301
|
Kurokawa K, Hayakawa Y, Koike K. Plasticity of Intestinal Epithelium: Stem Cell Niches and Regulatory Signals. Int J Mol Sci 2020; 22:ijms22010357. [PMID: 33396437 PMCID: PMC7795504 DOI: 10.3390/ijms22010357] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of Lgr5+ intestinal stem cells (ISCs) triggered a breakthrough in the field of ISC research. Lgr5+ ISCs maintain the homeostasis of the intestinal epithelium in the steady state, while these cells are susceptible to epithelial damage induced by chemicals, pathogens, or irradiation. During the regeneration process of the intestinal epithelium, more quiescent +4 stem cells and short-lived transit-amplifying (TA) progenitor cells residing above Lgr5+ ISCs undergo dedifferentiation and act as stem-like cells. In addition, several recent reports have shown that a subset of terminally differentiated cells, including Paneth cells, tuft cells, or enteroendocrine cells, may also have some degree of plasticity in specific situations. The function of ISCs is maintained by the neighboring stem cell niches, which strictly regulate the key signal pathways in ISCs. In addition, various inflammatory cytokines play critical roles in intestinal regeneration and stem cell functions following epithelial injury. Here, we summarize the current understanding of ISCs and their niches, review recent findings regarding cellular plasticity and its regulatory mechanism, and discuss how inflammatory cytokines contribute to epithelial regeneration.
Collapse
Affiliation(s)
| | - Yoku Hayakawa
- Correspondence: ; Tel.: +81-3-3815-5411; Fax: +81-3-5800-8812
| | | |
Collapse
|
302
|
Zhang Y, Jiang W, Xu J, Wu N, Wang Y, Lin T, Liu Y, Liu Y. E. coli NF73-1 Isolated From NASH Patients Aggravates NAFLD in Mice by Translocating Into the Liver and Stimulating M1 Polarization. Front Cell Infect Microbiol 2020; 10:535940. [PMID: 33363046 PMCID: PMC7759485 DOI: 10.3389/fcimb.2020.535940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The gut microbiota is associated with nonalcoholic fatty liver disease (NAFLD). We isolated the Escherichia coli strain NF73-1 from the intestines of a NASH patient and then investigated its effect and underlying mechanism. Methods 16S ribosomal RNA (16S rRNA) amplicon sequencing was used to detect bacterial profiles in healthy controls, NAFLD patients and NASH patients. Highly enriched E. coli strains were cultured and isolated from NASH patients. Whole-genome sequencing and comparative genomics were performed to investigate gene expression. Depending on the diet, male C57BL/6J mice were further grouped in normal diet (ND) and high-fat diet (HFD) groups. To avoid disturbing the bacterial microbiota, some of the ND and HFD mice were grouped as “bacteria-depleted” mice and treated with a cocktail of broad-spectrum antibiotic complex (ABX) from the 8th to 10th week. Then, E. coli NF73-1, the bacterial strain isolated from NASH patients, was administered transgastrically for 6 weeks to investigate its effect and mechanism in the pathogenic progression of NAFLD. Results The relative abundance of Escherichia increased significantly in the mucosa of NAFLD patients, especially NASH patients. The results from whole-genome sequencing and comparative genomics showed a specific gene expression profile in E. coli strain NF73-1, which was isolated from the intestinal mucosa of NASH patients. E. coli NF73-1 accelerates NAFLD independently. Only in the HFD-NF73-1 and HFD-ABX-NF73-1 groups were EGFP-labeled E. coli NF73-1 detected in the liver and intestine. Subsequently, translocation of E. coli NF73-1 into the liver led to an increase in hepatic M1 macrophages via the TLR2/NLRP3 pathway. Hepatic M1 macrophages induced by E. coli NF73-1 activated mTOR-S6K1-SREBP-1/PPAR-α signaling, causing a metabolic switch from triglyceride oxidation toward triglyceride synthesis in NAFLD mice. Conclusions E. coli NF73-1 is a critical trigger in the progression of NAFLD. E. coli NF73-1 might be a specific strain for NAFLD patients.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Weiwei Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China.,Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Na Wu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China.,Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Yang Wang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Tianyu Lin
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yun Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| |
Collapse
|
303
|
Ghosh S, Yang X, Wang L, Zhang C, Zhao L. Active phase prebiotic feeding alters gut microbiota, induces weight-independent alleviation of hepatic steatosis and serum cholesterol in high-fat diet-fed mice. Comput Struct Biotechnol J 2020; 19:448-458. [PMID: 33510856 PMCID: PMC7806547 DOI: 10.1016/j.csbj.2020.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests that prebiotics may induce weight loss and alleviate non-alcoholic fatty liver disease (NAFLD) via modulation of the gut microbiota. However, key members of the gut microbiota that may mediate the beneficial effects of prebiotics remain elusive. Here, we find that restricted prebiotic feeding during active phase (HF-ARP) induced weight-independent alleviation of liver steatosis and reduced serum cholesterol in high-fat diet (HF) fed mice more significantly than unrestricted feeding (HF-UP). HF-ARP mice also showed concomitantly altered gut microbiota structure that was different from HF-UP group along with significantly increased production of total short-chain fatty-acids (SCFAs). Amplicon sequence variants (ASVs) were clustered into co-abundant groups (CAGs) as potential functional groups that may respond distinctively to prebiotic consumption and prebiotic feeding regime. Prebiotic feeding induces significant alterations in CAG abundances by day 7. Eight of 32 CAGs were promoted by prebiotics, including CAG17 with the most abundant ASV from Parabacteroides, CAG22 with Bacteroides thetaiotamicron and CAG32 with Fecalibaculum and Akkermansia. Among the prebiotic-promoted CAGs, CAG20 with ASVs from Lachnospiraceae and CAG21 with ASVs from Bifidobacterium and Lachnospiraceae were significantly enhanced in HF-ARP compared to HF-UP. Moreover, most of the prebiotic-promoted CAGs were also significantly associated with improvements in hepatic steatosis, reduction in serum cholesterol and increased cecal propionate production. Together, these results suggest that the impact of prebiotics on weight-independent alleviation of liver steatosis and cholesterol-lowering effect can be optimized by restricting prebiotic intake to active phase and is associated with a distinct change of gut microbiota with increased SCFA production.
Collapse
Affiliation(s)
- Shreya Ghosh
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linghua Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
304
|
Micó-Carnero M, Rojano-Alfonso C, Álvarez-Mercado AI, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Effects of Gut Metabolites and Microbiota in Healthy and Marginal Livers Submitted to Surgery. Int J Mol Sci 2020; 22:E44. [PMID: 33375200 PMCID: PMC7793124 DOI: 10.3390/ijms22010044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiota is defined as the collection of microorganisms within the gastrointestinal ecosystem. These microbes are strongly implicated in the stimulation of immune responses. An unbalanced microbiota, termed dysbiosis, is related to the development of several liver diseases. The bidirectional relationship between the gut, its microbiota and the liver is referred to as the gut-liver axis. The translocation of bacterial products from the intestine to the liver induces inflammation in different cell types such as Kupffer cells, and a fibrotic response in hepatic stellate cells, resulting in deleterious effects on hepatocytes. Moreover, ischemia-reperfusion injury, a consequence of liver surgery, alters the microbiota profile, affecting inflammation, the immune response and even liver regeneration. Microbiota also seems to play an important role in post-operative outcomes (i.e., liver transplantation or liver resection). Nonetheless, studies to determine changes in the gut microbial populations produced during and after surgery, and affecting liver function and regeneration are scarce. In the present review we analyze and discuss the preclinical and clinical studies reported in the literature focused on the evaluation of alterations in microbiota and its products as well as their effects on post-operative outcomes in hepatic surgery.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Ana Isabel Álvarez-Mercado
- Departamento de Bioquímica y Biología Molecular II, Escuela de Farmacia, Universidad de Granada, 18071 Granada, Spain;
- Institut of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 03036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|
305
|
L'homme L, Sermikli BP, Molendi-Coste O, Fleury S, Quemener S, Le Maître M, Joseph ML, Pineau L, Duhem C, Gross B, Vallez E, Tailleux A, Staels B, Dombrowicz D. Deletion of the nuclear receptor RORα in macrophages does not modify the development of obesity, insulin resistance and NASH. Sci Rep 2020; 10:21095. [PMID: 33273527 PMCID: PMC7713245 DOI: 10.1038/s41598-020-77858-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/02/2020] [Indexed: 11/09/2022] Open
Abstract
Retinoic acid receptor-related orphan receptor-alpha (RORα) is a transcription factor from the nuclear receptor family expressed by immune cells and involved in the development of obesity, insulin resistance (IR) and non-alcoholic steatohepatitis (NASH). It was recently reported that mice deficient for RORα in macrophages develop more severe NASH upon high fat diet (HFD) feeding due to altered Kupffer cell function. To better understand the role of RORα in obesity and IR, we independently generated a macrophage RORα-deficient mouse line. We report that RORα deletion in macrophages does not impact on HFD-induced obesity and IR. Surprisingly, we did not confirm an effect on NASH development upon HFD feeding nor in the more severe and obesity-independent choline-deficient, L-amino acid-defined diet model. Our results therefore show that RORα deletion in macrophages does not alter the development of obesity and IR and question its role in NASH.
Collapse
Affiliation(s)
- Laurent L'homme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Benan Pelin Sermikli
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Olivier Molendi-Coste
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Sébastien Fleury
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Sandrine Quemener
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Mathilde Le Maître
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Marie-Laure Joseph
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Laurent Pineau
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Christian Duhem
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Barbara Gross
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Emmanuelle Vallez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - David Dombrowicz
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France.
| |
Collapse
|
306
|
Lucius K. Nutritional and Botanical Approaches for Nonalcoholic Fatty Liver Disease. ALTERNATIVE AND COMPLEMENTARY THERAPIES 2020; 26:246-254. [DOI: 10.1089/act.2020.29303.klu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Khara Lucius
- Khara Lucius, ND, FABNO, is a naturopathic doctor at the Center for Integrative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
307
|
APOC3 rs2070667 Associates with Serum Triglyceride Profile and Hepatic Inflammation in Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8869674. [PMID: 33294458 PMCID: PMC7718051 DOI: 10.1155/2020/8869674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Single-nucleotide polymorphisms (SNPs) of apolipoprotein C3 (APOC3) play important role in lipid metabolism, and dyslipidemia underlies nonalcoholic fatty liver disease (NAFLD). But the correlation of serum lipidomics, APOC3 SNPs, and NAFLD remains limited understood. Enrolling thirty-four biopsy-proven NAFLD patients from Tianjin, Shanghai, Fujian, we investigated their APOC3 genotype and serum lipid profile by DNA sequencing and ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), respectively. Scoring of hepatocyte steatosis, ballooning, lobular inflammation, and liver fibrosis was then performed to reveal the role of lipidomics-affecting APOC3 SNPs in NAFLD-specific pathological alterations. Here, we reported that APOC3 SNPs (rs4225, rs4520, rs5128, rs2070666, and rs2070667) intimately correlated to serum lipidomics in NAFLD patients. A allele instead of G allele at rs2070667, which dominated the SNPs underlying lipidomic alteration, exhibited downregulatory effect on triacylglycerols (TGs: TG 54 : 7, TG 54 : 8, and TG 56 : 9) containing polyunsaturated fatty acid (PUFA). Moreover, subjects with low-level PUFA-containing TGs were predisposed to high-grade lobular inflammation (TG 54 : 7, rho = -0.454 and P = 0.007; TG 54 : 8, rho = -0.411 and P =0.016; TG 56 : 9, rho = -0.481 and P = 0.004). The significant correlation of APOC3 rs2070667 and inflammation grading [G/G vs. G/A+A/A: 0.00 (0.00 and 1.00) vs. 1.50 (0.75 and 2.00), P = 0.022] further confirmed its pathological action on the basis of lipidomics-impacting activity. These findings suggest an inhibitory effect of A allele at APOC3 rs2070667 on serum levels of PUFA-containing TGs, which are associated with high-grade lobular inflammation in NAFLD patients.
Collapse
|
308
|
Chen X, Zhang Z, Li H, Zhao J, Wei X, Lin W, Zhao X, Jiang A, Yuan J. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2020; 35:2009-2019. [PMID: 32150306 DOI: 10.1111/jgh.15027] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM A causal relationship between changes of the gut microbiome and non-alcoholic fatty liver disease (NAFLD) remains unclear. We demonstrated that endogenous ethanol (EnEth) produced by intestinal microbiota is likely a causative agent of NAFLD. METHODS Two mutants with different alcohol-producing abilities, namely, W14-adh and W14Δadh, were constructed using the clinical high alcohol-producing (HiAlc) Klebsiella pneumoniae strain W14 as a parent. Damage to hepatocytes caused by bacteria with different alcohol-producing capacities was evaluated (EtOH group as positive control). The ultrastructural changes of mitochondria were assessed via transmission electron microscopy (TEM). Hepatic levels of mitochondrial reactive oxygen species (ROS), DNA damage, and adenosine triphosphate were examined. RESULTS The results illustrated that steatosis was most severe in the W14-adh group, followed by the W14 group, whereas the W14Δadh group had few fatty droplets. TEM and examination of related protein expression revealed that the mitochondrial integrity of HepG2 hepatocytes was considerably damaged in the EtOH and bacteria treatment groups. The impaired mitochondrial function in HepG2 hepatocytes was evidenced by reduced adenosine triphosphate content and increased mitochondrial ROS accumulation and DNA damage in the EtOH and bacteria treatment groups, especially the W14-adh group. Meanwhile, liver injury and mitochondrial damage were observed in the hepatocytes of mice. The livers of mice in the W14-adh group, which had the highest ethanol production, exhibited the most serious damage, similar to that in the EtOH group. CONCLUSIONS EnEth produced by HiAlc bacteria induces mitochondrial dysfunction in NAFLD.
Collapse
Affiliation(s)
- Xiao Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, China
| | - Huan Li
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Jiangtao Zhao
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Xiao Wei
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Weishi Lin
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Xiangna Zhao
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Aimin Jiang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
309
|
Acharya C, Bajaj JS. Transmitting Diet-Related Microbial Benefit through Fecal Microbiota Transplant in NASH: Can Microbiota Cut Through the Fat? Hepatol Commun 2020; 4:1559-1561. [PMID: 33163828 PMCID: PMC7603523 DOI: 10.1002/hep4.1596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Chathur Acharya
- Division of Gastroenterology, Hepatology and Nutrition Virginia Commonwealth University and Central Virginia Veterans Healthcare System Richmond VA USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition Virginia Commonwealth University and Central Virginia Veterans Healthcare System Richmond VA USA
| |
Collapse
|
310
|
Hegazy MA, Mogawer SM, Alnaggar ARLR, Ghoniem OA, Abdel Samie RM. Serum LPS and CD163 Biomarkers Confirming the Role of Gut Dysbiosis in Overweight Patients with NASH. Diabetes Metab Syndr Obes 2020; 13:3861-3872. [PMID: 33116732 PMCID: PMC7585799 DOI: 10.2147/dmso.s249949] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gut-microbiota alterations and bacterial translocation might attribute to hepatic inflammation. Lipopolysaccharide stimulates toll-like receptor 4 leading to the activation of Kupffer cells which express the surface receptor, CD 163. OBJECTIVE To assess the levels of CD 163 and LPS in overweight and obese patients with different degrees of NAFLD as confirmed by liver biopsy (NAS score). METHODS This is an observational case-control study. Sixty overweight and obese patients with NAFLD and 40 healthy controls were enrolled in the study. Liver biopsy was obtained from all participants with NAFLD. LPS and CD 163 levels were assessed using ELISA. RESULTS The mean LPS and CD163 levels were significantly higher in patients with NAFLD when compared with healthy controls (p-value <0.001, p-value <0.001, respectively). LPS and CD163 levels were the lowest in Non-NASH (13.17 ± 3.34, 5.61 ± 2.35 ng/mL, respectively) and the highest in NASH (58.61 3± 3.81, 18.11 ± 6.84, respectively) (p-value <0.001, p-value <0.001, respectively). Statistically significant correlation was found between the levels of LPS and CD163 and NAS score (p-value <0.001, p-value < 0.001, respectively), steatosis grade (p-value <0.001, p-value <0.001, respectively), degree of inflammation (p-value 0.017, p-value <0.001, respectively) and ballooning (r= 0.663, p-value <0.001, r= 0.558, p-value <0.001, respectively). In ROC analysis, both sCD163 and LPS had high sensitivity and specificity in diagnosing NAFLD. CD163 and LPS had the high sensitivity and accuracy in discriminating NASH from Non-NASH (p-value <0.0001 in both). Moreover, the mean serum levels of LPS and sCD163 correlated positively and significantly with the BMI (r=0.329, p value<0.01; r=0.477. p value <0.001, respectively). CONCLUSION sCD163 and LPS can be used as non-invasive tools for diagnosis and grading of NAFLD severity in overweight and obese patients, thus confirming the role of dysbiosis in fat deposition and inflammation and suggesting the potential benefits of gut-microbiota-targeted therapies in restoring the gut homeostasis.
Collapse
Affiliation(s)
- Mona A Hegazy
- Internal Medicine Department, Kasr Alainy Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherif M Mogawer
- Internal Medicine Department, Kasr Alainy Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | - Rasha M Abdel Samie
- Internal Medicine Department, Kasr Alainy Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
311
|
Microbiota, Fiber, and NAFLD: Is There Any Connection? Nutrients 2020; 12:nu12103100. [PMID: 33053631 PMCID: PMC7600472 DOI: 10.3390/nu12103100] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota can contribute to the development and progression of non-alcoholic fatty liver disease (NAFLD). In fact, some specific changes of gut microbiota are observed in patients in what is called dysbiota. There has been a lot of investigation by using a variety of interventions, including diet, showing the possibility to modify components of gastrointestinal dysbiota towards healthy and multivariate microbiota to restore physiologic status. One of the main focuses has been dietary fiber (DF), in which most of its variants are prebiotics. The highest effective treatment for NAFLD is, so far, weight loss achieved by caloric restriction. DF supplementation with oligofructose facilitates weight loss, enhances the production of beneficial metabolites, decreases some pathogenic bacteria population by increasing Bifidobacteria, and has effects on intestinal barrier permeability. DF use has been associated with improvement in diverse metabolic diseases, including NAFLD, by modifying gut microbiota. Additionally, it has been shown that a higher insoluble fiber consumption (≥7.5 g/day) revealed improvements in 3 different scores of liver fibrosis. Further research is needed, but given the evidence available, it is reasonable to prescribe its consumption in early stages of NAFLD in order to prevent disease progression.
Collapse
|
312
|
Dai X, Hou H, Zhang W, Liu T, Li Y, Wang S, Wang B, Cao H. Microbial Metabolites: Critical Regulators in NAFLD. Front Microbiol 2020; 11:567654. [PMID: 33117316 PMCID: PMC7575719 DOI: 10.3389/fmicb.2020.567654] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease throughout the world. The relationship between gut microbiota and NAFLD has been extensively investigated. The gut microbiota is involved in the regulation of NAFLD by participating in the fermentation of indigestible food, interacting with the intestinal mucosal immune system, and influencing the intestinal barrier function, leading to signaling alteration. Meanwhile, the microbial metabolites not only affect the signal transduction pathway in the gut but also reach the liver far away from gut. In this review, we focus on the effects of certain key microbial metabolites such as short-chain fatty acids, trimethylamine-N-oxide, bile acids, and endogenous ethanol and indole in NAFLD, and also summarize several potential therapies targeting the gut-liver axis and modulation of gut microbiota metabolites including antibiotics, prebiotics, probiotics, bile acid regulation, and fecal microbiota transplantation. Understanding the complex interactions between microbial metabolites and NAFLD may provide crucial insight into the pathogenesis and treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Dai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yun Li
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
313
|
Nonalcoholic fatty liver disease and colorectal cancer: Correlation and missing links. Life Sci 2020; 262:118507. [PMID: 33017572 DOI: 10.1016/j.lfs.2020.118507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the major metabolic diseases that occur in almost one in every four global population, while colorectal cancer (CRC) is one of the leading causes of cancer related deaths in the world. Individuals with pre-existing NAFLD show a higher rate of developing CRC and liver metastasis, suggesting a causal relationship. Interestingly, both of these diseases are strongly associated with obesity, which is also a growing global health concern. In this current review, we will explore scientific findings that demonstrate the relationship between NAFLD, CRC and obesity, as well as the underlying mechanisms. We will also indicate the missing links and knowledge gaps that require more in-depth investigation.
Collapse
|
314
|
Ma L, Li H, Hu J, Zheng J, Zhou J, Botchlett R, Matthews D, Zeng T, Chen L, Xiao X, Athrey G, Threadgill D, Li Q, Glaser S, Francis H, Meng F, Li Q, Alpini G, Wu C. Indole Alleviates Diet-Induced Hepatic Steatosis and Inflammation in a Manner Involving Myeloid Cell 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3. Hepatology 2020; 72:1191-1203. [PMID: 31953865 PMCID: PMC7365739 DOI: 10.1002/hep.31115] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Indole is a microbiota metabolite that exerts anti-inflammatory responses. However, the relevance of indole to human non-alcoholic fatty liver disease (NAFLD) is not clear. It also remains largely unknown whether and how indole acts to protect against NAFLD. The present study sought to examine the association between the circulating levels of indole and liver fat content in human subjects and explore the mechanisms underlying indole actions in mice with diet-induced NAFLD. APPROACH AND RESULTS In a cohort of 137 subjects, the circulating levels of indole were reversely correlated with body mass index. In addition, the circulating levels of indole in obese subjects were significantly lower than those in lean subjects and were accompanied with increased liver fat content. At the whole-animal level, treatment of high-fat diet (HFD)-fed C57BL/6J mice with indole caused significant decreases in the severity of hepatic steatosis and inflammation. In cultured cells, indole treatment stimulated the expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a master regulatory gene of glycolysis, and suppressed macrophage proinflammatory activation in a PFKFB3-dependent manner. Moreover, myeloid cell-specific PFKFB3 disruption exacerbated the severity of HFD-induced hepatic steatosis and inflammation and blunted the effect of indole on alleviating diet-induced NAFLD phenotype. CONCLUSIONS Taken together, our results demonstrate that indole is relevant to human NAFLD and capable of alleviating diet-induced NAFLD phenotypes in mice in a myeloid cell PFKFB3-dependent manner. Therefore, indole mimetic and/or macrophage-specific PFKFB3 activation may be the viable preventive and/or therapeutic approaches for inflammation-associated diseases including NAFLD.
Collapse
Affiliation(s)
- Linqiang Ma
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA, Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China, Laboratory of Lipid & Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Honggui Li
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Jinbo Hu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Juan Zheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Zhou
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Rachel Botchlett
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Destiny Matthews
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Tianshu Zeng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lulu Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoqiu Xiao
- Laboratory of Lipid & Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Giri Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - David Threadgill
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX, 76504, USA
| | - Heather Francis
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center, and Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Fanyin Meng
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center, and Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China, Corresponding addresses: Chaodong Wu, MD, PhD, College Station, TX 77843, ; Gianfranco Alpini, PhD, Indianapolis, IN 46202, ; or Qifu Li, MD, PhD, Chongqing 400016, China,
| | - Gianfranco Alpini
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center, and Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202., Corresponding addresses: Chaodong Wu, MD, PhD, College Station, TX 77843, ; Gianfranco Alpini, PhD, Indianapolis, IN 46202, ; or Qifu Li, MD, PhD, Chongqing 400016, China,
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA, Corresponding addresses: Chaodong Wu, MD, PhD, College Station, TX 77843, ; Gianfranco Alpini, PhD, Indianapolis, IN 46202, ; or Qifu Li, MD, PhD, Chongqing 400016, China,
| |
Collapse
|
315
|
Soto-Angona Ó, Anmella G, Valdés-Florido MJ, De Uribe-Viloria N, Carvalho AF, Penninx BWJH, Berk M. Non-alcoholic fatty liver disease (NAFLD) as a neglected metabolic companion of psychiatric disorders: common pathways and future approaches. BMC Med 2020; 18:261. [PMID: 32998725 PMCID: PMC7528270 DOI: 10.1186/s12916-020-01713-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis in over 5% of the parenchyma in the absence of excessive alcohol consumption. It is more prevalent in patients with diverse mental disorders, being part of the comorbidity driving loss of life expectancy and quality of life, yet remains a neglected entity. NAFLD can progress to non-alcoholic steatohepatitis (NASH) and increases the risk for cirrhosis and hepatic carcinoma. Both NAFLD and mental disorders share pathophysiological pathways, and also present a complex, bidirectional relationship with the metabolic syndrome (MetS) and related cardiometabolic diseases. MAIN TEXT This review compares the demographic data on NAFLD and NASH among the global population and the psychiatric population, finding differences that suggest a higher incidence of this disease among the latter. It also analyzes the link between NAFLD and psychiatric disorders, looking into common pathophysiological pathways, such as metabolic, genetic, and lifestyle factors. Finally, possible treatments, tailored approaches, and future research directions are suggested. CONCLUSION NAFLD is part of a complex system of mental and non-communicable somatic disorders with a common pathogenesis, based on shared lifestyle and environmental risks, mediated by dysregulation of inflammation, oxidative stress pathways, and mitochondrial function. The recognition of the prevalent comorbidity between NAFLD and mental disorders is required to inform clinical practice and develop novel interventions to prevent and treat these complex and interacting disorders.
Collapse
Affiliation(s)
- Óscar Soto-Angona
- Department of Psychiatry, Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain.
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Gerard Anmella
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel st, 12-0, 08036, Barcelona, Catalonia, Spain
| | | | - Nieves De Uribe-Viloria
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Department of Psychiatry, Hospital Clínico Universitario de Valladolid, Castilla y León, Spain
| | - Andre F Carvalho
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam University Medical Center/Vrije Universiteit & GGZinGeest, Amsterdam, the Netherlands
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| |
Collapse
|
316
|
Yao Z, Zhao M, Gong Y, Chen W, Wang Q, Fu Y, Guo T, Zhao J, Gao L, Bo T. Relation of Gut Microbes and L-Thyroxine Through Altered Thyroxine Metabolism in Subclinical Hypothyroidism Subjects. Front Cell Infect Microbiol 2020; 10:495. [PMID: 33072620 PMCID: PMC7531258 DOI: 10.3389/fcimb.2020.00495] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Thyroxine metabolism is an important topic of pathogenesis research and treatment schedule of subclinical hypothyroidism (SCH). L-Thyroxine replacement therapy (LRT) is usually recommended for severe SCH patients only. Our previous studies reported that disordered serum lipid of mild SCH people could also benefit from LRT. However, the benefits were different among individuals, as shown by the variations in drug dosage that required to maintain thyroid-stimulating hormone (TSH) stability. Alternative pathways, such as sulfation and glucuronidation of iodothyronine, may play a role in thyroid hormones metabolism in peripheral tissues aside from thyroid. Conjugated thyroxine can be hydrolyzed and reused in tissues including gastrointestinal tract, in which gut microbiota are one of the most attractive physiological components. On this site, the roles of gut microbiota in thyroidal metabolism should be valued. In this study, a cross-sectional study was performed by analyzing 16S rDNA of gut microbiota in mild SCH patients treated with L-thyroxine or not. Subjects were divided by serum lipid level, L-thyroxine treatment, or L-thyroxine dosage, respectively. Relationship between gut microbiome and serum profile, L-thyroxine treatment, and dose were discussed. Other metabolic disorders such as type 2 diabetes and hypertension were also taken into consideration. It turned out that microbiome varied among individuals divided by dose and the increment of L-thyroxine but not by serum lipid profile. Relative abundance of certain species that were associated with thyroxine metabolism were found varied among different L-thyroxine doses although in relatively low abundance. Moreover, serum cholesterol may perform relevance effects with L-thyroxine in shaping microbiome. Our findings suggested that the differences in L-thyroxine dosage required to maintain TSH level stability, as well as the SCH development, which was displayed by the increased L-thyroxine doses in subsequent follow-up, had relationship with gut microbial composition. The reason may due to the differences in thyroxine metabolic capacity in gut. In addition, the metabolic similarity of iodothyronines and bile acid in gut also provides possibilities for the correlation between host's thyroxine and cholesterol levels. This study was registered with ClinicalTrials.gov as number NCT01848171.
Collapse
Affiliation(s)
- Zhenyu Yao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meng Zhao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenbin Chen
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yilin Fu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tian Guo
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiajun Zhao
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China.,Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tao Bo
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
317
|
Houttu V, Boulund U, Grefhorst A, Soeters MR, Pinto-Sietsma SJ, Nieuwdorp M, Holleboom AG. The role of the gut microbiome and exercise in non-alcoholic fatty liver disease. Therap Adv Gastroenterol 2020; 13:1756284820941745. [PMID: 32973925 PMCID: PMC7495942 DOI: 10.1177/1756284820941745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/08/2020] [Indexed: 02/04/2023] Open
Abstract
In recent years, the human gut microbiome has been found to influence a multitude of non-communicable diseases such as cardiovascular disease and metabolic syndrome, with its components type 2 diabetes mellitus and obesity. It is recognized to be mainly influenced by environmental factors, such as lifestyle, but also genetics may play a role. The interaction of gut microbiota and obesity has been widely studied, but in regard to non-alcoholic fatty liver disease (NAFLD) as a manifestation of obesity and insulin resistance, the causal role of the gut microbiome has not been fully established. The mechanisms by which the gut microbiome influences lipid accumulation, inflammatory responses, and occurrence of fibrosis in the liver are a topic of active research. In addition, the influence of exercise on gut microbiome composition is also being investigated. In clinical trials, exercise reduced hepatic steatosis independently of weight reduction. Other studies indicate that exercise may modulate the gut microbiome. This puts forward the question whether exercise could mediate its beneficial effects on NAFLD via changes in gut microbiome. Yet, the specific mechanisms underlying this potential connection are largely unknown. Thus, associative evidence from clinical trials, as well as mechanistic studies in vivo are called for to elucidate the relationship between exercise and the gut microbiome in NAFLD. Here, we review the current literature on exercise and the gut microbiome in NAFLD.
Collapse
Affiliation(s)
- Veera Houttu
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrika Boulund
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan G. Holleboom
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
318
|
Song H, Canup BSB, Ngo VL, Denning TL, Garg P, Laroui H. Internalization of Garlic-Derived Nanovesicles on Liver Cells is Triggered by Interaction With CD98. ACS OMEGA 2020; 5:23118-23128. [PMID: 32954162 PMCID: PMC7495725 DOI: 10.1021/acsomega.0c02893] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 05/20/2023]
Abstract
The mechanism of how plant-derived nanovesicles are uptaken by cells remains unknown. In this study, the garlic-derived nanovesicles (GDVs) were isolated and digested with trypsin to remove all surface proteins. Digested GDVs showed less uptake compared to undigested GDVs, confirming that the surface proteins played a role in the endocytosis. On the cell side (HepG2), interestingly, blocking the CD98 receptors significantly reduced the uptake of GDVs. During the cellular internalization of GDVs, we observed that some surface proteins of GDVs were co-localized with CD98. A total lysate of the GDV surface showed a high presence of a mannose-specific binding protein, II lectin. Blocking GDV II lectin (using mannose preincubation) highly reduced the GDV internalization, which supports that direct interaction between II lectin and CD98 plays an important role in internalization. The GDVs also exhibited in vitro anti-inflammatory effect by downregulating proinflammatory factors on the HepG2 cells. This work contributes to understanding a part of the GDV internalization process and the cellular anti-inflammatory effects of garlic.
Collapse
Affiliation(s)
- Heliang Song
- Department
of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, Georgia 30302, United States
| | - Brandon S. B. Canup
- Department
of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, Georgia 30302, United States
| | - Vu L. Ngo
- Department
of Biology, Institute for Biomedical Sciences (IBMS), Georgia State University, Atlanta, Georgia 30302, United States
| | - Timothy L. Denning
- Department
of Biology, Institute for Biomedical Sciences (IBMS), Georgia State University, Atlanta, Georgia 30302, United States
| | - Pallavi Garg
- Department
of Biology, Institute for Biomedical Sciences (IBMS), Georgia State University, Atlanta, Georgia 30302, United States
| | - Hamed Laroui
- Department
of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
319
|
Nassir F. Role of acetylation in nonalcoholic fatty liver disease: a focus on SIRT1 and SIRT3. EXPLORATION OF MEDICINE 2020. [DOI: 10.37349/emed.2020.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent liver chronic disease worldwide. The pathogenesis of NAFLD is complex and involves many metabolic enzymes and multiple pathways. Posttranslational modifications of proteins (PMPs) added another layer of complexity to the pathogenesis of NAFLD. PMPs change protein properties and regulate many biological functions, including cellular localization, stability, intracellular signaling, and protein function. Lysine acetylation is a common reversible PMP that consists of the transfer of an acetyl group from acetyl-coenzyme A (CoA) to a lysine residue on targeted proteins. The deacetylation reaction is catalyzed by deacetylases called sirtuins. This review summarizes the role of acetylation in NAFLD with a focus on sirtuins 1 and 3.
Collapse
Affiliation(s)
- Fatiha Nassir
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
320
|
Wei L, Yue F, Xing L, Wu S, Shi Y, Li J, Xiang X, Lam SM, Shui G, Russell R, Zhang D. Constant Light Exposure Alters Gut Microbiota and Promotes the Progression of Steatohepatitis in High Fat Diet Rats. Front Microbiol 2020; 11:1975. [PMID: 32973715 PMCID: PMC7472380 DOI: 10.3389/fmicb.2020.01975] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) poses a significant health concern worldwide. With the progression of urbanization, light pollution may be a previously unrecognized risk factor for NAFLD/NASH development. However, the role of light pollution on NAFLD is insufficiently understood, and the underlying mechanism remains unclear. Interestingly, recent studies indicate the gut microbiota affects NAFLD/NASH development. Therefore, the present study explored effects of constant light exposure on NAFLD and its related microbiotic mechanisms. Materials and Methods Twenty-eight SD male rats were divided into four groups (n = 7 each): rats fed a normal chow diet, and exposed to standard light-dark cycle (ND-LD); rats fed a normal chow diet, and exposed to constant light (ND-LL); rats fed a high fat diet, and exposed to standard light-dark cycle (HFD-LD); and rats on a high fat diet, and exposed to constant light (HFD-LL). Body weight, hepatic pathophysiology, gut microbiota, and short/medium chain fatty acids in colon contents, serum lipopolysaccharide (LPS), and liver LPS-binding protein (LBP) mRNA expression were documented post intervention and compared among groups. Result In normal chow fed groups, rats exposed to constant light displayed glucose abnormalities and dyslipidemia. In HFD-fed rats, constant light exposure exacerbated glucose abnormalities, insulin resistance, inflammation, and liver steatohepatitis. Constant light exposure altered composition of gut microbiota in both normal chow and HFD fed rats. Compared with HFD-LD group, HFD-LL rats displayed less Butyricicoccus, Clostridium, and Turicibacter, butyrate levels in colon contents, decreased colon expression of occludin-1 and zonula occluden−1 (ZO-1), and increased serum LPS and liver LBP mRNA expression. Conclusion Constant light exposure impacts gut microbiota and its metabolic products, impairs gut barrier function and gut-liver axis, promotes NAFLD/NASH progression in HFD rats.
Collapse
Affiliation(s)
- Lin Wei
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Fangzhi Yue
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Xing
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanyu Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinchen Li
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xingwei Xiang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ryan Russell
- Cardiomatabolic Exercise Lab Director, Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
321
|
Schulz M, Tacke F. Identifying High-Risk NASH Patients: What We Know so Far. ACTA ACUST UNITED AC 2020; 12:125-138. [PMID: 32982495 PMCID: PMC7493213 DOI: 10.2147/hmer.s265473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Steatosis is a condition of hepatic fat overload that is associated with overweight and the metabolic syndrome. Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease with a global impact on healthcare. A proportion of NAFLD patients develops nonalcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis or hepatocellular carcinoma (HCC). Identifying patients at risk for potentially life-threatening complications is crucial in their prevention, surveillance and treatment. In addition to hepatic disease progression (cirrhosis, portal hypertension, HCC), NAFLD patients are also at risk of cardiovascular and metabolic diseases as well as extrahepatic malignancies. Liver fibrosis is related to morbidity and mortality in NASH patients, and biomarkers, imaging techniques (ultrasound, elastography, MRI) as well as liver biopsy help in diagnosing fibrosis. In this review, we discuss the tools for identifying patients at risk and their reasonable application in clinical routine in order to stratify prevention and treatment of this emerging disease.
Collapse
Affiliation(s)
- Marten Schulz
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) Und Campus Charité Mitte (CCM), Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) Und Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
322
|
Microbiota-Associated Therapy for Non-Alcoholic Steatohepatitis-Induced Liver Cancer: A Review. Int J Mol Sci 2020; 21:ijms21175999. [PMID: 32825440 PMCID: PMC7504062 DOI: 10.3390/ijms21175999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Even though advancement in medicine has contributed to the control of many diseases to date, cancer therapy continues to pose several challenges. Hepatocellular carcinoma (HCC) etiology is multifactorial. Recently, non-alcoholic fatty liver disease (NAFLD) has been considered as an important risk factor of HCC. NAFLD can be divided into non-alcoholic simple fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) based on histopathological features. Recently, studies have indicated that the gut microbiota is associated with NAFLD and HCC. Therefore, in this review, we have discussed the effects of gut microbiota-related mechanisms, including dysbiosis and gut barrier function, and gut microbiota-derived metabolites on NAFLD and HCC pathogenesis and the potential therapeutic strategies for NAFLD and HCC. With a better understanding of the gut microbiota composition and function, new and improved diagnostic, prognostic, and therapeutic strategies for common liver diseases can be developed.
Collapse
|
323
|
Ni Y, Ni L, Zhuge F, Fu Z. The Gut Microbiota and Its Metabolites, Novel Targets for Treating and Preventing Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2020; 64:e2000375. [PMID: 32738185 DOI: 10.1002/mnfr.202000375] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent metabolic disorders worldwide, along with obesity and type 2 diabetes. NAFLD involves a series of liver abnormalities from simple hepatic steatosis to non-alcoholic steatohepatitis, which can ultimately lead to liver cirrhosis and cancer. The gut-liver axis plays an important role in the development of NAFLD, which depends mainly on regulation of the gut microbiota and its bacterial products. These intestinal bacterial species and their metabolites, including bile acids, tryptophan catabolites, and branched-chain amino acids, regulate adipose tissue and intestinal homeostasis and contribute to the pathogenesis of NAFLD/non-alcoholic steatohepatitis. In this review, the current evidence regarding the key role of the gut microbiota and its metabolites in the pathogenesis and development of NAFLD is highlighted, and the advances in the progression and applied prospects of gut microbiota-targeted dietary and exercise therapies is also discussed.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Liyang Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| |
Collapse
|
324
|
Gut Microbiota and Liver Interaction through Immune System Cross-Talk: A Comprehensive Review at the Time of the SARS-CoV-2 Pandemic. J Clin Med 2020; 9:jcm9082488. [PMID: 32756323 PMCID: PMC7464500 DOI: 10.3390/jcm9082488] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background and aims: The gut microbiota is a complex ecosystem containing bacteria, viruses, fungi, yeasts and other single-celled organisms. It is involved in the development and maintenance of both innate and systemic immunity of the body. Emerging evidence has shown its role in liver diseases through the immune system cross-talk. We review herein literature data regarding the triangular interaction between gut microbiota, immune system and liver in health and disease. Methods: We conducted a search on the main medical databases for original articles, reviews, meta-analyses, randomized clinical trials and case series using the following keywords and acronyms and their associations: gut microbiota, microbiome, gut virome, immunity, gastrointestinal-associated lymphoid tissue (GALT), non-alcoholic fatty liver disease (NAFLD), non-alcoholic steato-hepatitis (NASH), alcoholic liver disease, liver cirrhosis, hepatocellular carcinoma. Results: The gut microbiota consists of microorganisms that educate our systemic immunity through GALT and non-GALT interactions. The latter maintain health but are also involved in the pathophysiology and in the outcome of several liver diseases, particularly those with metabolic, toxic or immune-mediated etiology. In this context, gut virome has an emerging role in liver diseases and needs to be further investigated, especially due to the link reported between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection and hepatic dysfunctions. Conclusions: Changes in gut microbiota composition and alterations in the immune system response are involved in the pathogenesis of metabolic and immune-mediated liver diseases.
Collapse
|
325
|
Jiang X, Zheng J, Zhang S, Wang B, Wu C, Guo X. Advances in the Involvement of Gut Microbiota in Pathophysiology of NAFLD. Front Med (Lausanne) 2020; 7:361. [PMID: 32850884 PMCID: PMC7403443 DOI: 10.3389/fmed.2020.00361] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis and progresses to non-steatohepatitis (NASH) when the liver displays overt inflammatory damage. Increasing evidence has implicated critical roles for dysbiosis and microbiota-host interactions in NAFLD pathophysiology. In particular, microbiota alter intestine absorption of nutrients and intestine permeability, whose dysregulation enhances the delivery of nutrients, endotoxin, and microbiota metabolites to the liver and exacerbates hepatic fat deposition and inflammation. While how altered composition of gut microbiota attributes to NAFLD remains to be elucidated, microbiota metabolites are shown to be involved in the regulation of hepatocyte fat metabolism and liver inflammatory responses. In addition, intestinal microbes and circadian coordinately adjust metabolic regulation in different stages of life. During aging, altered composition of gut microbiota, along with circadian clock dysregulation, appears to contribute to increased incidence and/or severity of NAFLD.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shixiu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
326
|
Chen J, Vitetta L. Gut Microbiota Metabolites in NAFLD Pathogenesis and Therapeutic Implications. Int J Mol Sci 2020; 21:ijms21155214. [PMID: 32717871 PMCID: PMC7432372 DOI: 10.3390/ijms21155214] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota dysregulation plays a key role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) through its metabolites. Therefore, the restoration of the gut microbiota and supplementation with commensal bacterial metabolites can be of therapeutic benefit against the disease. In this review, we summarize the roles of various bacterial metabolites in the pathogenesis of NAFLD and their therapeutic implications. The gut microbiota dysregulation is a feature of NAFLD, and the signatures of gut microbiota are associated with the severity of the disease through altered bacterial metabolites. Disturbance of bile acid metabolism leads to underactivation of bile acid receptors FXR and TGR5, causal for decreased energy expenditure, increased lipogenesis, increased bile acid synthesis and increased macrophage activity. Decreased production of butyrate results in increased intestinal inflammation, increased gut permeability, endotoxemia and systemic inflammation. Dysregulation of amino acids and choline also contributes to lipid accumulation and to a chronic inflammatory status. In some NAFLD patients, overproduction of ethanol produced by bacteria is responsible for hepatic inflammation. Many approaches including probiotics, prebiotics, synbiotics, faecal microbiome transplantation and a fasting-mimicking diet have been applied to restore the gut microbiota for the improvement of NAFLD.
Collapse
Affiliation(s)
- Jiezhong Chen
- Medlab Clinical, Sydney 2015, Australia
- Correspondence: (J.C.); (L.V.)
| | - Luis Vitetta
- Medlab Clinical, Sydney 2015, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Correspondence: (J.C.); (L.V.)
| |
Collapse
|
327
|
Hong JT, Lee MJ, Yoon SJ, Shin SP, Bang CS, Baik GH, Kim DJ, Youn GS, Shin MJ, Ham YL, Suk KT, Kim BS. Effect of Korea red ginseng on nonalcoholic fatty liver disease: an association of gut microbiota with liver function. J Ginseng Res 2020; 45:316-324. [PMID: 33841012 PMCID: PMC8020261 DOI: 10.1016/j.jgr.2020.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 07/10/2020] [Indexed: 12/28/2022] Open
Abstract
Background Korea Red Ginseng (KRG) has been used as remedies with hepato-protective effects in liver-related condition. Microbiota related gut-liver axis plays key roles in the pathogenesis of chronic liver disease. We evaluated the effect of KRG on gut-liver axis in patients with nonalcoholic statohepatitis by the modulation of gut-microbiota. Methods A total of 94 patients (KRG: 45 and placebo: 49) were prospectively randomized to receive KRG (2,000 mg/day, ginsenoside Rg1+Rb1+Rg3 4.5mg/g) or placebo during 30 days. Liver function test, cytokeraton 18, and fatigue score were measured. Gut microbiota was analyzed by MiSeq systems based on 16S rRNA genes. Results In KRG group, the mean levels (before vs. after) of aspartate aminotransferase (53 ± 19 vs. 45 ± 23 IU/L), alanine aminotransferase (75 ± 40 vs. 64 ± 39 IU/L) and fatigue score (33 ± 13 vs. 26 ± 13) were improved (p < 0.05). In placebo group, only fatigue score (34 ± 13 vs. 31 ± 15) was ameliorated (p < 0.05). The changes of phyla were not statistically significant on both groups. In KRG group, increased abundance of Lactobacillus was related with improved alanine aminotransferase level and increased abundance of Clostridium and Intestinibacter was associated with no improvement after KRG supplementation. In placebo group, increased abundance of Lachnospiraceae could be related with aggravation of liver enzyme (p < 0.05). Conclusion KRG effectively improved liver enzymes and fatigue score by modulating gut-microbiota in patients with fatty liver disease. Further studies are needed to understand the mechanism of improvement of nonalcoholic steatohepatitis. ClnicalTrials.gov NCT03945123 (www.ClinicalTrials.gov).
Collapse
Affiliation(s)
- Ji Taek Hong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Min-Jung Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Seok Pyo Shin
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Chang Seok Bang
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Gwang Ho Baik
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Gi Soo Youn
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Min Jea Shin
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Young Lim Ham
- Department of Nursing, Daewon University College, Jaecheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
328
|
Transcriptional Regulation in Non-Alcoholic Fatty Liver Disease. Metabolites 2020; 10:metabo10070283. [PMID: 32660130 PMCID: PMC7408131 DOI: 10.3390/metabo10070283] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is the primary risk factor for the pathogenesis of non-alcoholic fatty liver disease (NAFLD), the worldwide prevalence of which continues to increase dramatically. The liver plays a pivotal role in the maintenance of whole-body lipid and glucose homeostasis. This is mainly mediated by the transcriptional activation of hepatic pathways that promote glucose and lipid production or utilization in response to the nutritional state of the body. However, in the setting of chronic excessive nutrition, the dysregulation of hepatic transcriptional machinery promotes lipid accumulation, inflammation, metabolic stress, and fibrosis, which culminate in NAFLD. In this review, we provide our current understanding of the transcription factors that have been linked to the pathogenesis and progression of NAFLD. Using publicly available transcriptomic data, we outline the altered activity of transcription factors among humans with NAFLD. By expanding this analysis to common experimental mouse models of NAFLD, we outline the relevance of mouse models to the human pathophysiology at the transcriptional level.
Collapse
|
329
|
Kroupova P, van Schothorst EM, Keijer J, Bunschoten A, Vodicka M, Irodenko I, Oseeva M, Zacek P, Kopecky J, Rossmeisl M, Horakova O. Omega-3 Phospholipids from Krill Oil Enhance Intestinal Fatty Acid Oxidation More Effectively than Omega-3 Triacylglycerols in High-Fat Diet-Fed Obese Mice. Nutrients 2020; 12:nu12072037. [PMID: 32660007 PMCID: PMC7400938 DOI: 10.3390/nu12072037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Antisteatotic effects of omega-3 fatty acids (Omega-3) in obese rodents seem to vary depending on the lipid form of their administration. Whether these effects could reflect changes in intestinal metabolism is unknown. Here, we compare Omega-3-containing phospholipids (krill oil; ω3PL-H) and triacylglycerols (ω3TG) in terms of their effects on morphology, gene expression and fatty acid (FA) oxidation in the small intestine. Male C57BL/6N mice were fed for 8 weeks with a high-fat diet (HFD) alone or supplemented with 30 mg/g diet of ω3TG or ω3PL-H. Omega-3 index, reflecting the bioavailability of Omega-3, reached 12.5% and 7.5% in the ω3PL-H and ω3TG groups, respectively. Compared to HFD mice, ω3PL-H but not ω3TG animals had lower body weight gain (−40%), mesenteric adipose tissue (−43%), and hepatic lipid content (−64%). The highest number and expression level of regulated intestinal genes was observed in ω3PL-H mice. The expression of FA ω-oxidation genes was enhanced in both Omega-3-supplemented groups, but gene expression within the FA β-oxidation pathway and functional palmitate oxidation in the proximal ileum was significantly increased only in ω3PL-H mice. In conclusion, enhanced intestinal FA oxidation could contribute to the strong antisteatotic effects of Omega-3 when administered as phospholipids to dietary obese mice.
Collapse
Affiliation(s)
- Petra Kroupova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Evert M. van Schothorst
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.); (J.K.); (A.B.)
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.); (J.K.); (A.B.)
| | - Annelies Bunschoten
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.); (J.K.); (A.B.)
| | - Martin Vodicka
- Laboratory of Epithelial Physiology, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Ilaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Marina Oseeva
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Petr Zacek
- Proteomics Core Facility, Faculty of Science, Charles University, Division BIOCEV, 25250 Vestec, Czech Republic;
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
- Correspondence: (M.R.); (O.H.); Tel.: +420-296443706 (M.R. & O.H.); Fax: +420 296442599 (M.R. & O.H.)
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
- Correspondence: (M.R.); (O.H.); Tel.: +420-296443706 (M.R. & O.H.); Fax: +420 296442599 (M.R. & O.H.)
| |
Collapse
|
330
|
Fougerat A, Montagner A, Loiseau N, Guillou H, Wahli W. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2020; 9:E1638. [PMID: 32650421 PMCID: PMC7408116 DOI: 10.3390/cells9071638] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with inflammation and various levels of fibrosis that further increase the risk of developing cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions between genetic and environmental factors and involves several biological processes in multiple organs. No effective therapy is currently available for the treatment of NAFLD. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate many functions that are disturbed in NAFLD, including glucose and lipid metabolism, as well as inflammation. Thus, they represent relevant clinical targets for NAFLD. In this review, we describe the determinants and mechanisms underlying the pathogenesis of NAFLD, its progression and complications, as well as the current therapeutic strategies that are employed. We also focus on the complementary and distinct roles of PPAR isotypes in many biological processes and on the effects of first-generation PPAR agonists. Finally, we review novel and safe PPAR agonists with improved efficacy and their potential use in the treatment of NAFLD.
Collapse
Affiliation(s)
- Anne Fougerat
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Alexandra Montagner
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institute of Metabolic and Cardiovascular Diseases, UMR1048 Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, UMR1048 Toulouse, France
| | - Nicolas Loiseau
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Walter Wahli
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
331
|
Wang L, Ai C, Wen C, Qin Y, Liu Z, Wang L, Gong Y, Su C, Wang Z, Song S. Fucoidan isolated from Ascophyllum nodosum alleviates gut microbiota dysbiosis and colonic inflammation in antibiotic-treated mice. Food Funct 2020; 11:5595-5606. [PMID: 32525182 DOI: 10.1039/d0fo00668h] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibiotic treatment, as an important therapeutic intervention, can cause damage to the host microbiome and the intestinal mucosal barrier. In order to find a way to alleviate the side effects of antibiotics, the present study investigated the effects of fucoidan (ANP) isolated from Ascophyllum nodosum on gut microbiota dysbiosis and colonic inflammation induced by ciprofloxacin-metronidazole (CiMe) in C57BL/6J mice. Our results showed that dietary ANP prevented colon shortening, alleviated the colonic tissue damages, and partially reversed the alteration of gut microbiota by increasing the abundance of potentially beneficial bacteria, e.g., Ruminococcaceae_UCG_014 and Akkermansia and decreasing the abundance of harmful bacteria, e.g., Proteus and Enterococcus. ANP also suppressed the overproduction of TNF-α, IL-1β, and IL-6 and promoted the expression of IL-10. In addition, ANP reversed the decreased production of short-chain fatty acids in CiMe-treated mice. Furthermore, correlation analysis indicated the presence of critical gut microbiota, which played important roles in reducing the inflammation-related indices. Thus, the present study suggests that fucoidan isolated from Ascophyllum nodosum is effective in providing protection against the negative effects of antibiotics on gut microbiota and colonic health.
Collapse
Affiliation(s)
- Lilong Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China. and National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chengrong Wen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China. and National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yimin Qin
- Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao 266400, P. R. China and State Key Laboratory of Bioactive Seaweed Substances, Qingdao 266400, P. R. China
| | - Zhengqi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Linlin Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Yue Gong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Changyu Su
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Zhongfu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China. and National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
332
|
Inamura K. Gut microbiota contributes towards immunomodulation against cancer: New frontiers in precision cancer therapeutics. Semin Cancer Biol 2020; 70:11-23. [PMID: 32580023 DOI: 10.1016/j.semcancer.2020.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023]
Abstract
The microbiota influences human health and the development of diverse diseases, including cancer. Microbes can influence tumor initiation and development in either a positive or negative manner. In addition, the composition of the gut microbiota affects the efficacy and toxicity of cancer therapeutics as well as therapeutic resistance. The striking impact of microbiota on oncogenesis and cancer therapy provides compelling evidence to support the notion that manipulating microbial networks represents a promising strategy for treating and preventing cancer. Specific microbes or the microbial ecosystem can be modified via a multiplicity of processes, and therapeutic methods and approaches have been evolving. Microbial manipulation can be applied as an adjunct to traditional cancer therapies such as chemotherapy and immunotherapy. Furthermore, this approach displays great promise as a stand-alone therapy following the failure of standard therapy. Moreover, such strategies may also benefit patients by avoiding the emergence of toxic side effects that result in treatment discontinuation. A better understanding of the host-microbial ecosystem in patients with cancer, together with the development of methodologies for manipulating the microbiome, will help expand the frontiers of precision cancer therapeutics, thereby improving patient care. This review discusses the roles of the microbiota in oncogenesis and cancer therapy, with a focus on efforts to harness the microbiota to fight cancer.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
333
|
Chen L, Zhang L, Wang W, Qiu W, Liu L, Ning A, Cao J, Huang M, Zhong M. Polysaccharides isolated from Cordyceps Sinensis contribute to the progression of NASH by modifying the gut microbiota in mice fed a high-fat diet. PLoS One 2020; 15:e0232972. [PMID: 32512581 PMCID: PMC7279895 DOI: 10.1371/journal.pone.0232972] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Various dietary fibers are considered to prevent obesity by modulating the gut microbiota. Cordyceps sinensis polysaccharide (CSP) is a soluble dietary fiber known to have protective effects against obesity and related diseases, but whether these effects induce any side effects remains unknown. The function and safety of CSP were tested in high-fat diet (HFD)-feding C57BL/6J mice. The results revealed that even though CSP supplementation could prevent an increase in body weight, it aggravated liver fibrosis and steatosis as evidenced by increased inflammation, lipid metabolism markers, insulin resistance (IR) and alanine aminotransferase (ALT) in HFD-induced obesity. 16S rDNA gene sequencing was used to analyze the gut microbiota composition, and the relative abundance of the Actinobacteria phylum, including the Olsenella genus, was significantly higher in CSP-treated mice than in HFD-fed mice. CSP supplementation may increase the proportion of Actinobacteria, which can degrade CSP. The high level of Actinobacteria aggravated the disorder of the intestinal flora and contributed to the progression from obesity to nonalcoholic steatohepatitis (NASH) and related diseases.
Collapse
Affiliation(s)
- Lei Chen
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Liangyu Zhang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Wendong Wang
- First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Wei Qiu
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Lei Liu
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Anhong Ning
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Jing Cao
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Min Huang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
- * E-mail:
| |
Collapse
|
334
|
Abstract
The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host's innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
Collapse
|
335
|
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30:492-506. [PMID: 32433595 PMCID: PMC7264227 DOI: 10.1038/s41422-020-0332-7] [Citation(s) in RCA: 2011] [Impact Index Per Article: 402.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023] Open
Abstract
The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host's innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Danping Zheng
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel.,Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Timur Liwinski
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel. .,Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
336
|
Emamat H, Ghalandari H, Tangestani H, Abdollahi A, Hekmatdoost A. Artificial sweeteners are related to non-alcoholic fatty liver disease: Microbiota dysbiosis as a novel potential mechanism. EXCLI JOURNAL 2020; 19:620-626. [PMID: 32483408 PMCID: PMC7257251 DOI: 10.17179/excli2020-1226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a systemic and wide-spread disease characterized by accumulation of excess fat in the liver of people who drink little or no alcohol. Artificial sweeteners (ASs) or sugar substitutes are food additives that provide a sweet taste, and are also known as low-calorie or non-calorie sweeteners. Recently people consume increasingly more ASs to reduce their calorie intake. Gut microbiome is a complex ecosystem where 1014 microorganisms play several roles in host nutrition, bone mineralization, immune system regulation, xenobiotics metabolism, proliferation of intestinal cells, and protection against pathogens. A disruption in composition of the normal microbiota is known as ‘gut dysbiosis’ which may adversely affect body metabolism. It has recently been suggested that dysbiosis may contribute to the occurrence of NAFLD. The aim of the present study was to investigate the effects of ASs on the risk of NAFLD. The focus of this review is on microbiota changes and dysbiosis. Increasing evidence shows that ASs have a potential role in microbiota alteration and dysbiosis. We speculate that increased consumption of ASs can further raise the prevalence of NAFLD. However, further human studies are needed to determine this relationship definitively.
Collapse
Affiliation(s)
- Hadi Emamat
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghalandari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadith Tangestani
- Department of Nutrition, Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
337
|
Katsarou A, Moustakas II, Pyrina I, Lembessis P, Koutsilieris M, Chatzigeorgiou A. Metabolic inflammation as an instigator of fibrosis during non-alcoholic fatty liver disease. World J Gastroenterol 2020; 26:1993-2011. [PMID: 32536770 PMCID: PMC7267690 DOI: 10.3748/wjg.v26.i17.1993] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive storage of fatty acids in the form of triglycerides in hepatocytes. It is most prevalent in western countries and includes a wide range of clinical and histopathological findings, namely from simple steatosis to steatohepatitis and fibrosis, which may lead to cirrhosis and hepatocellular cancer. The key event for the transition from steatosis to fibrosis is the activation of quiescent hepatic stellate cells (qHSC) and their differentiation to myofibroblasts. Pattern recognition receptors (PRRs), expressed by a plethora of immune cells, serve as essential components of the innate immune system whose function is to stimulate phagocytosis and mediate inflammation upon binding to them of various molecules released from damaged, apoptotic and necrotic cells. The activation of PRRs on hepatocytes, Kupffer cells, the resident macrophages of the liver, and other immune cells results in the production of proinflammatory cytokines and chemokines, as well as profibrotic factors in the liver microenvironment leading to qHSC activation and subsequent fibrogenesis. Thus, elucidation of the inflammatory pathways associated with the pathogenesis and progression of NAFLD may lead to a better understanding of its pathophysiology and new therapeutic approaches.
Collapse
Affiliation(s)
- Angeliki Katsarou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- 251 Hellenic Airforce General Hospital, Athens 11525, Greece
| | - Ioannis I Moustakas
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany
| | - Panagiotis Lembessis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany.
| |
Collapse
|
338
|
Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol 2020; 17:279-297. [PMID: 32152478 DOI: 10.1038/s41575-020-0269-9] [Citation(s) in RCA: 628] [Impact Index Per Article: 125.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Gut microbiota dysbiosis has been repeatedly observed in obesity and type 2 diabetes mellitus, two metabolic diseases strongly intertwined with non-alcoholic fatty liver disease (NAFLD). Animal studies have demonstrated a potential causal role of gut microbiota in NAFLD. Human studies have started to describe microbiota alterations in NAFLD and have found a few consistent microbiome signatures discriminating healthy individuals from those with NAFLD, non-alcoholic steatohepatitis or cirrhosis. However, patients with NAFLD often present with obesity and/or insulin resistance and type 2 diabetes mellitus, and these metabolic confounding factors for dysbiosis have not always been considered. Patients with different NAFLD severity stages often present with heterogeneous lesions and variable demographic characteristics (including age, sex and ethnicity), which are known to affect the gut microbiome and have been overlooked in most studies. Finally, multiple gut microbiome sequencing tools and NAFLD diagnostic methods have been used across studies that could account for discrepant microbiome signatures. This Review provides a broad insight into microbiome signatures for human NAFLD and explores issues with disentangling these signatures from underlying metabolic disorders. More advanced metagenomics and multi-omics studies using system biology approaches are needed to improve microbiome biomarkers.
Collapse
|
339
|
Cassard AM, Houron C, Ciocan D. Microbiote intestinal et stéatopathie métabolique. NUTR CLIN METAB 2020. [DOI: 10.1016/j.nupar.2019.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
340
|
Schwabe RF, Tabas I, Pajvani UB. Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology 2020; 158:1913-1928. [PMID: 32044315 PMCID: PMC7682538 DOI: 10.1053/j.gastro.2019.11.311] [Citation(s) in RCA: 395] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease is the most prevalent liver disease worldwide, affecting 20%-25% of the adult population. In 25% of patients, nonalcoholic fatty liver disease progresses to nonalcoholic steatohepatitis (NASH), which increases the risk for the development of cirrhosis, liver failure, and hepatocellular carcinoma. In patients with NASH, liver fibrosis is the main determinant of mortality. Here, we review how interactions between different liver cells culminate in fibrosis development in NASH, focusing on triggers and consequences of hepatocyte-macrophage-hepatic stellate cell (HSC) crosstalk. We discuss pathways through which stressed and dead hepatocytes instigate the profibrogenic crosstalk with HSC and macrophages, including the reactivation of developmental pathways such as TAZ, Notch, and hedgehog; how clearance of dead cells in NASH via efferocytosis may affect inflammation and fibrogenesis; and insights into HSC and macrophage heterogeneity revealed by single-cell RNA sequencing. Finally, we summarize options to therapeutically interrupt this profibrogenic hepatocyte-macrophage-HSC network in NASH.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York.
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York; Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York
| |
Collapse
|
341
|
Goldner D, Lavine JE. Nonalcoholic Fatty Liver Disease in Children: Unique Considerations and Challenges. Gastroenterology 2020; 158:1967-1983.e1. [PMID: 32201176 DOI: 10.1053/j.gastro.2020.01.048] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasing in prevalence in concert with the global epidemic of obesity and is being diagnosed at increasingly younger ages. The unique histologic features and early presentation of disease in pediatrics suggest that children and adults may differ with regard to etiopathogenesis, with children displaying a greater vulnerability to genetic and environmental factors. Of significant relevance to pediatrics, in utero and perinatal stressors may alter the lifelong health trajectory of a child, increasing the risk of NAFLD and other cardiometabolic diseases. The development and progression of disease in childhood is likely to carry increased risk of long-term morbidity. Novel biomarkers and therapeutic agents are needed to avoid the otherwise inevitable health and societal consequences of this rapidly expanding pediatric population.
Collapse
Affiliation(s)
- Dana Goldner
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Columbia University Medical Center, New York, New York
| | - Joel E Lavine
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Columbia University Medical Center, New York, New York.
| |
Collapse
|
342
|
Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K. Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity? Gastroenterology 2020; 158:1881-1898. [PMID: 32044317 DOI: 10.1053/j.gastro.2020.01.049] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Gut microbiota plays a role in the pathophysiology of metabolic diseases, which include nonalcoholic fatty liver diseases, through the gut-liver axis. To date, clinical guidelines recommend a weight loss goal of 7%-10% to improve features of nonalcoholic fatty liver diseases. Because this target is not easily achieved by all patients, alternative therapeutic options are currently being evaluated. This review focuses on therapeutics that aim to modulate the gut microbiota and the gut-liver axis. We discuss how probiotics, prebiotics, synbiotic, fecal microbiota transfer, polyphenols, specific diets, and exercise interventions have been found to modify gut microbiota signatures; improve nonalcoholic fatty liver disease outcomes; and detail, when available, the different mechanisms by which these beneficial outcomes might occur. Apart from probiotics that have already been tested in human randomized controlled trials, most of these potential therapeutics have been studied in animals. Their efficacy still warrants confirmation in humans using appropriate design.
Collapse
Affiliation(s)
- Judith Aron-Wisnewsky
- Sorbonne Université, INSERM, UMRS U1269, Nutriomics Research Unit, Paris, France; Nutrition Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centre de Recherche en Nutrition Humaine d'Ile de France, Paris, France; Department of Vascular Medicine, University of Amsterdam Medical Center, Amsterdam, The Netherlands.
| | - Moritz V Warmbrunn
- Department of Vascular Medicine, University of Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, University of Amsterdam Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, University of Amsterdam Medical Center, Free University, Amsterdam, The Netherlands
| | - Karine Clément
- Sorbonne Université, INSERM, UMRS U1269, Nutriomics Research Unit, Paris, France; Nutrition Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centre de Recherche en Nutrition Humaine d'Ile de France, Paris, France.
| |
Collapse
|
343
|
Dahl WJ, Rivero Mendoza D, Lambert JM. Diet, nutrients and the microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:237-263. [PMID: 32475524 DOI: 10.1016/bs.pmbts.2020.04.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although there is associative evidence linking fecal microbiome profile to health and disease, many studies have not considered the confounding effects of dietary intake. Consuming food provides fermentable substrate which sustains the microbial ecosystem that resides with most abundance in the colon. Western, Mediterranean and vegetarian dietary patterns have a role in modulating the gut microbiota, as do trending restrictive diets such the paleolithic and ketogenic. Altering the amount or ratio of carbohydrate, protein and fat, particularly at the extremes of intake, impacts the microbiome. Diets high in fermentable carbohydrates support the relative abundance of Bifidobacterium, Prevotella, Ruminococcus, Dorea and Roseburia, among others, capable of degrading polysaccharides, oligosaccharides and sugars. Conversely, very high fat diets increase bile-resistant organisms such as Bilophila and Bacteroides. Food form, whole foods vs. ultra-processed, alters the provision of macronutrient substrate to the colon due to differing digestibility, and thereby may impact the microbiota and its metabolic activity. In addition, phytochemicals in plant-based foods have specific and possibly prebiotic effects on the microbiome. Further, food ingredients such as certain low-calorie sweeteners enhance Bifidobacterium spp. The weight of evidence to date suggests a high level of interindividual variability in the human microbiome vs. clearly defined, dietary-induced profiles. Healthful dietary patterns, emphasizing plant foods high in microbial-available carbohydrate, support favorable microbiome profiles active in saccharolytic fermentation. Future research into diet and microbiome should consider the balance of gut microbial-generated metabolites, an important link between microbiome profile and human health.
Collapse
Affiliation(s)
- Wendy J Dahl
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States.
| | - Daniela Rivero Mendoza
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| | - Jason M Lambert
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| |
Collapse
|
344
|
Harada N, Hanada K, Minami Y, Kitakaze T, Ogata Y, Tokumoto H, Sato T, Kato S, Inui H, Yamaji R. Role of gut microbiota in sex- and diet-dependent metabolic disorders that lead to early mortality of androgen receptor-deficient male mice. Am J Physiol Endocrinol Metab 2020; 318:E525-E537. [PMID: 32017595 DOI: 10.1152/ajpendo.00461.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiota is involved in metabolic disorders induced by androgen deficiency after sexual maturation in males (late-onset hypogonadism). However, its role in the energy metabolism of congenital androgen deficiency (e.g., androgen-insensitive syndrome) remains elusive. Here, we examined the link between the gut microbiota and metabolic disease symptoms in androgen receptor knockout (ARKO) mouse by administering high-fat diet (HFD) and/or antibiotics. HFD-fed male, but not standard diet-fed male or HFD-fed female, ARKO mice exhibited increased feed efficiency, obesity with increased visceral adipocyte mass and hypertrophy, hepatic steatosis, glucose intolerance, insulin resistance, and loss of thigh muscle. In contrast, subcutaneous fat mass accumulated in ARKO mice irrespective of the diet and sex. Notably, all HFD-dependent metabolic disorders observed in ARKO males were abolished after antibiotics administration. The ratios of fecal weight-to-food weight and cecum weight-to-body weight were specifically reduced by ARKO in HFD-fed males. 16S rRNA sequencing of fecal microbiota from HFD-fed male mice revealed differences in microbiota composition between control and ARKO mice. Several genera or species (e.g., Turicibacter and Lactobacillus reuteri, respectively) were enriched in ARKO mice, and antibiotics treatment spoiled the changes. Furthermore, the life span of HFD-fed ARKO males was shorter than that of control mice, indicating that androgen deficiency causes metabolic dysfunctions leading to early death. These findings also suggest that AR signaling plays a role in the prevention of metabolic dysfunctions, presumably by influencing the gut microbiome, and improve our understanding of health consequences in subjects with hypogonadism and androgen insensitivity.
Collapse
Affiliation(s)
- Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Kazuki Hanada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yukari Minami
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Tomoya Kitakaze
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yoshiyuki Ogata
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Hayato Tokumoto
- Division of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takashi Sato
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Shigeaki Kato
- Graduate School of Science and Engineering, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Hiroshi Inui
- Department of Nutrition, College of Health and Human Sciences, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| |
Collapse
|
345
|
Philips CA, Augustine P, Yerol PK, Ramesh GN, Ahamed R, Rajesh S, George T, Kumbar S. Modulating the Intestinal Microbiota: Therapeutic Opportunities in Liver Disease. J Clin Transl Hepatol 2020; 8:87-99. [PMID: 32274349 PMCID: PMC7132020 DOI: 10.14218/jcth.2019.00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/11/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota has been demonstrated to have a significant impact on the initiation, progression and development of complications associated with multiple liver diseases. Notably, nonalcoholic fatty liver diseases, including nonalcoholic steatohepatitis and cirrhosis, severe alcoholic hepatitis, primary sclerosing cholangitis and hepatic encephalopathy, have strong links to dysbiosis - or a pathobiological change in the microbiota. In this review, we provide clear and concise discussions on the human gut microbiota, methods of identifying gut microbiota and its functionality, liver diseases that are affected by the gut microbiota, including novel associations under research, and provide current evidence on the modulation of gut microbiota and its effects on specific liver disease conditions.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Philip Augustine
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Praveen Kumar Yerol
- Department of Gastroenterology, State Government Medical College, Thrissur, Kerala, India
| | | | - Rizwan Ahamed
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Sasidharan Rajesh
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Tom George
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Sandeep Kumbar
- The Liver Unit, Monarch Liver Lab and Division of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| |
Collapse
|
346
|
Kim K, Kim KH. Targeting of Secretory Proteins as a Therapeutic Strategy for Treatment of Nonalcoholic Steatohepatitis (NASH). Int J Mol Sci 2020; 21:ijms21072296. [PMID: 32225108 PMCID: PMC7177791 DOI: 10.3390/ijms21072296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is defined as a progressive form of nonalcoholic fatty liver disease (NAFLD) and is a common chronic liver disease that causes significant worldwide morbidity and mortality, and has no approved pharmacotherapy. Nevertheless, growing understanding of the molecular mechanisms underlying the development and progression of NASH has suggested multiple potential therapeutic targets and strategies to treat this disease. Here, we review this progress, with emphasis on the functional role of secretory proteins in the development and progression of NASH, in addition to the change of expression of various secretory proteins in mouse NASH models and human NASH subjects. We also highlight secretory protein-based therapeutic approaches that influence obesity-associated insulin resistance, liver steatosis, inflammation, and fibrosis, as well as the gut–liver and adipose–liver axes in the treatment of NASH.
Collapse
Affiliation(s)
- Kyeongjin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Inha-ro 100, Michuhol-gu, Incheon 22212, Korea
- Correspondence: (K.K.); (K.H.K.)
| | - Kook Hwan Kim
- Metabolic Diseases Research Center, GI Cell, Inc., B-1014, Tera Tower, Songpa-daero 167, Songpa-gu, Seoul 05855, Korea
- Correspondence: (K.K.); (K.H.K.)
| |
Collapse
|
347
|
Yu JH. Limited expression of toll-like receptor 9 on T cells and its functional consequences in patients with nonalcoholic fatty liver disease. Clin Mol Hepatol 2020; 26:240-241. [PMID: 32192316 PMCID: PMC7160342 DOI: 10.3350/cmh.2020.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
348
|
Zhang CH, Xiao Q, Sheng JQ, Liu TT, Cao YQ, Xue YN, Shi M, Cao Z, Zhou LF, Luo XQ, Deng KZ, Chen C. Gegen Qinlian Decoction abates nonalcoholic steatohepatitis associated liver injuries via anti-oxidative stress and anti-inflammatory response involved inhibition of toll-like receptor 4 signaling pathways. Biomed Pharmacother 2020; 126:110076. [PMID: 32169759 DOI: 10.1016/j.biopha.2020.110076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Gegen Qilian Decoction (GGQLD) is a well-established classic Chinese medicine prescription in treating nonalcoholic steatohepatitis (NASH). However, the molecular mechanism of GGQLD action on NASH is still not clear. This study aimed to assess the anti-NASH effect of GGQLD, and to explore its molecular mechanisms in vivo and in vitro. In HFD-fed rats, GGQLD decreased significantly serum triglyceride (TG), cholesterol (CHO), total bile acid (TBA), low-density lipoprotein (LDL), free fatty acid (FFA) and lipopolysaccharide (LPS) levels, increased levels of differentially expressed proteins (DEPs) Ahcy, Gpx1, Mat1a, GNMT, and reduced the expression of ALDOB. In RAW264.7 macrophages, GGQLD reduced the expression levels of inflammatory factors TNF-α and IL-6 mRNA, and diminished NASH by increasing differentially expressed genes (DEGs) CBS, Mat1a, Hnf4α and Pparα to reduce oxidative stress or lipid metabolism. The results of DEGs verification also showed that GGQLD up-regulated expressions of Hnf4α, Pparα and Cbs genes. In HepG2 cells, GGQLD decreased IL-6 levels and intracellular TG content, and inhibited FFA-induced expression of toll-like receptor 4 (TLR4). In summary, GGQLD abates NASH associated liver injuries via anti-oxidative stress and anti-inflammatory response involved inhibition of TLR4 signal pathways. These findings provide new insights into the anti-NASH therapy by GGQLD.
Collapse
Affiliation(s)
- Chang-Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Qin Xiao
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Jun-Qing Sheng
- College of Life Science, Nanchang University, Nanchang, 330031, PR China.
| | - Tong-Tong Liu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ying-Qian Cao
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ya-Nan Xue
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Min Shi
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Zheng Cao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Li-Fen Zhou
- Large Precise Instruments Shared Services Center of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Xiao-Quan Luo
- Experimental Animal Science and Technology Center of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Ke-Zhong Deng
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
349
|
Schneider KM, Trautwein C. Die Darm-Leber-Achse bei nichtalkoholischer Fettlebererkrankung: molekulare Mechanismen und neue Targets. DER GASTROENTEROLOGE 2020; 15:112-122. [DOI: 10.1007/s11377-019-00402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
350
|
Shama S, Liu W. Omega-3 Fatty Acids and Gut Microbiota: A Reciprocal Interaction in Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2020; 65:906-910. [PMID: 32036510 PMCID: PMC7145364 DOI: 10.1007/s10620-020-06117-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease characterized with the spectrum of hepatic steatosis, inflammation, and fibrosis. The etiology of NAFLD remains incompletely understood. Numerous studies have implied that the gut microbiota (GM) is involved in the development of NAFLD, as it particularly mediating the interaction between nutrient intake and the gut-liver function. Meanwhile, the omega-3 and omega-6 polyunsaturated fatty acids (n-3/n-6 PUFA) as essential fatty acids have been linked to NAFLD. Increasing studies in the past decades have indicated that there is a reciprocal interaction between GM and n-3/n-6 PUFA, which may be underlying at least in part, the pathogenesis of NAFLD. In this review, we will discuss: (1) How GM is linked to NAFLD by interacting with various nutrients; (2) How imbalanced dietary n-3/n-6 PUFA is linked to NAFLD; (3) How n-3/n-6 PUFA may affect the GM balance, leading to altered nutrients release to the liver; and (4) How GM may modify ingested n-3/n-6 PUFA and alter their absorption, bioavailability, and biotransformation.
Collapse
Affiliation(s)
- Sama Shama
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA,Department of Molecular Drug evaluation, National Organization of Drug Control and Research, Giza, Egypt
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA,Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|