301
|
Kwon HJ, Kim JM, Han KI, Jung EG, Kim YH, Patnaik BB, Yoon MS, Chung SK, Kim WJ, Han MD. Mutan: A mixed linkage α-[(1,3)- and (1,6)]-d-glucan from Streptococcus mutans, that induces osteoclast differentiation and promotes alveolar bone loss. Carbohydr Polym 2016; 137:561-569. [DOI: 10.1016/j.carbpol.2015.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 01/04/2023]
|
302
|
Abstract
Extraordinary technological advances have greatly accelerated our ability to identify bacteria, at the species level, present in clinical samples taken from the human mouth. In addition, technologies are evolving such that the oral samples can be analyzed for their protein and metabolic products. As a result, pictures are the advent of personalized dental medicine is becoming closer to reality.
Collapse
|
303
|
Reilly C, Goettl M, Steinmetz M, Nikrad J, Jones RS. Short-term effects of povidone iodine and sodium fluoride therapy on plaque levels and microbiome diversity. Oral Dis 2016; 22:155-61. [DOI: 10.1111/odi.12407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 01/10/2023]
Affiliation(s)
- C Reilly
- Division of Biostatistics; School of Public Health; University of Minnesota; Minneapolis MN USA
| | - M Goettl
- Division of Pediatric Dentistry; Department of Developmental and Surgical Sciences; School of Dentistry; University of Minnesota; Minneapolis MN USA
| | - M Steinmetz
- Division of Pediatric Dentistry; Department of Developmental and Surgical Sciences; School of Dentistry; University of Minnesota; Minneapolis MN USA
| | - J Nikrad
- Division of Pediatric Dentistry; Department of Developmental and Surgical Sciences; School of Dentistry; University of Minnesota; Minneapolis MN USA
| | - RS Jones
- Division of Pediatric Dentistry; Department of Developmental and Surgical Sciences; School of Dentistry; University of Minnesota; Minneapolis MN USA
| |
Collapse
|
304
|
Merritt J, Senpuku H, Kreth J. Let there be bioluminescence: development of a biophotonic imaging platform for in situ analyses of oral biofilms in animal models. Environ Microbiol 2016; 18:174-90. [PMID: 26119252 PMCID: PMC5050008 DOI: 10.1111/1462-2920.12953] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/23/2022]
Abstract
In the current study, we describe a novel biophotonic imaging-based reporter system that is particularly useful for the study of virulence in polymicrobial infections and interspecies interactions within animal models. A suite of luciferase enzymes was compared using three early colonizing species of the human oral flora (Streptococcus mutans, Streptococcus gordonii and Streptococcus sanguinis) to determine the utility of the different reporters for multiplexed imaging studies in vivo. Using the multiplex approach, we were able to track individual species within a dual-species oral infection model in mice with both temporal and spatial resolution. We also demonstrate how biophotonic imaging of multiplexed luciferase reporters could be adapted for real-time quantification of bacterial gene expression in situ. By creating an inducible dual-luciferase expressing reporter strain of S. mutans, we were able to exogenously control and measure expression of nlmAB (encoding the bacteriocin mutacin IV) within mice to assess its importance for the persistence ability of S. mutans in the oral cavity. The imaging system described in the current study circumvents many of the inherent limitations of current animal model systems, which should now make it feasible to test hypotheses that were previously impractical to model.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Jens Kreth
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
305
|
Rudney JD, Jagtap PD, Reilly CS, Chen R, Markowski TW, Higgins L, Johnson JE, Griffin TJ. Protein relative abundance patterns associated with sucrose-induced dysbiosis are conserved across taxonomically diverse oral microcosm biofilm models of dental caries. MICROBIOME 2015; 3:69. [PMID: 26684897 PMCID: PMC4684605 DOI: 10.1186/s40168-015-0136-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/25/2015] [Indexed: 05/30/2023]
Abstract
BACKGROUND The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone. RESULTS In this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities. CONCLUSIONS Our findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions.
Collapse
Affiliation(s)
- Joel D Rudney
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. SE, Minneapolis, MN, 55455, USA.
| | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Center for Mass Spectrometry and Proteomics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA.
| | - Cavan S Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN, 55455, USA.
| | - Ruoqiong Chen
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. SE, Minneapolis, MN, 55455, USA.
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Center for Mass Spectrometry and Proteomics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA.
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Center for Mass Spectrometry and Proteomics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA.
| | - James E Johnson
- University of Minnesota Supercomputing Institute, 117 Pleasant St. SE, Minneapolis, MN, 55455, USA.
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Center for Mass Spectrometry and Proteomics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA.
| |
Collapse
|
306
|
Gao X, Jiang S, Koh D, Hsu CYS. Salivary biomarkers for dental caries. Periodontol 2000 2015; 70:128-41. [DOI: 10.1111/prd.12100] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
|
307
|
Mutation of the Thiol-Disulfide Oxidoreductase SdbA Activates the CiaRH Two-Component System, Leading to Bacteriocin Expression Shutdown in Streptococcus gordonii. J Bacteriol 2015; 198:321-31. [PMID: 26527641 DOI: 10.1128/jb.00800-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Streptococcus gordonii is a commensal inhabitant of the human oral cavity. To maintain its presence as a major component of oral biofilms, S. gordonii secretes inhibitory molecules such as hydrogen peroxide and bacteriocins to inhibit competitors. S. gordonii produces two nonmodified bacteriocins (i.e., Sth1 and Sth2) that are regulated by the Com two-component regulatory system, which also regulates genetic competence. Previously we found that the thiol-disulfide oxidoreductase SdbA was required for bacteriocin activity; however, the role of SdbA in Com signaling was not clear. Here we demonstrate that ΔsdbA mutants lacked bacteriocin activity because the bacteriocin gene sthA was strongly repressed and the peptides were not secreted. Addition of synthetic competence-stimulating peptide to the medium reversed the phenotype, indicating that the Com pathway was functional but was not activated in the ΔsdbA mutant. Repression of bacteriocin production was mediated by the CiaRH two-component system, which was strongly upregulated in the ΔsdbA mutant, and inactivation of CiaRH restored bacteriocin production. The CiaRH-induced protease DegP was also upregulated in the ΔsdbA mutant, although it was not required for inhibition of bacteriocin production. This establishes CiaRH as a regulator of Sth bacteriocin activity and links the CiaRH and Com systems in S. gordonii. It also suggests that either SdbA or one of its substrates is an important factor in regulating activation of the CiaRH system. IMPORTANCE Streptococcus gordonii is a noncariogenic colonizer of the human oral cavity. To be competitive in the oral biofilm, S. gordonii secretes antimicrobial peptides called bacteriocins, which inhibit closely related species. Our previous data showed that mutation of the disulfide oxidoreductase SdbA abolished bacteriocin production. In this study, we show that mutation of SdbA generates a signal that upregulates the CiaRH two-component system, which in turn downregulates a second two-component system, Com, which regulates bacteriocin expression. Our data show that these systems are also linked in S. gordonii, and the data reveal that the cell's ability to form disulfide bonds is sensed by the CiaRH system.
Collapse
|
308
|
Jurczak A, Kościelniak D, Papież M, Vyhouskaya P, Krzyściak W. A study on β-defensin-2 and histatin-5 as a diagnostic marker of early childhood caries progression. Biol Res 2015; 48:61. [PMID: 26520150 PMCID: PMC4628373 DOI: 10.1186/s40659-015-0050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background Recently, a continuous growth of interest has been observed in antimicrobial peptides (AMPs) in the light of an alarming increase in resistance of bacteria and fungi against antibiotics. AMPs are used as biomarkers in diagnosis and monitoring of oral cavity pathologies. Therefore, the determination of specific protein profiles in children diagnosed with early childhood caries (ECC) might be a basis for effective screening tests and specialized examinations which may enable progression of disease. Methods The objective of the studies was to determine the role of histatin-5 and β-defensing-2 as a diagnostic marker of early childhood caries progression. In this work, results of concentration determination of two salivary proteins (histatin-5 and β-defensin-2) were presented. In addition, bacterial profiles from dental plaque in various stages of ECC and control were marked. The assessment of alteration in the concentration of these two proteins in a study group of children with various stages of ECC and a control group consisting of children with no symptoms was performed by enzyme-linked immunosorbent assays. Results The statistical analysis showed a significant increase in the concentration of histatin-5 and β-defensin-2 in the study group compared to the control group and correlated with the progression of the disease. Conclusions The confirmation of concentration changes in these proteins during the progression of dental caries may discover valuable disease progression biomarkers.
Collapse
Affiliation(s)
- Anna Jurczak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University, Medical College, Krakow, Poland.
| | - Dorota Kościelniak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University, Medical College, Krakow, Poland.
| | - Monika Papież
- Department of Cytobiology, Pharmacy Faculty, Jagiellonian University, Medical College, Krakow, Poland.
| | - Palina Vyhouskaya
- Department of Medical Diagnostics, Pharmacy Faculty, Jagiellonian University, Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Pharmacy Faculty, Jagiellonian University, Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| |
Collapse
|
309
|
Crowley PJ, Brady LJ. Evaluation of the effects of Streptococcus mutans chaperones and protein secretion machinery components on cell surface protein biogenesis, competence, and mutacin production. Mol Oral Microbiol 2015; 31:59-77. [PMID: 26386361 DOI: 10.1111/omi.12130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 11/29/2022]
Abstract
The respective contributions of components of the protein translocation/maturation machinery to cell surface biogenesis in Streptococcus mutans are not fully understood. Here we used a genetic approach to characterize the effects of deletion of genes encoding the ribosome-associated chaperone RopA (Trigger Factor), the surface-localized foldase PrsA, and the membrane-localized chaperone insertases YidC1 and YidC2, both singly and in combination, on bacterial growth, chain length, self-aggregation, cell surface hydrophobicity, autolysis, and antigenicity of surface proteins P1 (AgI/II, PAc), WapA, GbpC, and GtfD. The single and double deletion mutants, as well as additional mutant strains lacking components of the signal recognition particle pathway, were also evaluated for their effects on mutacin production and genetic competence.
Collapse
Affiliation(s)
- P J Crowley
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - L J Brady
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
310
|
Abstract
OBJECTIVE Urease enzymes produced by oral bacteria generate ammonia, which can have a significant impact on the oral ecology and, consequently, on oral health. To evaluate the relationship of urease with dental plaque microbial profiles in children as it relates to dental caries, and to identify the main contributors to this activity. METHODS 82 supragingival plaque samples were collected from 44 children at baseline and one year later, as part of a longitudinal study on urease and caries in children. DNA was extracted; the V3-V5 region of the 16S rRNA gene was amplified and sequenced using 454 pyrosequencing. Urease activity was measured using a spectrophotometric assay. Data were analyzed with Qiime. RESULTS Plaque urease activity was significantly associated with the composition of the microbial communities of the dental plaque (Baseline P = 0.027, One Year P = 0.012). The bacterial taxa whose proportion in dental plaque exhibited significant variation by plaque urease levels in both visits were the family Pasteurellaceae (Baseline P<0.001; One Year P = 0.0148), especially Haemophilus parainfluenzae. No association was observed between these bacteria and dental caries. Bacteria in the genus Leptotrichia were negatively associated with urease and positively associated with dental caries (Bonferroni P<0.001). CONCLUSIONS Alkali production by urease enzymes primarily from species in the family Pasteurellaceae can be an important ecological determinant in children's dental plaque. Further studies are needed to establish the role of urease-associated bacteria in the acid/base homeostasis of the dental plaque, and in the development and prediction of dental caries in children.
Collapse
|
311
|
Wynendaele E, Gevaert B, Stalmans S, Verbeke F, De Spiegeleer B. Exploring the chemical space of quorum sensing peptides. Biopolymers 2015; 104:544-51. [DOI: 10.1002/bip.22649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/12/2015] [Accepted: 03/30/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group; Faculty of Pharmaceutical Sciences, Ghent University; Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Bert Gevaert
- Drug Quality and Registration (DruQuaR) Group; Faculty of Pharmaceutical Sciences, Ghent University; Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Sofie Stalmans
- Drug Quality and Registration (DruQuaR) Group; Faculty of Pharmaceutical Sciences, Ghent University; Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Frederick Verbeke
- Drug Quality and Registration (DruQuaR) Group; Faculty of Pharmaceutical Sciences, Ghent University; Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group; Faculty of Pharmaceutical Sciences, Ghent University; Ottergemsesteenweg 460 Ghent 9000 Belgium
| |
Collapse
|
312
|
Rôças IN, Lima KC, Assunção IV, Gomes PN, Bracks IV, Siqueira JF. Advanced Caries Microbiota in Teeth with Irreversible Pulpitis. J Endod 2015; 41:1450-5. [DOI: 10.1016/j.joen.2015.05.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 02/02/2023]
|
313
|
Leung MHY, Wilkins D, Lee PKH. Insights into the pan-microbiome: skin microbial communities of Chinese individuals differ from other racial groups. Sci Rep 2015; 5:11845. [PMID: 26177982 PMCID: PMC4503953 DOI: 10.1038/srep11845] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023] Open
Abstract
Many studies have characterized microbiomes of western individuals. However, studies involving non-westerners are scarce. This study characterizes the skin microbiomes of Chinese individuals. Skin-associated genera, including Propionibacterium, Corynebacterium, Staphylococcus, and Enhydrobacter were prevalent. Extensive inter-individual microbiome variations were detected, with core genera present in all individuals constituting a minority of genera detected. Species-level analyses presented dominance of potential opportunistic pathogens in respective genera. Host properties including age, gender, and household were associated with variations in community structure. For all sampled sites, skin microbiomes within an individual is more similar than that of different co-habiting individuals, which is in turn more similar than individuals living in different households. Network analyses highlighted general and skin-site specific relationships between genera. Comparison of microbiomes from different population groups revealed race-based clustering explained by community membership (Global R = 0.968) and structure (Global R = 0.589), contributing to enlargement of the skin pan-microbiome. This study provides the foundation for subsequent in-depth characterization and microbial interactive analyses on the skin and other parts of the human body in different racial groups, and an appreciation that the human skin pan-microbiome can be much larger than that of a single population.
Collapse
Affiliation(s)
- Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - David Wilkins
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| |
Collapse
|
314
|
Baker JL, Abranches J, Faustoferri RC, Hubbard CJ, Lemos JA, Courtney MA, Quivey R. Transcriptional profile of glucose-shocked and acid-adapted strains of Streptococcus mutans. Mol Oral Microbiol 2015; 30:496-517. [PMID: 26042838 DOI: 10.1111/omi.12110] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2015] [Indexed: 01/10/2023]
Abstract
The aciduricity of Streptococcus mutans is an important virulence factor of the organism, required to both out-compete commensal oral microorganisms and cause dental caries. In this study, we monitored transcriptional changes that occurred as a continuous culture of either an acid-tolerant strain (UA159) or an acid-sensitive strain (fabM::Erm) moved from steady-state growth at neutral pH, experienced glucose-shock and acidification of the culture, and transitioned to steady-state growth at low pH. Hence, the timing of elements of the acid tolerance response (ATR) could be observed and categorized as acute vs. adaptive ATR mechanisms. Modulation of branched chain amino acid biosynthesis, DNA/protein repair mechanisms, reactive oxygen species metabolizers and phosphoenolpyruvate:phosphotransferase systems occurred in the initial acute phase, immediately following glucose-shock, while upregulation of F1 F0 -ATPase did not occur until the adaptive phase, after steady-state growth had been re-established. In addition to the archetypal ATR pathways mentioned above, glucose-shock led to differential expression of genes suggesting a re-routing of resources away from the synthesis of fatty acids and proteins, and towards synthesis of purines, pyrimidines and amino acids. These adjustments were largely transient, as upon establishment of steady-state growth at acidic pH, transcripts returned to basal expression levels. During growth at steady-state pH 7, fabM::Erm had a transcriptional profile analogous to that of UA159 during glucose-shock, indicating that even during growth in rich media at neutral pH, the cells were stressed. These results, coupled with a recently established collection of deletion strains, provide a starting point for elucidation of the acid tolerance response in S. mutans.
Collapse
Affiliation(s)
- J L Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - J Abranches
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - C J Hubbard
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - J A Lemos
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - M A Courtney
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R Quivey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
315
|
Quivey RG, Grayhack EJ, Faustoferri RC, Hubbard CJ, Baldeck JD, Wolf AS, MacGilvray ME, Rosalen PL, Scott-Anne K, Santiago B, Gopal S, Payne J, Marquis RE. Functional profiling in Streptococcus mutans: construction and examination of a genomic collection of gene deletion mutants. Mol Oral Microbiol 2015; 30:474-95. [PMID: 25973955 DOI: 10.1111/omi.12107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 12/17/2022]
Abstract
A collection of tagged deletion mutant strains was created in Streptococcus mutans UA159 to facilitate investigation of the aciduric capability of this oral pathogen. Gene-specific barcoded deletions were attempted in 1432 open reading frames (representing 73% of the genome), and resulted in the isolation of 1112 strains (56% coverage) carrying deletions in distinct non-essential genes. As S. mutans virulence is predicated upon the ability of the organism to survive an acidic pH environment, form biofilms on tooth surfaces, and out-compete other oral microflora, we assayed individual mutant strains for the relative fitness of the deletion strain, compared with the parent strain, under acidic and oxidative stress conditions, as well as for their ability to form biofilms in glucose- or sucrose-containing medium. Our studies revealed a total of 51 deletion strains with defects in both aciduricity and biofilm formation. We have also identified 49 strains whose gene deletion confers sensitivity to oxidative damage and deficiencies in biofilm formation. We demonstrate the ability to examine competitive fitness of mutant organisms using the barcode tags incorporated into each deletion strain to examine the representation of a particular strain in a population. Co-cultures of deletion strains were grown either in vitro in a chemostat to steady-state values of pH 7 and pH 5 or in vivo in an animal model for oral infection. Taken together, these data represent a mechanism for assessing the virulence capacity of this pathogenic microorganism and a resource for identifying future targets for drug intervention to promote healthy oral microflora.
Collapse
Affiliation(s)
- R G Quivey
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.,Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - E J Grayhack
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - R C Faustoferri
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - C J Hubbard
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - J D Baldeck
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - A S Wolf
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - M E MacGilvray
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - P L Rosalen
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - K Scott-Anne
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - B Santiago
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - S Gopal
- Department of Biological Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - J Payne
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - R E Marquis
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
316
|
Shaping the oral mycobiota: interactions of opportunistic fungi with oral bacteria and the host. Curr Opin Microbiol 2015; 26:65-70. [PMID: 26100661 DOI: 10.1016/j.mib.2015.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/13/2022]
Abstract
The oral mycobiota is an important component of the oral microbiota that has only recently received increased attention. The diversity and complexity of the oral mycobiota in healthy humans is greater than any other body site. Dysbiotic imbalance of indigenous fungal communities in immunosuppressed hosts has been proposed to lead to oropharyngeal fungal infections. As in other body sites, to survive and thrive in the oral cavity fungi have to maintain mutually beneficial relationships with the resident bacterial microbiota and the host. Here we review our current understanding of the composition of the oral mycobiota and how it may be influenced by oral commensal bacteria and the host environment.
Collapse
|
317
|
Grande R, Pacella S, Di Giulio M, Rapino M, Di Valerio V, Cellini L, Cataldi A. NF-kB mediated down-regulation of collagen synthesis upon HEMA (2-hydroxyethyl methacrylate) treatment of primary human gingival fibroblast/Streptococcus mutans co-cultured cells. Clin Oral Investig 2015; 19:841-9. [PMID: 25200938 PMCID: PMC4429030 DOI: 10.1007/s00784-014-1304-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 08/15/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE In vitro studies have evidenced the cytotoxic effect of HEMA (2-hydroxyethyl methacrylate), the most common component of dental resin-based restorative material, which is released within the oral cavity, on eukaryotic cells such as gingival fibroblast and epithelial cells. However, since the presence of microorganisms within the oral cavity cannot be excluded and little is known about the interactions occurring between eukaryotic cells and the human oral microbiota, our attention has been addressed to investigate the effect of 3 mM HEMA on the molecular mechanisms driving the response of human gingival fibroblasts (HGFs) co-cultured with Streptococcus mutans. METHODOLOGY HGF/S. mutans co-culture has been set up in our lab, and upon HEMA treatment, S.mutans and HGF cells' viability and adhesion along with type I collagen gene and pro-collagen I, Bax, Bcl2, nuclear factor kB (NF-kB), IkBα, pIkBα protein expression by PCR, Western blotting and ELISA assays have been investigated. RESULTS HEMA treatment determines a significant decrease of type I collagen protein production, even in the presence of S. mutans, in parallel to a decrease of cell viability and adhesion, which seem to be regulated by NF-kB activation. In fact, when SN50, NF-kB-specific pharmacological inhibitor, is added to the culture, cell proliferation along with collagen synthesis is restored. CONCLUSION The modulation exerted by S. mutans on the cytotoxic effect of HEMA suggests that within the oral cavity, the eukaryotic/prokaryotic cell interactions, maintaining the balance of the environment, allow HEMA to perform its adhesive and bonding function and that the use of a co-culture system, which simulates the oral cavity organization, improves the knowledge concerning the biocompatibility of this dental material.
Collapse
Affiliation(s)
- R. Grande
- Dipartimento di Farmacia, Università G. d’Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - S. Pacella
- Dipartimento di Medicina e Scienze dell’Invecchiamento, Università G. d’Annunzio, Chieti-Pescara, 66100, Chieti, Italy
| | - M. Di Giulio
- Dipartimento di Farmacia, Università G. d’Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - M. Rapino
- Istituto di Genetica Molecolare del CNR, Unità di Chieti, Chieti, Italy
| | - V. Di Valerio
- Dipartimento di Medicina e Scienze dell’Invecchiamento, Università G. d’Annunzio, Chieti-Pescara, 66100, Chieti, Italy
| | - L. Cellini
- Dipartimento di Farmacia, Università G. d’Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - A. Cataldi
- Dipartimento di Farmacia, Università G. d’Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
318
|
Li Y, Tanner A. Effect of Antimicrobial Interventions on the Oral Microbiota Associated with Early Childhood Caries. Pediatr Dent 2015; 37:226-44. [PMID: 26063552 PMCID: PMC4485441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
PURPOSE The purposes of this systematic literature review were to identify research-based evidence for an effect of antimicrobial therapeutic approaches on the cariogenic microbiota and early childhood caries (ECC) outcomes; and to review methods used to perform microbial assessments in clinical studies of ECC. METHODS Multiple databases were searched; only clinical cohort studies and randomized controlled trials published from 1998 to 2014 were selected. A total of 471 titles and abstracts were identified; 114 studies met the inclusion criteria for a full review, from which 41 studies were included in the meta-analyses. RESULTS In most of the reviewed studies, moderate reductions in cariogenic bacterial levels, mainly in mutans streptococci (MS), were demonstrated following the use of antimicrobial agents, but bacterial regrowth occurred and new carious lesions developed once the treatment had ceased, particularly in high-risk children. Relatively consistent findings suggested that anti-cariogenic microbial interventions in mothers significantly reduced MS acquisition by children. However, studies of the long-term benefits of ECC prevention are lacking. CONCLUSION Based on the meta-analyses, antimicrobial interventions and treatments show temporary reductions in MS colonization levels. However, there is insufficient evidence to indicate that the approaches used produced sustainable effects on cariogenic microbial colonization or ECC reduction and prevention.
Collapse
Affiliation(s)
- Yihong Li
- Professor and Director, Department of Basic Science and Craniofacial biology, New York University School of Dentistry, 345 E. 24th Street, New York, NY 10010, Tel: (212) 998-9607/ Fax: (212) 995-4087
| | - Anne Tanner
- Senior member of the staff, Department of Microbiology, The Forsyth Institute, Associate Professor, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, 245 First Street, Cambridge, MA, 02142, Phone (617) 892-8285 /FAX: (617) 892-8510
| |
Collapse
|
319
|
The interaction between Streptococcus spp. and Veillonella tobetsuensis in the early stages of oral biofilm formation. J Bacteriol 2015; 197:2104-2111. [PMID: 25917902 DOI: 10.1128/jb.02512-14] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dental plaque is a multispecies oral biofilm, the development of which is initiated by adherence of the pioneer Streptococcus spp. Oral Veillonella spp., including V. atypica, V. denticariosi, V. dispar, V. parvula, V. rogosae, and V. tobetsuensis, are known as early colonizers in oral biofilm formation. These species have been reported to co-aggregate with Streptococcus spp. in a metabolic cooperation-dependent manner to form biofilms in human oral cavities, especially in the early stages of biofilm formation. However, in our previous study, Streptococcus gordonii showed biofilm formation to the greatest extent in the presence of V. tobetsuensis, without co-aggregation between species. These results suggest that V. tobetsuensis produces signaling molecules that promote the proliferation of S. gordonii in biofilm formation. It is well known in many bacterial species that the quorum-sensing (QS) system regulates diverse functions such as biofilm formation. However, little is known about the QS system with autoinducers (AIs), between Veillonella and Streptococcus. Recently, AI-1 and AI-2 were detected and identified in the culture supernatants of V. tobetsuensis as strong signaling molecules in biofilm formation with S. gordonii. In particular, the supernatant from V. tobetsuensis showed the highest AI-2 activity among 6 oral Veillonella species, indicating that AIs, mainly AI-2, produced by V. tobetsuensis may be important factors and may facilitate biofilm formation of S. gordonii. Clarifying the mechanism that underlies the QS system between S. gordonii and V. tobetsuensis may lead to the development of novel methods for the prevention of oral infectious diseases caused by oral biofilms.
Collapse
|
320
|
Seredin P, Goloshchapov D, Prutskij T, Ippolitov Y. Phase transformations in a human tooth tissue at the initial stage of caries. PLoS One 2015; 10:e0124008. [PMID: 25901743 PMCID: PMC4406755 DOI: 10.1371/journal.pone.0124008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/09/2015] [Indexed: 11/19/2022] Open
Abstract
The aim of the paper is to study phase transformations in solid tissues of the human teeth during the development of fissure caries by Raman and fluorescence microspectroscopy. The study of the areas with fissure caries confirmed the assumption of the formation of a weak interaction between phosphate apatite enamel and organic acids (products of microorganisms). The experimental results obtained with by Raman microspectroscopy showed the formation of dicalcium phosphate dihydrate - CaHPO4-2H2O in the area of mural demineralization of carious fissure. A comparative analysis of structural and spectroscopic data for the intact and carious enamel shows that emergence of a more soluble phase - carbonate-substituted hydroxyapatite - is typical for the initial stage of caries. It is shown that microareas of dental hard tissues in the carious fissure due to an emerging misorientation of apatite crystals have a higher fluorescence yield than the area of the intact enamel. These areas can be easily detected even prior to a deep demineralization (white spot stage) for the case of irreversibly changed organomineral complex and intensive removal of the mineral component.
Collapse
Affiliation(s)
- Pavel Seredin
- Department of Solid State Physics and Nanostructures, Voronezh State University, Voronezh, Russia
- * E-mail:
| | - Dmitry Goloshchapov
- Department of Solid State Physics and Nanostructures, Voronezh State University, Voronezh, Russia
| | - Tatiana Prutskij
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Yury Ippolitov
- Department of Preventive Dentistry, Voronezh State Medical Academy, Voronezh, Russia
| |
Collapse
|
321
|
Freires IA, Denny C, Benso B, de Alencar SM, Rosalen PL. Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules 2015; 20:7329-58. [PMID: 25911964 PMCID: PMC6272492 DOI: 10.3390/molecules20047329] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/04/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022] Open
Abstract
Dental caries remains the most prevalent and costly oral infectious disease worldwide. Several methods have been employed to prevent this biofilm-dependent disease, including the use of essential oils (EOs). In this systematic review, we discuss the antibacterial activity of EOs and their isolated constituents in view of a potential applicability in novel dental formulations. Seven databases were systematically searched for clinical trials, in situ, in vivo and in vitro studies addressing the topic published up to date. Most of the knowledge in the literature is based on in vitro studies assessing the effects of EOs on caries-related streptococci (mainly Streptococcus mutans) and lactobacilli, and on a limited number of clinical trials. The most promising species with antibacterial potential against cariogenic bacteria are: Achillea ligustica, Baccharis dracunculifolia, Croton cajucara, Cryptomeria japonica, Coriandrum sativum, Eugenia caryophyllata, Lippia sidoides, Ocimum americanum, and Rosmarinus officinalis. In some cases, the major phytochemical compounds determine the biological properties of EOs. Menthol and eugenol were considered outstanding compounds demonstrating an antibacterial potential. Only L. sidoides mouthwash (1%) has shown clinical antimicrobial effects against oral pathogens thus far. This review suggests avenues for further non-clinical and clinical studies with the most promising EOs and their isolated constituents bioprospected worldwide.
Collapse
Affiliation(s)
- Irlan Almeida Freires
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| | - Carina Denny
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| | - Bruna Benso
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| | - Severino Matias de Alencar
- Department of Agri-food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP 13418-260, Brazil.
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| |
Collapse
|
322
|
Abstract
Lactoferrin is one of a number of multifunctional proteins that are present in or on all mucosal surfaces throughout the body. Levels of lactoferrin are consistently elevated in inflammatory diseases such as arthritis, inflammatory bowel diseases, corneal disease, and periodontitis. Single-nucleotide polymorphisms (SNPs) in lactoferrin have been shown to be present in individuals susceptible to Escherichia coli-induced travelers' diarrhea and in tear fluid derived from virally associated corneal disease. Here, we review data showing a lactoferrin SNP in amino acid position 29 in the antimicrobial region of lactoferrin that acts against caries associated bacteria. This SNP was initially discovered in African American subjects with localized aggressive periodontitis (LAP) who had proximal bone loss but minimal proximal caries. Results were confirmed in a genetic association study of children from Brazil with this same SNP who showed a reduced level of caries. In vitro data indicate that lactoferrin from whole saliva derived from subjects with this SNP, recombinant human lactoferrin containing this SNP, or an 11-mer peptide designed for this SNP kills mutans streptococci associated with caries by >1 log. In contrast, the SNP has minimal effect on Gram-negative species associated with periodontitis. Moreover, periodontally healthy subjects homozygous for this lysine (K) SNP have lactoferrin in their saliva that kills mutans streptococci and have reduced proximal decay. The review summarizes data supporting the ecologic plaque hypothesis and suggests that a genetic variant in lactoferrin with K in position 29 when found in saliva and crevice fluid can influence community biofilm composition. We propose that, for caries, this SNP is ethnicity independent and protective by directly killing caries-provoking bacteria (reducing proximal decay). However, the clinical effect of this SNP in LAP is ethnicity dependent, destructive (increases LAP incidence), and complex with mechanisms still to be determined.
Collapse
Affiliation(s)
- D H Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, Newark, NJ, USA
| |
Collapse
|
323
|
Jagathrakshakan SN, Sethumadhava RJ, Mehta DT, Ramanathan A. 16S rRNA gene-based metagenomic analysis identifies a novel bacterial co-prevalence pattern in dental caries. Eur J Dent 2015; 9:127-132. [PMID: 25713496 PMCID: PMC4319289 DOI: 10.4103/1305-7456.149661] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: To identify the prevalence of acidogenic and nonacidogenic bacteria in patients with polycaries lesions, and to ascertain caries specific bacterial prevalence in relation to noncaries controls. Materials and Methods: Total genomic DNA extracted from saliva of three adults and four children from the same family were subjected to 16S rRNA gene sequencing analysis on a next generation sequencer, the PGS-Ion Torrent. Those bacterial genera with read counts > 1000 were considered as significant in each of the subject and used to associate the occurrence with caries. Results and Conclusion: Sequencing analysis indicated a higher prevalence of Streptococcus, Rothia, Granulicatella, Gemella, Actinomyces, Selenomonas, Haemophilus and Veillonella in the caries group relative to controls. While higher prevalence of Streptococcus, Rothia and Granulicatella were observed in all caries samples, the prevalence of others was observable in 29–57% of samples. Interestingly, Rothia and Selenomonas, which are known to occur within anaerobic environments of dentinal caries and subgingival plaque biofilms, were seen in the saliva of these caries patients. Taken together, the study has identified for the first time a unique co-prevalence pattern of bacteria in caries patients that may be explored as distinct caries specific bacterial signature to predict cariogenesis in high-risk primary and mixed dentition age groups.
Collapse
Affiliation(s)
- Sri Nisha Jagathrakshakan
- Department of Prosthodontia, Sree Balaji Dental College and Hospital, Bharath University, Narayanapuram, Pallikaranai, Chennai, Tamil Nadu, India
| | - Raghavendra Jayesh Sethumadhava
- Department of Prosthodontia, Sree Balaji Dental College and Hospital, Bharath University, Narayanapuram, Pallikaranai, Chennai, Tamil Nadu, India
| | - Dhaval Tushar Mehta
- Department of Human Genetics Laboratory, Central Research Facility, Sree Balaji Medical and Dental College and Hospital, Bharath University, Narayanapuram, Pallikaranai, Chennai, Tamil Nadu, India
| | - Arvind Ramanathan
- Department of Human Genetics Laboratory, Central Research Facility, Sree Balaji Medical and Dental College and Hospital, Bharath University, Narayanapuram, Pallikaranai, Chennai, Tamil Nadu, India
| |
Collapse
|
324
|
Abstract
BACKGROUND Anaerobic culture has been critical in our understanding of the oral microbiotas. HIGHLIGHT Studies in advanced periodontitis in the 1970's revealed microbial complexes that associated with different clinical presentations. Taxonomy studies identified species newly-observed in periodontitis as Aggregatibacter (Actinobacillus) actinomycetemcomitans, Campylobacter (Wolinella) rectus and other Campylobacter species, and Tannerella (Bacteroides) forsythia. Anaerobic culture of initial periodontitis showed overlap in the microbiota with gingivitis, and added Selenomonas noxia and Filifactor alocis as putative periodontal pathogens. Porphyromonas gingivalis and T. forsythia were found to be associated with initial periodontitis in adults. The dominant microbiota of dental caries differs from that of periodontitis. The major cariogenic species are acidogenic and acid tolerant species particularly Streptococcus mutans, and Lactobacillus and Bifidobacterium species. Anaerobic culture of severe early childhood caries revealed a widely diverse microbiota, comparable to that observed using cloning and sequencing. The PCR-based cloning approach, however, underestimated Actinobacteria compared with culture. Only a subset of the caries-associated microbiota was acid tolerant, with different segments of the microbiota cultured on blood agar compared to a low pH acid agar. While the major caries-associated species was S. mutans, a new species, Scardovia wiggsiae, was significantly associated with early childhood caries. Higher counts of S. wiggsiae were also observed in initial white spot carious lesions in adolescents. CONCLUSION In periodontitis and dental caries, anaerobic culture studies of advanced disease provided a comprehensive analysis of the microbiota of these infections. Anaerobic culture highlighted the limitation of PCR with standard primers that underestimate detection of Actinobacteria.
Collapse
Affiliation(s)
- Anne C R Tanner
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts 02142, USA ; Department of Oral Medicine, Infection and Immunity, Harvard School Dental Medicine, Boston MA 02115, USA
| |
Collapse
|
325
|
Szafranski SP, Wos-Oxley ML, Vilchez-Vargas R, Jáuregui R, Plumeier I, Klawonn F, Tomasch J, Meisinger C, Kühnisch J, Sztajer H, Pieper DH, Wagner-Döbler I. High-resolution taxonomic profiling of the subgingival microbiome for biomarker discovery and periodontitis diagnosis. Appl Environ Microbiol 2015; 81:1047-58. [PMID: 25452281 PMCID: PMC4292489 DOI: 10.1128/aem.03534-14] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/17/2014] [Indexed: 01/19/2023] Open
Abstract
The oral microbiome plays a key role for caries, periodontitis, and systemic diseases. A method for rapid, high-resolution, robust taxonomic profiling of subgingival bacterial communities for early detection of periodontitis biomarkers would therefore be a useful tool for individualized medicine. Here, we used Illumina sequencing of the V1-V2 and V5-V6 hypervariable regions of the 16S rRNA gene. A sample stratification pipeline was developed in a pilot study of 19 individuals, 9 of whom had been diagnosed with chronic periodontitis. Five hundred twenty-three operational taxonomic units (OTUs) were obtained from the V1-V2 region and 432 from the V5-V6 region. Key periodontal pathogens like Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia could be identified at the species level with both primer sets. Principal coordinate analysis identified two outliers that were consistently independent of the hypervariable region and method of DNA extraction used. The linear discriminant analysis (LDA) effect size algorithm (LEfSe) identified 80 OTU-level biomarkers of periodontitis and 17 of health. Health- and periodontitis-related clusters of OTUs were identified using a connectivity analysis, and the results confirmed previous studies with several thousands of samples. A machine learning algorithm was developed which was trained on all but one sample and then predicted the diagnosis of the left-out sample (jackknife method). Using a combination of the 10 best biomarkers, 15 of 17 samples were correctly diagnosed. Training the algorithm on time-resolved community profiles might provide a highly sensitive tool to detect the onset of periodontitis.
Collapse
Affiliation(s)
- Szymon P Szafranski
- Microbial Communication Research Group, Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Melissa L Wos-Oxley
- Microbial Interactions and Processes Research Group, Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Ramiro Vilchez-Vargas
- Microbial Interactions and Processes Research Group, Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Ruy Jáuregui
- Microbial Interactions and Processes Research Group, Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Iris Plumeier
- Microbial Interactions and Processes Research Group, Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Frank Klawonn
- Bioinformatics and Statistics Research Group, Department of Cellular Proteomics, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | - Jürgen Tomasch
- Microbial Communication Research Group, Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Christa Meisinger
- National Cohort Study Center Augsburg, Helmholtz Centre Munich, Germany
| | - Jan Kühnisch
- Department of Conservative Dentistry, Ludwig-Maximilians-University, Munich, Germany
| | - Helena Sztajer
- Microbial Communication Research Group, Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Irene Wagner-Döbler
- Microbial Communication Research Group, Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| |
Collapse
|
326
|
Takeshita T, Yasui M, Shibata Y, Furuta M, Saeki Y, Eshima N, Yamashita Y. Dental plaque development on a hydroxyapatite disk in young adults observed by using a barcoded pyrosequencing approach. Sci Rep 2015; 5:8136. [PMID: 25633431 PMCID: PMC4311255 DOI: 10.1038/srep08136] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
Dental plaque is a dynamic microbial biofilm ecosystem that comprises hundreds of species including difficult-to-cultivate bacteria. We observed the assembly of a plaque bacterial community through 16S rRNA gene analysis. Plaque samples that accumulated on a hydroxyapatite disk for 1, 2, 3, 4, 5, and 7 days with saliva on day 0 were collected from 19 young adults using a removable resin splint. Quantitative PCR analysis showed that the total bacterial amount gradually increased and reached a plateau on day 4. Barcoded pyrosequencing analysis revealed that the microbial richness and diversity particularly increased between days 5 and 7. A principal coordinate analysis plot based on unweighted UniFrac showed the community assembly in a time-related manner, which became increasingly similar to the salivary microbiota. Facultative anaerobic bacteria such as Streptococcus, Neisseria, Abiotrophia, Gemella, and Rothia were predominant in the plaque bacterial community in the earlier days, whereas obligate anaerobes, such as Porphyromonas, Fusobacterium, Prevotella, and Capnocytophaga showed increased dominance on later days. UniFrac analysis also demonstrated that dental caries experience had a significant effect on the assembly process. Our results reveal the development pattern of the plaque bacterial community as well as the inter-individual differences associated with dental caries experience.
Collapse
Affiliation(s)
- Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Masaki Yasui
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Yukie Shibata
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Michiko Furuta
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Yoji Saeki
- Oral Science Section, Central Laboratory, Lotte Co., Ltd., Saitama, Japan
| | - Nobuoki Eshima
- Department of Biostatistics, Oita University Faculty of Medicine, Yufu City, Oita, Japan
| | - Yoshihisa Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| |
Collapse
|
327
|
Zhou P, Liu J, Merritt J, Qi F. A YadA-like autotransporter, Hag1 in Veillonella atypica is a multivalent hemagglutinin involved in adherence to oral streptococci, Porphyromonas gingivalis, and human oral buccal cells. Mol Oral Microbiol 2015; 30:269-279. [PMID: 25440509 DOI: 10.1111/omi.12091] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/31/2022]
Abstract
Dental biofilm development is a sequential process, and adherence between microbes and the salivary pellicle (adhesion) as well as among different microbes (co-adhesion or coaggregation) plays a critical role in building a biofilm community. The Veillonella species are among the most predominant species in the oral cavity and coaggregate with many initial, early, middle, and late colonizers. Similar to oral fusobacteria, they are also considered bridging species in biofilm development. However, the mechanism of this ability has yet to be reported, due to the previous lack of a genetic transformation system in the entire genus. In this study, we used our recently discovered transformable Veillonella strain, Veillonella atypica OK5, to probe the mechanism of coaggregation between Veillonella species and other oral bacteria. By insertional inactivation of all eight putative hemagglutinin genes, we identified one gene, hag1, which is involved in V. atypica coaggregation with the initial colonizers Streptococcus gordonii, Streptococcus oralis and Streptococcus cristatus, and the periodontal pathogen Porphyromonas gingivalis. The hag1 mutant also abolished adherence to human buccal cells. Inhibition assays using various chemical or physiological treatments suggest different mechanisms being involved in coaggregation with different partners. The entire hag1 gene was sequenced and shown to be the largest known bacterial hemagglutinin gene.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jinman Liu
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Justin Merritt
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.,Division of Oral Biology, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Fengxia Qi
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.,Division of Oral Biology, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
328
|
Holcombe LJ, Patel N, Colyer A, Deusch O, O’Flynn C, Harris S. Early canine plaque biofilms: characterization of key bacterial interactions involved in initial colonization of enamel. PLoS One 2014; 9:e113744. [PMID: 25463050 PMCID: PMC4252054 DOI: 10.1371/journal.pone.0113744] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022] Open
Abstract
Periodontal disease (PD) is a significant problem in dogs affecting between 44% and 63.6% of the population. The main etiological agent for PD is plaque, a microbial biofilm that colonizes teeth and causes inflammation of the gingiva. Understanding how this biofilm initiates on the tooth surface is of central importance in developing interventions against PD. Although the stages of plaque development on human teeth have been well characterized little is known about how canine plaque develops. Recent studies of the canine oral microbiome have revealed distinct differences between the canine and human oral environments and the bacterial communities they support, particularly with respect to healthy plaque. These differences mean knowledge about the nature of plaque formation in humans may not be directly translatable to dogs. The aim of this study was to identify the bacterial species important in the early stages of canine plaque formation in vivo and then use isolates of these species in a laboratory biofilm model to develop an understanding of the sequential processes which take place during the initial colonization of enamel. Supra-gingival plaque samples were collected from 12 dogs at 24 and 48 hour time points following a full mouth descale and polish. Pyrosequencing of the 16S rDNA identified 134 operational taxonomic units after statistical analysis. The species with the highest relative abundance were Bergeyella zoohelcum, Neisseria shayeganii and a Moraxella species. Streptococcal species, which tend to dominate early human plaque biofilms, had very low relative abundance. In vitro testing of biofilm formation identified five primary colonizer species, three of which belonged to the genus Neisseria. Using these pioneer bacteria as a starting point, viable two and three species communities were developed. Combining in vivo and in vitro data has led us to construct novel models of how the early canine plaque biofilm develops.
Collapse
Affiliation(s)
- Lucy J. Holcombe
- The WALTHAM Centre for Pet Nutrition, Leicestershire, United Kingdom
- * E-mail:
| | - Niran Patel
- The WALTHAM Centre for Pet Nutrition, Leicestershire, United Kingdom
| | - Alison Colyer
- The WALTHAM Centre for Pet Nutrition, Leicestershire, United Kingdom
| | - Oliver Deusch
- The WALTHAM Centre for Pet Nutrition, Leicestershire, United Kingdom
| | - Ciaran O’Flynn
- The WALTHAM Centre for Pet Nutrition, Leicestershire, United Kingdom
| | - Stephen Harris
- The WALTHAM Centre for Pet Nutrition, Leicestershire, United Kingdom
| |
Collapse
|
329
|
Reilly C, Rasmussen K, Selberg T, Stevens J, Jones RS. Biofilm community diversity after exposure to 0·4% stannous fluoride gels. J Appl Microbiol 2014; 117:1798-809. [PMID: 25263195 PMCID: PMC4664451 DOI: 10.1111/jam.12655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 01/11/2023]
Abstract
AIMS To test the effect of 0·4% stannous fluoride (SnF2 ) glycerine-based gels on specific portions of the bacterial community in both a clinical observational study and in vitro multispecies plaque-derived (MSPD) biofilm model. METHODS AND RESULTS Potential changes to specific portions of the bacterial community were determined through the Human Oral Microbial Identification Microarray (HOMIM). Both the observational clinical study and the biofilm model showed that short-term use of 0·4% SnF2 gel has little effect on the bacterial community depicted by hierarchical cluster analysis. The amount of plaque accumulation on a subject's teeth, which was measured by plaque index scores, failed to show statistical significant changes over the two baselines or after treatment (P = 0·9928). The in vitro results were similar when examining the effect of 0·4% SnF2 gels on biofilm adherence through a crystal violet assay (P = 0·1157). CONCLUSIONS The bacteria within the dental biofilms showed resilience in maintaining the overall community diversity after exposure to 0·4% SnF2 topical gels. SIGNIFICANCE AND IMPACT OF THE STUDY The study supports that the immediate benefits of using 0·4% SnF2 gels in children may be strictly from fluoride ions inhibiting tooth demineralization rather than delivering substantial antimicrobial effects.
Collapse
Affiliation(s)
- Cavan Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, 7-546 Moos T, 515 Delaware St SE, Minneapolis, MN 55455
| | - Karin Rasmussen
- Division of Pediatric Dentistry, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, 6-150C Moos Tower, 515 Delaware St SE, Minneapolis, MN 55455
| | - Tieg Selberg
- Division of Pediatric Dentistry, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, 6-150C Moos Tower, 515 Delaware St SE, Minneapolis, MN 55455
| | - Justin Stevens
- Division of Pediatric Dentistry, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, 6-150C Moos Tower, 515 Delaware St SE, Minneapolis, MN 55455
| | - Robert S. Jones
- Division of Pediatric Dentistry, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, 6-150C Moos Tower, 515 Delaware St SE, Minneapolis, MN 55455
| |
Collapse
|
330
|
Simón-Soro A, Mira A. Solving the etiology of dental caries. Trends Microbiol 2014; 23:76-82. [PMID: 25435135 DOI: 10.1016/j.tim.2014.10.010] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/22/2023]
Abstract
For decades, the sugar-fermenting, acidogenic species Streptococcus mutans has been considered the main causative agent of dental caries and most diagnostic and therapeutic strategies have been targeted toward this microorganism. However, recent DNA- and RNA-based studies from carious lesions have uncovered an extraordinarily diverse ecosystem where S. mutans accounts only a tiny fraction of the bacterial community. This supports the concept that consortia formed by multiple microorganisms act collectively, probably synergistically, to initiate and expand the cavity. Thus, antimicrobial therapies are not expected to be effective in the treatment of caries and other polymicrobial diseases that do not follow classical Koch's postulates.
Collapse
Affiliation(s)
- Aurea Simón-Soro
- FISABIO Foundation, Center for Advanced Research in Public Health, Avda Cataluña 21, 46020 Valencia, Spain
| | - Alex Mira
- FISABIO Foundation, Center for Advanced Research in Public Health, Avda Cataluña 21, 46020 Valencia, Spain.
| |
Collapse
|
331
|
Simón-Soro A, Guillen-Navarro M, Mira A. Metatranscriptomics reveals overall active bacterial composition in caries lesions. J Oral Microbiol 2014; 6:25443. [PMID: 25626770 PMCID: PMC4247497 DOI: 10.3402/jom.v6.25443] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/02/2022] Open
Abstract
Background Identifying the microbial species in caries lesions is instrumental to determine the etiology of dental caries. However, a significant proportion of bacteria in carious lesions have not been cultured, and the use of molecular methods has been limited to DNA-based approaches, which detect both active and inactive or dead microorganisms. Objective To identify the RNA-based, metabolically active bacterial composition of caries lesions at different stages of disease progression in order to provide a list of potential etiological agents of tooth decay. Design Non-cavitated enamel caries lesions (n=15) and dentin caries lesions samples (n=12) were collected from 13 individuals. RNA was extracted and cDNA was constructed, which was used to amplify the 16S rRNA gene. The resulting 780 bp polymerase chain reaction products were pyrosequenced using Titanium-plus chemistry, and the sequences obtained were used to determine the bacterial composition. Results A mean of 4,900 sequences of the 16S rRNA gene with an average read length of 661 bp was obtained per sample, giving a comprehensive view of the active bacterial communities in caries lesions. Estimates of bacterial diversity indicate that the microbiota of cavities is highly complex, each sample containing between 70 and 400 metabolically active species. The composition of these bacterial consortia varied among individuals and between caries lesions of the same individuals. In addition, enamel and dentin lesions had a different bacterial makeup. Lactobacilli were found almost exclusively in dentin cavities. Streptococci accounted for 40% of the total active community in enamel caries, and 20% in dentin caries. However, Streptococcus mutans represented only 0.02–0.73% of the total bacterial community. Conclusions The data indicate that the etiology of dental caries is tissue dependent and that the disease has a clear polymicrobial origin. The low proportion of mutans streptococci detected confirms that they are a minority and questions its importance as the main etiological agent of tooth decay. Future experimental work should be performed to confirm the cariogenicity of the identified bacteria.
Collapse
Affiliation(s)
- Aurea Simón-Soro
- FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | | | - Alex Mira
- FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain;
| |
Collapse
|
332
|
Head DA, Marsh PD, Devine DA. Non-lethal control of the cariogenic potential of an agent-based model for dental plaque. PLoS One 2014; 9:e105012. [PMID: 25144538 PMCID: PMC4140729 DOI: 10.1371/journal.pone.0105012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque. According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability upstream from in vitro experiments.
Collapse
Affiliation(s)
- David A. Head
- School of Computing, University of Leeds, Leeds, United Kingdom
- * E-mail:
| | - Phil D. Marsh
- Microbiology Services, PHE Porton, Salisbury, United Kingdom
- Department of Oral Biology, School of Dentistry, University of Leeds, United Kingdom
| | - Deirdre A. Devine
- Department of Oral Biology, School of Dentistry, University of Leeds, United Kingdom
| |
Collapse
|
333
|
McLean JS. Advancements toward a systems level understanding of the human oral microbiome. Front Cell Infect Microbiol 2014; 4:98. [PMID: 25120956 PMCID: PMC4114298 DOI: 10.3389/fcimb.2014.00098] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/05/2014] [Indexed: 12/18/2022] Open
Abstract
Oral microbes represent one of the most well studied microbial communities owing to the fact that they are a fundamental part of human development influencing health and disease, an easily accessible human microbiome, a highly structured and remarkably resilient biofilm as well as a model of bacteria-bacteria and bacteria-host interactions. In the last 80 years since oral plaque was first characterized for its functionally stable physiological properties such as the highly repeatable rapid pH decrease upon carbohydrate addition and subsequent recovery phase, the fundamental approaches to study the oral microbiome have cycled back and forth between community level investigations and characterizing individual model isolates. Since that time, many individual species have been well characterized and the development of the early plaque community, which involves many cell-cell binding interactions, has been carefully described. With high throughput sequencing enabling the enormous diversity of the oral cavity to be realized, a number of new challenges to progress were revealed. The large number of uncultivated oral species, the high interpersonal variability of taxonomic carriage and the possibility of multiple pathways to dysbiosis pose as major hurdles to obtain a systems level understanding from the community to the gene level. It is now possible however to start connecting the insights gained from single species with community wide approaches. This review will discuss some of the recent insights into the oral microbiome at a fundamental level, existing knowledge gaps, as well as challenges that have surfaced and the approaches to address them.
Collapse
Affiliation(s)
- Jeffrey S McLean
- Department of Microbial and Environmental Genomics, The J Craig Venter Institute San Diego, CA, USA ; Department of Periodontics, School of Dentistry, University of Washington Seattle, WA, USA
| |
Collapse
|
334
|
Diaz PI, Strausbaugh LD, Dongari-Bagtzoglou A. Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench. Front Cell Infect Microbiol 2014; 4:101. [PMID: 25120959 PMCID: PMC4114182 DOI: 10.3389/fcimb.2014.00101] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/08/2014] [Indexed: 02/05/2023] Open
Abstract
High throughput sequencing has accelerated knowledge on the oral microbiome. While the bacterial component of oral communities has been extensively characterized, the role of the fungal microbiota in the oral cavity is largely unknown. Interactions among fungi and bacteria are likely to influence oral health as exemplified by the synergistic relationship between Candida albicans and oral streptococci. In this perspective, we discuss the current state of the field of fungal-bacterial interactions in the context of the oral cavity. We highlight the need to conduct longitudinal clinical studies to simultaneously characterize the bacterial and fungal components of the human oral microbiome in health and during disease progression. Such studies need to be coupled with investigations using disease-relevant models to mechanistically test the associations observed in humans and eventually identify fungal-bacterial interactions that could serve as preventive or therapeutic targets for oral diseases.
Collapse
Affiliation(s)
- Patricia I Diaz
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center Farmington, CT, USA
| | - Linda D Strausbaugh
- Department of Molecular and Cell Biology, The Center for Applied Genetics and Technologies, The University of Connecticut Storrs, CT, USA
| | - Anna Dongari-Bagtzoglou
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
335
|
Antimicrobial effect of the triterpene 3β,6β,16β-trihydroxylup-20(29)-ene on planktonic cells and biofilms from Gram positive and Gram negative bacteria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:729358. [PMID: 25093179 PMCID: PMC4100443 DOI: 10.1155/2014/729358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/10/2014] [Indexed: 11/17/2022]
Abstract
This study evaluated the antimicrobial effect of 3β,6β,16β-trihydroxylup-20(29)-ene (CLF1), a triterpene isolated from Combretum leprosum Mart., in inhibiting the planktonic growth and biofilms of Gram positive bacteria Streptococcus mutans and S. mitis. The antimicrobial activity was assessed by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The antibiofilm potential was determined by quantifying total biomass and enumerating biofilm-entrapped viable bacteria. In addition, the acute toxicity of CLF1 on Artemia sp. nauplii was also determined. The results showed that CLF1 was able in inhibiting the growth of S. mutans and S. mitis with MIC and MBC of 7.8 μg/mL and 15.6 μg/mL, respectively. CLF1 was highly effective on biofilms of both bacteria. Only 7.8 μg/mL CLF1 was enough to inhibit by 97% and 90% biomass production of S. mutans and S. mitis, respectively. On the other hand, such effects were not evident on Gram negative Pseudomonas aeruginosa and Klebsiella oxytoca. The toxicity tests showed that the LC50 of CLF1 was 98.19 μg/mL. Therefore, CLF1 isolated from C. leprosum may constitute an important natural agent for the development of new therapies for caries and other infectious diseases caused by S. mutans and S. mitis.
Collapse
|
336
|
Kianoush N, Adler CJ, Nguyen KAT, Browne GV, Simonian M, Hunter N. Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS One 2014; 9:e92940. [PMID: 24675997 PMCID: PMC3968045 DOI: 10.1371/journal.pone.0092940] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022] Open
Abstract
Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3–V4 region) to compare microbial communities in layers ranging in pH from 4.5–7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ∼60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies.
Collapse
Affiliation(s)
- Nima Kianoush
- Institute of Dental Research, Westmead Centre for Oral Health and Westmead Millennium Institute, Westmead, Sydney, Australia
- Department of Oral Biology, Faculty of Dentistry, University of Sydney, Sydney, Australia
- * E-mail:
| | - Christina J. Adler
- Institute of Dental Research, Westmead Centre for Oral Health and Westmead Millennium Institute, Westmead, Sydney, Australia
- Department of Oral Biology, Faculty of Dentistry, University of Sydney, Sydney, Australia
| | - Ky-Anh T. Nguyen
- Institute of Dental Research, Westmead Centre for Oral Health and Westmead Millennium Institute, Westmead, Sydney, Australia
- Department of Oral Biology, Faculty of Dentistry, University of Sydney, Sydney, Australia
| | - Gina V. Browne
- Institute of Dental Research, Westmead Centre for Oral Health and Westmead Millennium Institute, Westmead, Sydney, Australia
| | - Mary Simonian
- Institute of Dental Research, Westmead Centre for Oral Health and Westmead Millennium Institute, Westmead, Sydney, Australia
| | - Neil Hunter
- Institute of Dental Research, Westmead Centre for Oral Health and Westmead Millennium Institute, Westmead, Sydney, Australia
- Department of Oral Biology, Faculty of Dentistry, University of Sydney, Sydney, Australia
| |
Collapse
|
337
|
Laleman I, Detailleur V, Slot DE, Slomka V, Quirynen M, Teughels W. Probiotics reduce mutans streptococci counts in humans: a systematic review and meta-analysis. Clin Oral Investig 2014; 18:1539-52. [DOI: 10.1007/s00784-014-1228-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/10/2014] [Indexed: 01/06/2023]
|
338
|
Buckley AA, Faustoferri RC, Quivey RG. β-Phosphoglucomutase contributes to aciduricity in Streptococcus mutans. MICROBIOLOGY-SGM 2014; 160:818-827. [PMID: 24509501 DOI: 10.1099/mic.0.075754-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Streptococcus mutans encounters an array of sugar moieties within the oral cavity due to a varied human diet. One such sugar is β-d-glucose 1-phosphate (βDG1P), which must be converted to glucose 6-phosphate (G6P) before further metabolism to lactic acid. The conversion of βDG1P to G6P is mediated by β-phosphoglucomutase, which has not been previously observed in any oral streptococci, but has been extensively characterized and the gene designated pgmB in Lactococcus lactis. An orthologue was identified in S. mutans, SMU.1747c, and deletion of the gene resulted in the inability of the deletion strain to convert βDG1P to G6P, indicating that SMU.1747c is a β-phosphoglucomutase and should be designated pgmB. In this study, we sought to characterize how deletion of pgmB affected known virulence factors of S. mutans, specifically acid tolerance. The ΔpgmB strain showed a decreased ability to survive acid challenge. Additionally, the strain lacking β-phosphoglucomutase had a diminished glycolytic profile compared with the parental strain. Deletion of pgmB had a negative impact on the virulence of S. mutans in the Galleria mellonella (greater wax worm) animal model. Our results indicate that pgmB plays a role at the juncture of carbohydrate metabolism and virulence.
Collapse
Affiliation(s)
- Andrew A Buckley
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Roberta C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Robert G Quivey
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.,Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
339
|
Abstract
In the last half-decade or so, interest in the bacterial part of the human microbiome and its role in maintaining health have received considerable attention. Since 2009, over 300 publications have appeared describing the oral bacterial microbiome. Strikingly, fungi in the oral cavity have been studied exclusively in relation to pathologies. However, little to nothing is known about a role of fungi in establishing and maintaining a healthy oral ecology. In a healthy ecology, balance is maintained by the combined positive and negative influences between and among its members. Interactions between fungi and bacteria occur primarily at a physical and chemical level. Physical interactions are represented by (co-)adhesion and repulsion (exclusion), while chemical interactions include metabolic dependencies, quorum-sensing, and the production of antimicrobial agents. Information obtained from oral model systems and also from studies on the role of fungi in gastro-intestinal ecology indicates that fungi influence bacterial behavior through these different interactions. This review describes our current knowledge of the interactions between fungi and bacteria and aims to illustrate that further research is required to establish the role of fungi in maintaining a healthy oral cavity.
Collapse
Affiliation(s)
- B.P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| | - S. Kidwai
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| | - J.M. ten Cate
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
340
|
Caries Prevention by Arginine Metabolism in Oral Biofilms: Translating Science into Clinical Success. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40496-013-0007-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
341
|
Jakubovics NS, Yassin SA, Rickard AH. Community interactions of oral streptococci. ADVANCES IN APPLIED MICROBIOLOGY 2014; 87:43-110. [PMID: 24581389 DOI: 10.1016/b978-0-12-800261-2.00002-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is now clear that the most common oral diseases, dental caries and periodontitis, are caused by mixed-species communities rather than by individual pathogens working in isolation. Oral streptococci are central to these disease processes since they are frequently the first microorganisms to colonize oral surfaces and they are numerically the dominant microorganisms in the human mouth. Numerous interactions between oral streptococci and other bacteria have been documented. These are thought to be critical for the development of mixed-species oral microbial communities and for the transition from oral health to disease. Recent metagenomic studies are beginning to shed light on the co-occurrence patterns of streptococci with other oral bacteria. Refinements in microscopy techniques and biofilm models are providing detailed insights into the spatial distribution of streptococci in oral biofilms. Targeted genetic manipulation is increasingly being applied for the analysis of specific genes and networks that modulate interspecies interactions. From this work, it is clear that streptococci produce a range of extracellular factors that promote their integration into mixed-species communities and enable them to form social networks with neighboring taxa. These "community integration factors" include coaggregation-mediating adhesins and receptors, small signaling molecules such as peptides or autoinducer-2, bacteriocins, by-products of metabolism including hydrogen peroxide and lactic acid, and a range of extracellular enzymes. Here, we provide an overview of various types of community interactions between oral streptococci and other microorganisms, and we consider the possibilities for the development of new technologies to interfere with these interactions to help control oral biofilms.
Collapse
Affiliation(s)
- Nicholas S Jakubovics
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Sufian A Yassin
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexander H Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
342
|
Lessons Learned from Clinical Studies: Roles of Mutans Streptococci in the Pathogenesis of Dental Caries. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40496-013-0008-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
343
|
Bradshaw DJ, Lynch RJ. Diet and the microbial aetiology of dental caries: new paradigms. Int Dent J 2013; 63 Suppl 2:39-47. [DOI: 10.1111/idj.12072] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
344
|
Miyanohara M, Imai S, Okamoto M, Saito W, Nomura Y, Momoi Y, Tomonaga M, Hanada N. Distribution of Streptococcus troglodytae and Streptococcus dentirousetti in chimpanzee oral cavities. Microbiol Immunol 2013; 57:359-65. [PMID: 23668608 DOI: 10.1111/1348-0421.12047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
Abstract
The aim of this study was to analyze the distribution and phenotypic properties of the indigenous streptococci in chimpanzee (Pan troglodytes) oral cavities. Eleven chimpanzees (aged from 9 to 44 years, mean ± SD, 26.9 ± 12.6 years) in the Primate Research Institute of Kyoto University were enrolled in this research and brushing bacterial samples collected from them. Streptococci were isolated from the oral cavities of all chimpanzees. The isolates (n = 46) were identified as thirteen species by 16S rRNA genes analysis. The predominant species was Streptococcus sanguinis of mitis streptococci from five chimpanzees (45%). Mutans streptococci were isolated from six chimpanzees (55%). The predominant species in the mutans streptococci were Streptococcus troglodytae from four chimpanzees (36%), this species having been proposed as a novel species by us, and Streptococcus dentirousetti from three chimpanzees (27%). Streptococcus mutans was isolated from one chimpanzee (9%). However, Streptococcus sobrinus, Streptococcus macacae and Streptococcus downei, which are indigenous to human and monkey (Macaca fasciclaris) oral habitats, were not isolated. Of the mutans streptococci, S. troglodytae, S. dentirousetti, and S. mutans possessed strong adherence activity to glass surface.
Collapse
Affiliation(s)
- Mayu Miyanohara
- Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
345
|
Robinette RA, Heim KP, Oli MW, Crowley PJ, McArthur WP, Brady LJ. Alterations in immunodominance of Streptococcus mutans AgI/II: lessons learned from immunomodulatory antibodies. Vaccine 2013; 32:375-82. [PMID: 24252705 DOI: 10.1016/j.vaccine.2013.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/22/2013] [Accepted: 11/06/2013] [Indexed: 01/04/2023]
Abstract
Streptococcus mutans antigen I/II (AgI/II) has been widely studied as a candidate vaccine antigen against human dental caries. In this report we follow up on prior studies that indicated that anti-AgI/II immunomodulatory monoclonal antibodies (MAbs) exerted their effects by destabilizing the native protein structure and exposing cryptic epitopes. We show here that similar results can be obtained by immunizing mice with truncated polypeptides out of the context of an intra-molecular interaction that occurs within the full-length molecule and that appears to dampen the functional response against at least two important target epitopes. Putative T cell epitopes that influenced antibody specificity were identified immediately upstream of the alanine-rich repeat domain. Adherence inhibiting antibodies could be induced against two discrete domains of the protein, one corresponding to the central portion of the molecule and the other corresponding to the C-terminus.
Collapse
Affiliation(s)
- Rebekah A Robinette
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, United States
| | - Kyle P Heim
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, United States
| | - Monika W Oli
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, United States
| | - Paula J Crowley
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, United States
| | - William P McArthur
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, United States
| | - L Jeannine Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, United States.
| |
Collapse
|
346
|
Metwalli KH, Khan SA, Krom BP, Jabra-Rizk MA. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation. PLoS Pathog 2013; 9:e1003616. [PMID: 24146611 PMCID: PMC3798555 DOI: 10.1371/journal.ppat.1003616] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Khalid H Metwalli
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, Maryland, United States of America
| | | | | | | |
Collapse
|
347
|
Edlund A, Yang Y, Hall AP, Guo L, Lux R, He X, Nelson KE, Nealson KH, Yooseph S, Shi W, McLean JS. An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome. MICROBIOME 2013; 1:25. [PMID: 24451062 PMCID: PMC3971625 DOI: 10.1186/2049-2618-1-25] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/17/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND Our knowledge of microbial diversity in the human oral cavity has vastly expanded during the last two decades of research. However, much of what is known about the behavior of oral species to date derives from pure culture approaches and the studies combining several cultivated species, which likely does not fully reflect their function in complex microbial communities. It has been shown in studies with a limited number of cultivated species that early oral biofilm development occurs in a successional manner and that continuous low pH can lead to an enrichment of aciduric species. Observations that in vitro grown plaque biofilm microcosms can maintain similar pH profiles in response to carbohydrate addition as plaque in vivo suggests a complex microbial community can be established in the laboratory. In light of this, our primary goal was to develop a robust in vitro biofilm-model system from a pooled saliva inoculum in order to study the stability, reproducibility, and development of the oral microbiome, and its dynamic response to environmental changes from the community to the molecular level. RESULTS Comparative metagenomic analyses confirmed a high similarity of metabolic potential in biofilms to recently available oral metagenomes from healthy subjects as part of the Human Microbiome Project. A time-series metagenomic analysis of the taxonomic community composition in biofilms revealed that the proportions of major species at 3 hours of growth are maintained during 48 hours of biofilm development. By employing deep pyrosequencing of the 16S rRNA gene to investigate this biofilm model with regards to bacterial taxonomic diversity, we show a high reproducibility of the taxonomic carriage and proportions between: 1) individual biofilm samples; 2) biofilm batches grown at different dates; 3) DNA extraction techniques and 4) research laboratories. CONCLUSIONS Our study demonstrates that we now have the capability to grow stable oral microbial in vitro biofilms containing more than one hundred operational taxonomic units (OTU) which represent 60-80% of the original inoculum OTU richness. Previously uncultivated Human Oral Taxa (HOT) were identified in the biofilms and contributed to approximately one-third of the totally captured 16S rRNA gene diversity. To our knowledge, this represents the highest oral bacterial diversity reported for an in vitro model system so far. This robust model will help investigate currently uncultivated species and the known virulence properties for many oral pathogens not solely restricted to pure culture systems, but within multi-species biofilms.
Collapse
Affiliation(s)
- Anna Edlund
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Youngik Yang
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Adam P Hall
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Lihong Guo
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Renate Lux
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Xuesong He
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Karen E Nelson
- Department of Human Genomic Medicine, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kenneth H Nealson
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
- Department of Earth Sciences, USC, ZHS 117, Los Angeles, CA 90089, USA
| | - Shibu Yooseph
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Wenyuan Shi
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Jeffrey S McLean
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| |
Collapse
|
348
|
|
349
|
Simón-Soro A, Belda-Ferre P, Cabrera-Rubio R, Alcaraz LD, Mira A. A tissue-dependent hypothesis of dental caries. Caries Res 2013; 47:591-600. [PMID: 24080530 DOI: 10.1159/000351663] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/18/2013] [Indexed: 11/19/2022] Open
Abstract
Current understanding of dental caries considers this disease a demineralization of the tooth tissues due to the acid produced by sugar-fermenting microorganisms. Thus, caries is considered a diet- and pH-dependent process. We present here the first metagenomic analysis of the bacterial communities present at different stages of caries development, with the aim of determining whether the bacterial composition and biochemical profile are specific to the tissue affected. The data show that microbial composition at the initial, enamel-affecting stage of caries is significantly different from that found at subsequent stages, as well as from dental plaque of sound tooth surfaces. Although the relative proportion of Streptococcus mutans increased from 0.12% in dental plaque to 0.72% in enamel caries, Streptococcus mitis and Streptococcus sanguinis were the dominant streptococci in these lesions. The functional profile of caries-associated bacterial communities indicates that genes involved in acid stress tolerance and dietary sugar fermentation are overrepresented only at the initial stage (enamel caries), whereas other genes coding for osmotic stress tolerance as well as collagenases and other proteases enabling dentin degradation are significantly overrepresented in dentin cavities. The results support a scenario in which pH and diet are determinants of the disease during the degradation of enamel, but in dentin caries lesions not only acidogenic but also proteolytic bacteria are involved. We propose that caries disease is a process of varying etiology, in which acid-producing bacteria are the vehicle to penetrate enamel and allow dentin degrading microorganisms to expand the cavity.
Collapse
Affiliation(s)
- A Simón-Soro
- Department of Genomics and Health, Center for Advanced Research in Public Health, Valencia, Spain
| | | | | | | | | |
Collapse
|
350
|
Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 2013; 92:1065-73. [PMID: 24045647 DOI: 10.1177/0022034513504218] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms.
Collapse
Affiliation(s)
- H Koo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|