301
|
Fujisawa M, Nakano T, Ito Y. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC PLANT BIOLOGY 2011; 11:26. [PMID: 21276270 PMCID: PMC3039564 DOI: 10.1186/1471-2229-11-26] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/30/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. RESULTS Using immunoprecipitated (IPed) DNA fragments recovered by chromatin immunoprecipitation (ChIP) with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites) in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. CONCLUSIONS The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes during ripening. Moreover, the binding of RIN to its own promoter suggests the presence of autoregulation for RIN expression. ChIP-based analyses identified a novel RIN-binding CArG-box site that harbors a gene associated with RIN expression in its flanking region. These findings clarify the crucial role of RIN in the transcriptional regulation of ripening initiation and progression.
Collapse
Affiliation(s)
- Masaki Fujisawa
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Toshitsugu Nakano
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Yasuhiro Ito
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
302
|
Zheng Y, Perry SE. Chromatin immunoprecipitation to verify or to identify in vivo protein-DNA interactions. Methods Mol Biol 2011; 754:277-91. [PMID: 21720959 DOI: 10.1007/978-1-61779-154-3_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chromatin immunoprecipitation (ChIP) is a valuable tool to detect the interaction in vivo between a DNA-associated protein and DNA fragments. Combined with approaches to assess gene expression in response to accumulation of a transcription factor, it is possible to identify direct responsive targets from targets that are indirectly responsive to accumulation of the transcription factor. ChIP may be used to confirm in vivo association of a transcriptional regulator with suspected target DNA fragments. ChIP may also be used to discover new targets, and when combined with high-throughput approaches to identify DNA fragments associated with a transcription factor, it may provide a tool to study the gene regulatory networks active during plant development and/or response to the environment. Furthermore, ChIP is also a powerful means to map epigenetic modifications within a genome.
Collapse
Affiliation(s)
- Yumei Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.
| | | |
Collapse
|
303
|
Marsch-Martínez N, Wu W, de Folter S. The MADS Symphonies of Transcriptional Regulation. FRONTIERS IN PLANT SCIENCE 2011; 2:26. [PMID: 22645529 PMCID: PMC3355769 DOI: 10.3389/fpls.2011.00026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/19/2011] [Indexed: 05/08/2023]
Affiliation(s)
- Nayelli Marsch-Martínez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Guanajuato, México
| | - Wenwu Wu
- College of Life Science, Northwest A&F UniversityYangling, Shaanxi, China
| | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Guanajuato, México
- *Correspondence:
| |
Collapse
|
304
|
Visualizing and characterizing in vivo DNA-binding events and direct target genes of plant transcription factors. Methods Mol Biol 2011; 754:293-305. [PMID: 21720960 DOI: 10.1007/978-1-61779-154-3_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Physical interactions between transcription factors and specific DNA sites are essential for gene regulation. Recent progress in genome-wide in vivo techniques, like chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-SEQ), enables plant researchers to generate genome-wide, high-resolution DNA-binding maps of transcription factors. These new types of data require the use of advanced bioinformatic tools in order to understand the molecular mechanisms of functional specificity and target gene regulation by transcription factors. Here, we will review the use of a genome browser to visualize genome-wide DNA-binding maps of plant transcription factors along with other publicly available data and the program MEME to determine DNA sequence motifs in the bound regions. We also describe a tool for functional classification of target genes using GO annotations. Analysis of transcriptional regulatory networks requires the integration of multiple types of data, and this chapter aims at giving an overview about different bioinformatic approaches for meta-analysis and data integration.
Collapse
|
305
|
Ferrier T, Matus JT, Jin J, Riechmann JL. Arabidopsis paves the way: genomic and network analyses in crops. Curr Opin Biotechnol 2010; 22:260-70. [PMID: 21167706 DOI: 10.1016/j.copbio.2010.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 01/08/2023]
Abstract
Arabidopsis genomic and network analyses have facilitated crop research towards the understanding of many biological processes of fundamental importance for agriculture. Genes that were identified through genomic analyses in Arabidopsis have been used to manipulate crop traits such as pathogen resistance, yield, water-use efficiency, and drought tolerance, with the effects being tested in field conditions. The integration of diverse Arabidopsis genome-wide datasets in probabilistic functional networks has been demonstrated as a feasible strategy to associate novel genes with traits of interest, and novel genomic methods continue to be developed. The combination of genome-wide location studies, using ChIP-Seq, with gene expression profiling data is affording a genome-wide view of regulatory networks previously delineated through genetic and molecular analyses, leading to the identification of novel components and of new connections within these networks.
Collapse
Affiliation(s)
- Thilia Ferrier
- Center for Research in Agricultural Genomics CSIC-IRTA-UAB, Barcelona 08034, Spain
| | | | | | | |
Collapse
|
306
|
Shao SQ, Li BY, Zhang ZT, Zhou Y, Jiang J, Li XB. Expression of a cotton MADS-box gene is regulated in anther development and in response to phytohormone signaling. J Genet Genomics 2010; 37:805-16. [DOI: 10.1016/s1673-8527(09)60098-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 10/25/2010] [Accepted: 11/05/2010] [Indexed: 01/22/2023]
|
307
|
van Dijk ADJ, Morabito G, Fiers M, van Ham RCHJ, Angenent GC, Immink RGH. Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction. PLoS Comput Biol 2010; 6:e1001017. [PMID: 21124869 PMCID: PMC2991254 DOI: 10.1371/journal.pcbi.1001017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 10/27/2010] [Indexed: 11/18/2022] Open
Abstract
Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and network evolution.
Collapse
Affiliation(s)
| | | | - Martijn Fiers
- Plant Research International, Bioscience, Wageningen, The Netherlands
| | | | - Gerco C. Angenent
- Plant Research International, Bioscience, Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), Wageningen, The Netherlands
| | - Richard G. H. Immink
- Plant Research International, Bioscience, Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
308
|
Kaufmann K, Pajoro A, Angenent GC. Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet 2010; 11:830-42. [PMID: 21063441 DOI: 10.1038/nrg2885] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unlike animals, plants produce new organs throughout their life cycle using pools of stem cells that are organized in meristems. Although many key regulators of meristem and organ identities have been identified, it is still not well understood how they function at the molecular level and how they can switch an entire developmental programme in which thousands of genes are involved. Recent advances in the genome-wide identification of target genes controlled by key plant transcriptional regulators and their interactions with epigenetic factors provide new insights into general transcriptional regulatory mechanisms that control switches of developmental programmes and cell fates in complex organisms.
Collapse
|
309
|
Eveland AL, Satoh-Nagasawa N, Goldshmidt A, Meyer S, Beatty M, Sakai H, Ware D, Jackson D. Digital gene expression signatures for maize development. PLANT PHYSIOLOGY 2010; 154:1024-39. [PMID: 20833728 PMCID: PMC2971585 DOI: 10.1104/pp.110.159673] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect the determinacy of axillary meristems and thus alter branching patterns, an important agronomic trait. In this work, we developed and tested a framework for analysis of tag-based, digital gene expression profiles using Illumina's high-throughput sequencing technology and the newly assembled B73 maize reference genome. We also used a mutation in the RA3 gene to identify putative expression signatures specific to stem cell fate in axillary meristem determinacy. The RA3 gene encodes a trehalose-6-phosphate phosphatase and may act at the interface between developmental and metabolic processes. Deep sequencing of digital gene expression libraries, representing three biological replicate ear samples from wild-type and ra3 plants, generated 27 million 20- to 21-nucleotide reads with frequencies spanning 4 orders of magnitude. Unique sequence tags were anchored to 3'-ends of individual transcripts by DpnII and NlaIII digests, which were multiplexed during sequencing. We mapped 86% of nonredundant signature tags to the maize genome, which associated with 37,117 gene models and unannotated regions of expression. In total, 66% of genes were detected by at least nine reads in immature maize ears. We used comparative genomics to leverage existing information from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) in functional analyses of differentially expressed maize genes. Results from this study provide a basis for the analysis of short-read expression data in maize and resolved specific expression signatures that will help define mechanisms of action for the RA3 gene.
Collapse
|
310
|
Delseny M, Han B, Hsing YI. High throughput DNA sequencing: The new sequencing revolution. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2010; 179:407-22. [PMID: 21802600 DOI: 10.1016/j.plantsci.2010.07.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 07/23/2010] [Accepted: 07/26/2010] [Indexed: 05/02/2023]
Abstract
Improvements in technology have rapidly changed the field of DNA sequencing. These improvements are boosted by bio-medical research. Plant science has benefited from this breakthrough, and a number of plant genomes are now available, new biological questions can be approached and new breeding strategies can be designed. The first part of this review aims to briefly describe the principles of the new sequencing methods, many of which are already used in plant laboratories. The second part summarizes the state of plant genome sequencing and illustrates the achievements in the last few years. Although already impressive, these results represent only the beginning of a new genomic era in plant science. Finally we describe some of the exciting discoveries in the structure and evolution of plant genomes made possible by genome sequencing in terms of biodiversity, genome expression and epigenetic regulations. All of these findings have already influenced plant breeding and biodiversity protection. Finally we discuss current trends, challenges and perspectives.
Collapse
Affiliation(s)
- Michel Delseny
- Laboratoire Génome et Développement des Plantes, UMR5096 CNRS-IRD-UP, University of Perpignan, 58 av. Paul Alduy, 66860 Perpignan, France.
| | | | | |
Collapse
|
311
|
Single amino acid change alters the ability to specify male or female organ identity. Proc Natl Acad Sci U S A 2010; 107:18898-902. [PMID: 20956314 DOI: 10.1073/pnas.1009050107] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms underlying the developmental processes that shape living organisms provide a basis to understand the evolution of biological complexity. Gene duplication allows biological functions to become separated, leading to increased complexity through subfunctionalization. Recently, the relative contributions to morphological evolution of changes to the regulatory and/or coding regions of duplicated genes have been the subject of debate. Duplication generated multiple copies of the MADS-box transcription factor genes that play essential roles in specifying organ identity in the flower, making this evolutionary novelty a good model to investigate the nature of the changes necessary to drive subfunctionalization. Here, we show that naturally occurring variation at a single amino acid in a MADS-box transcription factor switches its ability to specify male and female reproductive organs by altering its repertoire of protein-protein interactions. However, these different developmental fates are only manifest because of an underlying variation in the expression pattern of interacting proteins. This shows that the morphological outcomes of changes to protein sequence and gene expression must be interpreted in the context of the wider regulatory network. It also suggests an explanation for the surprisingly widespread duplications of some of the floral transcription factors.
Collapse
|
312
|
He F, Zhou Y, Zhang Z. Deciphering the Arabidopsis floral transition process by integrating a protein-protein interaction network and gene expression data. PLANT PHYSIOLOGY 2010; 153:1492-505. [PMID: 20530214 PMCID: PMC2923896 DOI: 10.1104/pp.110.153650] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 06/03/2010] [Indexed: 05/18/2023]
Abstract
In a plant, the progression from vegetative growth to reproductive growth is called the floral transition. Over the past several decades, the floral transition has been shown to be determined not by a single gene but by a complicated gene network. This important biological process, however, has not been investigated at a genome-wide network level. We collected Arabidopsis (Arabidopsis thaliana) protein-protein interaction data from several public databases and compiled them into a genome-wide Arabidopsis interactome. Then, we integrated gene expression profiles during the Arabidopsis floral transition process into the established protein-protein interaction network to identify two types of anticorrelated modules associated with vegetative and reproductive growth. Generally, the vegetative modules are conserved in plants, while the reproductive modules are more specific to advanced plants. The existence of floral transition switches demonstrates that vegetative and reproductive processes might be coordinated by the interacting interface of these modules. Our work also provides many candidates for mediating the interactions between these modules, which may play important roles during the Arabidopsis vegetative/reproductive switch.
Collapse
|
313
|
van Mourik S, van Dijk ADJ, de Gee M, Immink RGH, Kaufmann K, Angenent GC, van Ham RCHJ, Molenaar J. Continuous-time modeling of cell fate determination in Arabidopsis flowers. BMC SYSTEMS BIOLOGY 2010; 4:101. [PMID: 20649974 PMCID: PMC2922098 DOI: 10.1186/1752-0509-4-101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 07/22/2010] [Indexed: 01/02/2023]
Abstract
Background The genetic control of floral organ specification is currently being investigated by various approaches, both experimentally and through modeling. Models and simulations have mostly involved boolean or related methods, and so far a quantitative, continuous-time approach has not been explored. Results We propose an ordinary differential equation (ODE) model that describes the gene expression dynamics of a gene regulatory network that controls floral organ formation in the model plant Arabidopsis thaliana. In this model, the dimerization of MADS-box transcription factors is incorporated explicitly. The unknown parameters are estimated from (known) experimental expression data. The model is validated by simulation studies of known mutant plants. Conclusions The proposed model gives realistic predictions with respect to independent mutation data. A simulation study is carried out to predict the effects of a new type of mutation that has so far not been made in Arabidopsis, but that could be used as a severe test of the validity of the model. According to our predictions, the role of dimers is surprisingly important. Moreover, the functional loss of any dimer leads to one or more phenotypic alterations.
Collapse
Affiliation(s)
- Simon van Mourik
- Biometris, Plant Sciences Group, Wageningen University and Research Center, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
314
|
Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen X, Schmid M. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. THE PLANT CELL 2010; 22:2156-70. [PMID: 20675573 PMCID: PMC2929098 DOI: 10.1105/tpc.110.075606] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/07/2010] [Accepted: 07/14/2010] [Indexed: 05/17/2023]
Abstract
The Arabidopsis thaliana transcription factor APETALA2 (AP2) has numerous functions, including roles in seed development, stem cell maintenance, and specification of floral organ identity. To understand the relationship between these different roles, we mapped direct targets of AP2 on a genome-wide scale in two tissue types. We find that AP2 binds to thousands of loci in the developing flower, many of which exhibit AP2-dependent transcription. Opposing, logical effects are evident in AP2 binding to two microRNA genes that influence AP2 expression, with AP2 positively regulating miR156 and negatively regulating miR172, forming a complex direct feedback loop, which also included all but one of the AP2-like miR172 target clade members. We compare the genome-wide direct target repertoire of AP2 with that of SCHLAFMUTZE, a closely related transcription factor that also represses the transition to flowering. We detect clear similarities and important differences in the direct target repertoires that are also tissue specific. Finally, using an inducible expression system, we demonstrate that AP2 has dual molecular roles. It functions as both a transcriptional activator and repressor, directly inducing the expression of the floral repressor AGAMOUS-LIKE15 and directly repressing the transcription of floral activators like SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1.
Collapse
Affiliation(s)
- Levi Yant
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Johannes Mathieu
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Thanh Theresa Dinh
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- ChemGen IGERT Program, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Felix Ott
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Christa Lanz
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Heike Wollmann
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Markus Schmid
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- Address correspondence to
| |
Collapse
|
315
|
Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell MJ, Zhang W, Sunkar R. Transcriptome-wide identification of microRNA targets in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:742-59. [PMID: 20202174 DOI: 10.1111/j.1365-313x.2010.04187.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNA (miRNA)-guided target RNA expression is vital for a wide variety of biological processes in eukaryotes. Currently, miRBase (version 13) lists 142 and 353 miRNAs from Arabidopsis and rice (Oryza sativa), respectively. The integration of miRNAs in diverse biological networks relies upon the confirmation of their RNA targets. In contrast with the well-characterized miRNA targets that are cleaved in Arabidopsis, only a few such targets have been confirmed in rice. To identify small RNA targets in rice, we applied the 'degradome sequencing' approach, which globally identifies the remnants of small RNA-directed target cleavage by sequencing the 5' ends of uncapped RNAs. One hundred and sixty targets of 53 miRNA families (24 conserved and 29 rice-specific) and five targets of TAS3-small interfering RNAs (siRNAs) were identified. Surprisingly, an additional conserved target for miR398, which has not been reported so far, has been validated. Besides conserved homologous transcripts, 23 non-conserved genes for nine conserved miRNAs and 56 genes for 29 rice-specific miRNAs were also identified as targets. Besides miRNA targets, the rice degradome contained fragments derived from MIRNA precursors. A closer inspection of these fragments revealed a unique pattern distinct from siRNA-producing loci. This attribute can serve as one of the ancillary criteria for separating miRNAs from siRNAs in plants.
Collapse
Affiliation(s)
- Yong-Fang Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Balazadeh S, Wu A, Mueller-Roeber B. Salt-triggered expression of the ANAC092-dependent senescence regulon in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2010; 5:733-5. [PMID: 20404534 PMCID: PMC3001574 DOI: 10.4161/psb.5.6.11694] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 05/18/2023]
Abstract
The NAC domain transcription factor ANAC092 plays a central role in leaf senescence in Arabidopsis thaliana. We recently identified 170 genes whose expression increases upon activation of ANAC092 in a chemically (estradiol) controlled experimental set-up, 78 of which are known senescence-associated genes (SAGs). In accordance with the well-known phenomenon that salt stress promotes early leaf senescence in many plant species, we previously observed salt stress-enhanced expression of many SAGs of the ANAC092 regulon. Global expression profiling now revealed that 36 genes, representing 46% of all ANAC092 downstream SAGs, are induced by long-term (4 days) salt stress in shoots of Arabidopsis, whereas short-term stress (6 hours) only slightly affects gene expression. Expression analysis also showed that 14 of the 36 genes are induced by hydrogen peroxide (H2O2) treatment. Additionally, 15 senescence-associated NAC genes (senNACs), including ANAC092, respond to H2O2 exposure. Our data support the model that salt-triggered senescence is at least partly mediated through the ANAC092 gene regulatory network. Other senNACs most likely contribute to the coordination of this process, potentially in concert with H2O2-mediated signaling.
Collapse
Affiliation(s)
- Salma Balazadeh
- University of Potsdam; Institute of Biochemistry and Biology; Potsdam-Golm, Germany
| | - Anhui Wu
- Max-Planck Institute of Molecular Plant Physiology; Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam; Institute of Biochemistry and Biology; Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology; Potsdam-Golm, Germany
| |
Collapse
|
317
|
Matias-Hernandez L, Battaglia R, Galbiati F, Rubes M, Eichenberger C, Grossniklaus U, Kater MM, Colombo L. VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis. THE PLANT CELL 2010; 22:1702-15. [PMID: 20581305 PMCID: PMC2910977 DOI: 10.1105/tpc.109.068627] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 05/23/2010] [Accepted: 06/10/2010] [Indexed: 05/19/2023]
Abstract
In Arabidopsis thaliana, the three MADS box genes SEEDSTICK (STK), SHATTERPROOF1 (SHP1), and SHP2 redundantly regulate ovule development. Protein interaction studies have shown that a multimeric complex composed of the ovule identity proteins together with the SEPALLATA MADS domain proteins is necessary to determine ovule identity. Despite the extensive knowledge that has become available about these MADS domain transcription factors, little is known regarding the genes that they regulate. Here, we show that STK, SHP1, and SHP2 redundantly regulate VERDANDI (VDD), a putative transcription factor that belongs to the plant-specific B3 superfamily. The vdd mutant shows defects during the fertilization process resulting in semisterility. Analysis of the vdd mutant female gametophytes indicates that antipodal and synergid cell identity and/or differentiation are affected. Our results provide insights into the pathways regulated by the ovule identity factors and the role of the downstream target gene VDD in female gametophyte development.
Collapse
Affiliation(s)
| | - Raffaella Battaglia
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milano, Italy
| | - Francesca Galbiati
- Dipartimento di Biologia, Università degli Studi di Milano, 20133 Milano, Italy
| | - Marco Rubes
- Dipartimento di Biologia, Università degli Studi di Milano, 20133 Milano, Italy
| | - Christof Eichenberger
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland
| | - Martin M. Kater
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milano, Italy
| | - Lucia Colombo
- Dipartimento di Biologia, Università degli Studi di Milano, 20133 Milano, Italy
- Address correspondence to
| |
Collapse
|
318
|
McKim S, Hay A. Patterning and evolution of floral structures - marking time. Curr Opin Genet Dev 2010; 20:448-53. [PMID: 20452201 DOI: 10.1016/j.gde.2010.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 04/11/2010] [Accepted: 04/14/2010] [Indexed: 11/30/2022]
Abstract
The diversity of flowering structures dazzles the eye, dominates the landscape, and invites evolutionary questions regarding the development of such variety. Comparative work in a number of genetically tractable plant species has addressed how diverse floral architectures develop, and started to reveal the balance between conservation and divergence of the patterning mechanisms responsible for when and where flowers form on a plant. We highlight findings from Petunia where conserved LFY/UFO function is under species-specific regulation, and a novel mechanism involving WOX homeodomain proteins for modulating cyme development in diverse nightshades. We also draw attention to recent findings in Arabidopsis of miRNA and chromatin-based timing mechanisms controlling floral development, and illustrate how genetic studies in Arabidopsis relatives can reveal how evolutionary changes in such mechanisms generate diversity in form.
Collapse
Affiliation(s)
- Sarah McKim
- Plant Sciences Dept, University of Oxford, Oxford, UK
| | | |
Collapse
|
319
|
Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueño F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL. Orchestration of floral initiation by APETALA1. Science 2010; 328:85-9. [PMID: 20360106 DOI: 10.1126/science.1185244] [Citation(s) in RCA: 340] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding studies. Many of its targets encode transcriptional regulators, including known floral repressors. The latter genes are down-regulated by AP1, suggesting that it initiates floral development by abrogating the inhibitory effects of these genes. Although AP1 acts predominantly as a transcriptional repressor during the earliest stages of flower development, at more advanced stages it also activates regulatory genes required for floral organ formation, indicating a dynamic mode of action. Our results further imply that AP1 orchestrates floral initiation by integrating growth, patterning, and hormonal pathways.
Collapse
Affiliation(s)
- Kerstin Kaufmann
- Business Unit Bioscience, Plant Research International, Wageningen 6700 AA, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Köhler B, Mueller-Roeber B. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:250-64. [PMID: 20113437 DOI: 10.1111/j.1365-313x.2010.04151.x] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The onset and progression of senescence are under genetic and environmental control. The Arabidopsis thaliana NAC transcription factor ANAC092 (also called AtNAC2 and ORE1) has recently been shown to control age-dependent senescence, but its mode of action has not been analysed yet. To explore the regulatory network administered by ANAC092 we performed microarray-based expression profiling using estradiol-inducible ANAC092 overexpression lines. Approximately 46% of the 170 genes up-regulated upon ANAC092 induction are known senescence-associated genes, suggesting that the NAC factor exerts its role in senescence through a regulatory network that includes many of the genes previously reported to be senescence regulated. We selected 39 candidate genes and confirmed their time-dependent response to enhanced ANAC092 expression by quantitative RT-PCR. We also found that the majority of them (24 genes) are up-regulated by salt stress, a major promoter of plant senescence, in a manner similar to that of ANAC092, which itself is salt responsive. Furthermore, 24 genes like ANAC092 turned out to be stage-dependently expressed during seed growth with low expression at early and elevated expression at late stages of seed development. Disruption of ANAC092 increased the rate of seed germination under saline conditions, whereas the opposite occurred in respective overexpression plants. We also detected a delay of salinity-induced chlorophyll loss in detached anac092-1 mutant leaves. Promoter-reporter (GUS) studies revealed transcriptional control of ANAC092 expression during leaf and flower ageing and in response to salt stress. We conclude that ANAC092 exerts its functions during senescence and seed germination through partly overlapping target gene sets.
Collapse
Affiliation(s)
- Salma Balazadeh
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Irish VF. The flowering of Arabidopsis flower development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:1014-28. [PMID: 20409275 DOI: 10.1111/j.1365-313x.2009.04065.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Flowers come in a variety of colors, shapes and sizes. Despite this variety, flowers have a very stereotypical architecture, consisting of a series of sterile organs surrounding the reproductive structures. Arabidopsis, as the premier model system for molecular and genetic analyses of plant development, has provided a wealth of insights into how this architecture is specified. With the advent of the completion of the Arabidopsis genome sequence a decade ago, in combination with a rich variety of forward and reverse genetic strategies, many of the genes and regulatory pathways controlling flower initiation, patterning, growth and differentiation have been characterized. A central theme that has emerged from these studies is the complexity and abundance of both positive and negative feedback loops that operate to regulate different aspects of flower formation. Presumably, this considerable degree of feedback regulation serves to promote a robust and stable transition to flowering, even in the face of genetic or environmental perturbations. This review will summarize recent advances in defining the genes, the regulatory pathways, and their interactions, that underpin how the Arabidopsis flower is formed.
Collapse
Affiliation(s)
- Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8104, USA.
| |
Collapse
|
322
|
Kaufmann K, Muiño JM, Østerås M, Farinelli L, Krajewski P, Angenent GC. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nat Protoc 2010; 5:457-72. [PMID: 20203663 DOI: 10.1038/nprot.2009.244] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatin immunoprecipitation (ChIP) is a powerful technique to study interactions between transcription factors (TFs) and DNA in vivo. For genome-wide de novo discovery of TF-binding sites, the DNA that is obtained in ChIP experiments needs to be processed for sequence identification. The sequences can be identified by direct sequencing (ChIP-SEQ) or hybridization to microarrays (ChIP-CHIP). Given the small amounts of DNA that are usually obtained in ChIP experiments, successful and reproducible sample processing is challenging. Here we provide a detailed procedure for ChIP of plant TFs, as well as protocols for sample preparation for ChIP-SEQ and for ChIP-CHIP. Our ChIP procedure is optimized for high signal-to-noise ratio starting with tissue fixation, followed by nuclei isolation, immunoprecipitation, DNA amplification and purification. We also provide a guide for primary data analysis of ChIP-SEQ data. The complete protocol for ChIP-SEQ/ChIP-CHIP sample preparation starting from plant harvest takes approximately 7 d.
Collapse
Affiliation(s)
- Kerstin Kaufmann
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
323
|
Rehrauer H, Aquino C, Gruissem W, Henz SR, Hilson P, Laubinger S, Naouar N, Patrignani A, Rombauts S, Shu H, Van de Peer Y, Vuylsteke M, Weigel D, Zeller G, Hennig L. AGRONOMICS1: a new resource for Arabidopsis transcriptome profiling. PLANT PHYSIOLOGY 2010; 152:487-99. [PMID: 20032078 PMCID: PMC2815891 DOI: 10.1104/pp.109.150185] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 12/17/2009] [Indexed: 05/20/2023]
Abstract
Transcriptome profiling has become a routine tool in biology. For Arabidopsis (Arabidopsis thaliana), the Affymetrix ATH1 expression array is most commonly used, but it lacks about one-third of all annotated genes present in the reference strain. An alternative are tiling arrays, but previous designs have not allowed the simultaneous analysis of both strands on a single array. We introduce AGRONOMICS1, a new Affymetrix Arabidopsis microarray that contains the complete paths of both genome strands, with on average one 25mer probe per 35-bp genome sequence window. In addition, the new AGRONOMICS1 array contains all perfect match probes from the original ATH1 array, allowing for seamless integration of the very large existing ATH1 knowledge base. The AGRONOMICS1 array can be used for diverse functional genomics applications such as reliable expression profiling of more than 30,000 genes, detection of alternative splicing, and chromatin immunoprecipitation coupled to microarrays (ChIP-chip). Here, we describe the design of the array and compare its performance with that of the ATH1 array. We find results from both microarrays to be of similar quality, but AGRONOMICS1 arrays yield robust expression information for many more genes, as expected. Analysis of the ATH1 probes on AGRONOMICS1 arrays produces results that closely mirror those of ATH1 arrays. Finally, the AGRONOMICS1 array is shown to be useful for ChIP-chip experiments. We show that heterochromatic H3K9me2 is strongly confined to the gene body of target genes in euchromatic chromosome regions, suggesting that spreading of heterochromatin is limited outside of pericentromeric regions.
Collapse
|
324
|
Immink RG, Kaufmann K, Angenent GC. The ‘ABC’ of MADS domain protein behaviour and interactions. Semin Cell Dev Biol 2010; 21:87-93. [DOI: 10.1016/j.semcdb.2009.10.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/23/2009] [Indexed: 02/05/2023]
|
325
|
Liu Z, Mara C. Regulatory mechanisms for floral homeotic gene expression. Semin Cell Dev Biol 2010; 21:80-6. [DOI: 10.1016/j.semcdb.2009.11.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 11/28/2022]
|
326
|
Baginsky S, Hennig L, Zimmermann P, Gruissem W. Gene expression analysis, proteomics, and network discovery. PLANT PHYSIOLOGY 2010; 152:402-10. [PMID: 20018595 PMCID: PMC2815903 DOI: 10.1104/pp.109.150433] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/06/2009] [Indexed: 05/21/2023]
|
327
|
Airoldi CA. Determination of sexual organ development. ACTA ACUST UNITED AC 2009; 23:53-62. [PMID: 20033226 DOI: 10.1007/s00497-009-0126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
Plant sexual organ development is initiated from the floral meristem. At early stages, the activation of a set of genes that encode transcription factors determines the identity of the floral organs. These transcription factors are known as organ identity genes, and they form multimeric complexes that bind to target genes to control their expression. The transcriptional regulation of target genes triggers the formation of an organ by activating pathways required for its development initiating a cascade of events that leads to sexual plant reproduction. Here, I review the complex mechanisms involved in transcriptional regulation of organ identity genes and how they determine sexual organ development. Their expression is the result of complex interactions between repressors and activators that are often coexpressed. After the production of floral identity proteins, the formation of multimeric complexes defines target specificity and exerts a transcriptional regulatory effect on the target. Thanks to an increasing knowledge of the molecular control of sexual organ development in multiple species, we are beginning to understand how these genes evolved and how reproductive organ development occurs in different groups of plants. Comparative studies will, in future, provide a new insight into mechanisms of sexual organ development.
Collapse
Affiliation(s)
- Chiara A Airoldi
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
328
|
Impact of genome assembly status on ChIP-Seq and ChIP-PET data mapping. BMC Res Notes 2009; 2:257. [PMID: 20015379 PMCID: PMC2804576 DOI: 10.1186/1756-0500-2-257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 12/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ChIP-Seq and ChIP-PET can potentially be used with any genome for genome wide profiling of protein-DNA interaction sites. Unfortunately, it is probable that most genome assemblies will never reach the quality of the human genome assembly. Therefore, it remains to be determined whether ChIP-Seq and ChIP-PET are practicable with genome sequences other than a few (e.g. human and mouse). FINDINGS Here, we used in silico simulations to assess the impact of completeness or fragmentation of genome assemblies on ChIP-Seq and ChIP-PET data mapping. CONCLUSIONS Most currently published genome assemblies are suitable for mapping the short sequence tags produced by ChIP-Seq or ChIP-PET.
Collapse
|
329
|
Sundberg E, Østergaard L. Distinct and dynamic auxin activities during reproductive development. Cold Spring Harb Perspect Biol 2009; 1:a001628. [PMID: 20457563 PMCID: PMC2882118 DOI: 10.1101/cshperspect.a001628] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Flowering plants have evolved sophisticated and complicated reproductive structures to ensure optimal conditions for the next generation. Successful reproduction relies on careful timing and coordination of tissue development, which requires constant communication between these tissues. Work on flower and fruit development over the last decade places the phytohormone auxin in a key role as a master of patterning and tissue specification of reproductive organs. Although many questions still remain, it is now clear that auxin mediates its function in flowers and fruits through an integrated process of biosynthesis, transport, and signaling, as well as interaction with other hormonal pathways. In addition, the knowledge obtained so far about auxin function already allows researchers to develop tools for crop improvement and precision agriculture.
Collapse
Affiliation(s)
- Eva Sundberg
- Uppsala BioCenter, Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| | | |
Collapse
|
330
|
The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin Cell Dev Biol 2009; 21:118-28. [PMID: 19944177 DOI: 10.1016/j.semcdb.2009.11.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/16/2009] [Accepted: 11/19/2009] [Indexed: 11/21/2022]
Abstract
20 years after establishment of the ABC model many of the molecular mechanisms underlying development of the angiosperm flower are relatively well understood. Central players in the gene regulatory network controlling flower development are SQUA-like, DEF/GLO-like, AG-like and AGL6/SEP1-like MIKC-type MADS-domain transcription factors. These provide class A, class B, class C and the more recently defined class E floral homeotic functions, respectively. There is evidence that the floral homeotic proteins recognize the DNA of target genes in an organ-specific way as multimeric protein complexes, thus constituting 'floral quartets'. In contrast to the detailed insights into flower development, how the flower originated during evolution has remained enigmatic. However, while orthologues of all classes of floral homeotic genes appear to be absent from all non-seed plants, DEF/GLO-like, AG-like, and AGL6-like genes have been found in diverse extant gymnosperms, the closest relatives of the angiosperms. While SQUA-like and SEP1-like MADS-box genes appear to be absent from extant gymnosperms, reconstruction of MADS-box gene phylogeny surprisingly suggests that the most recent common ancestor of gymnosperms and angiosperms possessed representatives of both genes, but that these have been lost in the lineage that led to extant gymnosperms. Expression studies and genetic complementation experiments indicate that both angiosperm and gymnosperm AG-like and DEF/GLO-like genes have conserved functions in the specification of reproductive organs and in distinguishing male from female organs, respectively. Based on these findings novel models about the molecular basis of flower origin, involving changes in the expression patterns of DEF/GLO-like or AGL6/SEP1/SQUA-like genes in reproductive structures, were developed. While in angiosperms SEP1-like proteins play an important role in floral quartet formation, preliminary evidence suggests that gymnosperm DEF/GLO-like and AG-like proteins alone can already form floral quartet-like complexes, further corroborating the view that the formation of floral quartet-like complexes predated flower origin during evolution.
Collapse
|
331
|
Ng KH, Yu H, Ito T. AGAMOUS controls GIANT KILLER, a multifunctional chromatin modifier in reproductive organ patterning and differentiation. PLoS Biol 2009; 7:e1000251. [PMID: 19956801 PMCID: PMC2774341 DOI: 10.1371/journal.pbio.1000251] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 10/16/2009] [Indexed: 11/18/2022] Open
Abstract
The floral, homeotic protein AGAMOUS coordinates multiple downstream genes through direct transcriptional regulation of the nuclear matrix attachment region binding protein GIANT KILLER. The Arabidopsis homeotic protein AGAMOUS (AG), a MADS domain transcription factor, specifies reproductive organ identity during flower development. Using a binding assay and expression analysis, we identified a direct target of AG, GIANT KILLER (GIK), which fine-tunes the expression of multiple genes downstream of AG. The GIK protein contains an AT-hook DNA binding motif that is widely found in chromosomal proteins and that binds to nuclear matrix attachment regions of DNA elements. Overexpression and loss of function of GIK cause wide-ranging defects in patterning and differentiation of reproductive organs. GIK directly regulates the expression of several key transcriptional regulators, including ETTIN/AUXIN RESPONSE FACTOR 3 (ETT/ARF3) that patterns the gynoecium, by binding to the matrix attachment regions of target promoters. Overexpression of GIK causes a swift and dynamic change in repressive histone modification in the ETT promoter. We propose that GIK acts as a molecular node downstream of the homeotic protein AG, regulating patterning and differentiation of reproductive organs through chromatin organization. Multicellular development depends on proper expression of thousands of genes. Master regulators, such as homeotic proteins, code for transcription factors in both plants and animals and are thought to act by regulating other genes. Recent genomic studies in the plant Arabidopsis have shown that over 1,000 genes are regulated by homeotic proteins that directly control various target genes, including different classes of transcriptional regulators. It is not known, however, how expression of so many genes is coordinated by a single homeotic gene to form functional organs and tissues. Here we identified a transcriptional target of the plant homeotic protein AGAMOUS using bioinformatics analysis and showed that AGAMOUS directly controls GIANT KILLER, a multifunctional chromatin modifier. GIANT KILLER then binds to the upstream regions of multiple genes involved in patterning and differentiation in the AGAMOUS pathway and fine-tunes the expression of these genes. These data therefore provide a possible mechanism by which a homeotic gene coordinates multiple downstream targets in plants.
Collapse
Affiliation(s)
- Kian-Hong Ng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Toshiro Ito
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
- * E-mail:
| |
Collapse
|
332
|
Liu X, Huang J, Parameswaran S, Ito T, Seubert B, Auer M, Rymaszewski A, Jia G, Owen HA, Zhao D. The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:1401-11. [PMID: 19726570 PMCID: PMC2773108 DOI: 10.1104/pp.109.145896] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 08/28/2009] [Indexed: 05/18/2023]
Abstract
The stamen, which consists of an anther and a filament, is the male reproductive organ in a flower. The specification of stamen identity in Arabidopsis (Arabidopsis thaliana) is controlled by a combination of the B genes APETALA3 (AP3) and PISTILLATA, the C gene AGAMOUS (AG), and the E genes SEPALLATA1 (SEP1) to SEP4. The "floral organ-building" gene SPOROCYTELESS/NOZZLE (SPL/NZZ) plays a central role in regulating anther cell differentiation. However, much less is known about how "floral organ identity" and floral organ-building genes interact to control floral organ development. In this study, we report that ectopic expression of SPL/NZZ not only affects flower development in the wild-type background but also leads to the transformation of petal-like organs into stamen-like organs in flowers of ap2-1, a weak ap2 mutant allele. Moreover, our loss-of-function analysis indicates that the spl/nzz mutant enhances the phenotype of the ag weak allele ag-4. Furthermore, ectopic expression and overexpression of SPL/NZZ altered expression of AG, SEP3, and AP2 in rosette leaves and flowers, while ectopic expression of SPL/NZZ resulted in ectopic expression of AG and SEP3 in the outer whorls of flowers. Our results indicate that the SPL/NZZ gene is engaged in controlling stamen identity via interacting with genes required for stamen identity in Arabidopsis.
Collapse
|
333
|
Yant L, Mathieu J, Schmid M. Just say no: floral repressors help Arabidopsis bide the time. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:580-6. [PMID: 19695946 DOI: 10.1016/j.pbi.2009.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/26/2009] [Accepted: 07/20/2009] [Indexed: 05/18/2023]
Abstract
Floral repressors ensure correct reproductive timing by safeguarding against premature flowering. In the past decade, several mechanisms of floral repression have come to light. Discrimination between direct and indirect repressors has been facilitated by increasing the use of chromatin immunoprecipitation assays. Certain MADS-domain transcription factors such as SHORT VEGETATIVE PHASE and FLOWERING LOCUS C bind directly to target euchromatin to repress specific loci including FLOWERING LOCUS T (FT) and FD. The AP2-domain transcription factor TEMPRANILLO 1 has also been shown to directly repress FT by binding its 5' UTR. We highlight emerging systems level approaches, including genome-scale direct binding studies (ChIP-chip and ChIP-Seq), which stand out in their promise to elucidate the complex network underlying the transition to flowering at an unprecedented level.
Collapse
Affiliation(s)
- Levi Yant
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Spemannstrasse 37-39, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
334
|
Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H. MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. THE PLANT CELL 2009; 21:3008-25. [PMID: 19820190 PMCID: PMC2782282 DOI: 10.1105/tpc.109.068742] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/04/2009] [Accepted: 09/21/2009] [Indexed: 05/19/2023]
Abstract
Floral organ identity and meristem determinacy in plants are controlled by combinations of activities mediated by MADS box genes. AGAMOUS-LIKE6 (AGL6)-like genes are MADS box genes expressed in floral tissues, but their biological functions are mostly unknown. Here, we describe an AGL6-like gene in rice (Oryza sativa), MOSAIC FLORAL ORGANS1 (MFO1/MADS6), that regulates floral organ identity and floral meristem determinacy. In the flower of mfo1 mutants, the identities of palea and lodicule are disturbed, and mosaic organs were observed. Furthermore, the determinacy of the floral meristem was lost, and extra carpels or spikelets developed in mfo1 florets. The expression patterns of floral MADS box genes were disturbed in the mutant florets. Suppression of another rice AGL6-like gene, MADS17, caused no morphological abnormalities in the wild-type background, but it enhanced the phenotype in the mfo1 background, indicating that MADS17 has a minor but redundant function with that of MFO1. Whereas single mutants in either MFO1 or the SEPALLATA-like gene LHS1 showed moderate phenotypes, the mfo1 lhs1 double mutant showed a severe phenotype, including the loss of spikelet meristem determinacy. We propose that rice AGL6-like genes help to control floral organ identity and the establishment and determinacy of the floral meristem redundantly with LHS1.
Collapse
Affiliation(s)
- Shinnosuke Ohmori
- Rice Biotechnology Research Subteam (Hokuriku Region), National Agricultural Research Center, National Agriculture and Food Research Organization, Niigata 943-0193, Japan
| | - Mayumi Kimizu
- Rice Biotechnology Research Subteam (Hokuriku Region), National Agricultural Research Center, National Agriculture and Food Research Organization, Niigata 943-0193, Japan
| | - Maiko Sugita
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Akio Miyao
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Hirohiko Hirochika
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Eiji Uchida
- Rice Biotechnology Research Subteam (Hokuriku Region), National Agricultural Research Center, National Agriculture and Food Research Organization, Niigata 943-0193, Japan
| | - Yasuo Nagato
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Hitoshi Yoshida
- Rice Biotechnology Research Subteam (Hokuriku Region), National Agricultural Research Center, National Agriculture and Food Research Organization, Niigata 943-0193, Japan
- Address correspondence to
| |
Collapse
|
335
|
Sablowski R. Genes and functions controlled by floral organ identity genes. Semin Cell Dev Biol 2009; 21:94-9. [PMID: 19733677 DOI: 10.1016/j.semcdb.2009.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 08/28/2009] [Indexed: 12/13/2022]
Abstract
Floral organ identity genes specify the identity of floral organs in a manner analogous to the specification of body segments by Hox genes in animals. Different combinations of organ identity genes co-ordinate the expression of genes required for the development of each type of floral organ, from organ initiation until final differentiation. Here, I review what is known about the genes and functions subordinate to the organ identity genes. The sets of target genes change as organ development progresses and ultimately organ identity genes modify the expression of thousands of genes with a multitude of predicted functions, particularly in reproductive organs. However, genes involved in transcriptional control and hormone functions feature prominently among the early and direct targets. Functional analysis showed that control of organ-specific tissues and structures can be delegated to specialised intermediate regulators, but organ identity genes also fine-tune genes with general roles in shoot organ development, consistent with the notion that organ identity genes modify a core leaf-like developmental program. Future challenges include obtaining data with cellular resolution, predictive modelling of the regulatory network, and quantitative analysis of how organ identity genes and their targets control cell behaviour and ultimately organ shape.
Collapse
Affiliation(s)
- Robert Sablowski
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
336
|
Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. THE PLANT CELL 2009; 21:2563-77. [PMID: 19767455 PMCID: PMC2768919 DOI: 10.1105/tpc.109.068890] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/06/2009] [Accepted: 08/23/2009] [Indexed: 05/18/2023]
Abstract
AGAMOUS-Like15 (AGL15) is a MADS domain transcriptional regulator that promotes somatic embryogenesis by binding DNA and regulating gene expression. Chromatin immunoprecipitation (ChIP) analysis previously identified DNA fragments with which AGL15 associates in vivo, and a low-throughput approach revealed a role for AGL15 in gibberellic acid catabolism that is relevant to embryogenesis. However, higher throughput methods are needed to identify targets of AGL15. Here, we mapped AGL15 in vivo binding sites using a ChIP-chip approach and the Affymetrix tiling arrays for Arabidopsis thaliana and found that approximately 2000 sites represented in three biological replicates of the experiment are annotated to nearby genes. These results were combined with high-throughput measurement of gene expression in response to AGL15 accumulation to discriminate responsive direct targets from those further downstream in the network. LEAFY COTYLEDON2, FUSCA3, and ABA INSENSITIVE3, which encode B3 domain transcription factors that are key regulators of embryogenesis, were identified and verified as direct target genes of AGL15. Genes identified as targets of the B3 genes are also targets of AGL15, and we found that INDOLEACETIC ACID-INDUCED PROTEIN30 is involved in promotion of somatic embryo development. The data presented here and elsewhere suggest that much cross-regulation occurs in gene regulatory networks underpinning embryogenesis.
Collapse
Affiliation(s)
- Yumei Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Na Ren
- Department of Statistics, University of Kentucky, Lexington, Kentucky 40506-0027
| | - Huai Wang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Arnold J. Stromberg
- Department of Statistics, University of Kentucky, Lexington, Kentucky 40506-0027
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
- Address correspondence to
| |
Collapse
|
337
|
Abstract
Flowers are unique parts of plants because they form a predictable number of organs of defined identity. This exquisite regularity defines entire plant families and has been used for taxonomic classification since ancient times. In this issue of Developmental Cell, Liu et al. reveal that timing of the onset of flower differentiation is key for the stereotypic architecture of flowers.
Collapse
Affiliation(s)
- Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|