301
|
Torshabi M, Nojehdehian H, Tabatabaei FS. In vitro behavior of poly-lactic-co-glycolic acid microspheres containing minocycline, metronidazole, and ciprofloxacin. ACTA ACUST UNITED AC 2016; 8. [PMID: 26748575 DOI: 10.1111/jicd.12201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/03/2015] [Indexed: 11/30/2022]
Abstract
AIM In the present study, we aimed to fabricate poly-lactic-co-glycolic acid (PLGA) microspheres containing a mixture of three antibiotics-minocycline, metronidazole, and ciprofloxacin (MMC)-to assess their efficacy and properties. METHODS MMC were loaded onto PLGA biopolymer microspheres at a 1:1:1 ratio using the double emulsion technique. The morphology of microspheres was observed by a (SEM). The controlled release of antibiotics was evaluated over an 18-day period. The antibacterial efficacy of released antibiotics against Aggregatibacter actinomycetemcomitans was evaluated by measuring the diameter of the growth-inhibition zone. The cytotoxicity of MMC-containing microspheres was also evaluated and compared using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. One-way anova was used for the data analysis. RESULTS SEM micrographs confirmed the spherical shape and smooth surface of microspheres. The adequate release of antibiotics was observed from the microspheres within the desired time period of 16-18 days. The MMC-containing microspheres showed antibacterial activity for 11 days. Moreover, MMC-containing microspheres showed superior cell biocompatibility compared to the free mixture of the three antibiotics (P < 0.05). CONCLUSION Microspheres containing triple antibiotics showed good release, antibacterial activity for 11 days, and similar cell biocompatibility compared to the empty microspheres.
Collapse
Affiliation(s)
- Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Nojehdehian
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh S Tabatabaei
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
302
|
Paes Batista da Silva A, Barros SP, Moss K, Preisser J, Marchesan JT, Ward M, Offenbacher S. Microbial Profiling in Experimentally Induced Biofilm Overgrowth Among Patients With Various Periodontal States. J Periodontol 2016; 87:27-35. [DOI: 10.1902/jop.2015.150328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
303
|
Abstract
Microbial communities are spatially organized in both the environment and the human body. Although patterns exhibited by these communities are described by microbial biogeography, this discipline has previously only considered large-scale, global patterns. By contrast, the fine-scale positioning of a pathogen within an infection site can greatly alter its virulence potential. In this Review, we highlight the importance of considering spatial positioning in the study of polymicrobial infections and discuss targeting biogeography as a therapeutic strategy.
Collapse
|
304
|
Bourgeois D, Carrouel F, Llodra JC, Bravo M, Viennot S. A Colorimetric Interdental Probe as a Standard Method to Evaluate Interdental Efficiency of Interdental Brush. Open Dent J 2015; 9:431-7. [PMID: 26966470 PMCID: PMC4765511 DOI: 10.2174/1874210601509010431] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 08/31/2015] [Accepted: 09/29/2015] [Indexed: 11/22/2022] Open
Abstract
The aim of this study is to evaluate the concordance between the empirical choice of interdental brushes of different diameters compared to the gold standard, the IAP CURAPROX(©) calibrating colorimetric probe. It is carried out with the aim of facilitating the consensus development of best practices. All the subjects' interproximal spaces were evaluated using the reference technique (colorimetric probe), then after a time lapse of 1.2 ± 0.2 hours, using the empirical clinical technique (brushes) by the same examiner. Each examiner explored 3 subjects. The order the patients were examined with the colorimetric interdental probe (CIP) was random. 446 sites were selected in the study out of 468 potential sites. The correspondence of scores between interdental bushes vs. colorimetric probe is 43.0% [95%-CI: 38.5-47.6]. In 33.41% of the 446 sites, the brush is inferior to the probe; in 23.54% of cases, the brush is superior to the probe. Among the discrepancies there is thus a tendency for the subjects to use brushes with smaller diameter than that recommended by the colorimetric probe. This review has found very high-quality evidence that colorimetric probes plus interdental brushing is more beneficial than interdental brushing alone for increase the concordance between the empirical choice of interdental brushes of different diameters compared to the gold standard. Uncertainties remain and further research is required to provide detailed data on user satisfaction.
Collapse
Affiliation(s)
- D Bourgeois
- Laboratory "Health, Individual, Society" EA4129, University Lyon1, France
| | - F Carrouel
- Faculty of Odontology, University Lyon1, France; IGFL, UMR5242, Lyon, France
| | - J C Llodra
- Faculty of Odontology, University Lyon1, France; Department of Preventive and Community Dentistry, Faculty of Odontology, University of Granada, Spain
| | - M Bravo
- Department of Preventive and Community Dentistry, Faculty of Odontology, University of Granada, Spain
| | - S Viennot
- Laboratory "Health, Individual, Society" EA4129, University Lyon1, France
| |
Collapse
|
305
|
Holliday R, Preshaw PM, Bowen L, Jakubovics NS. The ultrastructure of subgingival dental plaque, revealed by high-resolution field emission scanning electron microscopy. BDJ Open 2015; 1:15003. [PMID: 29607057 PMCID: PMC5842838 DOI: 10.1038/bdjopen.2015.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/29/2015] [Accepted: 09/22/2015] [Indexed: 11/09/2022] Open
Abstract
Objectives/Aims To explore the ultrastructure of subgingival dental plaque using high-resolution field emission scanning electron microscopy (FE-SEM) and to investigate whether extracellular DNA (eDNA) could be visualised in ex vivo samples. Materials and Methods Ten patients were recruited who fulfilled the inclusion criteria (teeth requiring extraction with radiographic horizontal bone loss of over 50% and grade II/III mobility). In total, 12 teeth were extracted using a minimally traumatic technique. Roots were sectioned using a dental air turbine handpiece, under water cooling to produce 21 samples. Standard fixation and dehydration protocols were followed. For some samples, gold-labelled anti-DNA antibodies were applied before visualising biofilms by FE-SEM. Results High-resolution FE-SEMs of subgingival biofilm were obtained in 90% of the samples. The sectioning technique left dental plaque biofilms undisturbed. Copious amounts of extracellular material were observed in the plaque, which may have been eDNA as they had a similar appearance to labelled eDNA from in vitro studies. There was also evidence of membrane vesicles and open-ended tubular structures. Efforts to label eDNA with immune-gold antibodies were unsuccessful and eDNA was not clearly labelled. Conclusions High-resolution FE-SEM images were obtained of undisturbed subgingival ex vivo dental plaque biofilms. Important structural features were observed including extracellular polymeric material, vesicles and unusual open tubule structures that may be remnants of lysed cells. The application of an eDNA immune-gold-labelling technique, previously used successfully in in vitro samples, did not clearly identify eDNA in ex vivo samples. Further studies are needed to characterise the molecular composition of the observed extracellular matrix material.
Collapse
Affiliation(s)
- Richard Holliday
- School of Dental Sciences, Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Philip M Preshaw
- School of Dental Sciences, Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Leon Bowen
- Department of Physics, Durham University, Durham, UK
| | - Nicholas S Jakubovics
- School of Dental Sciences, Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
306
|
Marsh PD, Head DA, Devine DA. Dental plaque as a biofilm and a microbial community—Implications for treatment. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
307
|
Jurczak A, Kościelniak D, Papież M, Vyhouskaya P, Krzyściak W. A study on β-defensin-2 and histatin-5 as a diagnostic marker of early childhood caries progression. Biol Res 2015; 48:61. [PMID: 26520150 PMCID: PMC4628373 DOI: 10.1186/s40659-015-0050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background Recently, a continuous growth of interest has been observed in antimicrobial peptides (AMPs) in the light of an alarming increase in resistance of bacteria and fungi against antibiotics. AMPs are used as biomarkers in diagnosis and monitoring of oral cavity pathologies. Therefore, the determination of specific protein profiles in children diagnosed with early childhood caries (ECC) might be a basis for effective screening tests and specialized examinations which may enable progression of disease. Methods The objective of the studies was to determine the role of histatin-5 and β-defensing-2 as a diagnostic marker of early childhood caries progression. In this work, results of concentration determination of two salivary proteins (histatin-5 and β-defensin-2) were presented. In addition, bacterial profiles from dental plaque in various stages of ECC and control were marked. The assessment of alteration in the concentration of these two proteins in a study group of children with various stages of ECC and a control group consisting of children with no symptoms was performed by enzyme-linked immunosorbent assays. Results The statistical analysis showed a significant increase in the concentration of histatin-5 and β-defensin-2 in the study group compared to the control group and correlated with the progression of the disease. Conclusions The confirmation of concentration changes in these proteins during the progression of dental caries may discover valuable disease progression biomarkers.
Collapse
Affiliation(s)
- Anna Jurczak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University, Medical College, Krakow, Poland.
| | - Dorota Kościelniak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University, Medical College, Krakow, Poland.
| | - Monika Papież
- Department of Cytobiology, Pharmacy Faculty, Jagiellonian University, Medical College, Krakow, Poland.
| | - Palina Vyhouskaya
- Department of Medical Diagnostics, Pharmacy Faculty, Jagiellonian University, Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Pharmacy Faculty, Jagiellonian University, Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| |
Collapse
|
308
|
Jakubovics NS. Intermicrobial Interactions as a Driver for Community Composition and Stratification of Oral Biofilms. J Mol Biol 2015; 427:3662-75. [PMID: 26519790 DOI: 10.1016/j.jmb.2015.09.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
The oral cavity is accessible to microorganisms, and biofilms are present throughout on hard and soft tissues. The shedding of epithelial cell layers is usually effective for controlling biofilm development on soft tissues. Innate immune mechanisms are not so effective against biofilms on tooth surfaces, and oral hygiene measures such as brushing and flossing are required for the periodic removal of dental plaque. Even with good oral hygiene, microbial communities accumulate on teeth in areas that are protected from mechanical abrasion forces. Changes in the composition of these biofilms are associated with oral diseases such as dental caries or periodontitis. Newly formed biofilms and more mature dental plaque each have a level of spatial organization in the horizontal and vertical planes. Communities are shaped by many varied interactions between different species and genera within the biofilm, which include physical cell-cell associations known as coaggregation, interspecies signaling, secretion and turnover of antimicrobial compounds and the sharing of an extracellular matrix. Central to these interactions is the selection for metabolic synergies and it is becoming clear that the ability of communities to extract the maximum energy from the available metabolites is a potent driver for biofilm structure and stratification. This review discusses recent advances in our understanding of intermicrobial interactions in oral biofilms and the roles that they play in determining the spatial organization of biofilm communities.
Collapse
Affiliation(s)
- Nicholas S Jakubovics
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, United Kingdom.
| |
Collapse
|
309
|
Ning J, Beiko RG. Phylogenetic approaches to microbial community classification. MICROBIOME 2015; 3:47. [PMID: 26437943 PMCID: PMC4593236 DOI: 10.1186/s40168-015-0114-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/28/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND The microbiota from different body sites are dominated by different major groups of microbes, but the variations within a body site such as the mouth can be more subtle. Accurate predictive models can serve as useful tools for distinguishing sub-sites and understanding key organisms and their roles and can highlight deviations from expected distributions of microbes. Good classification depends on choosing the right combination of classifier, feature representation, and learning model. Machine-learning procedures have been used in the past for supervised classification, but increased attention to feature representation and selection may produce better models and predictions. RESULTS We focused our attention on the classification of nine oral sites and dental plaque in particular, using data collected from the Human Microbiome Project. A key focus of our representations was the use of phylogenetic information, both as the basis for custom kernels and as a way to represent sets of microbes to the classifier. We also used the PICRUSt software, which draws on phylogenetic relationships to predict molecular functions and to generate additional features for the classifier. Custom kernels based on the UniFrac measure of community dissimilarity did not improve performance. However, feature representation was vital to classification accuracy, with microbial clade and function representations providing useful information to the classifier; combining the two types of features did not yield increased prediction accuracy. Many of the best-performing clades and functions had clear associations with oral microflora. CONCLUSIONS The classification of oral microbiota remains a challenging problem; our best accuracy on the plaque dataset was approximately 81 %. Perfect accuracy may be unattainable due to the close proximity of the sites and intra-individual variation. However, further exploration of the space of both classifiers and feature representations is likely to increase the accuracy of predictive models.
Collapse
Affiliation(s)
- Jie Ning
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
310
|
Moreno S, Jaramillo A, Parra B, Botero JE, Contreras A. Porphyromonas gingivalis Fim-A genotype distribution among Colombians. Colomb Med (Cali) 2015; 46:122-7. [PMID: 26600627 PMCID: PMC4640434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Porphyromonas gingivalis is associated with periodontitis and exhibit a wide array of virulence factors, including fimbriae which is encoded by the FimA gene representing six known genotypes. OBJETIVE To identify FimA genotypes of P. gingivalis in subjects from Cali-Colombia, including the co-infection with Aggregatibacter actinomycetemcomitans, Treponema denticola, and Tannerella forsythia. METHODS Subgingival samples were collected from 151 people exhibiting diverse periodontal condition. The occurrence of P. gingivalis, FimA genotypes and other bacteria was determined by PCR. RESULTS P. gingivalis was positive in 85 patients. Genotype FimA II was more prevalent without reach significant differences among study groups (54.3%), FimA IV was also prevalent in gingivitis (13.0%). A high correlation (p= 0.000) was found among P. gingivalis, T. denticola, and T. forsythia co-infection. The FimA II genotype correlated with concomitant detection of T. denticola and T. forsythia. CONCLUSIONS Porphyromonas gingivalis was high even in the healthy group at the study population. A trend toward a greater frequency of FimA II genotype in patients with moderate and severe periodontitis was determined. The FimA II genotype was also associated with increased pocket depth, greater loss of attachment level, and patients co-infected with T. denticola and T. forsythia.
Collapse
Affiliation(s)
- Sandra Moreno
- School of Dentistry, University of Valle, Cali Colombia, Periodontal Medicine Group, University of Valle. Cali, Colombia
| | - Adriana Jaramillo
- School of Dentistry, University of Valle, Cali Colombia, Periodontal Medicine Group, University of Valle. Cali, Colombia
| | - Beatriz Parra
- Periodontal Medicine Group, University of Valle. Cali, Colombia, Department of Microbiology, University of Valle, Cali Colombia
| | | | - Adolfo Contreras
- School of Dentistry, University of Valle, Cali Colombia, Periodontal Medicine Group, University of Valle. Cali, Colombia
| |
Collapse
|
311
|
Barbosa GM, Colombo AV, Rodrigues PH, Simionato MRL. Intraspecies Variability Affects Heterotypic Biofilms of Porphyromonas gingivalis and Prevotella intermedia: Evidences of Strain-Dependence Biofilm Modulation by Physical Contact and by Released Soluble Factors. PLoS One 2015; 10:e0138687. [PMID: 26406499 PMCID: PMC4583444 DOI: 10.1371/journal.pone.0138687] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
It is well known that strain and virulence diversity exist within the population structure of Porphyromonas gingivalis. In the present study we investigate intra- and inter-species variability in biofilm formation of Porphyromonas gingivalis and partners Prevotella intermedia and Prevotella nigrescens. All strains tested showed similar hydrophobicity, except for P. gingivalis W83 which has roughly half of the hydrophobicity of P. gingivalis ATCC33277. An intraspecies variability in coaggregation of P. gingivalis with P. intermedia was also found. The association P. gingivalis W83/P. intermedia 17 produced the thickest biofilm and strain 17 was prevalent. In a two-compartment system P. gingivalis W83 stimulates an increase in biomass of strain 17 and the latter did not stimulate the growth of P. gingivalis W83. In addition, P. gingivalis W83 also stimulates the growth of P. intermedia ATCC25611 although strain W83 was prevalent in the association with P. intermedia ATCC25611. P. gingivalis ATCC33277 was prevalent in both associations with P. intermedia and both strains of P. intermedia stimulate the growth of P. gingivalis ATCC33277. FISH images also showed variability in biofilm structure. Thus, the outcome of the association P. gingivalis/P. intermedia seems to be strain-dependent, and both soluble factors and physical contact are relevant. The association P. gingivalis-P. nigrescens ATCC33563 produced larger biomass than each monotypic biofilm, and P. gingivalis was favored in consortia, while no differences were found in the two-compartment system. Therefore, in consortia P. gingivalis-P. nigrescens physical contact seems to favor P. gingivalis growth. The intraspecies variability found in our study suggests strain-dependence in ability of microorganisms to recognize molecules in other bacteria which may further elucidate the dysbiosis event during periodontitis development giving additional explanation for periodontal bacteria, such as P. gingivalis and P. intermedia, among others, to persist and establish chronic infections in the host.
Collapse
Affiliation(s)
- Graziela Murta Barbosa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Andrea Vieira Colombo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Paulo Henrique Rodrigues
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- * E-mail: (PHR); (MRLS)
| | - Maria Regina Lorenzetti Simionato
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- * E-mail: (PHR); (MRLS)
| |
Collapse
|
312
|
Belda-Ferre P, Williamson J, Simón-Soro Á, Artacho A, Jensen ON, Mira A. The human oral metaproteome reveals potential biomarkers for caries disease. Proteomics 2015; 15:3497-507. [PMID: 26272225 DOI: 10.1002/pmic.201400600] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/27/2015] [Accepted: 08/10/2015] [Indexed: 12/30/2022]
Abstract
Tooth decay is considered the most prevalent human disease worldwide. We present the first metaproteomic study of the oral biofilm, using different mass spectrometry approaches that have allowed us to quantify individual peptides in healthy and caries-bearing individuals. A total of 7771 bacterial and 853 human proteins were identified in 17 individuals, which provide the first available protein repertoire of human dental plaque. Actinomyces and Coryneybacterium represent a large proportion of the protein activity followed by Rothia and Streptococcus. Those four genera account for 60-90% of total diversity. Healthy individuals appeared to have significantly higher amounts of L-lactate dehydrogenase and the arginine deiminase system, both implicated in pH buffering. Other proteins found to be at significantly higher levels in healthy individuals were involved in exopolysaccharide synthesis, iron metabolism and immune response. We applied multivariate analysis in order to find the minimum set of proteins that better allows discrimination of healthy and caries-affected dental plaque samples, detecting seven bacterial and five human protein functions that allow determining the health status of the studied individuals with an estimated specificity and sensitivity over 96%. We propose that future validation of these potential biomarkers in larger sample size studies may serve to develop diagnostic tests of caries risk that could be used in tooth decay prevention.
Collapse
Affiliation(s)
- Pedro Belda-Ferre
- FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - James Williamson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Áurea Simón-Soro
- FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Alejandro Artacho
- FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alex Mira
- FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| |
Collapse
|
313
|
Belibasakis GN, Mir-Mari J, Sahrmann P, Sanz-Martin I, Schmidlin PR, Jung RE. Clinical association ofSpirochaetesandSynergisteteswith peri-implantitis. Clin Oral Implants Res 2015; 27:656-61. [DOI: 10.1111/clr.12690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Georgios N. Belibasakis
- Section of Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich Switzerland
| | - Javier Mir-Mari
- Department of Oral Surgery and Implantology; Faculty of Dentistry; University of Barcelona; Barcelona Spain
| | - Philipp Sahrmann
- Clinic of Preventive Dentistry, Periodontology and Cariology; Center of Dental Medicine; University of Zürich; Zürich Switzerland
| | - Ignacio Sanz-Martin
- Section of Periodontology; Faculty of Odontology; University Complutense; Madrid Spain
| | - Patrick R. Schmidlin
- Clinic of Preventive Dentistry, Periodontology and Cariology; Center of Dental Medicine; University of Zürich; Zürich Switzerland
| | - Ronald E. Jung
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; Center of Dental Medicine; University of Zürich; Zürich Switzerland
| |
Collapse
|
314
|
Torrungruang K, Jitpakdeebordin S, Charatkulangkun O, Gleebbua Y. Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Treponema denticola / Prevotella intermedia Co-Infection Are Associated with Severe Periodontitis in a Thai Population. PLoS One 2015; 10:e0136646. [PMID: 26313005 PMCID: PMC4552424 DOI: 10.1371/journal.pone.0136646] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 08/06/2015] [Indexed: 12/21/2022] Open
Abstract
Periodontitis is a polymicrobial infection of tooth-supporting tissues. This cross-sectional study aimed to examine the associations between five target species and severe periodontitis in a Thai population. Using the CDC/AAP case definition, individuals diagnosed with no/mild and severe periodontitis were included. Quantitative analyses of Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Tannerella forsythia (Tf), Treponema denticola (Td), and Prevotella intermedia (Pi) in subgingival plaque were performed using real-time polymerase chain reaction. The association between target species and severe periodontitis was examined using logistic regression analysis. The study subjects comprised 479 individuals with no/mild periodontitis and 883 with severe periodontitis. Bacterial prevalence and quantity were higher in subjects with severe periodontitis than in those with no/mild disease. In the fully adjusted model, all species except Tf showed a dose-dependent relationship with periodontitis. The mere presence of Pg, even in low amount, was significantly associated with severe periodontitis, while the amount of Aa, Td, and Pi had to reach the critical thresholds to be significantly associated with disease. Compared to individuals with low levels of both Td and Pi, high colonization by either Td or Pi alone significantly increased the odds of having severe periodontitis by 2.5 (95%CI 1.7-3.5) folds. The odds ratio was further increased to 14.8 (95%CI 9.2-23.8) in individuals who were highly colonized by both species. Moreover, the presence of Pg and high colonization by Aa were independently associated with severe periodontitis with odds ratios of 5.6 (95%CI 3.4-9.1) and 2.2 (95%CI 1.5-3.3), respectively. Our findings suggest that the presence of Pg and high colonization by Aa, Td, and Pi play an important role in severe periodontitis in this study population. We also demonstrate for the first time that individuals co-infected with Td and Pi were more likely to have periodontitis than were those infected with a single pathogen.
Collapse
Affiliation(s)
- Kitti Torrungruang
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| | | | - Orawan Charatkulangkun
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yingampa Gleebbua
- Health Division, Medical and Health Department, Electricity Generating Authority of Thailand, Nonthaburi, Thailand
| |
Collapse
|
315
|
Marchesan J, Morelli T, Moss K, Barros S, Ward M, Jenkins W, Aspiras M, Offenbacher S. Association of Synergistetes and Cyclodipeptides with Periodontitis. J Dent Res 2015. [DOI: 10.1177/0022034515594779] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to evaluate the microbial community (MC) composition as it relates to salivary metabolites and periodontal clinical parameters in a 21-d biofilm-overgrowth model. Subjects ( N = 168) were enrolled equally into 5 categories of periodontal status per the biofilm-gingival interface classification. Microbial species within subgingival plaque samples were identified by human microbiome identification microarray. Whole saliva was analyzed by liquid chromatography–mass spectrometry and gas chromatography–mass spectrometry for metabolite identification. Phylum was grouped into MCs according to principal component analysis. Generalized linear and regression models were used to examine the association among MC, species, periodontal clinical parameters, and salivary metabolome. Multiple comparisons were adjusted with the false discovery rate. The study population was distributed into 8 distinct MC profiles, designated MC-1 to MC-8. MC-2 explained 14% of the variance and was dominated by Synergistetes and Spirochaetes. It was the only community structure significantly associated with high probing depth ( P = 0.02) and high bleeding on probing ( P = 0.008). MC-2 was correlated with traditional periodontal pathogens and several newly identified putative periodontal pathogens: Fretibacterium fastidiosum, Fretibacterium sp. OT360/OT362, Filifactor alocis, Treponema lecithinolyticum, Eubacterium saphenum, Desulfobulbus sp. /OT041, and Mogibacterium timidum. Synergistetes phylum was strongly associated with 2 novel metabolites—cyclo (-leu-pro) and cyclo (-phe-pro)—at 21 d of biofilm overgrowth ( P = 0.02). In subjects with severe periodontitis (P2 and P3), cyclo (-leu-pro) and cyclo (-phe-pro) were significantly associated with increased changes in probing depth at 21 d of biofilm overgrowth ( P ≤ 0.05). The analysis identified a MC dominated by Synergistetes, with classic and putative newly identified pathogens/pathobionts associated with clinical disease. The metabolomic discovery of 2 novel cyclodipeptides that have been reported to serve as quorum-sensing and/or bacteriocidal/bacteriostatic molecules, in association with Synergistetes, suggests a potential role in periodontal biofilm dysbiosis and periodontal disease that warrants further investigation.
Collapse
Affiliation(s)
- J.T. Marchesan
- Center for Oral and Systemic Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel hill, Chapel Hill, NC, USA
| | - T. Morelli
- Center for Oral and Systemic Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel hill, Chapel Hill, NC, USA
| | - K. Moss
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel hill, Chapel Hill, NC, USA
| | - S.P. Barros
- Center for Oral and Systemic Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel hill, Chapel Hill, NC, USA
| | - M. Ward
- Philips Oral Healthcare, Dental & Scientific Affairs, Bothell, WA, USA
| | - W. Jenkins
- Philips Oral Healthcare, Dental & Scientific Affairs, Bothell, WA, USA
| | | | - S. Offenbacher
- Center for Oral and Systemic Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel hill, Chapel Hill, NC, USA
| |
Collapse
|
316
|
Al-Ahmad A, Bucher M, Anderson AC, Tennert C, Hellwig E, Wittmer A, Vach K, Karygianni L. Antimicrobial Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (VIS + wIRA) Alters In Situ Oral Biofilms. PLoS One 2015; 10:e0132107. [PMID: 26162100 PMCID: PMC4498738 DOI: 10.1371/journal.pone.0132107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/10/2015] [Indexed: 11/18/2022] Open
Abstract
Recently, growing attention has been paid to antimicrobial photodynamic therapy (aPDT) in dentistry. Changing the microbial composition of initial and mature oral biofilm by aPDT using visible light plus water-filtered infrared-A wavelengths (VIS + wIRA) has not yet been investigated. Moreover, most aPDT studies have been conducted on planktonic bacterial cultures. Therefore, in the present clinical study we cultivated initial and mature oral biofilms in six healthy volunteers for 2 hours or 3 days, respectively. The biofilms were treated with aPDT using VIS+wIRA (200 mW cm-2), toluidine blue (TB) and chlorine e6 (Ce6) for 5 minutes. Chlorhexidine treated biofilm samples served as positive controls, while untreated biofilms served as negative controls. After aPDT treatment the colony forming units (CFU) of the biofilm samples were quantified, and the surviving bacteria were isolated in pure cultures and identified using MALDI-TOF, biochemical tests and 16S rDNA-sequencing. aPDT killed more than 99.9% of the initial viable bacterial count and 95% of the mature oral biofilm in situ, independent of the photosensitizer. The number of surviving bacterial species was highly reduced to 6 (TB) and 4 (Ce6) in the treated initial oral biofilm compared to the 20 different species of the untreated biofilm. The proportions of surviving bacterial species were also changed after TB- and Ce6-mediated aPDT of the mature oral biofilm, resulting in a shift in the microbial composition of the treated biofilm compared to that of the control biofilm. In conclusion, aPDT using VIS + wIRA showed a remarkable potential to eradicate both initial and mature oral biofilms, and also to markedly alter the remaining biofilm. This encourages the clinical use of aPDT with VIS + wIRA for the treatment of periimplantitis and periodontitis.
Collapse
Affiliation(s)
- A. Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Albert-Ludwigs-University, Freiburg, Germany
- * E-mail:
| | - M. Bucher
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - A. C. Anderson
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - C. Tennert
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - E. Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - A. Wittmer
- Institute of Medical Microbiology and Hygiene, Albert-Ludwigs-University, Freiburg, Germany
| | - K. Vach
- Institute for Medical Biometry and Statistics, Center for Medical Biometry and Medical Informatics, Albert-Ludwigs-University, Freiburg, Germany
| | - L. Karygianni
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
317
|
Thurnheer T, Bostanci N, Belibasakis GN. Microbial dynamics during conversion from supragingival to subgingival biofilms in an in vitro model. Mol Oral Microbiol 2015; 31:125-35. [PMID: 26033167 DOI: 10.1111/omi.12108] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022]
Abstract
The development of dental caries and periodontal diseases result from distinct shifts in the microbiota of the tooth-associated biofilm. This in vitro study aimed to investigate changes in biofilm composition and structure, during the shift from a 'supragingival' aerobic profile to a 'subgingival' anaerobic profile. Biofilms consisting of Actinomyces oris, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus mutans and Veillonella dispar were aerobically grown in saliva-containing medium on hydroxyapatite disks. After 64 h, Campylobacter rectus, Prevotella intermedia and Streptococcus anginosus were further added along with human serum, while culture conditions were shifted to microaerophilic. After 96 h, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola were finally added and the biofilm was grown anaerobically for another 64 h. At the end of each phase, biofilms were harvested for species-specific quantification and localization. Apart from C. albicans, all other species gradually increased during aerobic and microaerophilic conditions, but remained steady during anaerobic conditions. Biofilm thickness was doubled during the microaerophilic phase, but remained steady throughout the anaerobic phase. Extracellular polysaccharide presence was gradually reduced throughout the growth period. Biofilm viability was reduced during the microaerophilic conversion, but was recovered during the anaerobic phase. This in vitro study has characterized the dynamic structural shifts occurring in an oral biofilm model during the switch from aerobic to anaerobic conditions, potentially modeling the conversion of supragingival to subgingival biofilms. Within the limitations of this experimental model, the findings may provide novel insights into the ecology of oral biofilms.
Collapse
Affiliation(s)
- T Thurnheer
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - N Bostanci
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - G N Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
318
|
Xu H, Jenkinson HF, Dongari-Bagtzoglou A. Innocent until proven guilty: mechanisms and roles of Streptococcus-Candida interactions in oral health and disease. Mol Oral Microbiol 2015; 29:99-116. [PMID: 24877244 PMCID: PMC4238848 DOI: 10.1111/omi.12049] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Candida albicans and streptococci of the mitis group colonize the oral cavities of the majority of healthy humans. While C. albicans is considered an opportunistic pathogen, streptococci of this group are broadly considered avirulent or even beneficial organisms. However, recent evidence suggests that multi-species biofilms with these organisms may play detrimental roles in host homeostasis and may promote infection. In this review we summarize the literature on molecular interactions between members of this streptococcal group and C. albicans, with emphasis on their potential role in the pathogenesis of opportunistic oral mucosal infections.
Collapse
|
319
|
Shaping the oral mycobiota: interactions of opportunistic fungi with oral bacteria and the host. Curr Opin Microbiol 2015; 26:65-70. [PMID: 26100661 DOI: 10.1016/j.mib.2015.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/13/2022]
Abstract
The oral mycobiota is an important component of the oral microbiota that has only recently received increased attention. The diversity and complexity of the oral mycobiota in healthy humans is greater than any other body site. Dysbiotic imbalance of indigenous fungal communities in immunosuppressed hosts has been proposed to lead to oropharyngeal fungal infections. As in other body sites, to survive and thrive in the oral cavity fungi have to maintain mutually beneficial relationships with the resident bacterial microbiota and the host. Here we review our current understanding of the composition of the oral mycobiota and how it may be influenced by oral commensal bacteria and the host environment.
Collapse
|
320
|
Shin JM, Ateia I, Paulus JR, Liu H, Fenno JC, Rickard AH, Kapila YL. Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells. Front Microbiol 2015; 6:617. [PMID: 26150809 PMCID: PMC4471743 DOI: 10.3389/fmicb.2015.00617] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/03/2015] [Indexed: 02/05/2023] Open
Abstract
Objectives: Nisin is a lantibiotic widely used for the preservation of food and beverages. Recently, investigators have reported that nisin may have clinical applications for treating bacterial infections. The aim of this study was to investigate the effects of ultra pure food grade Nisin ZP (>95% purity) on taxonomically diverse bacteria common to the human oral cavity and saliva derived multi-species oral biofilms, and to discern the toxicity of nisin against human cells relevant to the oral cavity. Methods: The minimum inhibitory concentrations and minimum bactericidal concentrations of taxonomically distinct oral bacteria were determined using agar and broth dilution methods. To assess the effects of nisin on biofilms, two model systems were utilized: a static and a controlled flow microfluidic system. Biofilms were inoculated with pooled human saliva and fed filter-sterilized saliva for 20–22 h at 37°C. Nisin effects on cellular apoptosis and proliferation were evaluated using acridine orange/ethidium bromide fluorescent nuclear staining and lactate dehydrogenase activity assays. Results: Nisin inhibited planktonic growth of oral bacteria at low concentrations (2.5–50 μg/ml). Nisin also retarded development of multi-species biofilms at concentrations ≥1 μg/ml. Specifically, under biofilm model conditions, nisin interfered with biofilm development and reduced biofilm biomass and thickness in a dose-dependent manner. The treatment of pre-formed biofilms with nisin resulted in dose- and time-dependent disruption of the biofilm architecture along with decreased bacterial viability. Human cells relevant to the oral cavity were unaffected by the treatment of nisin at anti-biofilm concentrations and showed no signs of apoptotic changes unless treated with much higher concentrations (>200 μg/ml). Conclusion: This work highlights the potential therapeutic value of high purity food grade nisin to inhibit the growth of oral bacteria and the development of biofilms relevant to oral diseases.
Collapse
Affiliation(s)
- Jae M Shin
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor MI, USA
| | - Islam Ateia
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor MI, USA
| | - Jefrey R Paulus
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor MI, USA
| | - Hongrui Liu
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor MI, USA
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor MI, USA
| | - Alexander H Rickard
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor MI, USA
| | - Yvonne L Kapila
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor MI, USA
| |
Collapse
|
321
|
Subgingival microbiome in patients with healthy and ailing dental implants. Sci Rep 2015; 5:10948. [PMID: 26077225 PMCID: PMC4468443 DOI: 10.1038/srep10948] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/23/2015] [Indexed: 02/02/2023] Open
Abstract
Dental implants are commonly used to replace missing teeth. However, the dysbiotic polymicrobial communities of peri-implant sites are responsible for peri-implant diseases, such as peri-implant mucositis and peri-implantitis. In this study, we analyzed the microbial characteristics of oral plaque from peri-implant pockets or sulci of healthy implants (n = 10), peri-implant mucositis (n = 8) and peri-implantitis (n = 6) sites using pyrosequencing of the 16S rRNA gene. An increase in microbial diversity was observed in subgingival sites of ailing implants, compared with healthy implants. Microbial co-occurrence analysis revealed that periodontal pathogens, such as Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia, were clustered into modules in the peri-implant mucositis network. Putative pathogens associated with peri-implantitis were present at a moderate relative abundance in peri-implant mucositis, suggesting that peri-implant mucositis an important early transitional phase during the development of peri-implantitis. Furthermore, the relative abundance of Eubacterium was increased at peri-implantitis locations, and co-occurrence analysis revealed that Eubacterium minutum was correlated with Prevotella intermedia in peri-implantitis sites, which suggests the association of Eubacterium with peri-implantitis. This study indicates that periodontal pathogens may play important roles in the shifting of healthy implant status to peri-implant disease.
Collapse
|
322
|
Atmospheric pressure nonthermal plasmas for bacterial biofilm prevention and eradication. Biointerphases 2015; 10:029404. [PMID: 25869456 DOI: 10.1116/1.4914382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biofilms are three-dimensional structures formed by surface-attached microorganisms and their extracellular products. Biofilms formed by pathogenic microorganisms play an important role in human diseases. Higher resistance to antimicrobial agents and changes in microbial physiology make treating biofilm infections very complex. Atmospheric pressure nonthermal plasmas (NTPs) are a novel and powerful tool for antimicrobial treatment. The microbicidal activity of NTPs has an unspecific character due to the synergetic actions of bioactive components of the plasma torch, including charged particles, reactive species, and UV radiation. This review focuses on specific traits of biofilms, their role in human diseases, and those effects of NTP that are helpful for treating biofilm infections. The authors discuss NTP-based strategies for biofilm control, such as surface modifications to prevent bacterial adhesion, killing bacteria in biofilms, and biofilm destruction with NTPs. The unspecific character of microbicidal activity, proven polymer modification and destruction abilities, low toxicity for human tissues and absence of long-living toxic compounds make NTPs a very promising tool for biofilm prevention and control.
Collapse
|
323
|
Chatzivasileiou K, Kriebel K, Steinhoff G, Kreikemeyer B, Lang H. Do oral bacteria alter the regenerative potential of stem cells? A concise review. J Cell Mol Med 2015; 19:2067-74. [PMID: 26058313 PMCID: PMC4568911 DOI: 10.1111/jcmm.12613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/15/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are widely recognized as critical players in tissue regeneration. New insights into stem cell biology provide evidence that MSCs may also contribute to host defence and inflammation. In case of tissue injury or inflammatory diseases, e.g. periodontitis, stem cells are mobilized towards the site of damage, thus coming in close proximity to bacteria and bacterial components. Specifically, in the oral cavity, complex ecosystems of commensal bacteria live in a mutually beneficial state with the host. However, the formation of polymicrobial biofilm communities with pathogenic properties may trigger an inadequate host inflammatory-immune response, leading to the disruption of tissue homoeostasis and development of disease. Because of their unique characteristics, MSCs are suggested as crucial regulators of tissue regeneration even under such harsh environmental conditions. The heterogeneous effects of bacteria on MSCs across studies imply the complexity underlying the interactions between stem cells and bacteria. Hence, a better understanding of stem cell behaviour at sites of inflammation appears to be a key strategy in developing new approaches for in situ tissue regeneration. Here, we review the literature on the effects of oral bacteria on cell proliferation, differentiation capacity and immunomodulation of dental-derived MSCs.
Collapse
Affiliation(s)
- Kyriaki Chatzivasileiou
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Katja Kriebel
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Gustav Steinhoff
- Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| |
Collapse
|
324
|
Extracellular Glycoside Hydrolase Activities in the Human Oral Cavity. Appl Environ Microbiol 2015; 81:5471-6. [PMID: 26048943 DOI: 10.1128/aem.01180-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/28/2015] [Indexed: 11/20/2022] Open
Abstract
Carbohydrate availability shifts when bacteria attach to a surface and form biofilm. When salivary planktonic bacteria form an oral biofilm, a variety of polysaccharides and glycoproteins are the primary carbon sources; however, simple sugar availabilities are limited due to low diffusion from saliva to biofilm. We hypothesized that bacterial glycoside hydrolase (GH) activities would be higher in a biofilm than in saliva in order to maintain metabolism in a low-sugar, high-glycoprotein environment. Salivary bacteria from 13 healthy individuals were used to grow in vitro biofilm using two separate media, one with sucrose and the other limiting carbon sources to a complex carbohydrate. All six GHs measured were higher in vitro when grown in the medium with complex carbohydrate as the sole carbon source. We then collected saliva and overnight dental plaque samples from the same individuals and measured ex vivo activities for the same six enzymes to determine how oral microbial utilization of glycoconjugates shifts between the planktonic phase in saliva and the biofilm phase in overnight dental plaque. Overall higher GH activities were observed in plaque samples, in agreement with in vitro observation. A similar pattern was observed in GH activity profiles between in vitro and ex vivo data. 16S rRNA gene analysis showed that plaque samples had a higher abundance of microorganisms with larger number of GH gene sequences. These results suggest differences in sugar catabolism between the oral bacteria located in the biofilm and those in saliva.
Collapse
|
325
|
Pleszczyńska M, Wiater A, Janczarek M, Szczodrak J. (1→3)-α-D-Glucan hydrolases in dental biofilm prevention and control: A review. Int J Biol Macromol 2015; 79:761-78. [PMID: 26047901 DOI: 10.1016/j.ijbiomac.2015.05.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022]
Abstract
Dental plaque is a highly diverse biofilm, which has an important function in maintenance of oral and systemic health but in some conditions becomes a cause of oral diseases. In addition to mechanical plaque removal, current methods of dental plaque control involve the use of chemical agents against biofilm pathogens, which however, given the complexity of the oral microbiome, is not sufficiently effective. Hence, there is a need for development of new anti-biofilm approaches. Polysaccharides, especially (1→3),(1→6)-α-D-glucans, which are key structural and functional constituents of the biofilm matrix, seem to be a good target for future therapeutic strategies. In this review, we have focused on (1→3)-α-glucanases, which can limit the cariogenic properties of the dental plaque extracellular polysaccharides. These enzymes are not widely known and have not been exhaustively described in literature.
Collapse
Affiliation(s)
- Małgorzata Pleszczyńska
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Adrian Wiater
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Monika Janczarek
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Janusz Szczodrak
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
326
|
Hirschfeld J, Dommisch H, Skora P, Horvath G, Latz E, Hoerauf A, Waller T, Kawai T, Jepsen S, Deschner J, Bekeredjian-Ding I. Neutrophil extracellular trap formation in supragingival biofilms. Int J Med Microbiol 2015; 305:453-63. [DOI: 10.1016/j.ijmm.2015.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/03/2015] [Accepted: 04/14/2015] [Indexed: 12/30/2022] Open
|
327
|
Huang R, Zhang J, Yang XF, Gregory RL. PCR-Based Multiple Species Cell Counting for In Vitro Mixed Culture. PLoS One 2015; 10:e0126628. [PMID: 25970462 PMCID: PMC4430427 DOI: 10.1371/journal.pone.0126628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/03/2015] [Indexed: 02/05/2023] Open
Abstract
Changes of bacterial profiles in microbial communities are strongly associated with human health. There is an increasing need for multiple species research in vitro. To avoid high cost or measurement of a limited number of species, PCR-based multiple species cell counting (PCR-MSCC) has been conceived. Species-specific sequence is defined as a unique sequence of one species in a multiple species mixed culture. This sequence is identified by comparing a random 1000 bp genomic sequence of one species with the whole genome sequences of the other species in the same artificial mixed culture. If absent in the other genomes, it is the species-specific sequence. Species-specific primers were designed based on the species-specific sequences. In the present study, ten different oral bacterial species were mixed and grown in Brain Heart Infusion Yeast Extract with 1% sucrose for 24 hours. Biofilm was harvested and processed for DNA extraction and q-PCR amplification with the species-specific primers. By comparing the q-PCR data of each species in the unknown culture with reference cultures, in which the cell number of each species was determined by colony forming units on agar plate, the cell number of that strain in the unknown mixed culture was calculated. This technique is reliable to count microorganism numbers that are less than 100,000 fold different from other species within the same culture. Theoretically, it can be used in detecting a species in a mixed culture of over 200 species. Currently PCR-MSCC is one of the most economic methods for quantifying single species cell numbers, especially for the low abundant species, in a multiple artificial mixed culture in vitro.
Collapse
Affiliation(s)
- Ruijie Huang
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Biology, School of Dentistry, Indiana University, Indianapolis, Indiana, United States of America
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (RH); (RLG)
| | - Junjie Zhang
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Richard L. Gregory
- Department of Oral Biology, School of Dentistry, Indiana University, Indianapolis, Indiana, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
- * E-mail: (RH); (RLG)
| |
Collapse
|
328
|
Kolderman E, Bettampadi D, Samarian D, Dowd SE, Foxman B, Jakubovics NS, Rickard AH. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva. PLoS One 2015; 10:e0121835. [PMID: 25946040 PMCID: PMC4422691 DOI: 10.1371/journal.pone.0121835] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/04/2015] [Indexed: 01/08/2023] Open
Abstract
The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS) in pooled filter-sterilized cell-free saliva (CFS) at 37oC. The addition of pH neutral L-arginine monohydrochloride (LAHCl) to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (μm3/μm2) developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC), an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl moderates multi-species oral biofilm development and community composition and enhances the activity of CPC. The incorporation of LAHCl into oral healthcare products may be useful for enhanced biofilm control.
Collapse
Affiliation(s)
- Ethan Kolderman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Deepti Bettampadi
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Derek Samarian
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Scot E. Dowd
- Molecular Research LP (MR DNA), Shallowater, TX, United States of America
| | - Betsy Foxman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Nicholas S. Jakubovics
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW, United States of America
| | - Alexander H. Rickard
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
329
|
Karched M, Bhardwaj RG, Inbamani A, Asikainen S. Quantitation of biofilm and planktonic life forms of coexisting periodontal species. Anaerobe 2015; 35:13-20. [PMID: 25926392 DOI: 10.1016/j.anaerobe.2015.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Complexity of oral polymicrobial communities has prompted a need for developing in vitro models to study behavior of coexisting bacteria. Little knowledge is available of in vitro co-growth of several periodontitis-associated species without early colonizers of dental plaque. THE AIM was to determine temporal changes in the quantities of six periodontal species in an in vitro biofilm model in comparison with parallel planktonic cultures. MATERIAL AND METHODS Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Parvimonas micra, Campylobacter rectus and Fusobacterium nucleatum were anaerobically grown as multispecies and monospecies biofilms and parallel planktonic cultures using cell culture plates and microfuge tubes, respectively. After incubating 2, 4, 6, 8 days, biofilms and planktonic cultures were harvested, DNA extracted and the target species quantified using qPCR with species-specific 16S rDNA primers. Biofilm growth as monocultures was visualized at day 2 and 8 with confocal microscopy and crystal violet staining. RESULTS The six species were found throughout the test period in all culture conditions, except that P. gingivalis and F. nucleatum were not detected in multispecies planktonic cultures at day 8. In multispecies biofilm, P. gingivalis qPCR counts (cells/ml) increased (P<0.05) from day 2-8 and were then higher (P<0.05) than those of A. actinomycetemcomitans and C. rectus, whereas in monospecies biofilm, P. gingivalis counts were lower (P<0.05) than those of the other species, except A. actinomycetemcomitans. When multi- and monospecies biofilm cultures were compared, P. gingivalis counts were higher (P<0.05) but those of the other species, except P. intermedia, lower (P<0.05) in multispecies biofilm. Comparison between planktonic and biofilm cultures showed that A. actinomycetemcomitans, P. micra and C. rectus had higher (P<0.05) counts in planktonic cultures no matter whether grown in mono- or multispecies environment. CONCLUSIONS Six periodontal species were able to form multispecies biofilm up to 8 days in vitro without pioneer plaque bacteria. P. gingivalis seemed to prefer multispecies biofilm environment whereas P. micra and A. actinomycetemcomitans planktonic culture.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology, General Facility Laboratory, Faculty of Dentistry, Kuwait University, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology, General Facility Laboratory, Faculty of Dentistry, Kuwait University, Kuwait
| | - Anandavalli Inbamani
- Oral Microbiology, General Facility Laboratory, Faculty of Dentistry, Kuwait University, Kuwait
| | - Sirkka Asikainen
- Oral Microbiology, General Facility Laboratory, Faculty of Dentistry, Kuwait University, Kuwait.
| |
Collapse
|
330
|
Abstract
Actinomyces israelii has long been recognized as a causative agent of actinomycosis. During the past 3 decades, a large number of novel Actinomyces species have been described. Their detection and identification in clinical microbiology laboratories and recognition as pathogens in clinical settings can be challenging. With the introduction of advanced molecular methods, knowledge about their clinical relevance is gradually increasing, and the spectrum of diseases associated with Actinomyces and Actinomyces-like organisms is widening accordingly; for example, Actinomyces meyeri, Actinomyces neuii, and Actinomyces turicensis as well as Actinotignum (formerly Actinobaculum) schaalii are emerging as important causes of specific infections at various body sites. In the present review, we have gathered this information to provide a comprehensive and microbiologically consistent overview of the significance of Actinomyces and some closely related taxa in human infections.
Collapse
|
331
|
Marsh PD, Head DA, Devine DA. Ecological approaches to oral biofilms: control without killing. Caries Res 2015; 49 Suppl 1:46-54. [PMID: 25871418 DOI: 10.1159/000377732] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Humans have co-evolved with micro-organisms and have a symbiotic or mutualistic relationship with their resident microbiome. As at other body surfaces, the mouth has a diverse microbiota that grows on oral surfaces as structurally and functionally organised biofilms. The oral microbiota is natural and provides important benefits to the host, including immunological priming, down-regulation of excessive pro-inflammatory responses, regulation of gastrointestinal and cardiovascular systems, and colonisation by exogenous microbes. On occasions, this symbiotic relationship breaks down, and previously minor components of the microbiota outcompete beneficial bacteria, thereby increasing the risk of disease. Antimicrobial agents have been formulated into many oral care products to augment mechanical plaque control. A delicate balance is needed, however, to control the oral microbiota at levels compatible with health, without killing beneficial bacteria and losing the key benefits delivered by these resident microbes. These antimicrobial agents may achieve this by virtue of their recommended twice daily topical use, which results in pharmacokinetic profiles indicating that they are retained in the mouth for relatively long periods at sublethal levels. At these concentrations they are still able to inhibit bacterial traits implicated in disease (e.g. sugar transport/acid production; protease activity) and retard growth without eliminating beneficial species. In silico modelling studies have been performed which support the concept that either reducing the frequency of acid challenge and/or the terminal pH, or by merely slowing bacterial growth, results in maintaining a community of beneficial bacteria under conditions that might otherwise lead to disease (control without killing).
Collapse
Affiliation(s)
- Phil D Marsh
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
332
|
Bao K, Bostanci N, Selevsek N, Thurnheer T, Belibasakis GN. Quantitative proteomics reveal distinct protein regulations caused by Aggregatibacter actinomycetemcomitans within subgingival biofilms. PLoS One 2015; 10:e0119222. [PMID: 25756960 PMCID: PMC4355292 DOI: 10.1371/journal.pone.0119222] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/26/2015] [Indexed: 01/18/2023] Open
Abstract
Periodontitis is an infectious disease that causes the inflammatory destruction of the tooth-supporting (periodontal) tissues, caused by polymicrobial biofilm communities growing on the tooth surface. Aggressive periodontitis is strongly associated with the presence of Aggregatibacter actinomycetemcomitans in the subgingival biofilms. Nevertheless, whether and how A. actinomycetemcomitans orchestrates molecular changes within the biofilm is unclear. The aim of this work was to decipher the interactions between A. actinomycetemcomitans and other bacterial species in a multi-species biofilm using proteomic analysis. An in vitro 10-species "subgingival" biofilm model, or its derivative that included additionally A. actinomycetemcomitans, were anaerobically cultivated on hydroxyapatite discs for 64 h. When present, A. actinomycetemcomitans formed dense intra-species clumps within the biofilm mass, and did not affect the numbers of the other species in the biofilm. Liquid chromatography-tandem mass spectrometry was used to identify the proteomic content of the biofilm lysate. A total of 3225 and 3352 proteins were identified in the biofilm, in presence or absence of A. actinomycetemcomitans, respectively. Label-free quantitative proteomics revealed that 483 out of the 728 quantified bacterial proteins (excluding those of A. actinomycetemcomitans) were accordingly regulated. Interestingly, all quantified proteins from Prevotella intermedia were up-regulated, and most quantified proteins from Campylobacter rectus, Streptococcus anginosus, and Porphyromonas gingivalis were down-regulated in presence of A. actinomycetemcomitans. Enrichment of Gene Ontology pathway analysis showed that the regulated groups of proteins were responsible primarily for changes in the metabolic rate, the ferric iron-binding, and the 5S RNA binding capacities, on the universal biofilm level. While the presence of A. actinomycetemcomitans did not affect the numeric composition or absolute protein numbers of the other biofilm species, it caused qualitative changes in their overall protein expression profile. These molecular shifts within the biofilm warrant further investigation on their potential impact on its virulence properties, and association with periodontal pathogenesis.
Collapse
Affiliation(s)
- Kai Bao
- Oral Translational Research, Institute for Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Nagihan Bostanci
- Oral Translational Research, Institute for Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Nathalie Selevsek
- Functional Genomics Center Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Thurnheer
- Oral Microbiology and Immunology, Institute for Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Georgios N. Belibasakis
- Oral Microbiology and Immunology, Institute for Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
333
|
GM-CSF and uPA are required for Porphyromonas gingivalis-induced alveolar bone loss in a mouse periodontitis model. Immunol Cell Biol 2015; 93:705-15. [PMID: 25753270 DOI: 10.1038/icb.2015.25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/22/2015] [Accepted: 02/04/2015] [Indexed: 12/19/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and urokinase-type plasminogen activator (uPA) can contribute to the progression of chronic inflammatory diseases with possible involvement of macrophages. In this study, we investigated the role of both GM-CSF and uPA in Porphyromonas gingivalis-induced experimental periodontitis using GM-CSF-/- and uPA-/- mice. Intra-oral inoculation of wild-type (WT) C57BL/6 mice with P. gingivalis resulted in establishment of the pathogen in plaque and a significant increase in alveolar bone resorption. The infected mice also exhibited a CD11b(+) CD86(+) macrophage infiltrate into the gingival tissue, as well as P. gingivalis-specific pro-inflammatory cytokine and predominantly IgG2b antibody responses. In comparison, intra-oral inoculation of P. gingivalis did not induce bone resorption and there was significantly less P. gingivalis recovered from plaque in GM-CSF-/- and uPA-/- mice. Furthermore, P. gingivalis did not induce a macrophage gingival infiltrate or activate isolated peritoneal macrophages from the gene-deficient mice. Pro-inflammatory P. gingivalis-specific T-cell cytokine responses and serum interferon-gamma (IFN-γ) and IgG2b concentrations were significantly lower in GM-CSF-/- mice. In uPA-/- mice, T-cell responses were lower but serum IFN-γ and IgG2b levels were comparable with WT mice levels. These results suggest that GM-CSF and uPA are both involved in the progression of experimental periodontitis, possibly via a macrophage-dependent mechanism(s).
Collapse
|
334
|
Warinner C, Speller C, Collins MJ. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philos Trans R Soc Lond B Biol Sci 2015; 370:20130376. [PMID: 25487328 PMCID: PMC4275884 DOI: 10.1098/rstb.2013.0376] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The field of palaeomicrobiology is dramatically expanding thanks to recent advances in high-throughput biomolecular sequencing, which allows unprecedented access to the evolutionary history and ecology of human-associated and environmental microbes. Recently, human dental calculus has been shown to be an abundant, nearly ubiquitous, and long-term reservoir of the ancient oral microbiome, preserving not only microbial and host biomolecules but also dietary and environmental debris. Modern investigations of native human microbiota have demonstrated that the human microbiome plays a central role in health and chronic disease, raising questions about changes in microbial ecology, diversity and function through time. This paper explores the current state of ancient oral microbiome research and discusses successful applications, methodological challenges and future possibilities in elucidating the intimate evolutionary relationship between humans and their microbes.
Collapse
|
335
|
Dashper S, Mitchell H, Adams G, Reynolds E. Polymicrobial nature of chronic oral disease. MICROBIOLOGY AUSTRALIA 2015. [DOI: 10.1071/ma15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
336
|
Cardenas PA, Cookson WO. The Microbiome at Other Mucosal Sites. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
337
|
Rubio NA, Puia S, Toranzo S, Brusca MI. Invasión fúngica en tejido conectivo en pacientes con enfermedad gingivo-periodontal. Rev Iberoam Micol 2015; 32:20-4. [DOI: 10.1016/j.riam.2012.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 06/24/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022] Open
|
338
|
Brileya KA, Camilleri LB, Zane GM, Wall JD, Fields MW. Biofilm growth mode promotes maximum carrying capacity and community stability during product inhibition syntrophy. Front Microbiol 2014; 5:693. [PMID: 25566209 PMCID: PMC4266047 DOI: 10.3389/fmicb.2014.00693] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/22/2014] [Indexed: 12/03/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) can interact syntrophically with other community members in the absence of sulfate, and interactions with hydrogen-consuming methanogens are beneficial when these archaea consume potentially inhibitory H2 produced by the SRB. A dual continuous culture approach was used to characterize population structure within a syntrophic biofilm formed by the SRB Desulfovibrio vulgaris Hildenborough and the methanogenic archaeum Methanococcus maripaludis. Under the tested conditions, monocultures of D. vulgaris formed thin, stable biofilms, but monoculture M. maripaludis did not. Microscopy of intact syntrophic biofilm confirmed that D. vulgaris formed a scaffold for the biofilm, while intermediate and steady-state images revealed that M. maripaludis joined the biofilm later, likely in response to H2 produced by the SRB. Close interactions in structured biofilm allowed efficient transfer of H2 to M. maripaludis, and H2 was only detected in cocultures with a mutant SRB that was deficient in biofilm formation (ΔpilA). M. maripaludis produced more carbohydrate (uronic acid, hexose, and pentose) as a monoculture compared to total coculture biofilm, and this suggested an altered carbon flux during syntrophy. The syntrophic biofilm was structured into ridges (∼300 × 50 μm) and models predicted lactate limitation at ∼50 μm biofilm depth. The biofilm had structure that likely facilitated mass transfer of H2 and lactate, yet maximized biomass with a more even population composition (number of each organism) when compared to the bulk-phase community. Total biomass protein was equivalent in lactate-limited and lactate-excess conditions when a biofilm was present, but in the absence of biofilm, total biomass protein was significantly reduced. The results suggest that multispecies biofilms create an environment conducive to resource sharing, resulting in increased biomass retention, or carrying capacity, for cooperative populations.
Collapse
Affiliation(s)
- Kristen A Brileya
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA ; Center for Biofilm Engineering, Montana State University Bozeman, MT, USA
| | - Laura B Camilleri
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA ; Center for Biofilm Engineering, Montana State University Bozeman, MT, USA
| | - Grant M Zane
- Division of Biochemistry, University of Missouri Columbia, MO, USA
| | - Judy D Wall
- Division of Biochemistry, University of Missouri Columbia, MO, USA
| | - Matthew W Fields
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA ; Center for Biofilm Engineering, Montana State University Bozeman, MT, USA ; Thermal Biology Institute, Montana State University Bozeman, MT, USA ; Ecosystems and Networks Integrated with Genes and Molecular Assemblies Berkeley, CA, USA ; National Center for Genome Resources Santa Fe, NM, USA
| |
Collapse
|
339
|
Marsh PD, Head DA, Devine DA. Prospects of oral disease control in the future - an opinion. J Oral Microbiol 2014; 6:26176. [PMID: 25432790 PMCID: PMC4247391 DOI: 10.3402/jom.v6.26176] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 02/03/2023] Open
Abstract
The mouth supports a diverse microbiota which provides major benefits to the host. On occasions, this symbiotic relationship breaks down (dysbiosis), and disease can be a consequence. We argue that progress in the control of oral diseases will depend on a paradigm shift away from approaches that have proved successful in medicine for many diseases with a specific microbial aetiology. Factors that drive dysbiosis in the mouth should be identified and, where possible, negated, reduced or removed, while antimicrobial agents delivered by oral care products may function effectively, even at sub-lethal concentrations, by modulating the activity and growth of potentially pathogenic bacteria. In this way, the beneficial activities of the resident oral microbiota will be retained and the risk of dysbiosis occurring will be reduced.
Collapse
Affiliation(s)
- Philip D Marsh
- Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom; PHE Porton, Salisbury, United Kingdom;
| | - David A Head
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Deirdre A Devine
- Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
340
|
Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett 2014; 162:22-38. [PMID: 25447398 DOI: 10.1016/j.imlet.2014.08.017] [Citation(s) in RCA: 385] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 12/22/2022]
Abstract
The composition of the oral microbiome differs from one intraoral site to another, reflecting in part the host response and immune capacity at each site. By focusing on two major oral infections, periodontal disease and caries, new principles of disease emerge. Periodontal disease affects the soft tissues and bone that support the teeth. Caries is a unique infection of the dental hard tissues. The initiation of both diseases is marked by an increase in the complexity of the microbiome. In periodontitis, pathobionts and keystone pathogens such as Porphyromonas gingivalis appear in greater proportion than in health. As a keystone pathogen, P. gingivalis impairs host immune responses and appears necessary but not sufficient to cause periodontitis. Historically, dental caries had been causally linked to Streptococcus mutans. Contemporary microbiome studies now indicate that singular pathogens are not obvious in either caries or periodontitis. Both diseases appear to result from a perturbation among relatively minor constituents in local microbial communities resulting in dysbiosis. Emergent consortia of the minor members of the respective microbiomes act synergistically to stress the ability of the host to respond and protect. In periodontal disease, host protection first occurs at the level of innate gingival epithelial immunity. Secretory IgA antibody and other salivary antimicrobial systems also act against periodontopathic and cariogenic consortia. When the gingival immune response is impaired, periodontal tissue pathology results when matrix metalloproteinases are released from neutrophils and T cells mediate alveolar bone loss. In caries, several species are acidogenic and aciduric and appear to work synergistically to promote demineralization of the enamel and dentin. Whereas technically possible, particularly for caries, vaccines are unlikely to be commercialized in the near future because of the low morbidity of caries and periodontitis.
Collapse
Affiliation(s)
- Massimo Costalonga
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, United States; Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, MN 55417, United States
| |
Collapse
|
341
|
Abstract
Oral colonising bacteria are highly adapted to the various environmental niches harboured within the mouth, whether that means while contributing to one of the major oral diseases of caries, pulp infections, or gingival/periodontal disease or as part of a commensal lifestyle. Key to these infections is the ability to adhere to surfaces via a range of specialised adhesins targeted at both salivary and epithelial proteins, their glycans and to form biofilm. They must also resist the various physical stressors they are subjected to, including pH and oxidative stress. Possibly most strikingly, they have developed the ability to harvest both nutrient sources provided by the diet and those derived from the host, such as protein and surface glycans. We have attempted to review recent developments that have revealed much about the molecular mechanisms at work in shaping the physiology of oral bacteria and how we might use this information to design and implement new treatment strategies.
Collapse
|
342
|
Mishra NN, Ali S, Shukla PK. A monoclonal antibody against 47.2 kDa cell surface antigen prevents adherence and affects biofilm formation of Candida albicans. World J Microbiol Biotechnol 2014; 31:11-21. [PMID: 25325986 DOI: 10.1007/s11274-014-1760-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/14/2014] [Indexed: 01/19/2023]
Abstract
Candida albicans is an opportunistic dimorphic pathogen that exists in both planktonic and biofilm phases causing deep-rooted infections in mainly immunocompromised patients. Antibodies are believed to play anti-Candida activity by different mechanisms, like inhibition of adhesion and neutralization of virulence-related antigens. Inhibition of adhesion is one of the important strategies to prevent Candida infections and biofilm formation. In this study, monoclonal antibody (MAb 7D7) against C. albicans biofilm cell surface antigen (47.2 kDa) was generated to determine the changes in adherence and viability of C. albicans. In this regard XTT assay was carried out in 30, 60, 90 min and 48 h (maturation time) time points using MAb 7D7 and it (MAb 7D7) was found to be effective against adhesion and the formation of C. albicans biofilm on polystyrene as well as monolayer of human epithelial cells (HeLa). This result may also prove to be a valuable addition to the reagents available to study C. albicans cell surface dynamics and interaction of the fungus with host cells.
Collapse
Affiliation(s)
- Nripendra Nath Mishra
- Medical Mycology Lab, Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226 031, India
| | | | | |
Collapse
|
343
|
Gurav AN. The implication of periodontitis in vascular endothelial dysfunction. Eur J Clin Invest 2014; 44:1000-9. [PMID: 25104241 DOI: 10.1111/eci.12322] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/04/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Periodontitis is the most common oral infection seen in humans worldwide. It is characterized by gradual destruction of tooth supporting tissues, eventually leading to loss of tooth. The periodontal biofilm associated with periodontitis comprises of gram-positive and gram-negative bacteria, instrumental for the initiation and progression of periodontitis. Evidence-based literature has identified the nature of periodontal infection as a possible causative condition in the inducement of 'low-grade systemic inflammation and infection'. The periodontal pathogens exert systemic effects via the haematogenous route. AIM The present review provides an insight into the pathophysiology of the endothelial dysfunction with reference to periodontal infection and highlights the association between periodontitis and endothelial dysfunction. Various studies addressing the implication of periodontitis on endothelial dysfunction will be described, with a focus of periodontal treatment on improvement of endothelial function. MATERIALS AND METHODS Studies examining the effects of periodontitis on vascular endothelial function were segregated. Studies conducted on both animal and human models were identified using MEDLINE database search with key search terms such as 'Periodontitis', 'vascular endothelium', 'endothelial dysfunction', 'periodontal bacteria' and 'periodontal therapy'. Systematic reviews and meta-analysis were also screened. Only studies published in English language were considered. The review has been prepared by screening MEDLINE database from 1989 to 2012. RESULTS AND CONCLUSIONS Chronic periodontitis results in altered vascular response, increased expression of pro-inflammatory cytokines and adhesion molecules inducing vascular endothelial dysfunction. Periodontal therapy may ameliorate the perturbed vascular endothelial function.
Collapse
Affiliation(s)
- Abhijit N Gurav
- Department of Periodontics, Tatyasaheb Kore Dental College & Research Centre, Kolhapur, India
| |
Collapse
|
344
|
Gentile E, Di Stasio D, Santoro R, Contaldo M, Salerno C, Serpico R, Lucchese A. In vivo microstructural analysis of enamel in permanent and deciduous teeth. Ultrastruct Pathol 2014; 39:131-4. [PMID: 25268300 DOI: 10.3109/01913123.2014.960544] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Confocal microscope was used to analyze human enamel from 10 deciduous and 10 permanent teeth. Optically sectioned images were obtained. A more intense autofluorescence was found in primary teeth. This finding might be due to the greater presence of organic substances in deciduous enamel. The mean prism diameter measurement in permanent teeth enamel was 3.150 µm and 2.602 µm in deciduous teeth. The mean prism diameter in deciduous teeth was statistically least. The results indicate that a confocal microscope may be of help in analyzing and defining the microscopic features of human enamel.
Collapse
Affiliation(s)
- Enrica Gentile
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, Second University of Naples , Naples , Italy
| | | | | | | | | | | | | |
Collapse
|
345
|
Kampf G, Fliss PM, Martiny H. Is peracetic acid suitable for the cleaning step of reprocessing flexible endoscopes? World J Gastrointest Endosc 2014; 6:390-406. [PMID: 25228941 PMCID: PMC4163721 DOI: 10.4253/wjge.v6.i9.390] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 08/01/2014] [Accepted: 09/04/2014] [Indexed: 02/05/2023] Open
Abstract
The bioburden (blood, protein, pathogens and biofilm) on flexible endoscopes after use is often high and its removal is essential to allow effective disinfection, especially in the case of peracetic acid-based disinfectants, which are easily inactivated by organic material. Cleaning processes using conventional cleaners remove a variable but often sufficient amount of the bioburden. Some formulations based on peracetic acid are recommended by manufacturers for the cleaning step. We performed a systematic literature search and reviewed the available evidence to clarify the suitability of peracetic acid-based formulations for cleaning flexible endoscopes. A total of 243 studies were evaluated. No studies have yet demonstrated that peracetic acid-based cleaners are as effective as conventional cleaners. Some peracetic acid-based formulations have demonstrated some biofilm-cleaning effects and no biofilm-fixation potential, while others have a limited cleaning effect and a clear biofilm-fixation potential. All published data demonstrated a limited blood cleaning effect and a substantial blood and nerve tissue fixation potential of peracetic acid. No evidence-based guidelines on reprocessing flexible endoscopes currently recommend using cleaners containing peracetic acid, but some guidelines clearly recommend not using them because of their fixation potential. Evidence from some outbreaks, especially those involving highly multidrug-resistant gram-negative pathogens, indicated that disinfection using peracetic acid may be insufficient if the preceding cleaning step is not performed adequately. Based on this review we conclude that peracetic acid-based formulations should not be used for cleaning flexible endoscopes.
Collapse
|
346
|
Bakri M, Rich A, Cannon R, Holmes A. In vitroexpression ofCandida albicansalcohol dehydrogenase genes involved in acetaldehyde metabolism. Mol Oral Microbiol 2014; 30:27-38. [DOI: 10.1111/omi.12064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2014] [Indexed: 01/03/2023]
Affiliation(s)
- M.M. Bakri
- Department of Oral Biology and Biomedical Sciences; Faculty of Dentistry; University of Malaya; Kuala Lumpur Malaysia
| | - A.M. Rich
- Faculty of Dentistry; Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| | - R.D. Cannon
- Faculty of Dentistry; Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| | - A.R. Holmes
- Faculty of Dentistry; Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| |
Collapse
|
347
|
Schmiedel D, Kikhney J, Masseck J, Rojas Mencias P, Schulze J, Petrich A, Thomas A, Henrich W, Moter A. Fluorescence in situ hybridization for identification of microorganisms in acute chorioamnionitis. Clin Microbiol Infect 2014; 20:O538-41. [DOI: 10.1111/1469-0691.12526] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 12/20/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
|
348
|
Kaplan A, Kaplan CW, He X, McHardy I, Shi W, Lux R. Characterization of aid1, a novel gene involved in Fusobacterium nucleatum interspecies interactions. MICROBIAL ECOLOGY 2014; 68:379-87. [PMID: 24643713 PMCID: PMC4104215 DOI: 10.1007/s00248-014-0400-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/19/2014] [Indexed: 05/25/2023]
Abstract
The oral opportunistic pathogen Fusobacterium nucleatum is known to interact with a large number of different bacterial species residing in the oral cavity. It adheres to a variety of Gram-positive bacteria, including oral streptococci via the arginine-inhibitable adhesin RadD. In this study, we describe a novel protein encoded by the predicted open reading frame FN1253 that appears to play a role in interspecies interactions of F. nucleatum, particularly with oral streptococci and related Gram-positive species. We designated FN1253 as aid1 (Adherence Inducing Determinant 1). Expression analyses demonstrated that this gene was induced in F. nucleatum single species biofilms, while the presence of representative members of the oral microbiota known to adhere to F. nucleatum triggered its suppression. Inactivation as well as overexpression of aid1 affected the ability of F. nucleatum to coaggregate with oral streptococci and the closely related Enterococcus faecalis, but not other Gram-positive oral species tested. Furthermore, overexpression of aid1 led to a drastic change in the structure of dual species biofilms of F. nucleatum with oral streptococci. Aid1 function was abolished in the presence of arginine and found to be dependent on RadD. Interestingly, differential expression of aid1 did not affect messenger RNA and protein levels of RadD. These findings indicate that RadD-mediated adhesion to oral streptococci involves more complex cellular processes than the simple interaction of adhesins on the surface of partner strains. Aid1 could potentially play an important role in facilitating RadD-mediated interaction with oral streptococci by increasing binding specificity of F. nucleatum to other microbial species.
Collapse
Affiliation(s)
- Aida Kaplan
- UCLA Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | | | - Xuesong He
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Ian McHardy
- UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Wenyuan Shi
- UCLA Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
- C3-Jian, Inc, Marina del Rey, CA 90292, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Renate Lux
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
349
|
Diaz PI, Strausbaugh LD, Dongari-Bagtzoglou A. Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench. Front Cell Infect Microbiol 2014; 4:101. [PMID: 25120959 PMCID: PMC4114182 DOI: 10.3389/fcimb.2014.00101] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/08/2014] [Indexed: 02/05/2023] Open
Abstract
High throughput sequencing has accelerated knowledge on the oral microbiome. While the bacterial component of oral communities has been extensively characterized, the role of the fungal microbiota in the oral cavity is largely unknown. Interactions among fungi and bacteria are likely to influence oral health as exemplified by the synergistic relationship between Candida albicans and oral streptococci. In this perspective, we discuss the current state of the field of fungal-bacterial interactions in the context of the oral cavity. We highlight the need to conduct longitudinal clinical studies to simultaneously characterize the bacterial and fungal components of the human oral microbiome in health and during disease progression. Such studies need to be coupled with investigations using disease-relevant models to mechanistically test the associations observed in humans and eventually identify fungal-bacterial interactions that could serve as preventive or therapeutic targets for oral diseases.
Collapse
Affiliation(s)
- Patricia I Diaz
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center Farmington, CT, USA
| | - Linda D Strausbaugh
- Department of Molecular and Cell Biology, The Center for Applied Genetics and Technologies, The University of Connecticut Storrs, CT, USA
| | - Anna Dongari-Bagtzoglou
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
350
|
Guo L, He X, Shi W. Intercellular communications in multispecies oral microbial communities. Front Microbiol 2014; 5:328. [PMID: 25071741 PMCID: PMC4076886 DOI: 10.3389/fmicb.2014.00328] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/14/2014] [Indexed: 01/22/2023] Open
Abstract
The oral cavity contains more than 700 microbial species that are engaged in extensive cell–cell interactions. These interactions contribute to the formation of highly structured multispecies communities, allow them to perform physiological functions, and induce synergistic pathogenesis. Co-adhesion between oral microbial species influences their colonization of oral cavity and effectuates, to a large extent, the temporal and spatial formation of highly organized polymicrobial community architecture. Individual species also compete and collaborate with other neighboring species through metabolic interactions, which not only modify the local microenvironment such as pH and the amount of oxygen, making it more suitable for the growth of other species, but also provide a metabolic framework for the participating microorganisms by maximizing their potential to extract energy from limited substrates. Direct physical contact of bacterial species with its neighboring co-habitants within microbial community could initiate signaling cascade and achieve modulation of gene expression in accordance with different species it is in contact with. In addition to communication through cell–cell contact, quorum sensing (QS) mediated by small signaling molecules such as competence-stimulating peptides (CSPs) and autoinducer-2 (AI-2), plays essential roles in bacterial physiology and ecology. This review will summarize the evidence that oral microbes participate in intercellular communications with co-inhabitants through cell contact-dependent physical interactions, metabolic interdependencies, as well as coordinative signaling systems to establish and maintain balanced microbial communities.
Collapse
Affiliation(s)
- Lihong Guo
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| | - Xuesong He
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| | - Wenyuan Shi
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| |
Collapse
|