301
|
Contet C, Kim A, Le D, Iyengar SK, Kotzebue RW, Yuan CJ, Kieffer BL, Mandyam CD. μ-Opioid receptors mediate the effects of chronic ethanol binge drinking on the hippocampal neurogenic niche. Addict Biol 2014; 19:770-80. [PMID: 23461397 DOI: 10.1111/adb.12040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ethanol exposure and withdrawal alter the generation of new neurons in the adult hippocampus. The endogenous opioid system, particularly the μ-opioid receptor (MOR), can modulate neural progenitors and also plays a critical role in ethanol drinking and dependence. In the present study, we sought to determine whether MOR contributes to the effects of ethanol on the dentate gyrus (DG) neurogenic niche. MOR wild-type (WT), heterozygous (Het) and knockout (KO) littermates were subjected to voluntary ethanol drinking in repeated limited-access two-bottle choice (2BC) sessions. MOR deficiency did not alter progenitor proliferation, neuronal differentiation and maturation, apoptosis or microglia in ethanol-naïve mice. When exposed to five consecutive weeks of 2BC, MOR mutant mice exhibited a gene-dosage-dependent reduction of ethanol consumption compared with WT mice. Introducing a week of ethanol deprivation between each week of 2BC increased ethanol consumption in all genotypes and produced equivalent intakes in WT, Het and KO mice. Under the latter paradigm, ethanol drinking decreased progenitor proliferation and neuronal differentiation in the DG of WT mice. Interestingly, WT mice exhibited a strong negative correlation between ethanol intake and proliferation, which was disrupted in Het and KO mice. Moreover, MOR deficiency blocked the effect of ethanol on neuronal differentiation. MOR deficiency also protected against the neuroimmune response to ethanol drinking. Finally, chronic binge drinking induced a paradoxical decrease in apoptosis, which was independent of MOR. Altogether, our data suggest that MOR is implicated in some of the neuroplastic changes produced by chronic ethanol exposure in the DG.
Collapse
Affiliation(s)
- Candice Contet
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | - Airee Kim
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | - David Le
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | - Siddharth K. Iyengar
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | - Roxanne W. Kotzebue
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | - Clara J. Yuan
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla CA USA
| | - Brigitte L. Kieffer
- Département Neurobiologie; Institut de Génétique et de Biologie Moléculaire et Cellulaire; Centre National de Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg; France
| | - Chitra D. Mandyam
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla CA USA
| |
Collapse
|
302
|
Activation of intrinsic immune responses and microglial phagocytosis in an ex vivo spinal cord slice culture model of West Nile virus infection. J Virol 2014; 88:13005-14. [PMID: 25165111 DOI: 10.1128/jvi.01994-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED West Nile virus (WNV) is a neurotropic flavivirus that causes significant neuroinvasive disease involving the brain and/or spinal cord. Experimental mouse models of WNV infection have established the importance of innate and adaptive immune responses in controlling the extent and severity of central nervous system (CNS) disease. However, differentiating between immune responses that are intrinsic to the CNS and those that are dependent on infiltrating inflammatory cells has proven difficult. We used a murine ex vivo spinal cord slice culture (SCSC) model to determine the innate immune processes specific to the CNS during WNV infections. By 7 days after ex vivo infection of SCSCs, the majority of neurons and a substantial percentage of astrocytes were infected with WNV, resulting in apoptotic cell death and astrogliosis. Microglia, the resident immune cells of the CNS, were activated by WNV infection, as exemplified by their amoeboid morphology, the development of filopodia and lamellipodia, and phagocytosis of WNV-infected cells and debris. Microglial cell activation was concomitant with increased expression of proinflammatory cytokines and chemokines, including CXCL10, CXCL1, CCL5, CCL3, CCL2, tumor necrosis factor alpha (TNF-α), TNF-related apoptosis-inducing ligand (TRAIL), and interleukin-6 (IL-6). The application of minocycline, an inhibitor of neuroinflammation, altered the WNV-induced proinflammatory cytokine/chemokine expression profile, with inhibited production of CCL5, CCL2, and IL-6. Our findings establish that CNS-resident cells have the capacity to initiate a robust innate immune response against WNV infection in the absence of infiltrating inflammatory cells and systemic immune responses. IMPORTANCE There are no specific treatments of proven efficacy available for WNV neuroinvasive disease. A better understanding of the pathogenesis of WNV CNS infection is crucial for the rational development of novel therapies. Development of a spinal cord slice culture (SCSC) model facilitates the study of WNV pathogenesis and allows investigation of the intrinsic immune responses of the CNS. Our studies demonstrate that robust CNS innate immune responses, including microglial activation and proinflammatory cytokine/chemokine production, develop independently of contributions from the peripheral immune system and CNS-infiltrating inflammatory cells.
Collapse
|
303
|
Kuric E, Ruscher K. Dynamics of major histocompatibility complex class II-positive cells in the postischemic brain--influence of levodopa treatment. J Neuroinflammation 2014; 11:145. [PMID: 25178113 PMCID: PMC4149192 DOI: 10.1186/s12974-014-0145-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/31/2014] [Indexed: 01/27/2023] Open
Abstract
Background Cerebral ischemia activates both the innate and the adaptive immune response, the latter being activated within days after the stroke onset and triggered by the recognition of foreign antigens. Methods In this study we have investigated the phenotype of antigen presenting cells and the levels of associated major histocompatibility complex class II (MHC II) molecules in the postischemic brain after transient occlusion of the middle cerebral artery (tMCAO) followed by levodopa/benserazide treatment. Male Sprague Dawley rats were subjected to tMCAO for 105 minutes and received levodopa (20 mg/kg)/benserazide (15 mg/kg) for 5 days starting on day 2 after tMCAO. Thereafter, immune cells were isolated from the ischemic and contralateral hemisphere and analyzed by flow cytometry. Complementarily, the spatiotemporal profile of MHC II-positive (MHC II+) cells was studied in the ischemic brain during the first 30 days after tMCAO; protein levels of MHC II and the levels of inflammation associated cytokines were determined in the ischemic hemisphere. Results We found that microglia/macrophages represent the main MHC II expressing cell in the postischemic brain one week after tMCAO. No differences in absolute cell numbers were found between levodopa/benserazide and vehicle-treated animals. In contrast, MHC II protein levels were significant downregulated in the ischemic infarct core by levodopa/benserazide treatment. This reduction was accompanied by reduced levels of IFN-γ, TNF-α and IL-4 in the ischemic hemisphere. In the contralateral hemisphere, we exclusively detected MHC II+ cells in the corpus callosum. Interestingly, the number of cells was increased by treatment with levodopa/benserazide independent from the infarct size 14 days after tMCAO. Conclusions Results suggest that dopamine signaling is involved in the adaptive immune response after stroke and involves microglia/macrophages.
Collapse
Affiliation(s)
- Enida Kuric
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, Lund, S-22184, Sweden.
| | | |
Collapse
|
304
|
Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plast 2014; 2014:693851. [PMID: 25215243 PMCID: PMC4157009 DOI: 10.1155/2014/693851] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/23/2014] [Indexed: 01/19/2023] Open
Abstract
Microglia and astrocytes contribute to Alzheimer's disease (AD) etiology and may mediate early neuroinflammatory responses. Despite their possible role in disease progression and despite the fact that they can respond to amyloid deposition in model systems, little is known about whether astro- or microglia can undergo proliferation in AD and whether this is related to the clinical symptoms or to local neuropathological changes. Previously, proliferation was found to be increased in glia-rich regions of the presenile hippocampus. Since their phenotype was unknown, we here used two novel triple-immunohistochemical protocols to study proliferation in astro- or microglia in relation to amyloid pathology. We selected different age-matched cohorts to study whether proliferative changes relate to clinical severity or to neuropathological changes. Proliferating cells were found across the hippocampus but never in mature neurons or astrocytes. Almost all proliferating cells were colabeled with Iba1+, indicating that particularly microglia contribute to proliferation in AD. Proliferating Iba1+ cells was specifically seen within the borders of amyloid plaques, indicative of an active involvement in, or response to, plaque accumulation. Thus, consistent with animal studies, proliferation in the AD hippocampus is due to microglia, occurs in close proximity of plaque pathology, and may contribute to the neuroinflammation common in AD.
Collapse
|
305
|
Lee EJ, Han JE, Woo MS, Shin JA, Park EM, Kang JL, Moon PG, Baek MC, Son WS, Ko YT, Choi JW, Kim HS. Matrix metalloproteinase-8 plays a pivotal role in neuroinflammation by modulating TNF-α activation. THE JOURNAL OF IMMUNOLOGY 2014; 193:2384-93. [PMID: 25049354 DOI: 10.4049/jimmunol.1303240] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Matrix metalloproteinases (MMPs) play important roles in normal brain development and synaptic plasticity, although aberrant expression of MMPs leads to brain damage, including blood-brain barrier disruption, inflammation, demyelination, and neuronal cell death. In this article, we report that MMP-8 is upregulated in LPS-stimulated BV2 microglial cells and primary cultured microglia, and treatment of MMP-8 inhibitor (M8I) or MMP-8 short hairpin RNA suppresses proinflammatory molecules, particularly TNF-α secretion. Subsequent experiments showed that MMP-8 exhibits TNF-α-converting enzyme (TACE) activity by cleaving the prodomain of TNF-α (A(74)/Q(75), A(76)/V(77) residues) and, furthermore, that M8I inhibits TACE activity more efficiently than TAPI-0, a general TACE inhibitor. Biochemical analysis of the underlying anti-inflammatory mechanisms of M8I revealed that it inhibits MAPK phosphorylation, NF-κB/AP-1 activity, and reactive oxygen species production. Further support for the proinflammatory role of microglial MMP-8 was obtained from an in vivo animal model of neuroinflammatory disorder. MMP-8 is upregulated in septic conditions, particularly in microglia. Administration of M8I or MMP-8 short hairpin RNA significantly inhibits microglial activation and expression/secretion of TNF-α in brain tissue, serum, and cerebrospinal fluid of LPS-induced septic mice. These results demonstrate that MMP-8 critically mediates microglial activation by modulating TNF-α activity, which may explain neuroinflammation in septic mouse brain.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Department of Molecular Medicine and Global Top 5 Research Program, Tissue Injury Defense Research Center, Ewha Womans University Medical School, Seoul 158-710, Republic of Korea
| | - Jeong Eun Han
- College of Pharmacy, Gachon University, Incheon 406-799, Republic of Korea
| | - Moon-Sook Woo
- Department of Molecular Medicine and Global Top 5 Research Program, Tissue Injury Defense Research Center, Ewha Womans University Medical School, Seoul 158-710, Republic of Korea
| | - Jin A Shin
- Department of Pharmacology, Ewha Womans University Medical School, Seoul 158-710, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, Ewha Womans University Medical School, Seoul 158-710, Republic of Korea
| | - Jihee Lee Kang
- Department of Physiology, Ewha Womans University Medical School, Seoul 158-710, Republic of Korea
| | - Pyong Gon Moon
- Department of Molecular Medicine, Kyongbuk National University, Daegu 700-842, Republic of Korea; and
| | - Moon-Chang Baek
- Department of Molecular Medicine, Kyongbuk National University, Daegu 700-842, Republic of Korea; and
| | - Woo-Sung Son
- College of Pharmacy, CHA University, Pocheon-si 487-010, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon 406-799, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy, Gachon University, Incheon 406-799, Republic of Korea;
| | - Hee-Sun Kim
- Department of Molecular Medicine and Global Top 5 Research Program, Tissue Injury Defense Research Center, Ewha Womans University Medical School, Seoul 158-710, Republic of Korea;
| |
Collapse
|
306
|
Ifuku M, Hossain SM, Noda M, Katafuchi T. Induction of interleukin-1β by activated microglia is a prerequisite for immunologically induced fatigue. Eur J Neurosci 2014; 40:3253-63. [PMID: 25040499 DOI: 10.1111/ejn.12668] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 02/02/2023]
Abstract
We previously reported that an intraperitoneal (i.p.) injection of synthetic double-stranded RNA, polyriboinosinic:polyribocytidylic acid (poly-I:C), produced prolonged fatigue in rats, which might serve as a model for chronic fatigue syndrome. The poly-I:C-induced fatigue was associated with serotonin transporter (5-HTT) overexpression in the prefrontal cortex (PFC), a brain region that has been suggested to be critical for fatigue sensation. In the present study, we demonstrated that microglial activation in the PFC was important for poly-I:C-induced fatigue in rats, as pretreatment with minocycline, an inhibitor of microglial activation, prevented the decrease in running wheel activity. Poly-I:C injection increased the microglial interleukin (IL)-1β expression in the PFC. An intracerebroventricular (i.c.v.) injection of IL-1β neutralising antibody limited the poly-I:C-induced decrease in activity, whereas IL-1β (i.c.v.) reduced the activity in a dose-dependent manner. 5-HTT expression was enhanced by IL-1β in primary cultured astrocytes but not in microglia. Poly-I:C injection (i.p.) caused an increase in 5-HTT expression in astrocytes in the PFC of the rat, which was inhibited by pretreatment with minocycline (i.p.) and rat recombinant IL-1 receptor antagonist (i.c.v.). Poly-I:C injection (i.p.) led to a breakdown of the blood-brain barrier and enhanced Toll-like receptor 3 signaling in the brain. Furthermore, direct application of poly-I:C enhanced IL-1β expression in primary microglia. We therefore propose that poly-I:C-induced microglial activation, which may be at least partly caused by a direct action of poly-I:C, enhances IL-1β expression. Then, IL-1β induces 5-HTT expression in astrocytes, resulting in the immunologically induced fatigue.
Collapse
Affiliation(s)
- Masataka Ifuku
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | |
Collapse
|
307
|
Chen S, Yin ZJ, Jiang C, Ma ZQ, Fu Q, Qu R, Ma SP. Asiaticoside attenuates memory impairment induced by transient cerebral ischemia–reperfusion in mice through anti-inflammatory mechanism. Pharmacol Biochem Behav 2014; 122:7-15. [DOI: 10.1016/j.pbb.2014.03.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 01/08/2023]
|
308
|
Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. BIOMED RESEARCH INTERNATIONAL 2014; 2014:297241. [PMID: 25089266 PMCID: PMC4095830 DOI: 10.1155/2014/297241] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/10/2014] [Indexed: 12/11/2022]
Abstract
Inflammation has a pivotal role in the pathogenesis of ischemic stroke, and recent studies posit that inflammation acts as a double-edged sword, not only detrimentally augmenting secondary injury, but also potentially promoting recovery. An initial event of inflammation in ischemic stroke is the activation of microglia, leading to production of both pro- and anti-inflammatory mediators acting through multiple receptor signaling pathways. In this review, we discuss the role of microglial mediators in acute ischemic stroke and elaborate on preclinical and clinical studies focused on microglia in stroke models. Understanding how microglia can lead to both pro- and anti-inflammatory responses may be essential to implement therapeutic strategies using immunomodulatory interventions in ischemic stroke.
Collapse
|
309
|
Ravikumar M, Sunil S, Black J, Barkauskas DS, Haung AY, Miller RH, Selkirk SM, Capadona JR. The roles of blood-derived macrophages and resident microglia in the neuroinflammatory response to implanted intracortical microelectrodes. Biomaterials 2014; 35:8049-64. [PMID: 24973296 DOI: 10.1016/j.biomaterials.2014.05.084] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 05/28/2014] [Indexed: 12/23/2022]
Abstract
Resident microglia and blood-borne macrophages have both been implicated to play a dominant role in mediating the neuroinflammatory response affecting implanted intracortical microelectrodes. However, the distinction between each cell type has not been demonstrated due to a lack of discriminating cellular markers. Understanding the subtle differences of each cell population in mediating neuroinflammation can aid in determining the appropriate therapeutic approaches to improve microelectrode performance. Therefore, the goal of this study is to characterize the role of infiltrating blood-derived cells, specifically macrophages, in mediating neuroinflammation following intracortical microelectrode implantation. Interestingly, we found no correlation between microglia and neuron populations at the microelectrode-tissue interface. On the other hand, blood-borne macrophages consistently dominated the infiltrating cell population following microelectrode implantation. Most importantly, we found a correlation between increased populations of blood-derived cells (including the total macrophage population) and neuron loss at the microelectrode-tissue interface. Specifically, the total macrophage population was greatest at two and sixteen weeks post implantation, at the same time points when we observed the lowest densities of neuronal survival in closest proximity to the implant. Together, our results suggest a dominant role of infiltrating macrophages, and not resident microglia, in mediating neurodegeneration following microelectrode implantation.
Collapse
Affiliation(s)
- Madhumitha Ravikumar
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Rehabilitation Research and Development, Spinal Cord Injury Division, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland OH 44106, USA
| | - Smrithi Sunil
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Rehabilitation Research and Development, Spinal Cord Injury Division, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland OH 44106, USA
| | - James Black
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland OH 44106, USA
| | - Deborah S Barkauskas
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland OH 44106, USA; Department of Pediatrics, Case Western Reserve University School of Medicine, Wolstein Research Building 6528, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Alex Y Haung
- Department of Pediatrics, Case Western Reserve University School of Medicine, Wolstein Research Building 6528, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Robert H Miller
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Sears Tower Bldg, Cleveland OH 44106, USA
| | - Stephen M Selkirk
- Department of Neurology, Case Western Reserve University, School of Medicine, 11100 Euclid Avenue, Sears Tower Bldg, Cleveland OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Rehabilitation Research and Development, Spinal Cord Injury Division, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland OH 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Rehabilitation Research and Development, Spinal Cord Injury Division, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland OH 44106, USA.
| |
Collapse
|
310
|
Su W, Li Z, Jia Y, Zhuo Y. Rapamycin is neuroprotective in a rat chronic hypertensive glaucoma model. PLoS One 2014; 9:e99719. [PMID: 24923557 PMCID: PMC4055719 DOI: 10.1371/journal.pone.0099719] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/19/2014] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is a leading cause of irreversible blindness. Injury of retinal ganglion cells (RGCs) accounts for visual impairment of glaucoma. Here, we report rapamycin protects RGCs from death in experimental glaucoma model and the underlying mechanisms. Our results showed that treatment with rapamycin dramatically promote RGCs survival in a rat chronic ocular hypertension model. This protective action appears to be attributable to inhibition of neurotoxic mediators release and/or direct suppression of RGC apoptosis. In support of this mechanism, in vitro, rapamycin significantly inhibits the production of NO, TNF-α in BV2 microglials by modulating NF-κB signaling. In experimental animals, treatment with rapamycin also dramatically inhibited the activation of microglials. In primary RGCs, rapamycin was capable of direct suppression the apoptosis of primary RGCs induced by glutamate. Mechanistically, rapamycin-mediated suppression of RGCs apoptosis is by sparing phosphorylation of Akt at a site critical for maintenance of its survival-promoting activity in cell and animal model. These results demonstrate that rapamycin is neuroprotective in experimental glaucoma, possibly via decreasing neurotoxic releasing and suppressing directly apoptosis of RGCs.
Collapse
Affiliation(s)
- Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zuohong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
311
|
Mechanisms underlying the effect of acupuncture on cognitive improvement: a systematic review of animal studies. J Neuroimmune Pharmacol 2014; 9:492-507. [PMID: 24903518 DOI: 10.1007/s11481-014-9550-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/22/2014] [Indexed: 01/23/2023]
Abstract
Acupuncture has been reported to be beneficial in treating cognitive impairment in various pathological conditions. This review describes the effort to understand the signaling pathways that underlie the acupunctural therapeutic effect on cognitive function. We searched the literature in 12 electronic databases from their inception to November 2013, with full text available and language limited to English. Twenty-three studies were identified under the selection criteria. All recruited animal studies demonstrate a significant positive effect of acupuncture on cognitive impairment. Findings suggest acupuncture may improve cognitive function through modulation of signaling pathways involved in neuronal survival and function, specifically, through promoting cholinergic neural transmission, facilitating dopaminergic synaptic transmission, enhancing neurotrophin signaling, suppressing oxidative stress, attenuating apoptosis, regulating glycometabolic enzymes and reducing microglial activation. However, the quality of reviewed studies has room for improvement. Further high-quality animal studies with randomization, blinding and estimation of sample size are needed to strengthen the recognition of group differences.
Collapse
|
312
|
Wijesundera KK, Izawa T, Tennakoon AH, Murakami H, Golbar HM, Katou-Ichikawa C, Tanaka M, Kuwamura M, Yamate J. M1- and M2-macrophage polarization in rat liver cirrhosis induced by thioacetamide (TAA), focusing on Iba1 and galectin-3. Exp Mol Pathol 2014; 96:382-92. [DOI: 10.1016/j.yexmp.2014.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/07/2014] [Indexed: 12/14/2022]
|
313
|
Abeysinghe HCS, Bokhari L, Dusting GJ, Roulston CL. Brain remodelling following endothelin-1 induced stroke in conscious rats. PLoS One 2014; 9:e97007. [PMID: 24809543 PMCID: PMC4029108 DOI: 10.1371/journal.pone.0097007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/14/2014] [Indexed: 01/20/2023] Open
Abstract
The extent of stroke damage in patients affects the range of subsequent pathophysiological responses that influence recovery. Here we investigate the effect of lesion size on development of new blood vessels as well as inflammation and scar formation and cellular responses within the subventricular zone (SVZ) following transient focal ischemia in rats (n = 34). Endothelin-1-induced stroke resulted in neurological deficits detected between 1 and 7 days (P<0.001), but significant recovery was observed beyond this time. MCID image analysis revealed varying degrees of damage in the ipsilateral cortex and striatum with infarct volumes ranging from 0.76–77 mm3 after 14 days, where larger infarct volumes correlated with greater functional deficits up to 7 days (r = 0.53, P<0.05). Point counting of blood vessels within consistent sample regions revealed that increased vessel numbers correlated significantly with larger infarct volumes 14 days post-stroke in the core cortical infarct (r = 0.81, P<0.0001), core striatal infarct (r = 0.91, P<0.005) and surrounding border zones (r = 0.66, P<0.005; and r = 0.73, P<0.05). Cell proliferation within the SVZ also increased with infarct size (P<0.01) with a greater number of Nestin/GFAP positive cells observed extending towards the border zone in rats with larger infarcts. Lesion size correlated with both increased microglia and astrocyte activation, with severely diffuse astrocyte transition, the formation of the glial scar being more pronounced in rats with larger infarcts. Thus stroke severity affects cell proliferation within the SVZ in response to injury, which may ultimately make a further contribution to glial scar formation, an important factor to consider when developing treatment strategies that promote neurogenesis.
Collapse
Affiliation(s)
- Hima C. S. Abeysinghe
- Department of Surgery, St Vincent’s Campus, University of Melbourne, Victoria, Australia
- * E-mail:
| | - Laita Bokhari
- Neurotrauma Research team, Department of Medicine, St Vincent’s Campus, University of Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Gregory J. Dusting
- Cytoprotection Pharmacology Program, Centre for Eye Research, The Royal Eye and Ear Hospital Melbourne, Victoria, Australia
- Department of Opthamology, Faculty of Medicine, University of Melbourne, Victoria, Australia
| | - Carli L. Roulston
- Neurotrauma Research team, Department of Medicine, St Vincent’s Campus, University of Melbourne, Victoria, Australia
| |
Collapse
|
314
|
Singh V, Mitra S, Sharma AK, Gera R, Ghosh D. Isolation and Characterization of Microglia from Adult Mouse Brain: Selected Applications for ex Vivo Evaluation of Immunotoxicological Alterations Following in Vivo Xenobiotic Exposure. Chem Res Toxicol 2014; 27:895-903. [DOI: 10.1021/tx500046k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vikas Singh
- Immunotoxicology
Division, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2
Rafi Marg, New Delhi-110
001, India
| | - Sumonto Mitra
- Immunotoxicology
Division, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India
| | - Anuj Kumar Sharma
- Immunotoxicology
Division, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India
| | - Ruchi Gera
- Immunotoxicology
Division, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2
Rafi Marg, New Delhi-110
001, India
| | - Debabrata Ghosh
- Immunotoxicology
Division, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India
| |
Collapse
|
315
|
Pey P, Pearce RKB, Kalaitzakis ME, Griffin WST, Gentleman SM. Phenotypic profile of alternative activation marker CD163 is different in Alzheimer's and Parkinson's disease. Acta Neuropathol Commun 2014; 2:21. [PMID: 24528486 PMCID: PMC3940003 DOI: 10.1186/2051-5960-2-21] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/27/2014] [Indexed: 01/07/2023] Open
Abstract
Background Microglial activation is a pathological feature common to both Alzheimer’s and Parkinson’s diseases (AD and PD). The classical activation involves release of pro-inflammatory cytokines and reactive oxygen species. This is necessary for maintenance of tissue homeostasis and host defense, but can cause bystander damage when the activation is sustained and uncontrolled. In recent years the heterogeneous nature of microglial activation states in neurodegenerative diseases has become clear and the focus has shifted to alternative activation states that promote tissue maintenance and repair. We studied the distribution of CD163, a membrane-bound scavenger receptor found on perivascular macrophages. CD163 has an immunoregulatory function, and has been found in the parenchyma in other inflammatory diseases e.g. HIV-encephalitis and multiple sclerosis. In this study, we used immunohistochemistry to compare CD163 immunoreactivity in 31 AD cases, 27 PD cases, and 16 control cases. Associations of microglia with pathological hallmarks of AD and PD were investigated using double immunofluorescence. Results Parenchymal microglia were found to be immunoreactive for CD163 in all of the AD cases, and to a lesser extent in PD cases. There was prominent staining of CD163 immunoreactive microglia in the frontal and occipital cortices of AD cases, and in the brainstem of PD cases. Many of them were associated with Aß plaques in both diseases, and double staining with CD68 demonstrates their phagocytic capability. Leakage of fibrinogen was observed around compromised blood vessels, raising the possibility these microglia might have originated from the periphery. Conclusions Increase in microglia’s CD163 immunoreactivity was more significant in AD than PD, and association of CD163 immunoreactive microglia with Aβ plaques indicate microglia’s attraction towards extracellular protein pathology, i.e. extracellular aggregates of Aβ as compared to intracellular Lewy Bodies in PD. Double staining with CD163 and CD68 might point towards their natural inclination to phagocytose plaques. Fibrinogen leakage and compromise of the blood brain barrier raise the possibility that these are not resident microglia, but systemic macrophages infiltrating the brain.
Collapse
|
316
|
Abbott CJ, Choe TE, Lusardi TA, Burgoyne CF, Wang L, Fortune B. Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats. Invest Ophthalmol Vis Sci 2014; 55:674-87. [PMID: 24398096 DOI: 10.1167/iovs.13-12811] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To compare in vivo retinal nerve fiber layer thickness (RNFLT) and axonal transport at 1 and 2 weeks after an 8-hour acute IOP elevation in rats. METHODS Forty-seven adult male Brown Norway rats were used. Procedures were performed under anesthesia. The IOP was manometrically elevated to 50 mm Hg or held at 15 mm Hg (sham) for 8 hours unilaterally. The RNFLT was measured by spectral-domain optical coherence tomography. Anterograde and retrograde axonal transport was assessed from confocal scanning laser ophthalmoscopy imaging 24 hours after bilateral injections of 2 μL 1% cholera toxin B-subunit conjugated to AlexaFluor 488 into the vitreous or superior colliculi, respectively. Retinal ganglion cell (RGC) and microglial densities were determined using antibodies against Brn3a and Iba-1. RESULTS The RNFLT in experimental eyes increased from baseline by 11% at 1 day (P < 0.001), peaked at 19% at 1 week (P < 0.0001), remained 11% thicker at 2 weeks (P < 0.001), recovered at 3 weeks (P > 0.05), and showed no sign of thinning at 6 weeks (P > 0.05). There was no disruption of anterograde transport at 1 week (superior colliculi fluorescence intensity, 75.3 ± 7.9 arbitrary units [AU] for the experimental eyes and 77.1 ± 6.7 AU for the control eyes) (P = 0.438) or 2 weeks (P = 0.188). There was no obstruction of retrograde transport at 1 week (RCG density, 1651 ± 153 per mm(2) for the experimental eyes and 1615 ± 135 per mm(2) for the control eyes) (P = 0.63) or 2 weeks (P = 0.25). There was no loss of Brn3a-positive RGC density at 6 weeks (P = 0.74) and no increase in microglial density (P = 0.92). CONCLUSIONS Acute IOP elevation to 50 mm Hg for 8 hours does not cause a persisting axonal transport deficit at 1 or 2 weeks or a detectable RNFLT or RGC loss by 6 weeks but does lead to transient RNFL thickening that resolves by 3 weeks.
Collapse
Affiliation(s)
- Carla J Abbott
- Discoveries in Sight Research Laboratories, Legacy Good Samaritan Devers Eye Institute, and Legacy Research Institute, Legacy Health, Portland, Oregon
| | | | | | | | | | | |
Collapse
|
317
|
Lee JC, Ahn JH, Kim IH, Park JH, Yan BC, Cho GS, Ohk TG, Park CW, Cho JH, Kim YM, Lee HY, Won MH. Transient ischemia-induced change of CCR7 immunoreactivity in neurons and its new expression in astrocytes in the gerbil hippocampus. J Neurol Sci 2014; 336:203-10. [DOI: 10.1016/j.jns.2013.10.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/10/2013] [Accepted: 10/28/2013] [Indexed: 12/25/2022]
|
318
|
Slater BJ, Vilson FL, Guo Y, Weinreich D, Hwang S, Bernstein SL. Optic nerve inflammation and demyelination in a rodent model of nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 2013; 54:7952-61. [PMID: 24065807 DOI: 10.1167/iovs.13-12064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Optic nerve (ON) ischemia associated with nonarteric anterior ischemic optic neuropathy (NAION) results in axon and myelin damage. Myelin damage activates the intraneural Ras homolog A (RhoA), contributing to axonal regeneration failure. We hypothesized that increasing extrinsic macrophage activity after ON infarct would scavenge degenerate myelin and improve postischemic ON recovery. We used the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) to upregulate ON macrophage activity, and evaluated GM-CSF's effects after ON ischemia in the NAION rodent model (rAION). METHODS Following rAION induction, GM-CSF was administered via intraventricular injection. Retinal ganglion cell (RGC) stereologic analysis was performed 1 month postinduction. The retinae and optic nerve laminae of vehicle- and GM-CSF-treated animals were examined immunohistochemically and ultrastructurally using transmission electron microscopy (TEM). RhoA activity was analyzed using a rhotekin affinity immunoanalysis and densitometry. Isolated ONs were analyzed functionally ex vivo by compound action potential (CAP) analysis. RESULTS Rodent NAION produces ON postinfarct demyelination and myelin damage, functionally demonstrable by CAP analysis and ultrastructurally by TEM. Granulocyte-macrophage colony-stimulating factor increased intraneural inflammation, activating and recruiting endogenous microglia, with only a moderate amount of exogenous macrophage recruitment. Treatment with GM-CSF reduced postinfarct intraneural RhoA activity, but did not neuroprotect RGCs after rAION. CONCLUSIONS Sudden ON ischemia results in previously unrecognized axonal demyelination, which may have a clinically important role in NAION-related functional defects and recovery. Granulocyte-macrophage colony-stimulating factor is not neuroprotective when administered directly to the optic nerve following ON ischemia, and does not improve axonal regeneration. It dramatically increases ON-microglial activation and recruitment.
Collapse
Affiliation(s)
- Bernard J Slater
- Department of Ophthalmology and Visual Sciences, University of Maryland-Baltimore, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
319
|
Shin JW, Moon JY, Seong JW, Song SH, Cheong YJ, Kang C, Sohn NW. Effects of Tetramethylpyrazine on Microglia Activation in Spinal Cord Compression Injury of Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:1361-76. [PMID: 24228606 DOI: 10.1142/s0192415x13500912] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Secondary mechanisms, including inflammation and microglia activation, serve as targets for the development and application of pharmacological strategies in the management of spinal cord injury (SCI). Tetramethylpyrazine (TMP), an active ingredient of Ligusticum wallichii (chuanxiong), has shown anti-inflammatory and neuroprotective effects against SCI. However, it remains uncertain whether the inflammation-suppressive effects of TMP play a modulatory role over microglia activation in SCI. The present study investigated the effects of TMP on microglia activation and pro-inflammatory cytokines in spinal cord compression injury in mice. For a real-time PCR measurement of pro-inflammatory cytokines, SCI was induced in mice by the clip compression method (30 g force, 1 min) and TMP (15 or 30 mg/kg, i.p.) was administered once, 30 minutes before the SCI induction. For immunohistochemistry, TMP (30 mg/kg, i.p.) treatment was given three times during the first 48 hours after the SCI. 30 mg/kg of TMP treatment reduced the up-regulation of TNF-α, IL-1β and COX-2 mRNA in the spinal tissue at four hours after the SCI induction. TMP also significantly attenuated microglia activation and neutrophil infiltration at 48 hours after the SCI induction. In addition, iNOS expression in the spinal tissue was attenuated with TMP treatment. These results suggest that TMP plays a modulatory role in microglia activation and may protect the spinal cord from or potentially delay secondary spinal cord injury.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Ja-Young Moon
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Ju-Won Seong
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Sang-Hoon Song
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Young-Jin Cheong
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Chulhun Kang
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Nak-Won Sohn
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| |
Collapse
|
320
|
Gao Y, Ottaway N, Schriever SC, Legutko B, García-Cáceres C, de la Fuente E, Mergen C, Bour S, Thaler JP, Seeley RJ, Filosa J, Stern JE, Perez-Tilve D, Schwartz MW, Tschöp MH, Yi CX. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 2013; 62:17-25. [PMID: 24166765 DOI: 10.1002/glia.22580] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 12/24/2022]
Abstract
The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high-fat diet (HFD)-induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild-type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin-receptor mutation), and Type-4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1-ir), cluster of differentiation 68 (CD68-ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1-ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1-ir comparable with WT mice but had significantly lower CD68-ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1-ir, and db/db mice showed increase of CD68-ir. Obese MC4R KO mice fed a SC diet had comparable iba1-ir and CD68-ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon-like peptide-1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity.
Collapse
Affiliation(s)
- Yuanqing Gao
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Zheng X, Liang Y, Kang A, Ma SJ, Xing L, Zhou YY, Dai C, Xie H, Xie L, Wang GJ, Hao HP. Peripheral immunomodulation with ginsenoside Rg1 ameliorates neuroinflammation-induced behavioral deficits in rats. Neuroscience 2013; 256:210-22. [PMID: 24161284 DOI: 10.1016/j.neuroscience.2013.10.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 01/13/2023]
Abstract
Neuroinflammatory disturbances have been closely associated with depression and many other neuropsychiatric diseases. Although targeting neuroinflammatory mediators with centrally acting drugs has shown certain promise, its translation is faced with several challenges especially drug delivery and safety concerns. Here, we report that neuroinflammation-induced behavioral abnormality could be effectively attenuated with immunomodulatory agents that need not to gain brain penetration. In a rat model with intracerebral lipopolysaccharide (LPS) challenge, we validated that ginsenoside Rg1 (Rg1), a well-established anti-inflammatory agent, was unable to produce a direct action in the brain. Interestingly, peripherally restricted Rg1 could effectively attenuate the weight loss, anorexic- and depressive-like behavior as well as neurochemical disturbances associated with central LPS challenge. Biochemical assay of neuroimmune mediators in the periphery revealed that Rg1 could mitigate the deregulation of the hypothalamic-pituitary-adrenal axis and selectively blunt the increase in circulating interleukin-6 levels. Furthermore, these peripheral regulatory effects were accompanied by dampened microglial activation, mitigated expression of pro-inflammatory mediators and neurotoxic species in the central compartment. Taken together, our work suggested that targeting the peripheral immune system may serve as a novel therapeutic approach to neuroinflammation-induced neuropsychiatric disorders. Moreover, our findings provided the rationale for employing peripherally active agents like Rg1 to combat mental disturbances.
Collapse
Affiliation(s)
- X Zheng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China; Department of Pharmaceutical Preparation, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China
| | - Y Liang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China
| | - A Kang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - S-J Ma
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China
| | - L Xing
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Y-Y Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China
| | - C Dai
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China
| | - H Xie
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China
| | - L Xie
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China
| | - G-J Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China.
| | - H-P Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
322
|
Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol 2013; 2013:746068. [PMID: 24223607 PMCID: PMC3810327 DOI: 10.1155/2013/746068] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/06/2013] [Accepted: 08/28/2013] [Indexed: 12/18/2022]
Abstract
Stroke is a leading cause of death worldwide. Ischemic stroke is caused by blockage of blood vessels in the brain leading to tissue death, while intracerebral hemorrhage (ICH) occurs when a blood vessel ruptures, exposing the brain to blood components. Both are associated with glial toxicity and neuroinflammation. Microglia, as the resident immune cells of the central nervous system (CNS), continually sample the environment for signs of injury and infection. Under homeostatic conditions, they have a ramified morphology and phagocytose debris. After stroke, microglia become activated, obtain an amoeboid morphology, and release inflammatory cytokines (the M1 phenotype). However, microglia can also be alternatively activated, performing crucial roles in limiting inflammation and phagocytosing tissue debris (the M2 phenotype). In rodent models, microglial activation occurs very early after stroke and ICH; however, their specific roles in injury and repair remain unclear. This review summarizes the literature on microglial responses after ischemic stroke and ICH, highlighting the mediators of microglial activation and potential therapeutic targets for each condition.
Collapse
|
323
|
Characterization of the mouse neuroinvasiveness of selected European strains of West Nile virus. PLoS One 2013; 8:e74575. [PMID: 24058590 PMCID: PMC3776840 DOI: 10.1371/journal.pone.0074575] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/06/2013] [Indexed: 01/29/2023] Open
Abstract
West Nile virus (WNV) has caused outbreaks and sporadic infections in Central, Eastern and Mediterranean Europe for over 45 years. Most strains responsible for the European and Mediterranean basin outbreaks are classified as lineage 1. In recent years, WNV strains belonging to lineage 1 and 2 have been causing outbreaks of neuroinvasive disease in humans in countries such as Italy, Hungary and Greece, while mass mortality among birds was not reported. This study characterizes three European strains of WNV isolated in Italy (FIN and Ita09) and Hungary (578/10) in terms of in vitro replication kinetics on neuroblastoma cells, LD50 values in C57BL/6 mice, median day mortality, cumulative mortality, concentration of virus in the brain and spinal cord, and the response to infection in the brain. Overall, the results indicate that strains circulating in Europe belonging to both lineage 1 and 2 are highly virulent and that Ita09 and 578/10 are more neurovirulent compared to the FIN strain.
Collapse
|
324
|
Brückner M, Lasarzik I, Jahn-Eimermacher A, Peetz D, Werner C, Engelhard K, Thal SC. High dose infusion of activated protein C (rhAPC) fails to improve neuronal damage and cognitive deficit after global cerebral ischemia in rats. Neurosci Lett 2013; 551:28-33. [DOI: 10.1016/j.neulet.2013.06.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
325
|
Wang H, Nagai A, Sheikh AM, Liang XY, Yano S, Mitaki S, Ishibashi Y, Kobayashi S, Kim SU, Yamaguchi S. Human mesenchymal stem cell transplantation changes proinflammatory gene expression through a nuclear factor-κB-dependent pathway in a rat focal cerebral ischemic model. J Neurosci Res 2013; 91:1440-9. [PMID: 23996632 DOI: 10.1002/jnr.23267] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/20/2013] [Accepted: 06/01/2013] [Indexed: 12/16/2022]
Abstract
Previous studies have demonstrated the immunomodulatory functions of mesenchymal stem cells (MSCs) in cerebral ischemic rats. However, the underlying mechanisms are unclear. The purpose of this study is to investigate the effects of MSC transplantation on transcriptional regulations of proinflammatory genes in cerebral ischemia. Transient ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male Sprague-Dawley rats. After 24 hr, vehicle (PBS) or a human MSC line (B10) was transplanted intravenously. The neurological deficits, infarct volume, cellular accumulations, and gene expression changes were monitored by means of behavior tests, MRI, immunohistochemistry, Western blotting, laser capture microdissection, and real-time PCR. In the core area of the B10 transplantation group, the number of ED1-positive macrophage/microglia was decreased compared with the PBS group. In the core, nuclear factor-κB (NF-κB) was decreased, although CCAAT/enhancer-binding protein β was not changed; both were expressed mainly in ED1-positive macrophage/microglia. Likewise, mRNAs of NF-κB-dependent genes including interleukin-1β, MCP-1, and inducible nitric oxide synthase were decreased in ED1-positive and Iba-1-positive macrophage/microglia in the B10 transplantation group. Moreover, upstream receptors of the NF-κB pathway, including CD40 and Toll-like receptor 2 (TLR2), were decreased. Immunofluorescence results showed that, in the B10 transplantation group, the percentages of NF-κB-positive, CD40-positive, and TLR2-positive cells were decreased in ED1-positive macrophage/microglia. Furthermore, NF-κB-positive cells in the CD40- or TLR2-expressing cell population were decreased in the B10 transplantation group. This study demonstrates that B10 transplantation inhibits NF-κB activation, possibly through inhibition of CD40 and TLR2, which might be responsible for the inhibition of proinflammatory gene expression in macrophage/microglia in the infarct lesion.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Shimane University Faculty of Medicine, Izumo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
326
|
Sun C, Li XX, He XJ, Zhang Q, Tao Y. Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion. Exp Eye Res 2013; 113:105-16. [PMID: 23748101 DOI: 10.1016/j.exer.2013.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/01/2013] [Accepted: 05/21/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Chuan Sun
- Department of Ophthalmology, People's Hospital, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
327
|
Yang JP, Liu HJ, Liu RC. A modified rabbit model of stroke: evaluation using clinical MRI scanner. Neurol Res 2013; 31:1092-6. [DOI: 10.1179/174313209x405100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
328
|
Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators Inflamm 2013; 2013:271359. [PMID: 23935246 PMCID: PMC3723093 DOI: 10.1155/2013/271359] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/24/2013] [Accepted: 06/12/2013] [Indexed: 01/01/2023] Open
Abstract
Substantial evidence indicates an association between clinical depression and altered immune function. Systemic administration of bacterial lipopolysaccharide (LPS) is commonly used to study inflammation-associated behavioral changes in rodents. In these experiments, we tested the hypothesis that peripheral immune activation leads to neuroinflammation and depressive-like behavior in mice. We report that systemic administration of LPS induced astrocyte activation in transgenic GFAP-luc mice and increased immunoreactivity against the microglial marker ionized calcium-binding adapter molecule 1 in the dentate gyrus of wild-type mice. Furthermore, LPS treatment caused a strong but transient increase in cytokine levels in the serum and brain. In addition to studying LPS-induced neuroinflammation, we tested whether sickness could be separated from depressive-like behavior by evaluating LPS-treated mice in a panel of behavioral paradigms. Our behavioral data indicate that systemic LPS administration caused sickness and mild depressive-like behavior. However, due to the overlapping time course and mild effects on depression-related behavior per se, it was not possible to separate sickness from depressive-like behavior in the present rodent model.
Collapse
|
329
|
Role of PGE₂ EP1 receptor in intracerebral hemorrhage-induced brain injury. Neurotox Res 2013; 24:549-59. [PMID: 23824501 DOI: 10.1007/s12640-013-9410-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 01/02/2023]
Abstract
Prostaglandin E₂ (PGE₂) has been described to exert beneficial and detrimental effects in various neurologic disorders. These conflicting roles of PGE₂ could be attributed to its diverse receptor subtypes, EP1-EP4. At present, the precise role of EP1 in intracerebral hemorrhage (ICH) is unknown. Therefore, to elucidate its possible role in ICH, intrastriatal injection of collagenase was given in randomized groups of adult male wildtype (WT) and EP1 receptor knockout (EP1⁻/⁻)C57BL/6 mice. Functional outcomes including neurologic deficits, rotarod performance, open field activity, and adhesive removal performance were evaluated at 24, 48, and 72 h post-ICH. Lesion volume, cell survival and death, were assessed using Cresyl Violet, and Fluoro-Jade staining, respectively. Microglial activation and phagocytosis were estimated using Iba1 immunoreactivity and fluorescently-labeled microspheres. Following 72 h post-ICH, EP1⁻/⁻ mice showed deteriorated outcomes compared to the WT control mice. These outcomes were demonstrated by elevated neurological deficits, exacerbated lesion volume, and significantly worsened sensorimotor functions. Fluoro-Jade staining showed significantly increased numbers of degenerating neurons and reduced neuronal survival in EP1⁻/⁻ compared to WT mice. To assess in vivo phagocytosis, the number of microspheres phagocytosed by Iba1-positive cells was 145.4 ± 15.4 % greater in WT compared to EP1⁻/⁻ mice. These data demonstrate that EP1 deletion exacerbates neuro-behavioral impairments following ICH, potentially by slowing down/impairing microglial phagocytosis. A better understanding of this EP1 mechanism could lead to improved intervention strategies for hemorrhagic stroke.
Collapse
|
330
|
Iseki K, Hagino S, Nikaido T, Zhang Y, Mori T, Yokoya S, Hozumi Y, Goto K, Wanaka A, Tase C. Gliosis-specific transcription factor OASIS coincides with proteoglycan core protein genes in the glial scar and inhibits neurite outgrowth. Biomed Res 2013; 33:345-53. [PMID: 23268958 DOI: 10.2220/biomedres.33.345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OASIS gene, a member of the CREB/ATF transcription factor family, is upregulated in gliosis after CNS injury. However it remains to be determined how OASIS is implicated in gliotic reaction. In a glial scar, chondroitin sulfate proteoglycans (CSPGs) are also upregulated, which engenders the inhibition of axonal regeneration. We investigated the functional role of OASIS in gliosis in relation to CSPG core proteins that render lesions non-permissive for regenerating axons. We first examined the gene expression localization of OASIS using several markers in a cryo-injured mouse brain and compared the expression pattern of CSPG core protein genes with that of OASIS in a glial scar by double-labeling in situ hybridization. Our findings suggest that OASIS is induced in proximal reactive astrocytes that exhibit upregulated expression for CSPGs, including NG2 proteoglycan, versican, brevican, neurocan, and phosphacan core. Furthermore, the membrane fraction derived from OASIS-transfected C6 cells inhibits neurite outgrowth of NG108-15 cells, whereas its neurite outgrowth inhibitory effect is abrogated after chondroitinase ABC treatment. OASIS is likely to be involved in the regulatory mechanism of non-permissive environments for axonal outgrowth.
Collapse
Affiliation(s)
- Ken Iseki
- Department of Emergency and Critical Care Medicine, Yamagata University School of Medicine, Iida-nishi, Yamagata, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
331
|
Amyloid-β plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound. Exp Neurol 2013; 248:16-29. [PMID: 23707300 DOI: 10.1016/j.expneurol.2013.05.008] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 05/02/2013] [Accepted: 05/13/2013] [Indexed: 01/27/2023]
Abstract
Noninvasive, targeted drug delivery to the brain can be achieved using transcranial focused ultrasound (FUS), which transiently increases the permeability of the blood-brain barrier (BBB) for localized delivery of therapeutics from the blood to the brain. Previously, we have demonstrated that FUS can deliver intravenously-administered antibodies to the brain of a mouse model of Alzheimer's disease (AD) and rapidly reduce plaques composed of amyloid-β peptides (Aβ). Here, we investigated two potential effects of transcranial FUS itself that could contribute to a reduction of plaque pathology, namely the delivery of endogenous antibodies to the brain and the activation of glial cells. We demonstrate that transcranial FUS application leads to a significant reduction in plaque burden four days after a single treatment in the TgCRND8 mouse model of AD and that endogenous antibodies are found bound to Aβ plaques. Immunohistochemical and western blot analyses showed an increase in endogenous immunoglobulins within the FUS-targeted cortex. Subsequently, microglia and astrocytes in FUS-treated cortical regions show signs of activation through increases in protein expression and changes in glial size, without changes in glial cell numbers. Enhanced activation of glia correlated with increased internalization of Aβ in microglia and astrocytes. Together these data demonstrate that FUS improved the bioavailability of endogenous antibodies and led to a temporal activation of glial cells, providing evidence towards antibody- and glia-dependent mechanisms of FUS-mediated plaque reduction.
Collapse
|
332
|
Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology 2013; 118:502-15. [PMID: 23314110 DOI: 10.1097/aln.0b013e3182834d77] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND : Recent population studies have suggested that children with multiple exposures to anesthesia and surgery at an early age are at an increased risk of cognitive impairment. The authors therefore have established an animal model with single versus multiple exposures of anesthetic(s) in young versus adult mice, aiming to distinguish the role of different types of anesthesia in cognitive impairment. METHODS : Six- and 60-day-old mice were exposed to various anesthesia regimens. The authors then determined the effects of the anesthesia on learning and memory function, levels of proinflammatory cytokine interleukin-6 and tumor necrosis factor-α in brain tissues, and the amount of ionized calcium-binding adaptor molecule 1-positive cells, the marker of microglia activation, in the hippocampus. RESULTS : In this article, the authors show that anesthesia with 3% sevoflurane for 2 h daily for 3 days induced cognitive impairment and neuroinflammation (e.g., increased interleukin-6 levels, 151 ± 2.3% [mean ± SD] vs. 100 ± 9.0%, P = 0.035, n = 6) in young but not in adult mice. Anesthesia with 3% sevoflurane for 2 h daily for 1 day and 9% desflurane for 2 h daily for 3 days induced neither cognitive impairment nor neuroinflammation. Finally, an enriched environment and antiinflammatory treatment (ketorolac) ameliorated the sevoflurane-induced cognitive impairment. CONCLUSIONS : Anesthesia-induced cognitive impairment may depend on developmental stage, anesthetic agent, and number of exposures. These findings also suggest the cellular basis and the potential prevention and treatment strategies for anesthesia-induced cognitive impairment, which may ultimately lead to safer anesthesia care and better postoperative outcomes for children.
Collapse
|
333
|
Wang Y, Brown DP, Duan Y, Kong W, Watson BD, Goldberg JL. A novel rodent model of posterior ischemic optic neuropathy. JAMA Ophthalmol 2013; 131:194-204. [PMID: 23544206 DOI: 10.1001/2013.jamaophthalmol.271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES To develop a reliable, reproducible rat model of posterior ischemic optic neuropathy (PION) and study the cellular responses in the optic nerve and retina. METHODS Posterior ischemic optic neuropathy was induced in adult rats by photochemically induced ischemia. Retinal and optic nerve vasculature was examined by fluorescein isothiocyanate–dextran extravasation. Tissue sectioning and immunohistochemistry were used to investigate the pathologic changes. Retinal ganglion cell survival at different times after PION induction, with or without neurotrophic application, was quantified by fluorogold retrograde labeling. RESULTS Optic nerve injury was confirmed after PION induction, including local vascular leakage, optic nerve edema, and cavernous degeneration. Immunostaining data revealed microglial activation and focal loss of astrocytes, with adjacent astrocytic hypertrophy. Up to 23%, 50%, and 70% retinal ganglion cell loss was observed at 1 week, 2 weeks, and 3 weeks, respectively, after injury compared with a sham control group. Experimental treatment by brain-derived neurotrophic factor and ciliary neurotrophic factor remarkably prevented retinal ganglion cell loss in PION rats. At 3 weeks after injury, more than 40% of retinal ganglion cells were saved by the application of neurotrophic factors. CONCLUSIONS Rat PION created by photochemically induced ischemia is a reproducible and reliable animal model for mimicking the key features of human PION. CLINICAL RELEVANCE The correspondence between the features of this rat PION model to those of human PION makes it an ideal model to study the pathophysiologic course of the disease, most of which remains to be elucidated. Furthermore, it provides an optimal model for testing therapeutic approaches for optic neuropathies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
334
|
Shrivastava K, Gonzalez P, Acarin L. The immune inhibitory complex CD200/CD200R is developmentally regulated in the mouse brain. J Comp Neurol 2013; 520:2657-75. [PMID: 22323214 DOI: 10.1002/cne.23062] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The CD200/CD200R inhibitory immune ligand-receptor system regulates microglial activation/quiescence in adult brain. Here, we investigated CD200/CD200R at different stages of postnatal development, when microglial maturation takes place. We characterized the spatiotemporal, cellular, and quantitative expression pattern of CD200 and CD200R in the developing and adult C57/BL6 mice brain by immunofluorescent labeling and Western blotting. CD200 expression increased from postnatal day 1 (P1) to P5-P7, when maximum levels were found, and decreased to adulthood. CD200 was located surrounding neuronal bodies, and very prominently in cortical layer I, where CD200(+) structures included glial fibrillary acidic protein (GFAP)(+) astrocytes until P7. In the hippocampus, CD200 was mainly observed in the hippocampal fissure, where GFAP(+) /CD200(+) astrocytes were also found until P7. CD200(+) endothelium was seen in the hippocampal fissure and cortical blood vessels, notably from P14, showing maximum vascular CD200 in adults. CD200R(+) cells were a population of ameboid/pseudopodic Iba1(+) microglia/macrophages observed at all ages, but significantly decreasing with increasing age. CD200R(+) /Iba1(+) macrophages were prominent in the pial meninges and ventricle lining, mainly at P1-P5. CD200R(+) /Iba1(+) perivascular macrophages were observed in cortical and hippocampal fissure blood vessels, showing maximum density at P7, but being prominent until adulthood. CD200R(+) /Iba1(+) ameboid microglia in the cingulum at P1-P5 were the only CD200R(+) cells in the nervous tissue. In conclusion, the main sites of CD200/CD200R interaction seem to include the molecular layer and pial surface in neonates and blood vessels from P7 until adulthood, highlighting the possible role of the CD200/CD200R system in microglial development and renewal.
Collapse
Affiliation(s)
- Kalpana Shrivastava
- Medical Histology, Institute of Neuroscience, Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma Barcelona, Bellaterra 08193, Barcelona, Spain.
| | | | | |
Collapse
|
335
|
Magnani DM, Lyons ET, Forde TS, Shekhani MT, Adarichev VA, Splitter GA. Osteoarticular tissue infection and development of skeletal pathology in murine brucellosis. Dis Model Mech 2013; 6:811-8. [PMID: 23519029 PMCID: PMC3634663 DOI: 10.1242/dmm.011056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Brucellosis, a frequent bacterial zoonosis, can produce debilitating chronic disease with involvement of multiple organs in human patients. Whereas acute brucellosis is well studied using the murine animal model, long-term complications of host-pathogen interaction remain largely elusive. Human brucellosis frequently results in persistent, chronic osteoarticular system involvement, with complications such as arthritis, spondylitis and sacroiliitis. Here, we focused on identifying infectious sites in the mouse that parallel Brucella melitensis foci observed in patients. In vivo imaging showed rapid bacterial dispersal to multiple sites of the murine axial skeleton. In agreement with these findings, immunohistochemistry revealed the presence of bacteria in bones and limbs, and in the lower spine vertebrae of the axial skeleton where they were preferentially located in the bone marrow. Surprisingly, some animals developed arthritis in paws and spine after infection, but without obvious bacteria in these sites. The identification of Brucella in the bones of mice corroborates the findings in humans that these osteoarticular sites are important niches for the persistence of Brucella in the host, but the mechanisms that mediate pathological manifestations in these sites remain unclear. Future studies addressing the immune responses within osteoarticular tissue foci could elucidate important tissue injury mediators and Brucella survival strategies.
Collapse
Affiliation(s)
- Diogo M Magnani
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
336
|
Valous NA, Lahrmann B, Zhou W, Veltkamp R, Grabe N. Multistage histopathological image segmentation of Iba1-stained murine microglias in a focal ischemia model: Methodological workflow and expert validation. J Neurosci Methods 2013; 213:250-62. [DOI: 10.1016/j.jneumeth.2012.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 01/05/2023]
|
337
|
Blume LC, Bass CE, Childers SR, Dalton GD, Roberts DCS, Richardson JM, Xiao R, Selley DE, Howlett AC. Striatal CB1 and D2 receptors regulate expression of each other, CRIP1A and δ opioid systems. J Neurochem 2013; 124:808-20. [PMID: 23286559 DOI: 10.1111/jnc.12139] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 11/30/2022]
Abstract
Although biochemical and physiological evidence suggests a strong interaction between striatal CB1 cannabinoid (CB1 R) and D2 dopamine (D2 R) receptors, the mechanisms are poorly understood. We targeted medium spiny neurons of the indirect pathway using shRNA to knockdown either CB1 R or D2 R. Chronic reduction in either receptor resulted in deficits in gene and protein expression for the alternative receptor and concomitantly increased expression of the cannabinoid receptor interacting protein 1a (CRIP1a), suggesting a novel role for CRIP1a in dopaminergic systems. Both CB1 R and D2 R knockdown reduced striatal dopaminergic-stimulated [(35) S]GTPγS binding, and D2 R knockdown reduced pallidal WIN55212-2-stimulated [(35) S]GTPγS binding. Decreased D2 R and CB1 R activity was associated with decreased striatal phosphoERK. A decrease in mRNA for opioid peptide precursors pDYN and pENK accompanied knockdown of CB1 Rs or D2 Rs, and over-expression of CRIP1a. Down-regulation in opioid peptide mRNAs was followed in time by increased DOR1 but not MOR1 expression, leading to increased [D-Pen2, D-Pen5]-enkephalin-stimulated [(35) S]GTPγS binding in the striatum. We conclude that mechanisms intrinsic to striatal medium spiny neurons or extrinsic via the indirect pathway adjust for changes in CB1 R or D2 R levels by modifying the expression and signaling capabilities of the alternative receptor as well as CRIP1a and the DELTA opioid system.
Collapse
Affiliation(s)
- Lawrence C Blume
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Jellema RK, Lima Passos V, Zwanenburg A, Ophelders DRMG, De Munter S, Vanderlocht J, Germeraad WTV, Kuypers E, Collins JJP, Cleutjens JPM, Jennekens W, Gavilanes AWD, Seehase M, Vles HJ, Steinbusch H, Andriessen P, Wolfs TGAM, Kramer BW. Cerebral inflammation and mobilization of the peripheral immune system following global hypoxia-ischemia in preterm sheep. J Neuroinflammation 2013; 10:13. [PMID: 23347579 PMCID: PMC3614445 DOI: 10.1186/1742-2094-10-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/07/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is one of the most important causes of brain injury in preterm infants. Preterm HIE is predominantly caused by global hypoxia-ischemia (HI). In contrast, focal ischemia is most common in the adult brain and known to result in cerebral inflammation and activation of the peripheral immune system. These inflammatory responses are considered to play an important role in the adverse outcomes following brain ischemia. In this study, we hypothesize that cerebral and peripheral immune activation is also involved in preterm brain injury after global HI. METHODS Preterm instrumented fetal sheep were exposed to 25 minutes of umbilical cord occlusion (UCO) (n = 8) at 0.7 gestation. Sham-treated animals (n = 8) were used as a control group. Brain sections were stained for ionized calcium binding adaptor molecule 1 (IBA-1) to investigate microglial proliferation and activation. The peripheral immune system was studied by assessment of circulating white blood cell counts, cellular changes of the spleen and influx of peripheral immune cells (MPO-positive neutrophils) into the brain. Pre-oligodendrocytes (preOLs) and myelin basic protein (MBP) were detected to determine white matter injury. Electro-encephalography (EEG) was recorded to assess functional impairment by interburst interval (IBI) length analysis. RESULTS Global HI resulted in profound activation and proliferation of microglia in the hippocampus, periventricular and subcortical white matter. In addition, non-preferential mobilization of white blood cells into the circulation was observed within 1 day after global HI and a significant influx of neutrophils into the brain was detected 7 days after the global HI insult. Furthermore, global HI resulted in marked involution of the spleen, which could not be explained by increased splenic apoptosis. In concordance with cerebral inflammation, global HI induced severe brain atrophy, region-specific preOL vulnerability, hypomyelination and persistent suppressed brain function. CONCLUSIONS Our data provided evidence that global HI in preterm ovine fetuses resulted in profound cerebral inflammation and mobilization of the peripheral innate immune system. These inflammatory responses were paralleled by marked injury and functional loss of the preterm brain. Further understanding of the interplay between preterm brain inflammation and activation of the peripheral immune system following global HI will contribute to the development of future therapeutic interventions in preterm HIE.
Collapse
Affiliation(s)
- Reint K Jellema
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Valéria Lima Passos
- Department of Methodology and Statistics, Maastricht University, P. Debyeplein 1, Maastricht, 6229 HA, The Netherlands
| | - Alex Zwanenburg
- Department of Biomedical Technology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
- Department of Clinical Physics, Maxima Medical Centre, De Run 4600, Veldhoven, 5504 DB, The Netherlands
| | - Daan RMG Ophelders
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Stephanie De Munter
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Joris Vanderlocht
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Wilfred TV Germeraad
- Department of Internal Medicine, Division of Haematology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Elke Kuypers
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Jennifer JP Collins
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Jack PM Cleutjens
- Department of Pathology, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Ward Jennekens
- Neonatal Intensive Care Unit, Maxima Medical Centre, De Run 4600, Veldhoven, 5504 DB, The Netherlands
- Department of Clinical Physics, Maxima Medical Centre, De Run 4600, Veldhoven, 5504 DB, The Netherlands
| | - Antonio WD Gavilanes
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Matthias Seehase
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Hans J Vles
- Department of Child Neurology, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Harry Steinbusch
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Peter Andriessen
- Neonatal Intensive Care Unit, Maxima Medical Centre, De Run 4600, Veldhoven, 5504 DB, The Netherlands
- Department of Clinical Physics, Maxima Medical Centre, De Run 4600, Veldhoven, 5504 DB, The Netherlands
| | - Tim GAM Wolfs
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Boris W Kramer
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
339
|
Boscia F, D'Avanzo C, Pannaccione A, Secondo A, Casamassa A, Formisano L, Guida N, Scorziello A, Di Renzo G, Annunziato L. New roles of NCX in glial cells: activation of microglia in ischemia and differentiation of oligodendrocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:307-16. [PMID: 23224890 DOI: 10.1007/978-1-4614-4756-6_26] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The initiation of microglial responses to the ischemic injury involves modifications of calcium homeostasis. Changes in [Ca(2+)](i) levels have also been shown to influence the developmental processes that accompany the transition of human oligodendrocyte precursor cells (OPCs) into mature myelinating oligodendrocytes and are required for the initiation of myelination and remyelination processes.We investigated the regional and temporal changes of NCX1 protein in microglial cells of the peri-infarct and core regions after permanent middle cerebral artery occlusion (pMCAO). Interestingly, 3 and 7 days after pMCAO, NCX1 signal strongly increased in the round-shaped microglia invading the infarct core. Cultured microglial cells from the core displayed increased NCX1 expression as compared with contralateral cells and showed enhanced NCX activity in the reverse mode of operation. Similarly, NCX activity and NCX1 protein expression were significantly enhanced in BV2 microglia exposed to oxygen and glucose deprivation, whereas NCX2 and NCX3 were downregulated. Interestingly, in NCX1-silenced cells, [Ca(2+)](i) increase induced by hypoxia was completely prevented. The upregulation of NCX1 expression and activity observed in microglia after pMCAO suggests a relevant role of NCX1 in modulating microglia functions in the postischemic brain.Next, we explored whether calcium signals mediated by NCX1, NCX2, or NCX3 play a role in oligodendrocyte maturation. Functional studies, as well as mRNA and protein expression analyses, revealed that NCX1 and NCX3, but not NCX2, were divergently modulated during OPC differentiation into oligodendrocyte. In fact, while NCX1 was downregulated, NCX3 was strongly upregulated during the oligodendrocyte development. Whereas the knocking down of the NCX3 isoform in OPCs prevented the upregulation of the myelin protein markers CNPase and MBP, its overexpression induced their upregulation. Furthermore, NCX3 knockout mice exhibited not only a reduced size of spinal cord but also a marked hypomyelination, as revealed by the decrease in MBP expression and by the accompanying increase in OPCs number. Our findings indicate that calcium signaling mediated by NCX3 plays a crucial role in oligodendrocyte maturation and myelin formation.
Collapse
Affiliation(s)
- Francesca Boscia
- Department of Neuroscience, Federico II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Mine Y, Tatarishvili J, Oki K, Monni E, Kokaia Z, Lindvall O. Grafted human neural stem cells enhance several steps of endogenous neurogenesis and improve behavioral recovery after middle cerebral artery occlusion in rats. Neurobiol Dis 2012; 52:191-203. [PMID: 23276704 DOI: 10.1016/j.nbd.2012.12.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/30/2012] [Accepted: 12/18/2012] [Indexed: 12/12/2022] Open
Abstract
Neural stem/progenitor cells (NSPCs) in subventricular zone (SVZ) produce new striatal neurons during several months after stroke, which may contribute to recovery. Intracerebral grafts of NSPCs can exert beneficial effects after stroke through neuronal replacement, trophic actions, neuroprotection, and modulation of inflammation. Here we have explored whether human fetal striatum-derived NSPC-grafts influence striatal neurogenesis and promote recovery in stroke-damaged brain. T cell-deficient rats were subjected to 1h middle cerebral artery occlusion (MCAO). Human fetal NSPCs or vehicle were implanted into ipsilateral striatum 48 h after MCAO, animals were assessed behaviorally, and perfused at 6 or 14 weeks. Grafted human NSPCs survived in all rats, and a subpopulation had differentiated to neuroblasts or mature neurons at 6 and 14 weeks. Numbers of proliferating cells in SVZ and new migrating neuroblasts and mature neurons were higher, and numbers of activated microglia/macrophages were lower in the ischemic striatum of NSPC-grafted compared to vehicle-injected group both at 6 and 14 weeks. A fraction of grafted NSPCs projected axons from striatum to globus pallidus. The NSPC-grafted rats showed improved functional recovery in stepping and cylinder tests from 6 and 12 weeks, respectively. Our data show, for the first time, that intrastriatal implants of human fetal NSPCs exert a long-term enhancement of several steps of striatal neurogensis after stroke. The grafts also suppress striatal inflammation and ameliorate neurological deficits. Our findings support the idea that combination of NSPC transplantation and stimulation of neurogenesis from endogenous NSPCs may become a valuable strategy for functional restoration after stroke.
Collapse
Affiliation(s)
- Yutaka Mine
- Laboratory of Stem Cells and Restorative Neurology, University Hospital, SE-221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
341
|
Robertson NJ, Kato T, Bainbridge A, Chandrasekaran M, Iwata O, Kapetanakis A, Faulkner S, Cheong J, Iwata S, Hristova M, Cady E, Raivich G. Methyl-isobutyl amiloride reduces brain Lac/NAA, cell death and microglial activation in a perinatal asphyxia model. J Neurochem 2012; 124:645-57. [DOI: 10.1111/jnc.12097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/07/2012] [Accepted: 11/05/2012] [Indexed: 01/12/2023]
Affiliation(s)
| | - Takenori Kato
- Institute for Women's Health; University College London; London UK
- Nagoya City University; Nagoya Japan
| | - Alan Bainbridge
- Medical Physics and Bioengineering; University College London Hospitals; London UK
| | | | - Osuke Iwata
- Institute for Women's Health; University College London; London UK
| | | | - Stuart Faulkner
- Institute for Women's Health; University College London; London UK
| | - Jeanie Cheong
- Institute for Women's Health; University College London; London UK
| | - Sachiko Iwata
- Institute for Women's Health; University College London; London UK
| | - Mariya Hristova
- Institute for Women's Health; University College London; London UK
| | - Ernest Cady
- Medical Physics and Bioengineering; University College London Hospitals; London UK
| | - Gennadij Raivich
- Institute for Women's Health; University College London; London UK
| |
Collapse
|
342
|
Wijesundera KK, Juniantito V, Golbar HM, Fujisawa K, Tanaka M, Ichikawa C, Izawa T, Kuwamura M, Yamate J. Expressions of Iba1 and galectin-3 (Gal-3) in thioacetamide (TAA)-induced acute rat liver lesions. ACTA ACUST UNITED AC 2012; 65:799-808. [PMID: 23265716 DOI: 10.1016/j.etp.2012.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 10/03/2012] [Accepted: 11/22/2012] [Indexed: 12/24/2022]
Abstract
Ionized calcium binding adaptor molecule 1 (Iba1) is associated with membrane ruffling and motility of cells. Galectin-3 (Gal-3) is a β-galactoside binding animal lectin, and regulates fibrogenesis probably through transforming growth factor-β1. To evaluate macrophage properties, expressions of Iba1 and Gal-3 were investigated, in relation to macrophages expressing CD68 (ED1; reflecting increased phagocytosis) and CD163 (ED2; implying proinflammatory factor productions) in centrilobular lesions induced in rat livers with thioacetamide (TAA; 300 mg/kg body weight, once intraperitoneally). In agreement with expression patterns of CD68(+) and CD163(+) macrophages, cells reacting to Iba1 and Gal-3 were increased in numbers on post-injection (PI) days 1-5, peaking on day 2; thereafter, the positive cells gradually decreased to control levels until PI days 7 and 10. The increased expressions of Iba1 and Gal-3 were confirmed at mRNA levels by the RT-PCR. Double immunofluorescence staining on PI days 2 and 3 demonstrated Iba1 expression in 15-46% of CD68(+) and CD163(+) macrophages, and Gal-3 expression in 65-82% of CD68(+) and CD163(+) macrophages; Gal-3 expression was observed in 84-93% of Iba1(+) cells. Interestingly, Gal-3 was also expressed in a small number of α-smooth muscle actin-positive myofibroblasts in fibrotic lesions developed in injured centrilobular areas. These findings indicate that macrophages with various functions can participate in development of liver lesions and resultant fibrosis. Besides CD68 and CD163, Iba1 and Gal-3 immunohistochemistry for macrophages would be useful to analyze the pathogenesis behind developing hepatotoxicity.
Collapse
Affiliation(s)
- Kavindra Kumara Wijesundera
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka 598-8531, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Robertson NJ, Faulkner S, Fleiss B, Bainbridge A, Andorka C, Price D, Powell E, Lecky-Thompson L, Thei L, Chandrasekaran M, Hristova M, Cady EB, Gressens P, Golay X, Raivich G. Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain 2012. [PMID: 23183236 DOI: 10.1093/brain/aws285] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite treatment with therapeutic hypothermia, almost 50% of infants with neonatal encephalopathy still have adverse outcomes. Additional treatments are required to maximize neuroprotection. Melatonin is a naturally occurring hormone involved in physiological processes that also has neuroprotective actions against hypoxic-ischaemic brain injury in animal models. The objective of this study was to assess neuroprotective effects of combining melatonin with therapeutic hypothermia after transient hypoxia-ischaemia in a piglet model of perinatal asphyxia using clinically relevant magnetic resonance spectroscopy biomarkers supported by immunohistochemistry. After a quantified global hypoxic-ischaemic insult, 17 newborn piglets were randomized to the following: (i) therapeutic hypothermia (33.5°C from 2 to 26 h after resuscitation, n = 8) and (ii) therapeutic hypothermia plus intravenous melatonin (5 mg/kg/h over 6 h started at 10 min after resuscitation and repeated at 24 h, n = 9). Cortical white matter and deep grey matter voxel proton and whole brain (31)P magnetic resonance spectroscopy were acquired before and during hypoxia-ischaemia, at 24 and 48 h after resuscitation. There was no difference in baseline variables, insult severity or any physiological or biochemical measure, including mean arterial blood pressure and inotrope use during the 48 h after hypoxia-ischaemia. Plasma levels of melatonin were 10 000 times higher in the hypothermia plus melatonin than hypothermia alone group. Melatonin-augmented hypothermia significantly reduced the hypoxic-ischaemic-induced increase in the area under the curve for proton magnetic resonance spectroscopy lactate/N-acetyl aspartate and lactate/total creatine ratios in the deep grey matter. Melatonin-augmented hypothermia increased levels of whole brain (31)P magnetic resonance spectroscopy nucleotide triphosphate/exchangeable phosphate pool. Correlating with improved cerebral energy metabolism, TUNEL-positive nuclei were reduced in the hypothermia plus melatonin group compared with hypothermia alone in the thalamus, internal capsule, putamen and caudate, and there was reduced cleaved caspase 3 in the thalamus. Although total numbers of microglia were not decreased in grey or white matter, expression of the prototypical cytotoxic microglial activation marker CD86 was decreased in the cortex at 48 h after hypoxia-ischaemia. The safety and improved neuroprotection with a combination of melatonin with cooling support phase II clinical trials in infants with moderate and severe neonatal encephalopathy.
Collapse
Affiliation(s)
- Nicola J Robertson
- Institute for Women's Health, University College London, 74 Huntley Street, London WC1E 6AU, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
344
|
Spatiotemporal pattern of rod degeneration in the S334ter-line-3 rat model of retinitis pigmentosa. Cell Tissue Res 2012; 351:29-40. [DOI: 10.1007/s00441-012-1522-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/18/2012] [Indexed: 11/25/2022]
|
345
|
Fuentes-Santamaría V, Alvarado JC, Juiz JM. Long-term interaction between microglial cells and cochlear nucleus neurons after bilateral cochlear ablation. J Comp Neurol 2012; 520:2974-90. [PMID: 22351306 DOI: 10.1002/cne.23088] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The removal of afferent activity has been reported to modify neuronal activity in the cochlear nucleus of adult rats. After cell damage, microglial cells are rapidly activated, initiating a series of cellular responses that influences neuronal function and survival. To investigate how this glial response occurs and how it might influence injured neurons, bilateral cochlear ablations were performed on adult rats to examine the short-term (16 and 24 hours and 4 and 7 days) and long-term (15, 30, and 100 days) changes in the distribution and morphology of microglial cells (immunostained with the ionized calcium-binding adaptor molecule 1; Iba-1) and the interaction of microglial cells with deafferented neurons in the ventral cochlear nucleus. A significant increase in the mean cross-sectional area and Iba-1 immunostaining of microglial cells in the cochlear nucleus was observed at all survival times after the ablation compared with control animals. These increases were concomitant with an increase in the area of Iba-1 immunostaining at 24 hours and 4, 7, and 15 days postablation. Additionally, microglial cells were frequently seen apposing the cell bodies and dendrites of auditory neurons at 7, 15, and 30 days postablation. In summary, these results provide evidence for persistent glial activation in the ventral cochlear nucleus and suggest that long-term interaction occurs between microglial cells and deafferented cochlear nucleus neurons following bilateral cochlear ablation, which could facilitate the remodeling of the affected neuronal circuits.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaría
- Facultad de Medicina e Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, 02006 Albacete, Spain.
| | | | | |
Collapse
|
346
|
Theodoric N, Bechberger JF, Naus CC, Sin WC. Role of gap junction protein connexin43 in astrogliosis induced by brain injury. PLoS One 2012; 7:e47311. [PMID: 23110066 PMCID: PMC3479098 DOI: 10.1371/journal.pone.0047311] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
Astrogliosis is a process that involves morphological and biochemical changes associated with astrocyte activation in response to cell damage in the brain. The upregulation of intermediate filament proteins including glial fibrillary acidic protein (GFAP), nestin and vimentin are often used as indicators for astrogliosis. Although connexin43 (Cx43), a channel protein widely expressed in adult astrocytes, exhibits enhanced immunoreactivity in the peri-lesion region, its role in astrogliosis is still unclear. Here, we correlated the temporal and spatial expression of Cx43 to the activation of astrocytes and microglia in response to an acute needle stab wound in vivo. We found large numbers of microglia devoid of Cx43 in the needle wound at 3 days post injury (dpi) while reactive astrocytes expressing Cx43 were present in the peripheral zone surrounding the injury site. A redistribution of Cx43 to the needle site, corresponding to the increased presence of GFAP-positive reactive astrocytes in the region, was only apparent from 6 dpi and sustained until at least 15 dpi. Interestingly, the extent of microglial activation and subsequent astrogliosis in the brain of Cx43 knockout mice was significantly larger than those of wild type, suggesting that Cx43 expression limits the degree of microgliosis. Although Cx43 is not essential for astrogliosis and microglial activation induced by a needle injury, our results demonstrate that Cx43 is a useful marker for injury induced astrogliosis due to its enhanced expression specifically within a small region of the lesion for an extended period. As a channel protein, Cx43 is a potential in vivo diagnostic tool of asymptomatic brain injury.
Collapse
Affiliation(s)
- Nicolas Theodoric
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - John F. Bechberger
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wun-Chey Sin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
347
|
Pál G, Vincze C, Renner É, Wappler EA, Nagy Z, Lovas G, Dobolyi A. Time course, distribution and cell types of induction of transforming growth factor betas following middle cerebral artery occlusion in the rat brain. PLoS One 2012; 7:e46731. [PMID: 23056426 PMCID: PMC3466286 DOI: 10.1371/journal.pone.0046731] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 09/03/2012] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-βs (TGF-β1–3) are cytokines that regulate the proliferation, differentiation, and survival of various cell types. The present study describes the induction of TGF-β1–3 in the rat after focal ischemia at 3 h, 24 h, 72 h and 1 month after transient (1 h) or permanent (24 h) middle cerebral artery occlusion (MCAO) using in situ hybridization histochemistry and quantitative analysis. Double labeling with different markers was used to identify the localization of TGF-β mRNA relative to the penumbra and glial scar, and the types of cells expressing TGF-βs. TGF-β1 expression increased 3 h after MCAO in the penumbra and was further elevated 24 h after MCAO. TGF-β1 was present mostly in microglial cells but also in some astrocytes. By 72 h and 1 month after the occlusion, TGF-β1 mRNA-expressing cells also appeared in microglia within the ischemic core and in the glial scar. In contrast, TGF-β2 mRNA level was increased in neurons but not in astrocytes or microglial cells in layers II, III, and V of the ipsilateral cerebral cortex 24 h after MCAO. TGF-β3 was not induced in cells around the penumbra. Its expression increased in only a few cells in layer II of the cerebral cortex 24 h after MCAO. The levels of TGF-β2 and -β3 decreased at subsequent time points. Permanent MCAO further elevated the levels of all 3 subtypes of TGF-βs suggesting that reperfusion is not a major factor in their induction. TGF-β1 did not co-localize with either Fos or ATF-3, while the co-localization of TGF-β2 with Fos but not with ATF-3 suggests that cortical spreading depolarization, but not damage to neural processes, might be the mechanism of induction for TGF-β2. The results imply that endogenous TGF-βs are induced by different mechanisms following an ischemic attack in the brain suggesting that they are involved in distinct spatially and temporally regulated inflammatory and neuroprotective processes.
Collapse
Affiliation(s)
- Gabriella Pál
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Csilla Vincze
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Éva Renner
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Edina A. Wappler
- Cardiovascular Center, Department Section of Vascular Neurology, Semmelweis University, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Nagy
- Cardiovascular Center, Department Section of Vascular Neurology, Semmelweis University, Budapest, Hungary
| | - Gábor Lovas
- Department of Neurology, Semmelweis University, Budapest, Hungary
- Department of Neurology, Jahn Ferenc Teaching Hospital, Budapest, Hungary
| | - Arpád Dobolyi
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
348
|
Lee JS, Song JH, Sohn NW, Shin JW. Inhibitory Effects of Ginsenoside Rb1 on Neuroinflammation Following Systemic Lipopolysaccharide Treatment in Mice. Phytother Res 2012; 27:1270-6. [DOI: 10.1002/ptr.4852] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/29/2012] [Accepted: 09/02/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Joon-Suk Lee
- Department of Oriental Medical Science, Graduate School of East-west Medical Science; Kyung Hee University; Yongin; 446-701; South Korea
| | | | | | | |
Collapse
|
349
|
Kolarcik CL, Bourbeau D, Azemi E, Rost E, Zhang L, Lagenaur CF, Weber DJ, Cui XT. In vivo effects of L1 coating on inflammation and neuronal health at the electrode-tissue interface in rat spinal cord and dorsal root ganglion. Acta Biomater 2012; 8:3561-75. [PMID: 22750248 PMCID: PMC3429718 DOI: 10.1016/j.actbio.2012.06.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 01/08/2023]
Abstract
The spinal cord (SC) and dorsal root ganglion (DRG) are target implantation regions for neural prosthetics, but the tissue-electrode interface in these regions is not well-studied. To improve understanding of these locations, the tissue reactions around implanted electrodes were characterized. L1, an adhesion molecule shown to maintain neuronal density and reduce gliosis in brain tissue, was then evaluated in SC and DRG implants. Following L1 immobilization onto neural electrodes, the bioactivities of the coatings were verified in vitro using neuron, astrocyte and microglia cultures. Non-modified and L1-coated electrodes were implanted into adult rats for 1 or 4 weeks. Hematoxylin and eosin staining along with cell-type specific antibodies were used to characterize the tissue response. In the SC and DRG, cells aggregated at the electrode-tissue interface. Microglia staining was more intense around the implant site and decreased with distance from the interface. Neurofilament staining in both locations decreased or was absent around the implant, compared with surrounding tissue. With L1, neurofilament staining was significantly increased while neuronal cell death decreased. These results indicate that L1-modified electrodes may result in an improved chronic neural interface and will be evaluated in recording and stimulation studies.
Collapse
Affiliation(s)
| | - Dennis Bourbeau
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA USA
| | - Erdrin Azemi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
| | - Erika Rost
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Ling Zhang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Carl F. Lagenaur
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA USA
| | - Douglas J. Weber
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA USA
| | - X. Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
350
|
Kaufmann W, Bolon B, Bradley A, Butt M, Czasch S, Garman RH, George C, Gröters S, Krinke G, Little P, McKay J, Narama I, Rao D, Shibutani M, Sills R. Proliferative and nonproliferative lesions of the rat and mouse central and peripheral nervous systems. Toxicol Pathol 2012; 40:87S-157S. [PMID: 22637737 DOI: 10.1177/0192623312439125] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Harmonization of diagnostic nomenclature used in the pathology analysis of tissues from rodent toxicity studies will enhance the comparability and consistency of data sets from different laboratories worldwide. The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of four major societies of toxicologic pathology to develop a globally recognized nomenclature for proliferative and nonproliferative lesions in rodents. This article recommends standardized terms for classifying changes observed in tissues of the mouse and rat central (CNS) and peripheral (PNS) nervous systems. Sources of material include academic, government, and industrial histopathology databases from around the world. Covered lesions include frequent, spontaneous, and aging-related changes as well as principal toxicant-induced findings. Common artifacts that might be confused with genuine lesions are also illustrated. The neural nomenclature presented in this document is also available electronically on the Internet at the goRENI website (http://www.goreni.org/).
Collapse
|