society has emerged as an increasingly important economic and political issue in recent years. As the elderly proportion of western populations continues to expand, maintaining health and wellness of the aged will continue to be an important research priority in the near future. This review will attempt to briefly highlight what is known about age-related changes in cardiac performance in humans, then focus on recent work on cellular mechanisms of cardiac deterioration in vertebrate models. The final section will discuss the implications of work done in the nascent fruit fly model system for aging cardiac function and conclude by outlining potential future uses for invertebrate cardiac model systems.
Collapse
Affiliation(s)
- Robert J Wessells
- Department of Internal Medicine, University of Michigan, 3013 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, United States
| | | |
Collapse
|
339
|
Triolo F, Pietrosi G, Scardulla C, Gridelli B. Transplantation and regeneration in the heart of the Mediterranean. Mech Ageing Dev 2006; 128:5-8. [PMID: 17125815 DOI: 10.1016/j.mad.2006.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The second half of the 20th century witnessed the birth of organ transplantation, and failing organs can now be replaced with healthy ones procured from living or cadaveric donors, allowing their recipient to start, or return to, an active life. Major milestones in the field were set in the eighties and nineties at the University of Pittsburgh Medical Center (UPMC), an institution that made it a mission to spread its expertise internationally. A successful partnership between UPMC and the Region of Sicily gave rise to the Mediterranean Institute for Transplantation and Highly Specialized Therapies (ISMETT), the only Italian facility entirely dedicated to transplantation of all solid organs and therapies for the treatment of end-stage organ failure. In its first seven years of activity, ISMETT has become a major referral center for patients from the entire Mediterranean Basin and the Middle East. Despite the fact that organ transplantation is the current gold standard for end-stage organ failure, the field is facing a worldwide emergency represented by the chronic shortage of organ donors. Research aimed at understanding the molecular networks involved in organ-specific ageing and their relationship with maintenance networks and organ failure should be actively encouraged and supported as it could ultimately allow to control organ performance and lifespan, increasing the number of organs available for transplant.
Collapse
Affiliation(s)
- Fabio Triolo
- ISMETT-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | | | | | | |
Collapse
|
340
|
Tateishi K, Ashihara E, Honsho S, Takehara N, Nomura T, Takahashi T, Ueyama T, Yamagishi M, Yaku H, Matsubara H, Oh H. Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3beta signaling. Biochem Biophys Res Commun 2006; 352:635-41. [PMID: 17150190 DOI: 10.1016/j.bbrc.2006.11.096] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 11/11/2006] [Indexed: 01/25/2023]
Abstract
Recent evidence suggested that human cardiac stem cells (hCSCs) may have the clinical application for cardiac repair; however, their characteristics and the regulatory mechanisms of their growth have not been fully investigated. Here, we show the novel property of hCSCs with respect to their origin and tissue distribution in human heart, and demonstrate the signaling pathway that regulates their growth and survival. Telomerase-active hCSCs were predominantly present in the right atrium and outflow tract of the heart (infant > adult) and had a mesenchymal cell-like phenotype. These hCSCs expressed the embryonic stem cell markers and differentiated into cardiomyocytes to support cardiac function when transplanted them into ischemic myocardium. Inhibition of Akt pathway impaired the hCSC proliferation and induced apoptosis, whereas inhibition of glycogen synthase kinase-3 (GSK-3) enhanced their growth and survival. We conclude that hCSCs exhibit mesenchymal features and that Akt/GSK-3beta may be crucial modulators for hCSC maintenance in human heart.
Collapse
Affiliation(s)
- Kento Tateishi
- Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
341
|
Anversa P, Leri A, Rota M, Hosoda T, Bearzi C, Urbanek K, Kajstura J, Bolli R. Concise review: stem cells, myocardial regeneration, and methodological artifacts. Stem Cells 2006; 25:589-601. [PMID: 17124006 DOI: 10.1634/stemcells.2006-0623] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This review discusses the current controversy about the role that endogenous and exogenous progenitor cells have in cardiac homeostasis and myocardial regeneration following injury. Although great enthusiasm was created by the possibility of reconstituting the damaged heart, the opponents of this new concept of cardiac biology have interpreted most of the findings supporting this possibility as the product of technical artifacts. This article challenges this established, static view of cardiac growth and favors the notion that the mammalian heart has the inherent ability to replace its cardiomyocytes through the activation of a pool of resident primitive cells or the administration of hematopoietic stem cells.
Collapse
Affiliation(s)
- Piero Anversa
- Cardiovascular Research Institute, Vosburgh Pavilion, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | |
Collapse
|
342
|
Brehm M, Strauer BE. Stem cell therapy in postinfarction chronic coronary heart disease. ACTA ACUST UNITED AC 2006; 3 Suppl 1:S101-4. [PMID: 16501614 DOI: 10.1038/ncpcardio0431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 10/27/2005] [Indexed: 01/14/2023]
Abstract
After acute myocardial infarction, bone-marrow-derived cells (BMDCs) improve cardiac function; it is conceivable, but not yet demonstrated, that BMDC therapy might also be useful in chronic infarction. We treated 18 consecutive patients who had chronic myocardial infarction (between 5 months and 8.5 years postinfarction) using intracoronary transplantation of autologous BMDCs and compared this group with a representative control group who did not receive cell therapy. After 3 months, infarct size in the transplantation group was reduced by 30% and both global left ventricular ejection fraction and infarction wall-movement velocity were increased significantly (15% and 57%, respectively), whereas in the control group no significant changes were observed. After transplantation of BMDCs, there was an 11% improvement in maximum oxygen uptake and a 15% increase in regional (18)F-fluordeoxyglucose uptake into infarcted tissue, as determined by positron emission tomography. These results show that functional and metabolic regeneration of infarcted and chronically avital tissue can be achieved in humans using transplantation of bone-marrow-derived cells.
Collapse
Affiliation(s)
- Michael Brehm
- Department of Internal Medicine, Division of Cardiology, Pneumology and Angiology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | |
Collapse
|
343
|
Torella D, Ellison GM, Méndez-Ferrer S, Ibanez B, Nadal-Ginard B. Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. ACTA ACUST UNITED AC 2006; 3 Suppl 1:S8-13. [PMID: 16501638 DOI: 10.1038/ncpcardio0409] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/20/2005] [Indexed: 01/03/2023]
Abstract
Current treatments for myocardial infarction have significantly reduced the acute mortality of ischemic cardiomyopathy. This reduction has resulted in the survival of a large cohort of patients left with a significant 'myocyte deficit'. Once this deficit leads to heart failure there is no available therapy to improve long-term cardiac function. Recent developments in stem cell biology have focused on the possibility of regenerating contractile myocardial tissue. Most of these approaches have entailed the transplantation of exogenous cardiac-regenerating cells. Recently, we and others have reported that the adult mammalian myocardium, including that in humans, contains a small pool of cardiac stem and progenitor cells (CSCs) that can replenish the cardiomyocyte population and, in some cases, the coronary microcirculation. The human CSCs (hCSCs) are involved in maintaining myocardial cell homeostasis throughout life and participate in remodeling in cardiac pathology. They can be isolated, propagated and cloned. The progeny of a single cell clone differentiates in vitro and in vivo into myocytes, smooth muscle and endothelial cells. Surprisingly, in response to different forms of stress, hCSCs acquire a senescent, dysfunctional phenotype. Strikingly, these nonfunctional CSCs constitute around 50% of the total CSC pool in older individuals-those most likely to be candidates for hCSC-based myocardial regeneration. Therefore, the challenge to develop clinically effective therapies of myocardial regeneration is twofold: to produce the activation of the hCSCs in situ in order to obviate the need for cell transplantation, and to elucidate the mechanisms responsible for hCSC senescence in order to prevent or reverse its development.
Collapse
Affiliation(s)
- Daniele Torella
- Laboratory of Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | | | | | | | | |
Collapse
|
344
|
|
345
|
Kajstura J, Rota M, Urbanek K, Hosoda T, Bearzi C, Anversa P, Bolli R, Leri A. The telomere-telomerase axis and the heart. Antioxid Redox Signal 2006; 8:2125-41. [PMID: 17034355 DOI: 10.1089/ars.2006.8.2125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The preservation of myocyte number and cardiac mass throughout life is dependent on the balance between cell death and cell division. Rapidly emerging evidence indicates that new myocytes can be formed through the activation and differentiation of resident cardiac progenitor cells. The critical issue is the identification of mechanisms that define the aging of cardiac progenitor cells and, ultimately, their inability to replace dying myocytes. The most reliable marker of cellular senescence is the modification of the telomere-telomerase axis, together with the expression of the cell cycle inhibitors p16INK4a and p53. Cellular senescence is characterized by biochemical events that occur within the cell. In this regard, one of the most relevant processes is represented by repeated oxidative stress that may evolve into the activation of the cell death program or result in the development of a senescent phenotype. Thus, the modulation of telomerase activity and the control of telomeric length, together with the attenuation of the formation of reactive oxygen species, may represent important therapeutic tools in regenerative medicine and in prevention of aging and diabetic cardiomyopathies.
Collapse
Affiliation(s)
- Jan Kajstura
- Cardiovascular Research Institute, Department of Medicine, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | | | | | | | |
Collapse
|
346
|
|
347
|
Kosugi R, Shioi T, Watanabe-Maeda K, Yoshida Y, Takahashi K, Machida Y, Izumi T. Angiotensin II receptor antagonist attenuates expression of aging markers in diabetic mouse heart. Circ J 2006; 70:482-8. [PMID: 16565569 DOI: 10.1253/circj.70.482] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Diabetes mellitus is an independent risk factor for heart failure. Diabetes mellitus causes other age-related cardiovascular diseases. We assessed the hypothesis that hearts from diabetic animals are associated with accelerated aging processes. We also examined the effect of an angiotensin II receptor blocker (ARB) on the expression of senescence-associated molecules. METHODS AND RESULTS We administered an ARB (candesartan 10 mg/kg per day) or saline to diabetic db/db or control db/+ mice. The treatment was started when mice were 10-weeks-old, and continued for 15 weeks. Systolic function was impaired in db/db mice and candesartan improved cardiac function. The amount of phosphorylated Akt and S6 was decreased in saline-treated db/db mice, and candesartan treatment partially preserved phosphorylation. The amount of p21, p27, p53 or Rb was increased in the heart tissue of saline treated db/db mice. Candesartan treatment completely suppressed the increases of p21, p27, p53 and Rb. CONCLUSIONS An ARB improved cardiac function of diabetic animals, and this was accompanied by decreases of senescence-associated molecules in the myocardium. ARB may be a modality for heart failure patients with diabetes mellitus.
Collapse
Affiliation(s)
- Rie Kosugi
- Department of Internal Medicine and Cardiology, Kitasato University School of Medicine, Sagamihara, Japan
| | | | | | | | | | | | | |
Collapse
|
348
|
Germani A, Limana F, Capogrossi MC. Pivotal advances: high-mobility group box 1 protein--a cytokine with a role in cardiac repair. J Leukoc Biol 2006; 81:41-5. [PMID: 16940333 DOI: 10.1189/jlb.0306165] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nuclear protein high-mobility group box 1 (HMGB1) has been largely characterized for its role in inflammation. However, HMGB1 released by inflammatory cells, as well as by necrotic cells, may also act as a signal of tissue damage and participate in tissue repair by recruiting stem cells to the injury site. The emergence of this function has focused the interest on HMGB1 as a molecule with an active role in tissue regeneration. We recently demonstrated that HMGB1 administration in a mouse model of myocardial infarction activates cardiac stem cells and promotes their differentiation into cardiomyocytes. The regenerative effect results in the improvement of cardiac function. In this review, we highlight the beneficial role of HMGB1 and discuss growth factor-based therapeutic approaches for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Antonia Germani
- Laboratorio di Biologia Vascolare e Terapia Genica, Centro Cardiologico Fondazione Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | | | | |
Collapse
|
349
|
Finney MR, Greco NJ, Haynesworth SE, Martin JM, Hedrick DP, Swan JZ, Winter DG, Kadereit S, Joseph ME, Fu P, Pompili VJ, Laughlin MJ. Direct comparison of umbilical cord blood versus bone marrow-derived endothelial precursor cells in mediating neovascularization in response to vascular ischemia. Biol Blood Marrow Transplant 2006; 12:585-93. [PMID: 16635794 DOI: 10.1016/j.bbmt.2005.12.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 12/23/2005] [Indexed: 12/14/2022]
Abstract
Endothelial precursor cells (EPCs) cultured from adult bone marrow (BM) have been shown to mediate neovasculogenesis in murine models of vascular injury. We sought to directly compare umbilical cord blood (UCB)- and BM-derived EPC surface phenotypes and in vivo functional capacity. UCB and BM EPCs derived from mononuclear cells (MNC) were phenotyped by surface staining for expression of stromal (Stro-1, CXCR4, CD105, and CD73), endothelial (CD31, CD146, and vascular endothelial [VE]-cadherin), stem cell (CD34 and CD133), and monocyte (CD14) surface markers and analyzed by flow cytometry. The nonobese diabetic/severe combined immunodeficiency murine model of hind-limb ischemia was used to analyze the potential of MNCs and culture-derived EPCs from UCB and BM to mediate neovasculogenesis. Histologic evaluation of the in vivo studies included capillary density as a measure of neovascularization. Surface CXCR4 expression was notably higher on UCB-derived EPCs (64.29%+/-7.41%) compared with BM (19.69%+/-5.49%; P=.021). Although the 2 sources of EPCs were comparable in expression of endothelial and monocyte markers, BM-derived EPCs contained higher proportions of cells expressing stromal cell markers (CD105 and CD73). Injection of UCB- or BM-derived EPCs resulted in significantly improved perfusion as measured by laser Doppler imaging at days 7 and 14 after femoral artery ligation in nonobese diabetic/severe combined immunodeficiency mice compared with controls (P<.05). Injection of uncultured MNCs from BM or UCB showed no significant difference from control mice (P=.119; P=.177). Tissue samples harvested from the lower calf muscle at day 28 demonstrated increased capillary densities in mice receiving BM- or UCB-derived EPCs. In conclusion, we found that UCB and BM-derived EPCs differ in CXCR4 expression and stromal surface markers but mediate equivalent neovasculogenesis in vivo as measured by Doppler flow and histologic analyses.
Collapse
MESH Headings
- Adult
- Animals
- Bone Marrow Transplantation
- Capillaries/ultrastructure
- Cell Differentiation
- Cord Blood Stem Cell Transplantation
- Endothelial Cells/cytology
- Endothelium, Vascular/cytology
- Female
- Hindlimb/blood supply
- Humans
- Immunophenotyping
- Infant, Newborn
- Ischemia/physiopathology
- Ischemia/surgery
- Laser-Doppler Flowmetry
- Lipoproteins, LDL/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Muscle, Skeletal/blood supply
- Neovascularization, Physiologic/physiology
- Plant Lectins/metabolism
- Receptors, CXCR4/biosynthesis
- Receptors, Cell Surface/metabolism
- Receptors, Scavenger/metabolism
- Stem Cells/classification
- Stem Cells/cytology
- Stromal Cells/cytology
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Marcie R Finney
- Department of Medicine, Case Western Reserve University, School of Medicine, Case Comprehensive Cancer Center, Cleveland, Ohio 44106-7284, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
350
|
Lehrke S, Mazhari R, Durand DJ, Zheng M, Bedja D, Zimmet JM, Schuleri KH, Chi AS, Gabrielson KL, Hare JM. Aging impairs the beneficial effect of granulocyte colony-stimulating factor and stem cell factor on post-myocardial infarction remodeling. Circ Res 2006; 99:553-60. [PMID: 16873716 DOI: 10.1161/01.res.0000238375.88582.d8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) are potential new therapies to ameliorate post-myocardial infarction (post-MI) remodeling, as they enhance endogenous cardiac repair mechanisms and decrease cardiomyocyte apoptosis. Because both of these pathways undergo alterations with increasing age, we hypothesized that therapeutic efficacy of G-CSF and SCF is impaired in old versus young adult rats. MI was induced in 6- and 20-month-old rats by permanent ligation of the left coronary artery. In young animals, G-CSF/SCF therapy stabilized and reversed a decline in cardiac function, attenuated left ventricular dilation, decreased infarct size, and reduced cardiomyocyte hypertrophy. Remarkably, these effects on cardiac structure and function were absent in aged rodents. This could not be attributed to ineffective mobilization of bone marrow cells or decreased quantity of c-Kit(+) cells within the myocardium with aging. However, whereas the G-CSF/SCF cocktail reduced cardiac myocyte apoptosis in old as well as in young hearts, the degree of reduction was substantially less with age and the rate of cardiomyocyte apoptosis in old animals remained high despite cytokine treatment. These findings demonstrate that G-CSF/SCF lacks therapeutic efficacy in old animals by failing to offset periinfarct apoptosis and therefore raise important concerns regarding the efficacy of novel cytokine therapies in elderly individuals at greatest risk for adverse consequences of MI.
Collapse
Affiliation(s)
- Stephanie Lehrke
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|