301
|
Dwivedi N, Radic M. Citrullination of autoantigens implicates NETosis in the induction of autoimmunity. Ann Rheum Dis 2013; 73:483-91. [PMID: 24291655 DOI: 10.1136/annrheumdis-2013-203844] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tolerance blocks the expression of autoantibodies, whereas autoimmunity promotes it. How tolerance breaks and autoantibody production begins thus are crucial questions for understanding and treatment of autoimmune diseases. Evidence implicates cell death and autoantigen modifications in the initiation of autoimmune reactions. One form of neutrophil cell death called NETosis deserves attention because it requires the post-translational modification of histones and results in the extracellular release of chromatin. NETosis received its name from NET, the acronym given to Neutrophil Extracellular Trap. The extracellular chromatin incorporates histones in which arginines have been converted to citrullines by peptidylarginine deiminase IV (PAD4). The deiminated chromatin may function to capture or 'trap' bacterial pathogens, thus generating an extracellular complex of deiminated histones and bacterial cell adjuvants. The complex of bacterial antigens and deiminated chromatin may be internalised by host phagocytes during acute inflammatory conditions, as arise during bacterial infections or chronic autoinflammatory disorders. The uptake and processing of deiminated chromatin together with bacterial adjuvants by phagocytes may induce the presentation of modified histone epitopes and co-stimulation, thus yielding a powerful stimulus to break tolerance. Autoantibodies to deiminated histones are prevalent in Felty's syndrome patients and are present in systemic lupus erythematosus (SLE) and patients with rheumatoid arthritis (RA). These observations clearly implicate histone deimination as an epigenetic mark that can act as an autoantibody stimulant.
Collapse
Affiliation(s)
- Nishant Dwivedi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, , Boston, Massachusetts, USA
| | | |
Collapse
|
302
|
Gunzer M. Traps and hyper inflammation - new ways that neutrophils promote or hinder survival. Br J Haematol 2013; 164:189-99. [PMID: 24138538 DOI: 10.1111/bjh.12608] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/11/2013] [Indexed: 01/13/2023]
Abstract
For a long time neutrophil granulocytes were considered simply as terminally differentiated cells with a limited life span and pathogen killing by phagocytosis and chemical toxicity being the sole mode of action. However, work during the last 10 years has started to change this view fundamentally. Modern understanding is that neutrophils have an enormous complexity of functions. This review discusses very recent findings on how neutrophils can control the spread of pathogens and mediate their killing by mechanisms such as formation of DNA nets, how they influence tumour growth and adaptive immune responses and how they manoeuvre inside the diverse compartments of the body. It will also describe how the normally protective functions of neutrophils can have deleterious consequences if they occur in an uncontrolled fashion. These exciting novel findings are likely to completely and permanently change our view of this central leucocyte population.
Collapse
Affiliation(s)
- Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
303
|
Muniz VS, Baptista-Dos-Reis R, Neves JS. Functional extracellular eosinophil granules: a bomb caught in a trap. Int Arch Allergy Immunol 2013; 162:276-82. [PMID: 24136351 DOI: 10.1159/000354934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Eosinophils store a wide range of preformed proteins, including cationic proteins and cytokines, within their morphologically unique granules. Recently, we have demonstrated that cell-free eosinophil granules are functional, independent, secretory organelles and that clusters of cell-free granules are commonly found at tissue sites associated with various pathologic conditions. Cytolytic release of intact eosinophil granules produces extracellular organelles that are fully capable of ligand-elicited, active, secretory responses and are hence able to act as 'cluster bombs' that amplify the differential secretory properties of eosinophils. Herein, we review recent progress in elucidating the molecular mechanisms involved in the cytolytical release of intact cell-free functional eosinophil granules in a process associated with the liberation of eosinophil DNA traps (nets), a known aspect of the innate response recognized in various immune cells and pathological conditions. We also discuss the importance of clusters of cell-free eosinophil granules trapped in eosinophil DNA nets in disease and speculate on their potential role(s) in immunity as well as compare available data on DNA-releasing neutrophils.
Collapse
Affiliation(s)
- Valdirene S Muniz
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
304
|
Borthakur A, Bhattacharyya S, Kumar A, Anbazhagan AN, Tobacman JK, Dudeja PK. Lactobacillus acidophilus alleviates platelet-activating factor-induced inflammatory responses in human intestinal epithelial cells. PLoS One 2013; 8:e75664. [PMID: 24130731 PMCID: PMC3794005 DOI: 10.1371/journal.pone.0075664] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
Probiotics have been used as alternative prevention and therapy modalities in intestinal inflammatory disorders including inflammatory bowel diseases (IBD) and necrotizing enterocolitis (NEC). Pathophysiology of IBD and NEC includes the production of diverse lipid mediators, including platelet-activating factor (PAF) that mediate inflammatory responses in the disease. PAF is known to activate NF-κB, however, the mechanisms of PAF-induced inflammation are not fully defined. We have recently described a novel PAF-triggered pathway of NF-κB activation and IL-8 production in intestinal epithelial cells (IECs), requiring the pivotal role of the adaptor protein Bcl10 and its interactions with CARMA3 and MALT1. The current studies examined the potential role of the probiotic Lactobacillus acidophilus in reversing the PAF-induced, Bcl10-dependent NF-κB activation and IL-8 production in IECs. PAF treatment (5 µM×24 h) of NCM460 and Caco-2 cells significantly increased nuclear p65 NF-κB levels and IL-8 secretion (2-3-fold, P<0.05), compared to control, which were blocked by pretreatment of the cells for 6 h with L. acidophilus (LA) or its culture supernatant (CS), followed by continued treatments with PAF for 24 h. LA-CS also attenuated PAF-induced increase in Bcl10 mRNA and protein levels and Bcl10 promoter activity. LA-CS did not alter PAF-induced interaction of Bcl10 with CARMA3, but attenuated Bcl10 interaction with MALT1 and also PAF-induced ubiquitination of IKKγ. Efficacy of bacteria-free CS of LA in counteracting PAF-induced inflammatory cascade suggests that soluble factor(s) in the CS of LA mediate these effects. These results define a novel mechanism by which probiotics counteract PAF-induced inflammation in IECs.
Collapse
Affiliation(s)
- Alip Borthakur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sumit Bhattacharyya
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Arivarasu Natarajan Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joanne K. Tobacman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Pradeep K. Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
305
|
Diaz JA, Fuchs TA, Jackson TO, Kremer Hovinga JA, Lämmle B, Henke PK, Myers DD, Wagner DD, Wakefield TW. Plasma DNA is Elevated in Patients with Deep Vein Thrombosis. J Vasc Surg Venous Lymphat Disord 2013; 1:S2213-333X(13)00004-8. [PMID: 24187669 DOI: 10.1016/j.jvsv.2012.12.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To investigate if plasma DNA is elevated in patients with deep vein thrombosis (DVT) and to determine whether there is a correlation with other biomarkers of DVT. BACKGROUND Leukocytes release DNA to form extracellular traps (ETs), which have recently been linked to experimental DVT. In baboons and mice, extracellular DNA co-localized with von Willebrand factor (VWF) in the thrombus and DNA appeared in circulation at the time of thrombus formation. ETs have not been associated with clinical DVT. SETTING From December 2008 to August 2010, patients were screened through the University of Michigan Diagnostic Vascular Unit and were divided into three distinct groups: 1) the DVT positive group, consisting of patients who were symptomatic for DVT, which was confirmed by compression duplex ultrasound (n=47); 2) the DVT negative group, consisting of patients that present with swelling and leg pain but had a negative compression duplex ultrasound, (n=28); and 3) a control group of healthy non-pregnant volunteers without signs or symptoms of active or previous DVT (n=19). Patients were excluded if they were less than 18 years of age, unwillingness to consent, pregnant, on an anticoagulant therapy, or diagnosed with isolated calf vein thrombosis. METHODS Blood was collected for circulating DNA, CRP, D-dimer, VWF activity, myeloperoxidase (MPO), ADAMTS13 and VWF. The Wells score for a patient's risk of DVT was assessed. The Receiver Operating Characteristic (ROC) curve was generated to determine the strength of the relationship between circulating DNA levels and the presence of DVT. A Spearman correlation was performed to determine the relationship between the DNA levels and the biomarkers and the Wells score. Additionally the ratio of ADAMTS13/VWF was assessed. RESULTS Our results showed that circulating DNA (a surrogate marker for NETs) was significantly elevated in DVT patients, compared to both DVT negative patients (57.7±6.3 vs. 17.9±3.5ng/mL, P<.01) and controls (57.7±6.3 vs. 23.9±2.1ng/mL, P<.01). There was a strong positive correlation with CRP (P<.01), D-dimer (P<.01), VWF (P<.01), Wells score (P<.01) and myeloperoxidase (MPO) (P<.01), along with a strong negative correlation with ADAMTS13 (P<.01) and the ADAMTS13/VWF ratio. The logistic regression model showed a strong association between plasma DNA and the presence of DVT (ROC curve was determined to be 0.814). CONCLUSIONS Plasma DNA is elevated in patients with deep vein thrombosis and correlates with biomarkers of DVT. A strong correlation between circulating DNA and MPO suggests that neutrophils may be a source of plasma DNA in patients with DVT.
Collapse
Affiliation(s)
- J A Diaz
- Department of Surgery, Section of Vascular Surgery, Conrad Jobst Vascular Research Laboratories, Harvard Medical School, Boston, MA, USA
| | - T A Fuchs
- Immune Disease Institute; Program in Cellular and Molecular Medicine, Children's Hospital Boston, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - T O Jackson
- Bern University Hospital and the University of Bern, Department of Hematology and Central Hematology Laboratory, Bern, Switzerland
| | - J A Kremer Hovinga
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - B Lämmle
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
306
|
Campbell AM, Kashgarian M, Shlomchik MJ. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci Transl Med 2013; 4:157ra141. [PMID: 23100627 DOI: 10.1126/scitranslmed.3004801] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of tolerance to self nucleic acids. The source of autoantigen that drives disease onset and progression is unclear. A candidate source of autoantigen is the neutrophil extracellular trap (NET), which releases nucleic acids into the extracellular environment, generating a structure composed of DNA coated with antimicrobial proteins. On the basis of in vitro and patient correlative studies, several groups have suggested that NETs may provide lupus autoantigens. The observation that NET release (NETosis) relies on activity of the phagocyte NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase (Nox2) in neutrophils of both humans and mice provided a genetic strategy to test this hypothesis in vivo. Therefore, we crossed an X-linked nox2 null allele onto the lupus-prone MRL.Fas(lpr) genetic background and assessed immune activation, autoantibody generation, and SLE pathology. Counter to the prevailing hypothesis, Nox2-deficient lupus-prone mice had markedly exacerbated lupus, including increased spleen weight, increased renal disease, and elevated and altered autoantibody profiles. Moreover, heterozygous female mice, which have Nox2 deficiency in 50% of neutrophils, also had exacerbated lupus and altered autoantibody patterns, suggesting that failure to undergo normal Nox2-dependent cell death may result in release of immunogenic self-constituents that stimulate lupus. Our results indicate that NETosis does not contribute to SLE in vivo; instead, Nox2 acts to inhibit disease pathogenesis, making this enzyme an important target for further study and a candidate for therapeutic intervention.
Collapse
Affiliation(s)
- Allison M Campbell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | |
Collapse
|
307
|
Abstract
In this review, we examine the evidence that neutrophil extracellular traps (NETs) play a critical role in innate immunity. We summarize how NETs are formed in response to various stimuli and provide evidence that NETosis is not universally a cell death pathway. Here we describe at least 2 different mechanisms by which NETs are formed, including a suicide lytic NETosis and a live cell or vital NETosis. We also evaluate the evidence for NETs in catching and killing pathogens. Finally, we examine how infections are related to the development of autoimmune and vasculitic diseases through unintended but detrimental bystander damage resulting from NET release.
Collapse
|
308
|
Trivedi NH, Guentzel MN, Rodriguez AR, Yu JJ, Forsthuber TG, Arulanandam BP. Mast cells: multitalented facilitators of protection against bacterial pathogens. Expert Rev Clin Immunol 2013; 9:129-38. [PMID: 23390944 DOI: 10.1586/eci.12.95] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mast cells are crucial effector cells evoking immune responses against bacterial pathogens. The positioning of mast cells at the host-environment interface, and the multitude of pathogen-recognition receptors and preformed mediator granules make these cells potentially the earliest to respond to an invading pathogen. In this review, the authors summarize the receptors used by mast cells to recognize invading bacteria and discuss the function of immune mediators released by mast cells in control of bacterial infection. The interaction of mast cells with other immune cells, including macrophages, dendritic cells and T cells, to induce protective immunity is highlighted. The authors also discuss mast cell-based vaccine strategies and the potential application in control of bacterial disease.
Collapse
Affiliation(s)
- Nikita H Trivedi
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
309
|
Cheng ML, Ho HY, Lin HY, Lai YC, Chiu DTY. Effective NET formation in neutrophils from individuals with G6PD Taiwan-Hakka is associated with enhanced NADP(+) biosynthesis. Free Radic Res 2013; 47:699-709. [PMID: 23777333 DOI: 10.3109/10715762.2013.816420] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to infection, neutrophils employ various strategies to defend against the invading microbes. One of such defense mechanisms is the formation of neutrophil extracellular traps (NETs). Recent studies suggest that reactive oxygen species is a signal critical to NET formation. This prompts us to examine whether neutrophils from individuals with glucose-6-phosphate dehydrogenase (G6PD) Taiwan-Hakka variant, which are prone to oxidative stress generation, have altered ability to form NET. We adopted an image-based method to study the NET formation potential in neutrophils from G6PD-deficient patients. Neutrophils from either normal or G6PD-deficient individuals underwent NETosis in response to phorbol 12-myristate 13-acetate (PMA). The extent of NETosis in the former did not significantly differ from that of the latter. Diphenyleneiodonium sulfate (DPI) and 3-methyladenine (MA) inhibited PMA-stimulated NET formation in these cells, suggesting the involvement of NADPH oxidase and autophagy in the process. Glucose oxidase (GO) and xanthine oxidase/xanthine (XO/X) could induce a similar extent of NET formation in normal and G6PD-deficient neutrophils. GO- or XO-induced NETosis was not inhibitable by MA, implying that reactive oxygen species (ROS) can act as an independent signal for activation of NETosis. Mechanistically, enhanced superoxide production in neutrophils was associated with increases in levels of NAD(+) and NADP(+), as well as activation of NAD(+) kinase. Taken together, these findings suggest that G6PD-deficient neutrophils are as equally efficient as normal cells in NET formation, and their deficiency in G6PD-associated NADPH regeneration capacity is largely compensated for by nicotinamide nucleotide biosynthesis.
Collapse
Affiliation(s)
- M L Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
310
|
Branzk N, Papayannopoulos V. Molecular mechanisms regulating NETosis in infection and disease. Semin Immunopathol 2013; 35:513-30. [PMID: 23732507 PMCID: PMC3685711 DOI: 10.1007/s00281-013-0384-6] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/17/2013] [Indexed: 12/17/2022]
Abstract
Neutrophils are the foot soldiers of the immune system. They home in to the site of infection and kill pathogens by phagocytosis, degranulation, and the release of web-like structures called neutrophil extracellular traps (NETs) that trap and kill a variety of microbes. NETs have been shown to play a multitude of additional roles in immunity but have also been implicated in inflammatory and autoimmune disease. Here, we discuss the role of NETs in these various contexts with a particular emphasis on the molecular mechanisms that regulate NET release and clearance. We highlight the comprehensive concepts and explore the important open questions in the field.
Collapse
Affiliation(s)
- Nora Branzk
- Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, Mill Hill, London, UK
| | - Venizelos Papayannopoulos
- Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, Mill Hill, London, UK
| |
Collapse
|
311
|
Barrientos L, Marin-Esteban V, de Chaisemartin L, Le-Moal VL, Sandré C, Bianchini E, Nicolas V, Pallardy M, Chollet-Martin S. An improved strategy to recover large fragments of functional human neutrophil extracellular traps. Front Immunol 2013; 4:166. [PMID: 23805143 PMCID: PMC3690357 DOI: 10.3389/fimmu.2013.00166] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/11/2013] [Indexed: 01/21/2023] Open
Abstract
Netosis is a recently described neutrophil function that leads to the release of neutrophil extracellular traps (NETs) in response to various stimuli. NETs are filaments of decondensed chromatin associated with granular proteins. In addition to their role against microorganisms, NETs have been implicated in autoimmunity, thrombosis, and tissue injury. Access to a standardized source of isolated NETs is needed to better analyze the roles of NETs. The aim of this study was to develop a procedure yielding soluble, well-characterized NET preparations from fresh human neutrophils. The calcium ionophore A23187 was chosen to induce netosis, and the restriction enzyme AluI was used to prepare large NET fragments. DNA and proteins were detected by electrophoresis and specific labeling. Some NET proteins [histone 3, lactoferrin (LF)] were quantified by western blotting, and double-stranded DNA (dsDNA) was quantified by immunofluorescence. Co-existence of dsDNA and neutrophil proteins confirmed the quality of the NET preparations. Their biological activity was checked by measuring elastase (ELA) activity and bacterial killing against various strains. Interindividual differences in histone 3, LF, ELA, and dsDNA relative contents were observed in isolated NETs. However, the reproducibility of NET preparation and characterization was validated, suggesting that this interindividual variability was rather related to donor variation than to technical bias. This standardized protocol is suitable for producing, isolating, and quantifying functional NETs that could serve as a tool for studying NET effects on immune cells and tissues.
Collapse
Affiliation(s)
- Lorena Barrientos
- INSERM, UMR-S 996, "Cytokines, Chemokines and Immunopathology", UniverSud , Paris , France ; Faculté de Pharmacie, UniverSud , Paris , France
| | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Braian C, Hogea V, Stendahl O. Mycobacterium tuberculosis- induced neutrophil extracellular traps activate human macrophages. J Innate Immun 2013; 5:591-602. [PMID: 23635526 DOI: 10.1159/000348676] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/06/2013] [Indexed: 12/28/2022] Open
Abstract
Neutrophils activated by Mycobacterium tuberculosis (Mtb) form neutrophil extracellular traps (NETs), containing DNA and several biologically active cytosolic and granular proteins. These NETs may assist in the innate immune defense against different pathogens. We investigated whether the NET-forming neutrophils mediate an activating signal to macrophages during the early multicellular inflammatory reaction and granuloma formation. Mtb-induced NETs were found to be reactive oxygen species dependent and phagocytosis dependent. A neutrophil elastase inhibitor also delayed NET formation. However, NET formation occurred independently of Mtb-induced apoptosis. We observed close interactions between macrophages and Mtb-activated neutrophils, where macrophages bound and phagocytosed NETs. Significant secretion of the cytokines interleukin (IL)-6, tumor necrosis factor-α, IL-1β and IL-10 were detected from macrophages cocultured with NETs from Mtb-activated but not phorbol myristate acetate-activated neutrophils. NETs binding heat shock protein 72 (Hsp72) or recombinant Hsp72 were able to trigger cytokine release from macrophages. Only Mtb-induced NETs contained Hsp72, suggesting that these NETs can transfer this danger signal to adjacent macrophages. We propose that Hsp72 sequestered in NETs plays an important role in the interaction between neutrophils and macrophages during the early innate immune phase of an Mtb infection. The immunomodulatory role of NETs and proteins derived from them may influence not only chronic inflammation during tuberculosis but also immune regulation and autoimmunity.
Collapse
Affiliation(s)
- Clara Braian
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
313
|
Abstract
Neutrophils have traditionally been thought of as simple foot soldiers of the innate immune system with a restricted set of pro-inflammatory functions. More recently, it has become apparent that neutrophils are, in fact, complex cells capable of a vast array of specialized functions. Although neutrophils are undoubtedly major effectors of acute inflammation, several lines of evidence indicate that they also contribute to chronic inflammatory conditions and adaptive immune responses. Here, we discuss the key features of the life of a neutrophil, from its release from bone marrow to its death. We discuss the possible existence of different neutrophil subsets and their putative anti-inflammatory roles. We focus on how neutrophils are recruited to infected or injured tissues and describe differences in neutrophil recruitment between different tissues. Finally, we explain the mechanisms that are used by neutrophils to promote protective or pathological immune responses at different sites.
Collapse
|
314
|
Simon D, Simon HU, Yousefi S. Extracellular DNA traps in allergic, infectious, and autoimmune diseases. Allergy 2013; 68:409-16. [PMID: 23409745 DOI: 10.1111/all.12111] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 12/16/2022]
Abstract
Extracellular DNA traps are part of the innate immune response and are seen with many infectious, allergic, and autoimmune diseases. They can be generated by several different leukocytes, including neutrophils, eosinophils, and monocytes, as well as mast cells. Here, we review the composition of these extracellular DNA-containing structures as well as potential mechanisms for their production and function. In general, extracellular DNA traps have been described as binding to and killing pathogens, particularly bacteria, fungi, but also parasites. On the other hand, it is possible that DNA traps contribute to immunopathology in chronic inflammatory diseases, such as bronchial asthma. In addition, it has been demonstrated that they can initiate and/or potentiate autoimmune diseases. Extracellular DNA traps represent a frequently observed phenomenon in inflammatory diseases, and they appear to participate in the cross-talk between different immune cells. These new insights into the pathogenesis of inflammatory diseases may open new avenues for targeted therapies.
Collapse
Affiliation(s)
- D. Simon
- Department of Dermatology; Inselspital; Bern University Hospital; Bern; Switzerland
| | - H.-U. Simon
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| | - S. Yousefi
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| |
Collapse
|
315
|
Matsushima H, Geng S, Lu R, Okamoto T, Yao Y, Mayuzumi N, Kotol PF, Chojnacki BJ, Miyazaki T, Gallo RL, Takashima A. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood 2013; 121:1677-89. [PMID: 23305731 PMCID: PMC3591793 DOI: 10.1182/blood-2012-07-445189] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/20/2012] [Indexed: 12/13/2022] Open
Abstract
Neutrophils have been reported to acquire surface expression of MHC class II and co-stimulatory molecules as well as T-cell stimulatory activities when cultured with selected cytokines. However, cellular identity of those unusual neutrophils showing antigen presenting cell (APC)-like features still remains elusive. Here we show that both immature and mature neutrophils purified from mouse bone marrow differentiate into a previously unrecognized "hybrid" population showing dual properties of both neutrophils and dendritic cells (DCs) when cultured with granulocyte macrophage-colony-stimulating factor but not with other tested growth factors. The resulting hybrid cells express markers of both neutrophils (Ly6G, CXCR2, and 7/4) and DCs (CD11c, MHC II, CD80, and CD86). They also exhibit several properties typically reserved for DCs, including dendritic morphology, probing motion, podosome formation, production of interleukin-12 and other cytokines, and presentation of various forms of foreign protein antigens to naïve CD4 T cells. Importantly, they retain intrinsic abilities of neutrophils to capture exogenous material, extrude neutrophil extracellular traps, and kill bacteria via cathelicidin production. Not only do our results reinforce the notion that neutrophils can acquire APC-like properties, they also unveil a unique differentiation pathway of neutrophils into neutrophil-DC hybrids that can participate in both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Hironori Matsushima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? ACTA ACUST UNITED AC 2013; 198:773-83. [PMID: 22945932 PMCID: PMC3432757 DOI: 10.1083/jcb.201203170] [Citation(s) in RCA: 724] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are made of processed chromatin bound to granular and selected cytoplasmic proteins. NETs are released by white blood cells called neutrophils, maybe as a last resort, to control microbial infections. This release of chromatin is the result of a unique form of cell death, dubbed “NETosis.” Here we review our understanding of how NETs are made, their function in infections and as danger signals, and their emerging importance in autoimmunity and coagulation.
Collapse
Affiliation(s)
- Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
| | | |
Collapse
|
317
|
Abstract
Neutrophils are the first line of defense of the immune system against infection. Among their weaponry, they have the ability to mix and extrude their DNA and bactericidal molecules creating NET-like structures in a unique type of cell death called NETosis. This process is important in order to control extracellular infections limiting collateral damage. Its aberrant function has been implicated in several human diseases including sepsis and autoimmune disease. The purpose of the present paper is to give a general introduction to this concept.
Collapse
|
318
|
Ghosh S, Hoselton SA, Dorsam GP, Schuh JM. Eosinophils in fungus-associated allergic pulmonary disease. Front Pharmacol 2013; 4:8. [PMID: 23378838 PMCID: PMC3561640 DOI: 10.3389/fphar.2013.00008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/10/2013] [Indexed: 12/30/2022] Open
Abstract
Asthma is frequently caused and/or exacerbated by sensitization to fungal allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma with fungal sensitization is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen that is worsened by environmental exposure to airborne fungi and which leads to a disease course that is often very difficult to treat with standard asthma therapies. As a result of complex interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to fungal allergens may experience a greater degree of airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. From their development in the bone marrow to their recruitment to the lung via chemokine and cytokine networks, eosinophils form an important component of the inflammatory milieu that is associated with this syndrome. Eosinophils are recognized as complex multi-factorial leukocytes with diverse functions in the context of allergic fungal asthma. In this review, we will consider recent advances in our understanding of the molecular mechanisms that are associated with eosinophil development and migration to the allergic lung in response to fungal inhalation, along with the eosinophil’s function in the immune response to and the immunopathology attributed to fungus-associated allergic pulmonary disease.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University Fargo, ND, USA
| | | | | | | |
Collapse
|
319
|
Scharfstein J, Andrade D, Svensjö E, Oliveira AC, Nascimento CR. The kallikrein-kinin system in experimental Chagas disease: a paradigm to investigate the impact of inflammatory edema on GPCR-mediated pathways of host cell invasion by Trypanosoma cruzi. Front Immunol 2013; 3:396. [PMID: 23355836 PMCID: PMC3555122 DOI: 10.3389/fimmu.2012.00396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/07/2012] [Indexed: 12/12/2022] Open
Abstract
Chronic chagasic myocarditis (CCM) depends on Trypanosoma cruzi persistence in the myocardium. Studies of the proteolytic mechanisms governing host/parasite balance in peripheral sites of T. cruzi infection revealed that tissue culture trypomastigotes (TCTs) elicit inflammatory edema and stimulate protective type-1 effector T cells through the activation of the kallikrein-kinin system. Molecular studies linked the proinflammatory phenotype of Dm28c TCTs to the synergistic activities of tGPI, a lipid anchor that functions as a Toll-like receptor 2 (TLR2) ligand, and cruzipain, a kinin-releasing cysteine protease. Analysis of the dynamics of inflammation revealed that TCTs activate innate sentinel cells via TLR2, releasing CXC chemokines, which in turn evoke neutrophil/CXCR2-dependent extravasation of plasma proteins, including high molecular weight kininogen (HK), in parasite-laden tissues. Further downstream, TCTs process surface bound HK, liberating lysyl-BK (LBK), which then propagates inflammatory edema via signaling of endothelial G-protein-coupled bradykinin B2 receptors (BK2R). Dm28 TCTs take advantage of the transient availability of infection-promoting peptides (e.g., bradykinin and endothelins) in inflamed tissues to invade cardiovascular cells via interdependent signaling of BKRs and endothelin receptors (ETRs). Herein we present a space-filling model whereby ceramide-enriched endocytic vesicles generated by the sphingomyelinase pathway might incorporate BK2R and ETRs, which then trigger Ca2+-driven responses that optimize the housekeeping mechanism of plasma membrane repair from cell wounding. The hypothesis predicts that the NF-κB-inducible BKR (BK1R) may integrate the multimolecular signaling platforms forged by ceramide rafts, as the chronic myocarditis progresses. Exploited as gateways for parasite invasion, BK2R, BK1R, ETAR, ETBR, and other G protein-coupled receptor partners may enable persistent myocardial parasitism in the edematous tissues at expense of adverse cardiac remodeling.
Collapse
Affiliation(s)
- Julio Scharfstein
- Laboratório de Imunologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
320
|
Cheng OZ, Palaniyar N. NET balancing: a problem in inflammatory lung diseases. Front Immunol 2013; 4:1. [PMID: 23355837 PMCID: PMC3553399 DOI: 10.3389/fimmu.2013.00001] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/01/2013] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are beneficial antimicrobial defense structures that can help fight against invading pathogens in the host. However, recent studies reveal that NETs exert adverse effects in a number of diseases including those of the lung. Many inflammatory lung diseases are characterized with a massive influx of neutrophils into the airways. Neutrophils contribute to the pathology of these diseases. To date, NETs have been identified in the lungs of cystic fibrosis (CF), acute lung injury (ALI), allergic asthma, and lungs infected with bacteria, virus, or fungi. These microbes and several host factors can stimulate NET formation, or NETosis. Different forms of NETosis have been identified and are dependent on varying types of stimuli. All of these pathways however appear to result in the formation of NETs that contain DNA, modified extracellular histones, proteases, and cytotoxic enzymes. Some of the NET components are immunogenic and damaging to host tissue. Innate immune collectins, such as pulmonary surfactant protein D (SP-D), bind NETs, and enhance the clearance of dying cells and DNA by alveolar macrophages. In many inflammatory lung diseases, bronchoalveolar SP-D levels are altered and its deficiency results in the accumulation of DNA in the lungs. Some of the other therapeutic molecules under consideration for treating NET-related diseases include DNases, antiproteases, myeloperoxidase (MPO) inhibitors, peptidylarginine deiminase-4 inhibitors, and anti-histone antibodies. NETs could provide important biological advantage for the host to fight against certain microbial infections. However, too much of a good thing can be a bad thing. Maintaining the right balance of NET formation and reducing the amount of NETs that accumulate in tissues are essential for harnessing the power of NETs with minimal damage to the hosts.
Collapse
Affiliation(s)
- Olivia Z Cheng
- Program in Physiology and Experimental Medicine, Lung Innate Immunity Research Laboratory, SickKids Research Institute Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada
| | | |
Collapse
|
321
|
Goldmann O, Medina E. The expanding world of extracellular traps: not only neutrophils but much more. Front Immunol 2013; 3:420. [PMID: 23335924 PMCID: PMC3542634 DOI: 10.3389/fimmu.2012.00420] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/20/2012] [Indexed: 12/13/2022] Open
Abstract
The release of extracellular traps (ETs) is a recently described mechanism of innate immune response to infection. Although ETs have been intensely investigated in the context of neutrophil antimicrobial effector mechanisms, other immune cells such as mast cells, eosinophils, and macrophages can also release these structures. The different ETs have several features in common, regardless of the type of cells from which they originated, including a DNA backbone with embedded antimicrobial peptides, proteases, and histones. However, they also exhibit remarkable individual differences such as the type of sub-cellular compartments from where the DNA backbone originates (e.g., nucleus or mitochondria), the proportion of responding cells within the pool, and/or the molecular mechanism/s underlying the ETs formation. This review summarizes the knowledge accumulated in recent years regarding the complex and expanding world of ETs and their role in immune function with particular emphasis on the role of other immune cells rather than on neutrophils exclusively.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research Braunschweig, Germany
| | | |
Collapse
|
322
|
Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood 2013; 121:2074-83. [PMID: 23303825 DOI: 10.1182/blood-2012-05-432088] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eosinophils release their granule proteins extracellularly through exocytosis, piecemeal degranulation, or cytolytic degranulation. Findings in diverse human eosinophilic diseases of intact extracellular eosinophil granules, either free or clustered, indicate that eosinophil cytolysis occurs in vivo, but the mechanisms and consequences of lytic eosinophil degranulation are poorly understood. We demonstrate that activated human eosinophils can undergo extracellular DNA trap cell death (ETosis) that cytolytically releases free eosinophil granules. Eosinophil ETosis (EETosis), in response to immobilized immunoglobulins (IgG, IgA), cytokines with platelet activating factor, calcium ionophore, or phorbol myristate acetate, develops within 120 minutes in a reduced NADP (NADPH) oxidase-dependent manner. Initially, nuclear lobular formation is lost and some granules are released by budding off from the cell as plasma membrane-enveloped clusters. Following nuclear chromatolysis, plasma membrane lysis liberates DNA that forms weblike extracellular DNA nets and releases free intact granules. EETosis-released eosinophil granules, still retaining eosinophil cationic granule proteins, can be activated to secrete when stimulated with CC chemokine ligand 11 (eotaxin-1). Our results indicate that an active NADPH oxidase-dependent mechanism of cytolytic, nonapoptotic eosinophil death initiates nuclear chromatolysis that eventuates in the release of intact secretion-competent granules and the formation of extracellular DNA nets.
Collapse
|
323
|
Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, Uehata T, Iwasaki H, Omori H, Yamaoka S, Yamamoto N, Akira S. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 2013; 12:109-16. [PMID: 22817992 DOI: 10.1016/j.chom.2012.05.015] [Citation(s) in RCA: 512] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/27/2012] [Accepted: 05/18/2012] [Indexed: 12/12/2022]
Abstract
Neutrophils contribute to pathogen clearance by producing neutrophil extracellular traps (NETs), which are genomic DNA-based net-like structures that capture bacteria and fungi. Although NETs also express antiviral factors, such as myeloperoxidase and α-defensin, the involvement of NETs in antiviral responses remains unclear. We show that NETs capture human immunodeficiency virus (HIV)-1 and promote HIV-1 elimination through myeloperoxidase and α-defensin. Neutrophils detect HIV-1 by Toll-like receptors (TLRs) TLR7 and TLR8, which recognize viral nucleic acids. Engagement of TLR7 and TLR8 induces the generation of reactive oxygen species that trigger NET formation, leading to NET-dependent HIV-1 elimination. However, HIV-1 counteracts this response by inducing C-type lectin CD209-dependent production of interleukin (IL)-10 by dendritic cells to inhibit NET formation. IL-10 suppresses the reactive oxygen species-dependent generation of NETs induced upon TLR7 and TLR8 engagement, resulting in disrupted NET-dependent HIV-1 elimination. Therefore, NET formation is an antiviral response that is counteracted by HIV-1.
Collapse
Affiliation(s)
- Tatsuya Saitoh
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Camicia G, de Larrañaga G. Trampas extracelulares de neutrófilos: un mecanismo de defensa con dos caras. Med Clin (Barc) 2013; 140:70-5. [DOI: 10.1016/j.medcli.2012.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/16/2012] [Accepted: 04/19/2012] [Indexed: 01/18/2023]
|
325
|
Schorn C, Janko C, Krenn V, Zhao Y, Munoz LE, Schett G, Herrmann M. Bonding the foe - NETting neutrophils immobilize the pro-inflammatory monosodium urate crystals. Front Immunol 2012; 3:376. [PMID: 23233855 PMCID: PMC3517988 DOI: 10.3389/fimmu.2012.00376] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/23/2012] [Indexed: 01/18/2023] Open
Abstract
In the presence of sodium, uric acid from purine metabolism precipitates as monosodium urate (MSU) needles and forms renal calculi or causes gouty arthritis in kidneys and joints, respectively. The latter is characterized by red, hot, and swollen arthritic joints. Here we report the in vitro effect of MSU crystals on blood granulocytes and analyze their contribution to granuloma formation and neutrophil extracellular traps (NETs) formation (NETosis) in synovial fluid of patients with gouty arthritis in vivo. We observed that MSU crystals induce NETosis in vitro in a reactive oxygen species (ROS)-dependent manner. Indeed, blocking ROS (e.g., the oxidative burst) by various anti-oxidants partially inhibited NETosis induced by MSU crystals. Analyses of synovial fluids and of tissue sections of patients suffering from gout revealed that NETs are also formed in vivo, especially during acute gouty flares and/or granuloma formation. Since prolonged exposure to NETs carries the risk for the development of chronic inflammation we also studied the opsonization of NETs, as a prerequisite for their clearance. The established dead cells' opsonins C3b, galectin-9, and CRP decorated the residual dead cells' corpses and opsonized these for disposal. Surprisingly, all three soluble pattern recognizing molecules spared the spread NET structures. We conclude that (i) MSU crystals are strong inducers of ROS-dependent NETosis and (ii) that the prolonged presence of NET-pathogen or NET-crystal aggregates observed in patients with systemic autoimmunity, especially in those with low serum DNase-1 activity, cannot be compensated by CRP, complement, and galectin-mediated phagocytic clearance.
Collapse
Affiliation(s)
- Christine Schorn
- Institute for Clinical Immunology and Rheumatology, Department of Internal Medicine III, University of Erlangen-Nuremberg Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
326
|
Lu T, Kobayashi SD, Quinn MT, Deleo FR. A NET Outcome. Front Immunol 2012; 3:365. [PMID: 23227026 PMCID: PMC3514450 DOI: 10.3389/fimmu.2012.00365] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/16/2012] [Indexed: 01/11/2023] Open
Abstract
Neutrophils constitute a critical part of innate immunity and are well known for their ability to phagocytose and kill invading microorganisms. The microbicidal processes employed by neutrophils are highly effective at killing most ingested bacteria and fungi. However, an alternative non-phagocytic antimicrobial mechanism of neutrophils has been proposed whereby microorganisms are eliminated by neutrophil extracellular traps (NETs). NETs are comprised of DNA, histones, and antimicrobial proteins extruded by neutrophils during NETosis, a cell death pathway reported to be distinct from apoptosis, phagocytosis-induced cell death, and necrosis. Although multiple laboratories have reported NETs using various stimuli in vitro, the molecular mechanisms involved in this process have yet to be definitively elucidated, and many questions regarding the formation and putative role or function of NETs in innate host defense remain unanswered. It is with these questions in mind that we provide some reflection and perspective on NETs and NETosis.
Collapse
Affiliation(s)
- Thea Lu
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | | | | | | |
Collapse
|
327
|
Eosinophil extracellular DNA traps: molecular mechanisms and potential roles in disease. Curr Opin Immunol 2012; 24:736-9. [DOI: 10.1016/j.coi.2012.08.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/22/2012] [Indexed: 01/01/2023]
|
328
|
Jönsson BE, Bylund J, Johansson BR, Telemo E, Wold AE. Cord-forming mycobacteria induce DNA meshwork formation by human peripheral blood mononuclear cells. Pathog Dis 2012; 67:54-66. [PMID: 23620120 DOI: 10.1111/2049-632x.12007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/30/2012] [Accepted: 09/17/2012] [Indexed: 01/21/2023] Open
Abstract
Mononuclear phagocytes, that is, monocytes and macrophages, are central in the defense against mycobacteria. Mycobacterium abscessus is an opportunistic mycobacterial species able to cause chronic pulmonary infections in patients with cystic fibrosis but also soft tissue infections in immunocompetent individuals. Pathogenic isolates of M. abscessus with rough colony morphology form cord-like aggregates. In this study, we investigated the in vitro response of human peripheral blood mononuclear cells (PBMCs) from healthy blood donors to cord-forming M. abscessus strains from cystic fibrosis patients with clinical lung infection. Microscopic examination revealed that the PBMCs produced a coarse fibrous meshwork containing DNA and histones, which surrounded the mycobacterial cords. Thus, the bacterial cord formations were entrapped by monocytes and lymphocytes aggregated onto the DNA-rich meshwork fibers. Mycobacterium abscessus strains with smooth colony morphology, which do not form cords and are readily phagocytosed, did not induce any meshwork formation in PBMCs. The chromatin meshwork may represent a defense mechanism against nondigestible invaders.
Collapse
Affiliation(s)
- Bodil E Jönsson
- Clinical Bacteriology Section, Department of Infectious Medicine, University of Gothenburg, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
329
|
A novel role for the transcription factor HIF-1α in the formation of mast cell extracellular traps. Biochem J 2012; 446:159-63. [PMID: 22738198 DOI: 10.1042/bj20120658] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MCs (mast cells) are critical components of the host innate immune defence against bacterial pathogens, providing a variety of intra- and extra-cellular antimicrobial functions. In the present study we show, for the first time, that the transcriptional regulator HIF-1α (hypoxia-inducible factor-1α) mediates the extracellular antimicrobial activity of human and murine MCs by increasing the formation of MCETs (MC extracellular traps).
Collapse
|
330
|
Hellenbrand KM, Forsythe KM, Rivera-Rivas JJ, Czuprynski CJ, Aulik NA. Histophilus somni causes extracellular trap formation by bovine neutrophils and macrophages. Microb Pathog 2012; 54:67-75. [PMID: 23022668 PMCID: PMC7125803 DOI: 10.1016/j.micpath.2012.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 12/17/2022]
Abstract
Histophilus somni (formerly Haemophilus somnus) is a Gram-negative pleomorphic coccobacillus that causes respiratory, reproductive, cardiac and neuronal diseases in cattle. H. somni is a member of the bovine respiratory disease complex that causes severe bronchopneumonia in cattle. Previously, it has been reported that bovine neutrophils and macrophages have limited ability to phagocytose and kill H. somni. Recently, it was discovered that bovine neutrophils and macrophages produce extracellular traps in response to Mannheimia haemolytica, another member of the bovine respiratory disease complex. In this study, we demonstrate that H. somni also causes extracellular trap production by bovine neutrophils in a dose- and time-dependent manner, which did not coincide with the release of lactate dehydrogenase, a marker for necrosis. Neutrophil extracellular traps were produced in response to outer membrane vesicles, but not lipooligosacchride alone. Using scanning electron microscopy and confocal microscopy, we observed H. somni cells trapped within a web-like structure. Further analyses demonstrated that bovine neutrophils trapped and killed H. somni in a DNA-dependent manner. Treatment of DNA extracellular traps with DNase I freed H. somni cells and diminished bacterial death. Treatment of bovine monocyte-derived macrophages with H. somni cells also caused macrophage extracellular trap formation. These findings suggest that extracellular traps may play a role in the host response to H. somni infection in cattle.
Collapse
Affiliation(s)
- Katrina M. Hellenbrand
- Department of Pathobiological Sciences, University of Wisconsin – Madison, Madison, WI 53706, USA
| | | | - Jose J. Rivera-Rivas
- Department of Pathobiological Sciences, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Charles J. Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin – Madison, Madison, WI 53706, USA
- Food Research Institute, University of Wisconsin – Madison, Madison, WI 53706, USA
- Corresponding author. Department of Pathobiological Sciences, 2015, Linden Drive, West, Madison, WI 53706, USA. Tel./fax: +1 608 262 8102.
| | - Nicole A. Aulik
- Department of Pathobiological Sciences, University of Wisconsin – Madison, Madison, WI 53706, USA
- Biology Department, Winona State University, Winona, MN 55987, USA
| |
Collapse
|
331
|
Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:2689-95. [PMID: 22956760 PMCID: PMC3439169 DOI: 10.4049/jimmunol.1201719] [Citation(s) in RCA: 835] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spectacular images of neutrophils ejecting nuclear chromatin and bactericidal proteins, in response to microbes, were first reported in 2004. As externalized chromatin could entangle bacteria, these structures were named neutrophil extracellular traps (NETs). Subsequent studies identified microorganisms and sterile conditions that stimulate NETs, as well as additional cell types that release extracellular chromatin. The release of NETs is the most dramatic stage in a cell death process called NETosis. Experimental evidence suggests that NETs participate in pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. Exaggerated NETosis or diminished NET clearance likely increases risk of autoreactivity to NET components. The biological significance of NETs is just beginning to be explored. A more complete integration of NETosis within immunology and pathophysiology will require better understanding of NET properties associated with specific disease states and microbial infections. This may lead to the identification of important therapeutic targets.
Collapse
Affiliation(s)
- Mariana J. Kaplan
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38163
| |
Collapse
|
332
|
Endocytosis of soluble immune complexes leads to their clearance by FcγRIIIB but induces neutrophil extracellular traps via FcγRIIA in vivo. Blood 2012; 120:4421-31. [PMID: 22955924 DOI: 10.1182/blood-2011-12-401133] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Soluble immune complexes (ICs) are abundant in autoimmune diseases, yet neutrophil responses to these soluble humoral factors remain uncharacterized. Moreover, the individual role of the uniquely human FcγRIIA and glycophosphatidylinositol (GPI)-linked FcγRIIIB in IC-mediated inflammation is still debated. Here we exploited mice and cell lines expressing these human neutrophil FcγRs to demonstrate that FcγRIIIB alone, in the absence of its known signaling partners FcγRIIA and the integrin Mac-1, internalizes soluble ICs through a mechanism used by GPI-anchored receptors and fluid-phase endocytosis. FcγRIIA also uses this pathway. As shown by intravital microscopy, FcγRIIA but not FcγRIIIB-mediated neutrophil interactions with extravascular soluble ICs results in the formation of neutrophil extracellular traps (NETs) in tissues. Unexpectedly, in wild-type mice, IC-induced NETosis does not rely on the NADPH oxidase, myeloperoxidase, or neutrophil elastase. In the context of soluble ICs present primarily within vessels, FcγRIIIB-mediated neutrophil recruitment requires Mac-1 and is associated with the removal of intravascular IC deposits. Collectively, our studies assign a new role for FcγRIIIB in the removal of soluble ICs within the vasculature that may serve to maintain homeostasis, whereas FcγRIIA engagement of tissue soluble ICs generates NETs, a proinflammatory process linked to autoimmunity.
Collapse
|
333
|
Schorn C, Janko C, Latzko M, Chaurio R, Schett G, Herrmann M. Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils, and basophils but not in mononuclear cells. Front Immunol 2012; 3:277. [PMID: 22969769 PMCID: PMC3432456 DOI: 10.3389/fimmu.2012.00277] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/15/2012] [Indexed: 01/21/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are fibers of extracellular DNA released from neutrophils due to overwhelming phagocytic stimuli. The function of NETs is to trap and kill microbes to avoid spreading of potential pathogens. NETs are formed after encounter with various gram-positive and -negative bacteria but also in response to mediators causing sterile inflammation like interleukin-8 (IL-8), tumor necrosis factor (TNF), and phorbol myristate acetate (PMA). Here we show the formation of NETs (NETting) in response to monosodium urate (MSU) crystals as further model for sterile inflammation. We identified monocytes, neutrophils, and eosinophils as MSU phagocytosing cells. Basophils did not take up the crystals, instead they upregulated their activation marker CD203c after contact with MSU. Nevertheless, MSU crystals induced extracellular trap formation also in basophils, like in eosinophils and neutrophils, which phagocytose the crystals. In contrast, monocytes do not form NETs despite uptake of the MSU crystals. In contrast to the canonical stimuli like bacteria and PMA, MSU-induced NETosis was not abrogated by plasma. Our data show that MSU crystals induce extracellular DNA trap formation in all three granulocytes lineages (NETs, EETs, and BETs) but not in monocytes, and DNA externalization does not necessitate the uptake of the crystals.
Collapse
Affiliation(s)
- Christine Schorn
- Department of Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University Erlangen-Nuremberg Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
334
|
Bąbolewska E, Witczak P, Pietrzak A, Brzezińska-Błaszczyk E. Different potency of bacterial antigens TLR2 and TLR4 ligands in stimulating mature mast cells to cysteinyl leukotriene synthesis. Microbiol Immunol 2012; 56:183-90. [PMID: 22233438 DOI: 10.1111/j.1348-0421.2012.00426.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of study was to compare the potency of different bacterial antigens to induce rat mature mast cell to cysteinyl leukotriene (cysLT) generation. We examined Toll-like receptor (TLR)2 agonists, i.e. lipoteichoic acid (LTA) Staphylococcus faecalis, Streptococcus pyogenes, Bacillus subtilis and Staphylococcus aureus, lipoarabinomannan (LAM) Mycobacterium smegmatis, peptydoglican (PGN) Staphylococcus aureus, as well as TLR4 agonists, i.e. lipopolysaccharide (LPS) Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enteritidis, Pophyromonas gingivalis and Escherichia coli. We also estimated the effect of tumor necrosis factor (TNF)-, interleukin (IL)-6-, CCL5-, and IL-10-priming on mast cell cysLT synthesis following bacterial antigen activation. We found that all bacterial antigens activated mast cells to cysLT generation; however, the extent of cysLT release in response to stimulation varied. Out of the examined antigens LPS P. gingivalis exhibited the highest potency, as it induced cysLT generation acting at a very low concentration (10(-4) ng/mL). Other LPSs affected mast cells at higher (up to 10(5) -fold) concentrations. LTAs were the most effective at concentrations of 5 × 10(2) ng/mL, while LAM and PGN stimulated mast cells to maximal cysLT generation at concentrations as high as 10(5) ng/mL. Anti-TLR2 and anti-TLR4 antibodies, as well as nuclear factor κB (NF-κB) inhibitor significantly diminished cysLT generation in response to bacterial antigen stimulation. Priming with TNF, IL-6 and CCL5 did not affect bacterial antigen-induced cysLT generation, while IL-10-pretreatment caused significant decrease in cysLT synthesis by mast cells. These observations might have a great pathophysiological importance; inasmuch cysLTs strongly influence the development and intensity of inflammation during bacterial infection.
Collapse
Affiliation(s)
- Edyta Bąbolewska
- Department of Experimental Immunology, Medical University of Łódź, Łódź, Poland
| | | | | | | |
Collapse
|
335
|
Saluja R, Metz M, Maurer M. Role and relevance of mast cells in fungal infections. Front Immunol 2012; 3:146. [PMID: 22707950 PMCID: PMC3374363 DOI: 10.3389/fimmu.2012.00146] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/19/2012] [Indexed: 01/01/2023] Open
Abstract
In addition to their detrimental role in allergic diseases, mast cells (MCs) are well known to be important cells of the innate immune system. In the last decade, they have been shown to contribute significantly to optimal host defense against numerous pathogens including parasites, bacteria, and viruses. The contribution of MCs to the immune responses in fungal infections, however, is largely unknown. In this review, we first discuss key features of mast cell responses to pathogens in general and then summarize the current knowledge on the function of MCs in the defense against fungal pathogens. We especially focus on the potential and proven mechanisms by which MCs can detect fungal infections and on possible MC effector mechanisms in protecting from fungal infections.
Collapse
Affiliation(s)
- R Saluja
- Department of Dermatology and Allergy, Charite - Universitätsmedizin Berlin Berlin, Germany
| | | | | |
Collapse
|
336
|
Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 2012; 32:1777-83. [PMID: 22652600 DOI: 10.1161/atvbaha.111.242859] [Citation(s) in RCA: 400] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deep vein thrombosis (DVT) is a major health problem that requires improved prophylaxis and treatment. Inflammatory conditions such as infection, cancer, and autoimmune diseases are risk factors for DVT. We and others have recently shown that extracellular DNA fibers produced in inflammation and known as neutrophil extracellular traps (NETs) contribute to experimental DVT. NETs stimulate thrombus formation and coagulation and are abundant in thrombi in animal models of DVT. It appears that, in addition to fibrin and von Willebrand factor, NETs represent a third thrombus scaffold. Here, we review how NETs stimulate thrombosis and discuss known and potential interactions of NETs with endothelium, platelets, red blood cells, and coagulation factors and how NETs could influence thrombolysis. We propose that drugs that inhibit NET formation or facilitate NET degradation may prevent or treat DVT.
Collapse
Affiliation(s)
- Tobias A Fuchs
- Immune Disease Institute, Children’s Hospital Boston, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
337
|
De Meyer SF, Suidan GL, Fuchs TA, Monestier M, Wagner DD. Extracellular chromatin is an important mediator of ischemic stroke in mice. Arterioscler Thromb Vasc Biol 2012; 32:1884-91. [PMID: 22628431 DOI: 10.1161/atvbaha.112.250993] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Recently, a growing number of studies have revealed a prothrombotic and cytotoxic role for extracellular chromatin. Cerebral ischemia/reperfusion injury is characterized by a significant amount of cell death and neutrophil activation, both of which may result in the release of chromatin. The goal of this study was to assess the effect of extracellular chromatin in ischemic stroke using a mouse model of transient middle cerebral artery occlusion. METHODS AND RESULTS Similar to reports in stroke patients, we observed increased levels of circulating nucleosomes and DNA after ischemic stroke in mice. In addition, we observed that general hypoxia also augmented extracellular chromatin. We hypothesized that targeting extracellular chromatin components would be protective in ischemic stroke. Indeed, treatment with recombinant human DNase 1 significantly improved stroke outcome. Neutralization of histones using an antihistone antibody was also protective as evidenced by smaller infarct volumes, whereas increasing levels of extracellular histones via histone infusion exacerbated stroke outcome by increasing infarct size and worsening functional outcome. CONCLUSIONS Our results indicate that extracellular chromatin is generated and is detrimental during cerebral ischemia/reperfusion in mice. Targeting DNA and histones may be a new therapeutic strategy to limit injury resulting from ischemic stroke.
Collapse
Affiliation(s)
- Simon F De Meyer
- Immune Disease Institute, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
338
|
Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood 2012; 120:1157-64. [PMID: 22611154 DOI: 10.1182/blood-2012-02-412197] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Thrombotic microangiopathies (TMAs) are a group of life-threatening disorders characterized by thrombocytopenia, fragmentation of erythrocytes, and ischemic organ damage. Genetic disorders, autoimmune disease, and cancer are risk factors for TMAs, but an additional, unknown trigger is needed to bring about acute disease. Recent studies suggest that DNA and histones are released during inflammation or infection and stimulate coagulation, thrombosis, thrombocytopenia, and organ damage in mice. We show that extracellular DNA and histones as well as markers of neutrophils are present in acute TMAs. Analysis of plasma from TMA patients of different clinical categories revealed elevated levels of DNA-histone complexes and myeloperoxidase (MPO) from neutrophil granules as well as S100A8/A9, a heterocomplex abundant in neutrophil cytosol. During therapy of thrombotic thrombocytopenic purpura, a subtype of TMAs often associated with severe ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13) deficiency, plasma DNA and MPO were inversely correlated with platelet counts, and their levels indicated amelioration or exacerbation of the disease. ADAMTS13 deficiency together with increased levels of plasma DNA and MPO were characteristic for acute thrombotic thrombocytopenic purpura. A minor infection often precedes acute TMA and extracellular DNA and histones released during the inflammatory response could provide the second hit, which precipitates acute TMA in patients with pre-existing risk factors.
Collapse
|
339
|
Affiliation(s)
- Mirjam Urb
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
340
|
Lima HG, Pinke KH, Gardizani TP, Souza-Júnior DA, Carlos D, Avila-Campos MJ, Lara VS. Mast cells act as phagocytes against the periodontopathogen Aggregatibacter actinomycetemcomitans. J Periodontol 2012; 84:265-72. [PMID: 22524328 DOI: 10.1902/jop.2012.120087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Evidence to date shows that mast cells play a critical role in immune defenses against infectious agents, but there have been no reports about involvement of these cells in eliminating periodontopathogens. In this study, the phagocytic ability of mast cells against Aggregatibacter actinomycetemcomitans compared with macrophages is evaluated. METHODS In vitro phagocytic assays were conducted using murine mast cells and macrophages, incubated with A. actinomycetemcomitans, either opsonized or not, with different bacterial load ratios. After 1 hour, cells were stained with acridine orange and assessed by confocal laser-scanning electron microscopy. RESULTS Phagocytic ability of murine mast cells against A. actinomycetemcomitans was confirmed. In addition, the percentage of mast cells with internalized bacteria was higher in the absence of opsonization than in the presence of opsonization. Both cell types showed significant phagocytic activity against A. actinomycetemcomitans. However, the percentage of mast cells with non-opsonized bacteria was higher than that of macrophages with opsonized bacteria in one of the ratios (1:10). CONCLUSIONS This is the first report about the participation of murine mast cells as phagocytes against A. actinomycetemcomitans, mainly in the absence of opsonization with human serum. Our results may indicate that mast cells act as professional phagocytes in the pathogenesis of biofilm-associated periodontal disease.
Collapse
Affiliation(s)
- Heliton G Lima
- Department of Stomatology, Bauru School of Dentistry, São Paulo University, Bauru, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
341
|
Kisseleva T, Brenner DA. The phenotypic fate and functional role for bone marrow-derived stem cells in liver fibrosis. J Hepatol 2012; 56:965-72. [PMID: 22173163 PMCID: PMC3307836 DOI: 10.1016/j.jhep.2011.09.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/12/2011] [Accepted: 09/04/2011] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is an outcome of chronic liver injury of any etiology. It is manifested by extensive deposition of extracellular matrix (ECM) proteins that produce a fibrous scar in the injured liver. Bone marrow (BM) cells may play an important role in pathogenesis and resolution of liver fibrosis. BM cells contribute to the inflammatory response by TGF-β1 secretion and activation of liver resident myofibroblasts. Moreover, BM itself can serve as a source of collagen expressing cells, e.g. BM-derived fibrocytes and mesenchymal progenitors, which in turn, have a potential to in situ differentiate into fibrogenic myofibroblasts and facilitate fibrosis. Finally, BM cells play an active part in resolution of liver fibrosis after cessation of fibrogenic stimuli. While natural killer (NK) cells are implicated in apoptosis of activated hepatic stellate cells/myofibroblasts, cells of myelo-monocitic lineage secrete matrix metalloproteinases to actively degrade the fibrous scar. The focus of this review is on the current understanding of the role of different subsets of BM cells in the onset, development and resolution of liver fibrosis.
Collapse
|
342
|
Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil extracellular traps that kill bacteria and damage human enterocyte-like cells. Infect Immun 2012; 80:1891-9. [PMID: 22371374 DOI: 10.1128/iai.00050-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We recently documented the neutrophil response to enterovirulent diffusely adherent Escherichia coli expressing Afa/Dr fimbriae (Afa/Dr DAEC), using the human myeloid cell line PLB-985 differentiated into fully mature neutrophils. Upon activation, particularly during infections, neutrophils release neutrophil extracellular traps (NETs), composed of a nuclear DNA backbone associated with antimicrobial peptides, histones, and proteases, which entrap and kill pathogens. Here, using fluorescence microscopy and field emission scanning electron microscopy, we observed NET production by PLB-985 cells infected with the Afa/Dr wild-type (WT) E. coli strain C1845. We found that these NETs were able to capture, immobilize, and kill WT C1845 bacteria. We also developed a coculture model of human enterocyte-like Caco-2/TC7 cells and PLB-985 cells previously treated with WT C1845 and found, for the first time, that the F-actin cytoskeleton of enterocyte-like cells is damaged in the presence of bacterium-induced NETs and that this deleterious effect is prevented by inhibition of protease release. These findings provide new insights into the neutrophil response to bacterial infection via the production of bactericidal NETs and suggest that NETs may damage the intestinal epithelium, particularly in situations such as inflammatory bowel diseases.
Collapse
|
343
|
ETosis: A Microbicidal Mechanism beyond Cell Death. J Parasitol Res 2012; 2012:929743. [PMID: 22536481 PMCID: PMC3321301 DOI: 10.1155/2012/929743] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/10/2011] [Indexed: 12/20/2022] Open
Abstract
Netosis is a recently described type of neutrophil death occurring with the release to the extracellular milieu of a lattice composed of DNA associated with histones and granular and cytoplasmic proteins. These webs, initially named neutrophil extracellular traps (NETs), ensnare and kill microorganisms. Similarly, other cell types, such as eosinophils, mast cells, and macrophages, can also dye by this mechanism; thus, it was renamed as ETosis, meaning death with release of extracellular traps (ETs). Here, we review the mechanism of NETosis/etosis, emphasizing its role in diseases caused by protozoan parasites, fungi, and viruses.
Collapse
|
344
|
Mannheimia haemolytica and its leukotoxin cause macrophage extracellular trap formation by bovine macrophages. Infect Immun 2012; 80:1923-33. [PMID: 22354029 DOI: 10.1128/iai.06120-11] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human and bovine neutrophils release neutrophil extracellular traps (NETs), which are protein-studded DNA matrices capable of extracellular trapping and killing of pathogens. Recently, we reported that bovine neutrophils release NETs in response to the important respiratory pathogen Mannheimia haemolytica and its leukotoxin (LKT). Here, we demonstrate macrophage extracellular trap (MET) formation by bovine monocyte-derived macrophages exposed to M. haemolytica or its LKT. Both native fully active LKT and noncytolytic pro-LKT (produced by an lktC mutant of M. haemolytica) stimulated MET formation. Confocal and scanning electron microscopy revealed a network of DNA fibrils with colocalized histones in extracellular traps released from bovine macrophages. Formation of METs required NADPH oxidase activity, as previously demonstrated for NET formation. METs formed in response to LKT trapped and killed a portion of the M. haemolytica cells. Bovine alveolar macrophages, but not peripheral blood monocytes, also formed METs in response to M. haemolytica cells. MET formation was not restricted to bovine macrophages. We also observed MET formation by the mouse macrophage cell line RAW 264.7 and by human THP-1 cell-derived macrophages, in response to Escherichia coli hemolysin. The latter is a member of the repeats-in-toxin (RTX) toxin family related to the M. haemolytica leukotoxin. This study demonstrates that macrophages, like neutrophils, can form extracellular traps in response to bacterial pathogens and their exotoxins.
Collapse
|
345
|
Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, Bhandari AA, Wagner DD. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10:136-44. [PMID: 22044575 PMCID: PMC3319651 DOI: 10.1111/j.1538-7836.2011.04544.x] [Citation(s) in RCA: 671] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Upon activation, neutrophils can release nuclear material known as neutrophil extracellular traps (NETs), which were initially described as a part of antimicrobial defense. Extracellular chromatin was recently reported to be prothrombotic in vitro and to accumulate in plasma and thrombi of baboons with experimental deep vein thrombosis (DVT). OBJECTIVE To explore the source and role of extracellular chromatin in DVT. METHODS We used an established murine model of DVT induced by flow restriction (stenosis) in the inferior vena cava (IVC). RESULTS We demonstrate that the levels of extracellular DNA increase in plasma after 6 h IVC stenosis, compared with sham-operated mice. Immunohistochemical staining revealed the presence of Gr-1-positive neutrophils in both red (RBC-rich) and white (platelet-rich) parts of thrombi. Citrullinated histone H3 (CitH3), an element of NETs' structure, was present only in the red part of thrombi and was frequently associated with the Gr-1 antigen. Immunofluorescent staining of thrombi showed proximity of extracellular CitH3 and von Willebrand factor (VWF), a platelet adhesion molecule crucial for thrombus development in this model. Infusion of Deoxyribonuclease 1 (DNase 1) protected mice from DVT after 6 h and also 48 h IVC stenosis. Infusion of an unfractionated mixture of calf thymus histones increased plasma VWF and promoted DVT early after stenosis application. CONCLUSIONS Extracellular chromatin, likely originating from neutrophils, is a structural part of a venous thrombus and both the DNA scaffold and histones appear to contribute to the pathogenesis of DVT in mice. NETs may provide new targets for DVT drug development.
Collapse
Affiliation(s)
- A Brill
- Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
346
|
Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect Immun 2011; 80:768-77. [PMID: 22104111 DOI: 10.1128/iai.05730-11] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neutrophils have recently been shown to release DNA-based extracellular traps that contribute to microbicidal killing and have also been implicated in autoimmunity. The role of neutrophil extracellular trap (NET) formation in the host response to nonbacterial pathogens has received much less attention. Here, we show that the protozoan pathogen Toxoplasma gondii elicits the production of NETs from human and mouse neutrophils. Tachyzoites of each of the three major parasite strain types were efficiently entrapped within NETs, resulting in decreased parasite viability. We also show that Toxoplasma activates a MEK-extracellular signal-regulated kinase (ERK) pathway in neutrophils and that the inhibition of this pathway leads to decreased NET formation. To determine if Toxoplasma induced NET formation in vivo, we employed a mouse intranasal infection model. We found that the administration of tachyzoites by this route induced a rapid tissue recruitment of neutrophils with evidence of extracellular DNA release. Taken together, these data indicate a role for NETs in the host innate response to protozoan infection. We propose that NET formation limits infection by direct microbicidal effects on Toxoplasma as well as by interfering with the ability of the parasite to invade target host cells.
Collapse
|
347
|
Beghdadi W, Madjene LC, Benhamou M, Charles N, Gautier G, Launay P, Blank U. Mast cells as cellular sensors in inflammation and immunity. Front Immunol 2011; 2:37. [PMID: 22566827 PMCID: PMC3342044 DOI: 10.3389/fimmu.2011.00037] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/16/2011] [Indexed: 12/28/2022] Open
Abstract
Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases.
Collapse
|
348
|
Douda DN, Jackson R, Grasemann H, Palaniyar N. Innate immune collectin surfactant protein D simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping. THE JOURNAL OF IMMUNOLOGY 2011; 187:1856-65. [PMID: 21724991 DOI: 10.4049/jimmunol.1004201] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neutrophils release DNA-based extracellular traps to capture and kill bacteria. The mechanism(s) and proteins that promote neutrophil extracellular trap (NET)-mediated bacterial trapping are not clearly established. Surfactant protein D (SP-D) is an innate immune collectin present in many mucosal surfaces. We hypothesized that SP-D can bind both the pathogens and NETs to augment NET-mediated bacterial trapping. To test this hypothesis, we used LPS and Pseudomonas aeruginosa pneumonia mouse models and performed in vivo and ex vivo assays. In this study, we show that NETs are produced by the neutrophils recruited to the airways in response to the bacterial ligand. Notably, NETs are detected as short fragments of DNA-protein complexes in the airways as opposed to the long stringlike structures seen in ex vivo cultures. SP-D recognizes both the short NET fragments and the long NET DNA structures. SP-D-NET copurification studies further show that SP-D can simultaneously recognize NETs and carbohydrate ligands in vivo. Similar to the LPS model, soluble DNA-protein complexes and increased amounts of SP-D are detected in the murine model of P. aeruginosa pneumonia. We then tested the effect of SP-D on NET-mediated trapping of P. aeruginosa by means of Western blots, fluorescence microscopy, and scanning electron microscopy. Results of these experiments show that SP-D microagglutinates P. aeruginosa and allows an efficient bacterial trapping by NETs. Collectively, these findings provide a unique biological relevance for SP-D-DNA interactions and places SP-D as an important innate immune protein that promotes bacterial trapping by NETs during neutrophil-mediated host defense.
Collapse
Affiliation(s)
- David Nobuhiro Douda
- Program in Physiology and Experimental Medicine, SickKids Research Institute, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
349
|
Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118:1952-61. [PMID: 21673343 DOI: 10.1182/blood-2011-03-343061] [Citation(s) in RCA: 614] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The release of histones from dying cells is associated with microvascular thrombosis and, because histones activate platelets, this could represent a possible pathogenic mechanism. In the present study, we assessed the influence of histones on the procoagulant potential of human platelets in platelet-rich plasma (PRP) and in purified systems. Histones dose-dependently enhanced thrombin generation in PRP in the absence of any trigger, as evaluated by calibrated automated thrombinography regardless of whether the contact phase was inhibited. Activation of coagulation required the presence of fully activatable platelets and was not ascribable to platelet tissue factor, whereas targeting polyphosphate with phosphatase reduced thrombin generation even when factor XII (FXII) was blocked or absent. In the presence of histones, purified polyphosphate was able to induce thrombin generation in plasma independently of FXII. In purified systems, histones induced platelet aggregation; P-selectin, phosphatidylserine, and FV/Va expression; and prothrombinase activity. Blocking platelet TLR2 and TLR4 with mAbs reduced the percentage of activated platelets and lowered the amount of thrombin generated in PRP. These data show that histone-activated platelets possess a procoagulant phenotype that drives plasma thrombin generation and suggest that TLR2 and TLR4 mediate the activation process.
Collapse
|
350
|
Amelung S, Nerlich A, Rohde M, Spellerberg B, Cole JN, Nizet V, Chhatwal GS, Talay SR. The FbaB-type fibronectin-binding protein of Streptococcus pyogenes promotes specific invasion into endothelial cells. Cell Microbiol 2011; 13:1200-11. [PMID: 21615663 DOI: 10.1111/j.1462-5822.2011.01610.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Invasive serotype M3 Streptococcus pyogenes are among the most frequently isolated organisms from patients suffering from invasive streptococcal disease and have the potential to invade primary human endothelial cells (EC) via a rapid and efficient mechanism. FbaB protein, the fibronectin-binding protein expressed by M3 S. pyogenes, was herein identified as a potent invasin for EC. By combining heterologous gene expression with allelic replacement, we demonstrate that FbaB is essential and sufficient to trigger EC invasion via a Rac1-dependent phagocytosis-like uptake. FbaB-mediated uptake follows the classical endocytic pathway with lysosomal destination. FbaB is demonstrated to be a streptococcal invasin exhibiting EC tropism. FbaB thus initiates a process that may contribute to the deep tissue tropism and spread of invasive S. pyogenes isolates into the vascular EC lining.
Collapse
Affiliation(s)
- Silva Amelung
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|