301
|
Krolewski AS, Gohda T, Niewczas MA. Progressive renal decline as the major feature of diabetic nephropathy in type 1 diabetes. Clin Exp Nephrol 2014; 18:571-83. [PMID: 24218296 PMCID: PMC4018428 DOI: 10.1007/s10157-013-0900-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/21/2013] [Indexed: 01/15/2023]
Abstract
Despite almost universal implementation of renoprotective therapies over the past 25 years, the risk of end-stage renal disease (ESRD) in type 1 diabetes (T1D) is not decreasing, and ESRD remains the major cause of excess morbidity and premature mortality [1]. Such a state of affairs prompts a call to action. In this review we re-evaluated the proteinuria-centric model of diabetic nephropathy and showed its deficiencies. On the basis of extensive studies that we have been conducting on the patients attending the Joslin Clinic, we propose that progressive renal decline, not abnormalities in urinary albumin excretion, should be considered as the major feature of disease processes leading to ESRD in T1D. The etiology of diabetic nephropathy should be reconsidered in light of our new findings so our perspective can be broadened regarding new therapeutic targets available for interrupting the progressive renal decline in T1D. Reduction in the loss of glomerular filtration rate, not reduction of albumin excretion rate, should become the measure for evaluating the effectiveness of new therapeutic interventions. We need new accurate methods for early diagnosis of patients at risk of progressive renal decline or, better still, for detecting in advance which patients will have rapid, moderate or minimal rate of progression to ESRD.
Collapse
Affiliation(s)
- Andrzej S Krolewski
- Section on Genetics and Epidemiology, Research Division of Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA,
| | | | | |
Collapse
|
302
|
An Y, Xu F, Le W, Ge Y, Zhou M, Chen H, Zeng C, Zhang H, Liu Z. Renal histologic changes and the outcome in patients with diabetic nephropathy. Nephrol Dial Transplant 2014; 30:257-66. [PMID: 25063425 DOI: 10.1093/ndt/gfu250] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The progression of diabetic nephropathy (DN) is frequently determined by clinical parameters; however, the predictive value of histologic lesions remains largely unknown. Our aim was to evaluate the relationship between histologic changes and renal outcome in patients with type 2 diabetes mellitus (T2DM). METHODS A total of 396 patients with T2DM and biopsy-proven DN who received follow-up for at least 1 year were recruited. The severity of different histologic lesions was assessed using the pathologic classification established by the Renal Pathology Society. Renal outcomes were defined by progression to end-stage renal disease and doubling of serum creatinine. The influence of histologic findings on renal outcomes was assessed using univariate and multivariate Cox regression. RESULTS A univariate Cox regression showed that the severity of glomerular and interstitial lesions had a significant impact on renal outcomes (P < 0.001). Scores of vascular lesions demonstrated no association with renal outcomes (P > 0.05). A multivariate COX analysis demonstrated that the glomerular classes and scores of interstitial fibrosis and tubular atrophy were significantly associated with renal outcomes when adjusting for baseline proteinuria, mean arterial pressure and estimated glomerular filtration rate (P < 0.05). The glomerular and interstitial lesions correlated significantly among each other. However, in several patients, the severity of interstitial lesions did not correlate with glomerular lesions. CONCLUSION These findings indicated that the severity of glomerular and interstitial lesions were significantly associated with renal outcomes in patients with DN, whereas the vascular indexes did not have any impact on renal outcomes.
Collapse
Affiliation(s)
- Yu An
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Weibo Le
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yongchun Ge
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Minlin Zhou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hao Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Haitao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
303
|
Kitada M, Kanasaki K, Koya D. Clinical therapeutic strategies for early stage of diabetic kidney disease. World J Diabetes 2014; 5:342-356. [PMID: 24936255 PMCID: PMC4058738 DOI: 10.4239/wjd.v5.i3.342] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/08/2014] [Accepted: 04/17/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of chronic kidney disease, leading to end-stage renal disease and cardiovascular disease. The overall number of patients with DKD will continue to increase in parallel with the increasing global pandemic of type 2 diabetes. Based on landmark clinical trials, DKD has become preventable by controlling conventional factors, including hyperglycemia and hypertension, with multifactorial therapy; however, the remaining risk of DKD progression is still high. In this review, we show the importance of targeting remission/regression of microalbuminuria in type 2 diabetic patients, which may protect against the progression of DKD and cardiovascular events. To achieve remission/regression of microalbuminuria, several steps are important, including the early detection of microalbuminuria with continuous screening, targeting HbA1c < 7.0% for glucose control, the use of renin angiotensin system inhibitors to control blood pressure, the use of statins or fibrates to control dyslipidemia, and multifactorial treatment. Reducing microalbuminuria is therefore an important therapeutic goal, and the absence of microalbuminuria could be a pivotal biomarker of therapeutic success in diabetic patients. Other therapies, including vitamin D receptor activation, uric acid-lowering drugs, and incretin-related drugs, may also be promising for the prevention of DKD progression.
Collapse
|
304
|
Yoo TH, Pedigo CE, Guzman J, Correa-Medina M, Wei C, Villarreal R, Mitrofanova A, Leclercq F, Faul C, Li J, Kretzler M, Nelson RG, Lehto M, Forsblom C, Groop PH, Reiser J, Burke GW, Fornoni A, Merscher S. Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. J Am Soc Nephrol 2014; 26:133-47. [PMID: 24925721 DOI: 10.1681/asn.2013111213] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of ESRD in the United States. Podocyte injury is an important feature of DKD that is likely to be caused by circulating factors other than glucose. Soluble urokinase plasminogen activator receptor (suPAR) is a circulating factor found to be elevated in the serum of patients with FSGS and causes podocyte αVβ3 integrin-dependent migration in vitro. Furthermore, αVβ3 integrin activation occurs in association with decreased podocyte-specific expression of acid sphingomyelinase-like phosphodiesterase 3b (SMPDL3b) in kidney biopsy specimens from patients with FSGS. However, whether suPAR-dependent αVβ3 integrin activation occurs in diseases other than FSGS and whether there is a direct link between circulating suPAR levels and SMPDL3b expression in podocytes remain to be established. Our data indicate that serum suPAR levels are also elevated in patients with DKD. However, unlike in FSGS, SMPDL3b expression was increased in glomeruli from patients with DKD and DKD sera-treated human podocytes, where it prevented αVβ3 integrin activation by its interaction with suPAR and led to increased RhoA activity, rendering podocytes more susceptible to apoptosis. In vivo, inhibition of acid sphingomyelinase reduced proteinuria in experimental DKD but not FSGS, indicating that SMPDL3b expression levels determined the podocyte injury phenotype. These observations suggest that SMPDL3b may be an important modulator of podocyte function by shifting suPAR-mediated podocyte injury from a migratory phenotype to an apoptotic phenotype and that it represents a novel therapeutic glomerular disease target.
Collapse
Affiliation(s)
- Tae-Hyun Yoo
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and Department of Internal Medicine, Division of Nephrology, Yonsei University College of Medicine, Seoul, Korea
| | - Christopher E Pedigo
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and
| | - Johanna Guzman
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Mayrin Correa-Medina
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and
| | - Changli Wei
- Department of Internal Medicine, Division of Nephrology, Rush University, Chicago, Illinois
| | - Rodrigo Villarreal
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and
| | - Alla Mitrofanova
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and
| | - Farah Leclercq
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and
| | - Christian Faul
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and
| | - Jing Li
- Department of Internal Medicine, Division of Nephrology, Rush University, Chicago, Illinois
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Robert G Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, Diabetes Epidemiology and Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, Phoenix, Arizona
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland; Diabetes and Obesity Research Program, Research Program's Unit, University of Helsinki, Helsinki, Finland; and
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland; Diabetes and Obesity Research Program, Research Program's Unit, University of Helsinki, Helsinki, Finland; and
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland; Diabetes and Obesity Research Program, Research Program's Unit, University of Helsinki, Helsinki, Finland; and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jochen Reiser
- Department of Internal Medicine, Division of Nephrology, Rush University, Chicago, Illinois
| | - George William Burke
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida;
| | - Sandra Merscher
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida;
| |
Collapse
|
305
|
Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest 2014; 124:2333-40. [PMID: 24892707 DOI: 10.1172/jci72271] [Citation(s) in RCA: 614] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of kidney failure worldwide and the single strongest predictor of mortality in patients with diabetes. DKD is a prototypical disease of gene and environmental interactions. Tight glucose control significantly decreases DKD incidence, indicating that hyperglycemia-induced metabolic alterations, including changes in energy utilization and mitochondrial dysfunction, play critical roles in disease initiation. Blood pressure control, especially with medications that inhibit the angiotensin system, is the only effective way to slow disease progression. While DKD is considered a microvascular complication of diabetes, growing evidence indicates that podocyte loss and epithelial dysfunction play important roles. Inflammation, cell hypertrophy, and dedifferentiation by the activation of classic pathways of regeneration further contribute to disease progression. Concerted clinical and basic research efforts will be needed to understand DKD pathogenesis and to identify novel drug targets.
Collapse
|
306
|
Fornoni A, Merscher S, Kopp JB. Lipid biology of the podocyte--new perspectives offer new opportunities. Nat Rev Nephrol 2014; 10:379-88. [PMID: 24861084 DOI: 10.1038/nrneph.2014.87] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the past 15 years, major advances have been made in understanding the role of lipids in podocyte biology. First, susceptibility to focal segmental glomerulosclerosis (FSGS) and glomerular disease is associated with an APOL1 sequence variant, is expressed in podocytes and encodes apolipoprotein L1, an important component of HDL. Second, acid sphingomyelinase-like phosphodiesterase 3b encoded by SMPDL3b has a role in the conversion of sphingomyelin to ceramide and its levels are reduced in renal biopsy samples from patients with recurrent FSGS. Furthermore, decreased SMPDL3b expression is associated with increased susceptibility of podocytes to injury after exposure to sera from these patients. Third, in many individuals with membranous nephropathy, autoantibodies against the phospholipase A2 (PLA2) receptor, which is expressed in podocytes, have been identified. Whether these autoantibodies affect the activity of PLA2, which liberates arachidonic acid from glycerophospholipids and modulates podocyte function, is unknown. Fourth, clinical and experimental evidence support a role for ATP-binding cassette sub-family A member 1-dependent cholesterol efflux, free fatty acids and glycerophospolipids in the pathogenesis of diabetic kidney disease. An improved understanding of lipid biology in podocytes might provide insights to develop therapeutic targets for primary and secondary glomerulopathies.
Collapse
Affiliation(s)
- Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, 1580 North West 10th Avenue, Miami, FL 33136, USA
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, 1580 North West 10th Avenue, Miami, FL 33136, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 10 Center Drive, 3N116 Bethesda, MD 20892-1268, USA
| |
Collapse
|
307
|
Jonasson L, Guldbrand H, Lundberg AK, Nystrom FH. Advice to follow a low-carbohydrate diet has a favourable impact on low-grade inflammation in type 2 diabetes compared with advice to follow a low-fat diet. Ann Med 2014; 46:182-7. [PMID: 24779961 PMCID: PMC4025600 DOI: 10.3109/07853890.2014.894286] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inflammation may play an important role in type 2 diabetes. It has been proposed that dietary strategies can modulate inflammatory activity. METHODS We investigated the effects of diet on inflammation in type 2 diabetes by comparing a traditional low-fat diet (LFD) with a low-carbohydrate diet (LCD). Patients with type 2 diabetes were randomized to follow either LFD aiming for 55-60 energy per cent (E%) from carbohydrates (n = 30) or LCD aiming for 20 E% from carbohydrates (n = 29). Plasma was collected at baseline and after 6 months. C-reactive protein (CRP), interleukin-1 receptor antagonist (IL-1Ra), IL-6, tumour necrosis factor receptor (TNFR) 1 and TNFR2 were determined. RESULTS Both LFD and LCD led to similar reductions in body weight, while beneficial effects on glycaemic control were observed in the LCD group only. After 6 months, the levels of IL-1Ra and IL-6 were significantly lower in the LCD group than in the LFD group, 978 (664-1385) versus 1216 (974-1822) pg/mL and 2.15 (1.65-4.27) versus 3.39 (2.25-4.79) pg/mL, both P < 0.05. CONCLUSIONS To conclude, advice to follow LCD or LFD had similar effects on weight reduction while effects on inflammation differed. Only LCD was found significantly to improve the subclinical inflammatory state in type 2 diabetes.
Collapse
Affiliation(s)
- Lena Jonasson
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Science, Linköping University, SE-581 85 Linköping, Sweden
| | - Hans Guldbrand
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Science, Linköping University, SE-581 85 Linköping, Sweden
| | - Anna K. Lundberg
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Science, Linköping University, SE-581 85 Linköping, Sweden
| | - Fredrik H. Nystrom
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Science, Linköping University, SE-581 85 Linköping, Sweden
| |
Collapse
|
308
|
Saulnier PJ, Gand E, Ragot S, Ducrocq G, Halimi JM, Hulin-Delmotte C, Llaty P, Montaigne D, Rigalleau V, Roussel R, Velho G, Sosner P, Zaoui P, Hadjadj S. Association of serum concentration of TNFR1 with all-cause mortality in patients with type 2 diabetes and chronic kidney disease: follow-up of the SURDIAGENE Cohort. Diabetes Care 2014; 37:1425-31. [PMID: 24623026 DOI: 10.2337/dc13-2580] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Renal dysfunction is a key risk factor for all-cause mortality in patients with type 2 diabetes (T2D). Circulating tumor necrosis factor receptor 1 (TNFR1) was recently suggested as a strong biomarker for end-stage renal failure in T2D. However, its relevance regarding all-cause death has yet to be conclusively established. We aimed to assess the prognostic value of serum TNFR1 concentration for all-cause death in T2D and diabetic kidney disease (DKD) from the SURDIAGENE (Survie, Diabete de type 2 et Genetique) study. RESEARCH DESIGN AND METHODS A total of 522 T2D patients with DKD (estimated glomerular filtration rate [eGFR] <60 and/or urinary albumin-to-creatinine ratio [uACR] >30 mg/mmol) were followed for a median duration of 48 months, and 196 deaths occurred. RESULTS Incidence rate (95% CI) for death increased as quartiles of TNFR1 concentration increased (first quartile: 4.7% patient-years [3.0-6.3%]; second quartile: 7.7% [5.4-10.0%]; third quartile: 9.3% [6.7-11.9%]; fourth quartile: 15.9% [12.2-19.5%]). In multivariate analysis taking age, diabetes duration, HbA1c, uACR, and eGFR into account, compared with the first quartile, patients from the fourth quartile had an adjusted hazard ratio for death of 2.98 (95% CI 1.70-5.23). The integrated discrimination improvement index was statistically significant when adding TNFR1 concentration to the UK Prospective Diabetes Study outcome equation (P = 0.031). CONCLUSIONS TNFR1 is a strong prognostic factor for all-cause mortality in T2D with renal dysfunction, and its clinical utility is suggested in addition to established risk factors for all-cause mortality.
Collapse
|
309
|
Enhanced glomerular Toll-like receptor 4 expression and signaling in patients with type 2 diabetic nephropathy and microalbuminuria. Kidney Int 2014; 86:1229-43. [PMID: 24786705 DOI: 10.1038/ki.2014.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/08/2014] [Accepted: 03/06/2014] [Indexed: 01/01/2023]
Abstract
Toll-like receptor 4 (TLR4), a component of the innate immune system, is recognized to promote tubulointerstitial inflammation in overt diabetic nephropathy (DN). However, there is no information on immune activation in resident renal cells at an early stage of human DN. In order to investigate this, we studied TLR4 gene and protein expression and TLR4 downward signaling in kidney biopsies of 12 patients with type 2 diabetes and microalbuminuria, and compared them with 11 patients with overt DN, 10 with minimal change disease (MCD), and control kidneys from 13 patients undergoing surgery for a small renal mass. Both in microalbuminuria and in overt DN, TLR4 mRNA and protein were overexpressed 4- to 10-fold in glomeruli and tubules compared with the control kidney and in MCD. In addition, NF-κB signaling was about fourfold higher in the glomeruli. TNF-α, IL6, CCR2, CCL5, and CCR5 mRNAs were markedly (about three- to fivefold) upregulated in microdissected glomeruli. While IL6, CCL2 and CCR5-mRNA, and CD68 were overexpressed in the tubulointerstitial compartment in clinical DN, they were not expressed in microalbuminuria. In a 6-year follow-up of microalbuminuric patients, glomerular TLR4 gene expression was associated with the subsequent loss of kidney function. Thus, innate immunity is activated in the glomeruli of patients with diabetic microalbuminuria. Enhanced TLR4 signaling may contribute to the progression occurring after the incipient, microalbuminuric form of nephropathy evolves to overt disease.
Collapse
|
310
|
Kurashina T, Nagasaka S, Watanabe N, Yabe D, Sugi N, Nin K, Hosokawa M, Nomura Y, Fukushima M, Nakai Y, Nishimura F, Taniguchi A. Circulating TNF receptor 2 is closely associated with the kidney function in non-diabetic Japanese subjects. J Atheroscler Thromb 2014; 21:730-8. [PMID: 24717758 DOI: 10.5551/jat.21055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Chronic kidney disease (CKD) is associated with cardiovascular events. Tumor necrosis factor (TNF) and/or its receptors have been postulated to be involved in renal pathophysiology. It is unclear whether an increased TNF system activity is present before the development of apparent CKD. METHODS Four hundred and twenty non-diabetic Japanese subjects with an estimated GFR (eGFR) greater than 60 ml/min/1.73 m(2) were recruited for measurement of the HbA1c, insulin, TNF system activity (TNF-α, soluble TNF receptor 1 (sTNF-R1) and sTNF-R2) levels and various parameters, including the lipid, high-sensitivity C-reactive protein (hsCRP), high-molecular-weight (HMW) adiponectin and leptin levels. The subjects were stratified according to the eGFR: the G1 level (eGFR ≧90 ml/min/1.73 m(2)) and the G2 level (90 >eGFR ≧60 ml/min/1.73 m(2)). RESULTS Whereas no significant differences were observed in gender, body mass index (BMI), blood pressure, insulin, TNF-α, hsCRP, HMW adiponectin or leptin between the two groups, the values for age, HbA1c, triglycerides, sTNF-R1 and sTNF-R2 were significantly higher in the subjects with a G2 level of eGFR than in those with a G1 level. In contrast, the HDL cholesterol levels were significantly lower in the subjects with a G2 level than in those with a G1 level. Linear negative correlations were also observed between eGFR and age, BMI, HbA1c, triglycerides, sTNF-R1 and sTNFR2, respectively. A multiple logistic regression analysis revealed that only sTNF-R2 was associated with the presence of a G2 level of eGFR (Odds ratio 1.092, 95% CI 1.013-1.177, P=0.021). CONCLUSIONS The circulating sTNF-R2 level is closely associated with the kidney function in non-diabetic Japanese subjects.
Collapse
|
311
|
Fiorina P, Vergani A, Bassi R, Niewczas MA, Altintas MM, Pezzolesi MG, D'Addio F, Chin M, Tezza S, Ben Nasr M, Mattinzoli D, Ikehata M, Corradi D, Schumacher V, Buvall L, Yu CC, Chang JM, La Rosa S, Finzi G, Solini A, Vincenti F, Rastaldi MP, Reiser J, Krolewski AS, Mundel PH, Sayegh MH. Role of podocyte B7-1 in diabetic nephropathy. J Am Soc Nephrol 2014; 25:1415-29. [PMID: 24676639 DOI: 10.1681/asn.2013050518] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Podocyte injury and resulting albuminuria are hallmarks of diabetic nephropathy, but targeted therapies to halt or prevent these complications are currently not available. Here, we show that the immune-related molecule B7-1/CD80 is a critical mediator of podocyte injury in type 2 diabetic nephropathy. We report the induction of podocyte B7-1 in kidney biopsy specimens from patients with type 2 diabetes. Genetic and epidemiologic studies revealed the association of two single nucleotide polymorphisms at the B7-1 gene with diabetic nephropathy. Furthermore, increased levels of the soluble isoform of the B7-1 ligand CD28 correlated with the progression to ESRD in individuals with type 2 diabetes. In vitro, high glucose conditions prompted the phosphatidylinositol 3 kinase-dependent upregulation of B7-1 in podocytes, and the ectopic expression of B7-1 in podocytes increased apoptosis and induced disruption of the cytoskeleton that were reversed by the B7-1 inhibitor CTLA4-Ig. Podocyte expression of B7-1 was also induced in vivo in two murine models of diabetic nephropathy, and treatment with CTLA4-Ig prevented increased urinary albumin excretion and improved kidney pathology in these animals. Taken together, these results identify B7-1 inhibition as a potential therapeutic strategy for the prevention or treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Medicine, San Raffaele Scientific Institute, Milan, Italy;
| | - Andrea Vergani
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Bassi
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Medicine, San Raffaele Scientific Institute, Milan, Italy; DiSTeBA, Universita' del Salento, Lecce, Italy
| | - Monika A Niewczas
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, Illinois
| | - Marcus G Pezzolesi
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Francesca D'Addio
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Melissa Chin
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sara Tezza
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Ospedale Maggiore Policlinico and Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Ospedale Maggiore Policlinico and Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Domenico Corradi
- Department of Biomedical, Biotechnological and Translational Sciences, Unit of Pathology, University of Parma, Parma, Italy
| | - Valerie Schumacher
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lisa Buvall
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Chih-Chuan Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jer-Ming Chang
- Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Giovanna Finzi
- Pathology Department, Ospedale di Circolo, Varese, Italy
| | - Anna Solini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Flavio Vincenti
- Kidney Transplant Service, University of San Francisco, San Francisco, California
| | - Maria Pia Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Ospedale Maggiore Policlinico and Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois
| | - Andrzej S Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Peter H Mundel
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Mohamed H Sayegh
- Transplantation Research Center, Brigham and Women's Hospital, Boston, Massachusetts; and American University of Beirut, Beirut, Lebanon
| |
Collapse
|
312
|
Omote K, Gohda T, Murakoshi M, Sasaki Y, Kazuno S, Fujimura T, Ishizaka M, Sonoda Y, Tomino Y. Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice. Am J Physiol Renal Physiol 2014; 306:F1335-47. [PMID: 24647715 DOI: 10.1152/ajprenal.00509.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic inflammation promotes the progression of diabetic nephropathy (DN). However, the role of TNF-α remains unclear. The objectives of the present study were to examine whether TNF-α inhibition with a soluble TNF receptor (TNFR)2 fusion protein, i.e., etanercept (ETN), improves the early stage of DN in the type 2 diabetic model of the KK-A(y) mouse and to also investigate which TNF pathway, TNFR1 or TNFR2, is predominantly involved in the progression of this disease. ETN was injected intraperitoneally into mice for 8 wk. Renal damage was evaluated by immunohistochemistry, Western blot analysis, and/or real-time PCR. In vitro, mouse tubular proximal cells were stimulated by TNF-α and/or high glucose (HG) and treated with ETN. ETN dramatically improved not only albuminuria but also glycemic control. Renal mRNA and/or protein levels of TNFR2, but not TNF-α and TNFR1, in ETN-treated KK-A(y) mice were significantly decreased compared with untreated KK-A(y) mice. mRNA levels of ICAM-1, VCAM-1, and monocyte chemoattractant protein-1 and the number of F4/80-positive cells were all decreased after treatment. Numbers of cleaved caspase-3- and TUNEL-positive cells in untreated mice were very few and were not different from ETN-treated mice. In vitro, stimulation with TNF-α or HG markedly increased both mRNA levels of TNFRs, unlike in the in vivo case. Furthermore, ETN partly recovered TNF-α-induced but not HG-induced TNFR mRNA levels. In conclusion, it appears that ETN may improve the progression of the early stage of DN predominantly through inhibition of the anti-inflammatory action of the TNF-α-TNFR2 pathway.
Collapse
Affiliation(s)
- Keisuke Omote
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Tomohito Gohda
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Maki Murakoshi
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Yu Sasaki
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Saiko Kazuno
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tsutomu Fujimura
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masanori Ishizaka
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Yuji Sonoda
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Yasuhiko Tomino
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| |
Collapse
|
313
|
Macisaac RJ, Ekinci EI, Jerums G. Markers of and risk factors for the development and progression of diabetic kidney disease. Am J Kidney Dis 2014; 63:S39-62. [PMID: 24461729 DOI: 10.1053/j.ajkd.2013.10.048] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022]
Abstract
Diabetic kidney disease (DKD) occurs in 25%-40% of patients with diabetes. Given the dual problems of a significant risk of progression from DKD to end-stage renal disease (ESRD) and increased cardiovascular morbidity and mortality, it is important to identify patients at risk of DKD and ESRD and initiate protective renal and cardiovascular therapies. The importance of preventive therapy is emphasized further by worldwide increases in the incidence of diabetes. This review summarizes the evidence regarding the prognostic value and benefits of targeting established and novel risk markers for DKD development and progression. Family history of DKD, smoking history, and glycemic, blood pressure, and plasma lipid level control are established factors for identifying people at greatest risk of DKD development and progression. Absolute albumin excretion rate (AER) and glomerular filtration rate (GFR) measurements also are important, although AER categorization generally lacks the necessary specificity and sensitivity, and estimates of declining GFR are compromised by methodological limitations for GFRs in the normal-to-high range. Emerging risk markers for progressive loss of kidney function include markers of oxidation and inflammation, profibrotic cytokines, uric acid, advanced glycation end products, functional and structural markers of vascular dysfunction, kidney structural changes, and tubular biomarkers. Among these, the most promising are serum uric acid and soluble tumor necrosis factor receptor (type 1 and type 2) levels, especially in relation to GFR changes. At present, these can only be considered as risk markers because they only identify an individual at increased risk of progressive DKD and not necessarily related to the causal pathway promoting kidney damage. Further work is needed to establish whether modulating these factors improves the prognosis in DKD. Although change in urinary peptidome levels also is a promising marker, there currently is neither a clinical assay nor adequate studies defining its prognostic value. Until these or other novel markers become available for clinical use, predictive accuracy often may be increased with greater attention to established markers.
Collapse
Affiliation(s)
- Richard J Macisaac
- Department of Endocrinology & Diabetes, St Vincent's Hospital Melbourne, Victoria, Australia; University of Melbourne, Victoria, Australia.
| | - Elif I Ekinci
- University of Melbourne, Victoria, Australia; Endocrine Centre & Department of Medicine, Austin Health, Darwin, Australia; Menzies School of Health Research, Darwin, Australia
| | - George Jerums
- University of Melbourne, Victoria, Australia; Endocrine Centre & Department of Medicine, Austin Health, Darwin, Australia
| |
Collapse
|
314
|
Alicic RZ, Tuttle KR. Novel therapies for diabetic kidney disease. Adv Chronic Kidney Dis 2014; 21:121-33. [PMID: 24602462 DOI: 10.1053/j.ackd.2014.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 02/07/2023]
Abstract
The number of people diagnosed with diabetes is rising throughout the world, which in turn drives upward the global frequency of diabetic kidney disease (DKD). Individuals with DKD are at an increased risk for premature death, cardiovascular disease, and other severe illnesses that result in frequent hospitalizations and increased health-care utilization. Current treatments concentrate on controlling hyperglycemia and hypertension with the specific use of renin-angiotensin system inhibitors. Although such measures reduce the risk of progressive kidney disease, DKD remains the leading cause of ESRD and the major risk amplifier for death in this population. Therefore, novel therapeutic approaches are urgently needed. Ideas for novel targets for therapy are founded on recent advances in understanding DKD mechanisms that are based on experimental models and human observations. The purpose of this review is to describe the epidemiology and present knowledge of DKD pathophysiology as the basis for novel therapies including inhibitors of Janus kinases (JAK), protein kinase C, fibrosis, advanced glycation end products treatments, and endothelin.
Collapse
|
315
|
Carlsson AC, Larsson TE, Helmersson-Karlqvist J, Larsson A, Lind L, Ärnlöv J. Soluble TNF receptors and kidney dysfunction in the elderly. J Am Soc Nephrol 2014; 25:1313-20. [PMID: 24511129 DOI: 10.1681/asn.2013080860] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The importance of TNF-α and its soluble receptors (sTNFR1 and sTNFR2) in the development of kidney disease is being unraveled. Yet, community-based data regarding the role of sTNFRs are lacking. We assessed serum sTNFRs and aspects of kidney damage cross-sectionally in two independent community-based cohorts of elderly participants: Prospective Investigation of the Vasculature in Uppsala Seniors (n=815; mean age, 75 years; 51% women) and Uppsala Longitudinal Study of Adult Men (n=778; mean age, 78 years). Serum sTNFR1 correlated substantially with different aspects of kidney pathology in the Uppsala Longitudinal Study of Adult Men cohort (R=-0.52 for estimated GFR, R=0.22 for urinary albumin-to-creatinine ratio, and R=0.17 for urinary kidney injury molecule-1; P<0.001 for all), with similar correlations in the Prospective Investigation of the Vasculature in Uppsala Seniors cohort. These associations remained significant after adjustment for age, sex, inflammatory markers, and cardiovascular risk factors and were also evident in participants without diabetes. Serum sTNFR2 was associated with all three markers in the Prospective Investigation of the Vasculature in Uppsala Seniors cohort (P<0.001 for all). Our findings from two independent community-based cohorts confirm and extend results of previous studies supporting circulating sTNFRs as relevant biomarkers for kidney damage and dysfunction in elderly individuals, even in the absence of diabetes.
Collapse
Affiliation(s)
- Axel C Carlsson
- Centre for Family Medicine, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden; Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden;
| | - Tobias E Larsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Anders Larsson
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden; and
| | - Lars Lind
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden; and
| | - Johan Ärnlöv
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden; School of Health and Social Studies, Dalarna University, Falun, Sweden
| |
Collapse
|
316
|
Strom Halden TA, Asberg A, Vik K, Hartmann A, Jenssen T. Short-term efficacy and safety of sitagliptin treatment in long-term stable renal recipients with new-onset diabetes after transplantation. Nephrol Dial Transplant 2014; 29:926-33. [DOI: 10.1093/ndt/gft536] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
317
|
Uremic solutes and risk of end-stage renal disease in type 2 diabetes: metabolomic study. Kidney Int 2014; 85:1214-24. [PMID: 24429397 PMCID: PMC4072128 DOI: 10.1038/ki.2013.497] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 12/17/2022]
Abstract
Here we studied plasma metabolomic profiles as determinants of progression to ESRD in patients with Type 2 diabetes (T2D). This nested case-control study evaluated 40 cases who progressed to ESRD during 8-12 years of follow-up and 40 controls who remained alive without ESRD from the Joslin Kidney Study cohort. Controls were matched with cases for baseline clinical characteristics; although controls had slightly higher eGFR and lower levels of urinary albumin excretion than T2D cases. Plasma metabolites at baseline were measured by mass spectrometry-based global metabolomic profiling. Of the named metabolites in the library, 262 were detected in at least 80% of the study patients. The metabolomic platform recognized 78 metabolites previously reported to be elevated in ESRD (uremic solutes). Sixteen were already elevated in the baseline plasma of our cases years before ESRD developed. Other uremic solutes were either not different or not commonly detectable. Essential amino acids and their derivatives were significantly depleted in the cases, whereas certain amino acid-derived acylcarnitines were increased. All findings remained statistically significant after adjustment for differences between study groups in albumin excretion rate, eGFR or HbA1c. Uremic solute differences were confirmed by quantitative measurements. Thus, abnormal plasma concentrations of putative uremic solutes and essential amino acids either contribute to progression to ESRD or are a manifestation of an early stage(s) of the disease process that leads to ESRD in T2D.
Collapse
|
318
|
Abstract
As a prognostic biomarker for progression of diabetic nephropathy, albuminuria fails in terms of sensitivity and specificity. Better urinary or plasma biomarkers are needed that can predict which diabetic patients are at highest risk for progression. Bhensdadia et al. report proteomic investigations that identified urinary haptoglobin as a potential prognostic biomarker for progressive diabetic nephropathy. Although as a single marker urinary haptoglobin adds little to albuminuria, together the two appear to provide better diagnostic accuracy than albuminuria alone.
Collapse
|
319
|
Merscher S, Pedigo CE, Mendez AJ. Metabolism, energetics, and lipid biology in the podocyte - cellular cholesterol-mediated glomerular injury. Front Endocrinol (Lausanne) 2014; 5:169. [PMID: 25352833 PMCID: PMC4196552 DOI: 10.3389/fendo.2014.00169] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/28/2014] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with a high risk of death. Dyslipidemia is commonly observed in patients with CKD and is accompanied by a decrease in plasma high-density lipoprotein, and an increase in plasma triglyceride-rich lipoproteins and oxidized lipids. The observation that statins may decrease albuminuria but do not stop the progression of CKD indicates that pathways other than the cholesterol synthesis contribute to cholesterol accumulation in the kidneys of patients with CKD. Recently, it has become clear that increased lipid influx and impaired reverse cholesterol transport can promote glomerulosclerosis, and tubulointerstitial damage. Lipid-rafts are cholesterol-rich membrane domains with important functions in regulating membrane fluidity, membrane protein trafficking, and in the assembly of signaling molecules. In podocytes, which are specialized cells of the glomerulus, they contribute to the spatial organization of the slit diaphragm (SD) under physiological and pathological conditions. The discovery that podocyte-specific proteins such as podocin can bind and recruit cholesterol contributing to the formation of the SD underlines the importance of cholesterol homeostasis in podocytes and suggests cholesterol as an important regulator in the development of proteinuric kidney disease. Cellular cholesterol accumulation due to increased synthesis, influx, or decreased efflux is an emerging concept in podocyte biology. This review will focus on the role of cellular cholesterol accumulation in the pathogenesis of kidney diseases with a focus on glomerular diseases.
Collapse
Affiliation(s)
- Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
- *Correspondence: Sandra Merscher, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami,1580 NW 10th Ave, Batchelor Bldg, Room 628, Miami, FL 33136, USA e-mail:
| | - Christopher E. Pedigo
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
| | - Armando J. Mendez
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
320
|
Krolewski AS, Niewczas MA, Skupien J, Gohda T, Smiles A, Eckfeldt JH, Doria A, Warram JH. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care 2014; 37:226-34. [PMID: 23939543 PMCID: PMC3867993 DOI: 10.2337/dc13-0985] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Progressive decrease in the glomerular filtration rate (GFR), or renal decline, in type 1 diabetes (T1D) is observed in patients with macroalbuminuria. However, it is unknown whether this decline begins during microalbuminuria (MA) or normoalbuminuria (NA). RESEARCH DESIGN AND METHODS The study group (second Joslin Kidney Study) comprises patients with T1D and NA (n = 286) or MA (n = 248) who were followed for 4-10 years (median 8 years). Serial measurements (median 6, range 3-16) of serum creatinine and cystatin C were used jointly to estimate GFR (eGFRcr-cys) and assess its trajectories during follow-up. RESULTS Renal decline (progressive eGFRcr-cys loss of at least 3.3% per year) occurred in 10% of the NA and 35% of the MA (P < 0.001). In both groups, the strongest determinants of renal decline were baseline serum concentrations of uric acid (P < 0.001) and tumor necrosis factor receptor 1 or 2 (TNFR-1 or -2, P < 0.001). Other significant risk factors included baseline HbA1c, age/diabetes duration, and systolic blood pressure. Relative impacts of these determinants were similar in NA and MA. Renal decline was not associated with sex or baseline serum concentration of TNF-α, IL-6, IL-8, IP-10, MCP-1, VCAM, ICAM, Fas, or FasL. CONCLUSIONS Renal decline in T1D begins during NA and it is determined by multiple factors, similar to MA. Thus, this early decline is the primary disease process leading to impaired renal function in T1D. Changes in albumin excretion rate, such as the onset of MA or its progression to macroalbuminuria, are either caused by or develop in parallel to the early renal decline.
Collapse
|
321
|
GOHDA TOMOHITO, TOMINO YASUHIKO. A Paradigm Shift for the Concept of Diabetic Nephropathy. JUNTENDO MEDICAL JOURNAL 2014. [DOI: 10.14789/jmj.60.293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- TOMOHITO GOHDA
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine
| | - YASUHIKO TOMINO
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine
| |
Collapse
|
322
|
Vlassara H, Striker GE. Advanced glycation endproducts in diabetes and diabetic complications. Endocrinol Metab Clin North Am 2013; 42:697-719. [PMID: 24286947 DOI: 10.1016/j.ecl.2013.07.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This review presents insights from studies of advanced glycation end products (AGEs) in humans and mice. Although the emphasis is on the effects of exogenous AGEs and the suppression of specific host defense mechanisms, AGEs are also formed intracellularly, where they may contribute to several normal intracellular functions. It is only when the overall levels of AGEs in the extracellular and the intracellular spaces exceeds the ability of the native antioxidant (and AGE) defenses that they pose a problem.
Collapse
Affiliation(s)
- Helen Vlassara
- Departments of Geriatrics and Medicine, Division of Experimental Diabetes and Aging, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Annenberg Building, Box 1640, New York, NY 10029, USA.
| | | |
Collapse
|
323
|
Fiorentino L, Cavalera M, Mavilio M, Conserva F, Menghini R, Gesualdo L, Federici M. Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs. Acta Diabetol 2013; 50:965-9. [PMID: 23797704 DOI: 10.1007/s00592-013-0492-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 06/11/2013] [Indexed: 12/21/2022]
Abstract
Diabetic nephropathy (DN) is the major cause of chronic kidney disease in developed countries and contributes significantly to increased morbidity and mortality among diabetic patients. Morphologically, DN is characterized by tubulo-interstitial fibrosis, thickening of the glomerular basement membrane and mesangial expansion mainly due to accumulation of extracellular matrix (ECM). ECM turnover is regulated by metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs) activities. In diabetic conditions, TIMP3 expression in kidney is strongly reduced, but the causes of this reduction are still unknown. The aim of this study was to elucidate at least one of these mechanisms which relies on differential expression of TIMP3-targeting microRNAs (miRs) in a hyperglycemic environment either in vitro (MES13 cell line) or in vivo (mouse kidney and human biopsies). Among the TIMP3-targeting miRs, miR-21 and miR-221 were significantly upregulated in kidneys from diabetic mice compared to control littermates, and in a mesangial cell line grown in high glucose conditions. In human samples, only miR-21 expression was increased in kidney biopsies from diabetic patients compared to healthy controls. The expression of miR-217, which targets TIMP3 indirectly through downregulation of SirT1, was also increased in diabetic kidney and MES13 cell line. In agreement with these result, SirT1 expression was reduced in mouse and human diabetic kidneys as well as in MES13 mesangial cell line. TIMP3 deficiency has recently emerged as a hallmark of DN in mouse and human. In this study, we demonstrated that this reduction is due, at least in part, to increased expression of certain TIMP3-targeting miRs in diabetic kidneys compared to healthy controls. Unveiling the post-transcriptional mechanisms responsible for TIMP3 downregulation in hyperglycemic conditions may orient toward the use of this protein as a possible therapeutic target in DN.
Collapse
|
324
|
Abstract
Nephropathy remains a major cause of morbidity and a key determinant of mortality in patients with type 1 or type 2 diabetes mellitus. Research is ongoing to identify biomarkers that in addition to albuminuria and glomerular filtration rate assist in the prediction and monitoring of renal disease in diabetes mellitus. Current strategies to treat this condition focus on intensification of glycaemic control and excellent control of blood pressure using regimens based on blockade of the renin-angiotensin system. Other approaches to control blood pressure and afford renoprotection are under active clinical investigation, including renal denervation and endothelin receptor antagonism. With increasing understanding of the underlying pathophysiological processes implicated in diabetic nephropathy, new specific renoprotective treatment strategies are anticipated to become available over the next few years.
Collapse
Affiliation(s)
- Daniel Fineberg
- Diabetes Division, Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Vic 3004, Australia
| | | | | |
Collapse
|
325
|
Bruggeman LA, O'Toole JF, Ross MD, Madhavan SM, Smurzynski M, Wu K, Bosch RJ, Gupta S, Pollak MR, Sedor JR, Kalayjian RC. Plasma apolipoprotein L1 levels do not correlate with CKD. J Am Soc Nephrol 2013; 25:634-44. [PMID: 24231663 DOI: 10.1681/asn.2013070700] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polymorphisms in APOL1 are associated with CKD, including HIV-related CKD, in individuals of African ancestry. The apolipoprotein L1 (APOL1) protein circulates and is localized in kidney cells, but the contribution of APOL1 location to CKD pathogenesis is unclear. We examined associations of plasma APOL1 levels with plasma cytokine levels, dyslipidemia, and APOL1 genotype in a nested case-control study (n=270) of HIV-infected African Americans enrolled in a multicenter prospective observational study. Patients were designated as having CKD when estimated GFR (eGFR) decreased to <60 ml/min per 1.73 m(2) (eGFR<60 cohort) or protein-to-creatinine ratios became >3.5 g/g (nephrotic proteinuria cohort). Circulating APOL1 levels did not associate with APOL1 genotype, CKD status, or levels of proinflammatory cytokines, but did correlate with fasting cholesterol, LDL cholesterol, and triglyceride levels. At ascertainment, CKD-associated polymorphisms (risk variants) in APOL1 associated with the eGFR<60 cohort, but not the nephrotic-range proteinuria cohort. Of note, in both the eGFR<60 and nephrotic proteinuria cohorts, CKD cases with two APOL1 risk variants had significant declines in eGFR over a median of 4 years compared with individuals with one or no risk variants. APOL1 risk genotype was not associated with changes in proteinuria. Higher circulating proinflammatory cytokine levels were independently associated with CKD but not APOL1 genotype. In conclusion, the function of variant APOL1 proteins derived from circulation or synthesized in the kidney, but not the level of circulating APOL1, probably mediates APOL1-associated kidney disease in HIV-infected African Americans.
Collapse
|
326
|
Roshan B, Stanton RC. A story of microalbuminuria and diabetic nephropathy. J Nephropathol 2013; 2:234-40. [PMID: 24475455 DOI: 10.12860/jnp.2013.37] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/25/2012] [Indexed: 01/15/2023] Open
Abstract
CONTEXT It is estimated that more than 346 million people worldwide have diabetes mellitus . By the year 2030, it is predicted that diabetes will become the seventh leading cause of death in the world. Development of chronic kidney disease (CKD) in patients with diabetes adds significantly to the morbidity and mortality and significantly increases health care costs, even before the development of end stage renal disease (ESRD). Evidence acquisitions: Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. RESULTS Diabetic nephropathy (DN) is increasing rapidly worldwide. It is the leading cause of new cases of ESRD in the USA. Interestingly, although DN is the most common cause of ESRD in diabetic patients, diabetes mellitus is also an independent and strong risk factor for ESRD ascribed to causes other than DN (e.g. hypertensive nephropathy). CONCLUSIONS It is important to be aware of the pitfalls of using the urine albumin level in predicting development and progression of diabetic nephropathy in order to treat and advise the patients accurately. Research into finding new markers is rapidly evolving but current progress makes it likely we will be using the urine albumin level for some years into the future.
Collapse
Affiliation(s)
- Bijan Roshan
- Division of Renal Diseases and Hypertension, University of Colorado Denver, 12700 East 19th Ave. Room 7015Aurora, CO 80045, USA
| | - Robert C Stanton
- Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Renal Division. Boston, MA 02215, USA
| |
Collapse
|
327
|
Abstract
Despite 2 decades of advances in therapy of diabetic patients, the prevalence of diabetic nephropathy among patients with diabetes has not decreased. However, large-scale multicenter studies have achieved great success in terms of the reduction of albuminuria, suggesting that albuminuria might not be an accurate surrogate marker for slowing the rate of renal function decline. It is important to be able to identify individuals at high risk for renal function decline, or ultimately, end-stage kidney disease (ESKD) and its associated cardiovascular disease (CVD). More sensitive early biomarkers, other than albuminuria and the estimated glomerular filtration rate (eGFR), should be required. Recently, serum concentrations of soluble tumor necrosis factor (TNF), receptor 1 (TNFR1), and TNFR2 have predicted future GFR loss and ESKD in patients of a wide variety of stages and both types of diabetes. Longitudinal interventional studies are needed to validate these biomarkers in a broad range of populations prior to implementation in routine diabetes management.
Collapse
Affiliation(s)
- Tomohito Gohda
- Division of Nephrology, Department of Internal Medicine, Juntendo University, Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | | |
Collapse
|
328
|
Lopes-Virella MF, Baker NL, Hunt KJ, Cleary PA, Klein R, Virella G. Baseline markers of inflammation are associated with progression to macroalbuminuria in type 1 diabetic subjects. Diabetes Care 2013; 36:2317-23. [PMID: 23514730 PMCID: PMC3714479 DOI: 10.2337/dc12-2521] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The current study aimed to determine in the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications cohort whether or not abnormal levels of markers of inflammation and endothelial dysfunction measured in samples collected at DCCT baseline were able to predict the development of macroalbuminuria. RESEARCH DESIGN AND METHODS Levels of inflammation and endothelial cell dysfunction biomarkers were measured in 1,237 of 1,441 patients enrolled in the DCCT study who were both free of albuminuria and cardiovascular disease at baseline. To test the association of log-transformed biomarkers with albuminuria, generalized logistic regression models were used to quantify the association of increased levels of biomarkers and development of abnormal albuminuria. Normal, micro-, and macroalbuminuria were the outcomes of interest. RESULTS In the logistic regression models adjusted by DCCT treatment assignment, baseline albumin excretion rate, and use of ACE/angiotensin receptor blocker drugs, one unit increase in the standardized levels of soluble E-selectin (sE-selectin) was associated with an 87% increase in the odds to develop macroalbuminuria and one unit increase in the levels of interleukin-6 (IL-6), plasminogen activator inhibitor 1 (PAI-1; total and active), and soluble tumor necrosis factor receptors (TNFR)-1 and -2 lead to a 30-50% increase in the odds to develop macroalbuminuria. Following adjustment for DCCT baseline retinopathy status, age, sex, HbA1c, and duration of diabetes, significant associations remained for sE-selectin and TNFR-1 and -2 but not for IL-6 or PAI-1. CONCLUSIONS Our study indicates that high levels of inflammatory markers, mainly E-selectin and sTNRF-1 and -2, are important predictors of macroalbuminuria in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Maria F Lopes-Virella
- Department of Medicine and Laboratory Services, Medical University of South Carolina and Ralph H Johnson VA Medical Center, Charleston, South Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
329
|
Gunzler D, Bleyer AJ, Thomas RL, O'Brien A, Russell GB, Sattar A, Iyengar SK, Thomas C, Sedor JR, Schelling JR. Diabetic nephropathy in a sibling and albuminuria predict early GFR decline: a prospective cohort study. BMC Nephrol 2013; 14:124. [PMID: 23773264 PMCID: PMC3703258 DOI: 10.1186/1471-2369-14-124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetic nephropathy is a growing clinical problem, and the cause for >40% of incident ESRD cases. Unfortunately, few modifiable risk factors are known. The objective is to examine if albuminuria and history of diabetic nephropathy (DN) in a sibling are associated with early DN progression or mortality. METHODS In this longitudinal study of adults >18 yrs with diabetes monitored for up to 9 yrs (mean 4.6 ± 1.7 yrs), 435 subjects at high risk (DN family history) and 400 at low risk (diabetes >10 yrs, normoalbuminuria, no DN family history) for DN progression were evaluated for rate of eGFR change using the linear mixed effects model and progression to ESRD. All-cause mortality was evaluated by Kaplan-Meier analyses while controlling for baseline covariates in a Cox proportional hazards model. Covariates included baseline eGFR, age, gender, race, diabetes duration, blood pressure, hemoglobin A1c and urine albumin:creatinine ratio. Propensity score matching was used to identify high and low risk group pairs with balanced covariates. Sensitivity analyses were employed to test for residual confounding. RESULTS Mean baseline eGFR was 74 ml/min/1.73 m2 (86% of cohort >60 ml/min/1.73 m2). Thirty high risk and no low risk subjects developed ESRD. eGFR decline was significantly greater in high compared to low risk subjects. After controlling for confounders, change in eGFR remained significantly different between groups, suggesting that DN family history independently regulates GFR progression. Mortality was also significantly greater in high versus low risk subjects, but after controlling for baseline covariates, no significant difference was observed between groups, indicating that factors other than DN family history more strongly affect mortality. Analyses of the matched pairs confirmed change in eGFR and mortality findings. Sensitivity analyses demonstrated that the eGFR results were not due to residual confounding by unmeasured covariates of a moderate effect size in the propensity matching. CONCLUSIONS Diabetic subjects with albuminuria and family history of DN are vulnerable for early GFR decline, whereas subjects with diabetes for longer than 10 years, normoalbuminuria and negative family history, experience slower eGFR decline, and are extremely unlikely to require dialysis. Although we would not recommend that patients with low risk characteristics be neglected, scarce resources would be more sensibly devoted to vulnerable patients, such as the high risk cases in our study, and preferably prior to the onset of albuminuria or GFR decline.
Collapse
|
330
|
Tramonti G, Kanwar YS. Review and discussion of tubular biomarkers in the diagnosis and management of diabetic nephropathy. Endocrine 2013; 43:494-503. [PMID: 23086402 PMCID: PMC3670820 DOI: 10.1007/s12020-012-9820-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/09/2012] [Indexed: 01/14/2023]
Abstract
The prevalence of diabetic nephropathy has tremendously increased with the relentless rise in the incidence of diabetes over the last couple decades. Diabetic nephropathy is a leading cause of morbidity and mortality, and it invariably leads to an end-stage renal disease (ESRD). In an effort to delay the onset of ESRD systematic screening and appropriate management are needed to evaluate the progression of renal damage in diabetic nephropathy. The reliability of current tests in predicting the onset, progression and response to various regimens for diabetic nephropathy is still under debate; and it has engendered a search for more sensitive and specific urinary biomarkers, especially those reflective of tubular dysfunctions. It is well-known that there is a good correlation between the degree of damage to the tubulo-interstitial compartment and the deterioration of renal functions. In view of this, the utility of urinary biomarkers, reflective of tubular injury, reported in the literature is discussed in this brief review.
Collapse
Affiliation(s)
- Gianfranco Tramonti
- Dipartimento di Medicina Interna – Sezione di Nefrologia, Università di Pisa, Italy
| | - Yashpal S. Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, Illinois 60611, USA
| |
Collapse
|
331
|
Goel G, Perkins BA. Can improved glycemic control slow renal function decline at all stages of diabetic nephropathy? Semin Nephrol 2013; 32:423-31. [PMID: 23062982 DOI: 10.1016/j.semnephrol.2012.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Observational studies have shown the strong association between level of glycemic control and the key outcome measure, risk of glomerular filtration rate (GFR) loss rather than subsequent course of albumin excretion, in type 1 diabetes patients at all stages of nephropathy. However, it has not been clear if clinical interventions designed to normalize glycemic control are equally effective at all stages, such as primary prevention in normoalbuminuric patients, secondary prevention in microalbuminuria and macroalbuminuria, or tertiary prevention aimed at slowing or reversing further loss of GFR once impaired. Substantial randomized controlled trial data from the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications exists to support postponement, but not outright prevention, of GFR loss in normoalbuminuric patients. Although secondary and tertiary prevention systematic studies are limited to methodologically insufficient insulin pump and transplantation trials, the reversal of advanced glomerular lesions observed in whole-pancreas transplant recipients who experienced long-term glycemic normalization offers convincing support for further research into glycemic interventions specifically for GFR preservation. In light of existing literature, we encourage the design of secondary and tertiary prevention trials that incorporate biomarker methods for identifying patients at highest risk of GFR loss because interventions to normalize hyperglycemia are resource-intensive and may be applied unnecessarily to clinical populations at low long-term GFR loss risk.
Collapse
Affiliation(s)
- Gautam Goel
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Canada
| | | |
Collapse
|
332
|
Krolewski AS, Bonventre JV. High risk of ESRD in type 1 diabetes: new strategies are needed to retard progressive renal function decline. Semin Nephrol 2013; 32:407-14. [PMID: 23062980 DOI: 10.1016/j.semnephrol.2012.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Care of patients with type 1 diabetes (T1D) has changed during the past 30 years. Tools to control hyperglycemia have improved and it was shown that improvement in glycemic control diminished the risk of late diabetic complications, including nephropathy. Moreover, in patients with impaired renal function, aggressive treatment of hypertension and renoprotective blockade of the renin-angiotensin system were shown to postpone end-stage renal disease (ESRD), albeit for a short while. Despite these achievements, the incidence of ESRD caused by T1D in the US population has not decreased but rather has increased over the past 20 years, although it now occurs at slightly older ages. This state of affairs is a call to action. This should begin with adopting a new model of diabetic nephropathy in human beings. In that model, instead of microalbuminuria or proteinuria, the focus should be on diagnosis and treatment of progressive renal function decline that leads to ESRD. Such a model has received significant support in clinical and epidemiologic studies. Investigation of mechanisms of such progressive renal function decline should help in the identification of new therapeutic targets and the development of new interventions. To evaluate these interventions, accurate diagnostic algorithms are needed so T1D patients will be stratified according to time to onset to ESRD. Consistent with concepts of personalized medicine, the new interventions should be tailored to and evaluated in patients predicted to have rapid, moderate, or even slow progression to ESRD.
Collapse
Affiliation(s)
- Andrzej S Krolewski
- Research Division of the Joslin Diabetes Center, Harvard Medicial School, Boston, MA, USA.
| | | |
Collapse
|
333
|
Ramseyer VD, Garvin JL. Tumor necrosis factor-α: regulation of renal function and blood pressure. Am J Physiol Renal Physiol 2013; 304:F1231-42. [PMID: 23515717 DOI: 10.1152/ajprenal.00557.2012] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine that becomes elevated in chronic inflammatory states such as hypertension and diabetes and has been found to mediate both increases and decreases in blood pressure. High levels of TNF-α decrease blood pressure, whereas moderate increases in TNF-α have been associated with increased NaCl retention and hypertension. The explanation for these disparate effects is not clear but could simply be due to different concentrations of TNF-α within the kidney, the physiological status of the subject, or the type of stimulus initiating the inflammatory response. TNF-α alters renal hemodynamics and nephron transport, affecting both activity and expression of transporters. It also mediates organ damage by stimulating immune cell infiltration and cell death. Here we will summarize the available findings and attempt to provide plausible explanations for such discrepancies.
Collapse
Affiliation(s)
- Vanesa D Ramseyer
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA.
| | | |
Collapse
|
334
|
Risk of ESRD and all cause mortality in type 2 diabetes according to circulating levels of FGF-23 and TNFR1. PLoS One 2013; 8:e58007. [PMID: 23526964 PMCID: PMC3603950 DOI: 10.1371/journal.pone.0058007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/29/2013] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Recent studies demonstrated that circulating fibroblast growth factor (FGF)-23 was associated with risk of end stage renal disease (ESRD) and mortality. This study aims to examine whether the predictive effect of FGF-23 is independent from circulating levels of tumor necrosis factor receptor 1 (TNFR1), a strong predictor of ESRD in Type 2 diabetes (T2D). METHODS We studied 380 patients with T2D who were followed for 8-12 years and were used previously to examine the effect of TNFR1. Baseline plasma FGF-23 was measured by immunoassay. RESULTS During follow-up, 48 patients (13%) developed ESRD and 83 patients (22%) died without ESRD. In a univariate analysis, baseline circulating levels of FGF-23 and TNFR1 were significantly higher in subjects who subsequently developed ESRD or died without ESRD than in those who remained alive. In a Cox proportional hazard model, baseline concentration of FGF-23 was associated with increased risk of ESRD, however its effect was no longer significant after controlling for TNFR1 and other clinical characteristics (HR 1.3, p = 0.15). The strong effect of circulating level of TNFR1 on risk of ESRD was not changed by including circulating levels of FGF-23 (HR 8.7, p<0.001). In the Cox multivariate model, circulating levels of FGF-23 remained a significant independent predictor of all-cause mortality unrelated to ESRD (HR 1.5, p<0.001). CONCLUSIONS We demonstrated that the effect of circulating levels of FGF-23 on the risk of ESRD is accounted for by circulating levels of TNFR1. We confirmed that circulating levels of FGF-23 have an independent effect on all-cause mortality in T2D.
Collapse
|
335
|
Wanic K, Krolewski B, Ju W, Placha G, Niewczas MA, Walker W, Warram JH, Kretzler M, Krolewski AS. Transcriptome analysis of proximal tubular cells (HK-2) exposed to urines of type 1 diabetes patients at risk of early progressive renal function decline. PLoS One 2013; 8:e57751. [PMID: 23505438 PMCID: PMC3591403 DOI: 10.1371/journal.pone.0057751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 01/29/2013] [Indexed: 01/15/2023] Open
Abstract
Background In patients with Type 1 Diabetes (T1D) who develop microalbuminuria, progressive decline in glomerular filtration rate (GFR) may be initiated by leakage into the urine of toxic proteins (txUPs). This study tested this hypothesis. Methods After archiving baseline urine, we followed T1D patients with microalbuminuria for 8–12 years to distinguish those in whom GFR declined (Decliners) and those in whom it remained stable (Non-decliners). Human proximal tubular cells (HK-2 cells) were grown in serum-free medium enriched with pooled urines from Decliners or Non-decliners. We determined genome-wide expression profiles in extracted mRNA. Results The two pooled urines induced differential expression of 312 genes. In terms of gene ontology, molecular functions of the 119 up-regulated genes were enriched for protein binding and peptidase inhibitor activities. Their biologic processes were enriched for defense response, responses to other organisms, regulation of cellular processes, or response to stress or stimulus, and programmed cell death. The 195 down-regulated genes were disproportionately represented in molecular functions of cation binding, hydrolase activity, and DNA binding. They were disproportionately represented in biological processes for regulation of metabolic processes, nucleic acid metabolic processes, cellular response to stress and macromolecule biosynthesis. The set of up-regulated genes in HK-2 cells overlaps significantly with sets of over-expressed genes in tubular and interstitial compartments of kidney biopsies from patients with advanced DN (33 genes in one study and 25 in the other compared with 10.3 expected by chance, p<10−9 and p<10−4, respectively). The overlap included genes encoding chemokines and cytokines. Overlap of down-regulated genes was no more than expected by chance. Conclusions Molecular processes in tubules and interstitium seen in advanced diabetic nephropathy can be induced in vitro by exposure to urine from patients with minimal microalbuminuria who subsequently developed progressive renal function decline, presumably due to putative txUPs.
Collapse
Affiliation(s)
- Krzysztof Wanic
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Metabolic Diseases, Jagiellonian University, Krakow, Poland
| | - Bozena Krolewski
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Grzegorz Placha
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Hypertension, Warsaw Medical University, Warsaw, Poland
| | - Monika A. Niewczas
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William Walker
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James H. Warram
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrzej S. Krolewski
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
336
|
Fiorentino L, Cavalera M, Menini S, Marchetti V, Mavilio M, Fabrizi M, Conserva F, Casagrande V, Menghini R, Pontrelli P, Arisi I, D'Onofrio M, Lauro D, Khokha R, Accili D, Pugliese G, Gesualdo L, Lauro R, Federici M. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay. EMBO Mol Med 2013; 5:441-55. [PMID: 23401241 PMCID: PMC3598083 DOI: 10.1002/emmm.201201475] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 01/15/2023] Open
Abstract
ADAM17 and its inhibitor TIMP3 are involved in nephropathy, but their role in diabetic kidney disease (DKD) is unclear. Diabetic Timp3−/− mice showed increased albuminuria, increased membrane thickness and mesangial expansion. Microarray profiling uncovered a significant reduction of Foxo1 expression in diabetic Timp3−/− mice compared to WT, along with FoxO1 target genes involved in autophagy, while STAT1, a repressor of FoxO1 transcription, was increased. Re-expression of Timp3 in Timp3−/− mesangial cells rescued the expression of Foxo1 and its targets, and decreased STAT1 expression to control levels; abolishing STAT1 expression led to a rescue of FoxO1, evoking a role of STAT1 in linking Timp3 deficiency to FoxO1. Studies on kidney biopsies from patients with diabetic nephropathy confirmed a significant reduction in TIMP3, FoxO1 and FoxO1 target genes involved in autophagy compared to controls, while STAT1 expression was strongly increased. Our study suggests that loss of TIMP3 is a hallmark of DKD in human and mouse models and designates TIMP3 as a new possible therapeutic target for diabetic nephropathy.
Collapse
|
337
|
Izumi Y, Yabe D, Taniguchi A, Fukushima M, Nakai Y, Hosokawa M, Okumura T, Nin K, Matsumoto K, Nishimura F, Nagasaka S, Seino Y. Circulating TNF receptor 2 is associated with the development of chronic kidney disease in non-obese Japanese patients with type 2 diabetes. Diabetes Res Clin Pract 2013; 99:145-50. [PMID: 23375231 DOI: 10.1016/j.diabres.2012.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/26/2012] [Accepted: 11/07/2012] [Indexed: 12/14/2022]
Abstract
AIMS Chronic low-grade inflammation and/or obesity are suggested to induce chronic kidney disease (CKD) in patients with type 2 diabetes. This cross-sectional study was performed to investigate the relationship between inflammatory biomarkers and CKD in non-obese patients with type 2 diabetes. METHODS 106 non-obese Japanese patients with type 2 diabetes were recruited for the measurement of GFR, TNF, HMW adiponectin, leptin, hsCRP and some variables including urinary albumin. BMI, serum creatinine, and urinary albumin levels were 22.2 ± 0.2 kg/m(2) (17.1-24.9 kg/m(2)), 0.76 ± 0.02 mg/dl (0.39-1.38 mg/dl), 40.4 ± 4.3mg/gCr (1.6-195.0mg/gCr), respectively. They were stratified into two groups based on the value of eGFR: low eGFR (eGFR<60 ml/min/1.73 m(2)) and normal eGFR (eGFR>60 ml/min/1.73 m(2)). Logistic regression analysis was used for statistical analysis. RESULTS Whereas univariate logistic regression analysis showed that gender, diabetes duration, triglyceride, HDL cholesterol, uric acid, urinary albumin, and soluble TNF receptors (sTNF-R1, sTNF-R2) are associated with the development of stage 3 CKD, multivariate logistic regression analysis revealed that sTNF-R2 (Odds ratio 1.003, 95% confidence interval 1.000 to 1.005, P=0.030) showed significant associations with the development of stage 3 CKD. CONCLUSIONS Circulating TNF receptor 2 is an independent risk factor for CKD in non-obese Japanese patients with type 2 diabetes.
Collapse
Affiliation(s)
- Yoshio Izumi
- Department of Internal Medicine, Osaka North Postal Services Agency Hospital, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Harcourt BE, Penfold SA, Forbes JM. Coming full circle in diabetes mellitus: from complications to initiation. Nat Rev Endocrinol 2013; 9:113-23. [PMID: 23296171 DOI: 10.1038/nrendo.2012.236] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycaemic control, reduction of blood pressure using agents that block the renin-angiotensin system and control of dyslipidaemia are the major strategies used in the clinical management of patients with diabetes mellitus. Each of these approaches interrupts a number of pathological pathways, which directly contributes to the vascular complications of diabetes mellitus, including renal disease, blindness, neuropathy and cardiovascular disease. However, research published over the past few years has indicated that many of the pathological pathways important in the development of the vascular complications of diabetes mellitus are equally relevant to the initiation of diabetes mellitus itself. These pathways include insulin signalling, generation of cellular energy, post-translational modifications and redox imbalances. This Review will examine how the development of diabetes mellitus has come full circle from initiation to complications and suggests that the development of diabetes mellitus and the progression to chronic complications both require the same mechanistic triggers.
Collapse
Affiliation(s)
- Brooke E Harcourt
- Glycation and Diabetes Complications, Mater Medical Research Institute, Raymond Terrace, South Brisbane, QLD, Australia
| | | | | |
Collapse
|
339
|
Pavkov ME, Knowler WC, Hanson RL, Williams DE, Lemley KV, Myers BD, Nelson RG. Comparison of serum cystatin C, serum creatinine, measured GFR, and estimated GFR to assess the risk of kidney failure in American Indians with diabetic nephropathy. Am J Kidney Dis 2013; 62:33-41. [PMID: 23347458 DOI: 10.1053/j.ajkd.2012.11.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/09/2012] [Indexed: 11/11/2022]
Abstract
BACKGROUND We compared values of baseline serum cystatin C (SCysC), serum creatinine (SCr), and measured glomerular filtration rate (mGFR) for predicting end-stage renal disease (ESRD) in patients with type 2 diabetes and elevated albuminuria. STUDY DESIGN Observational longitudinal study. SETTING & PARTICIPANTS Pima Indians with type 2 diabetes and elevated albumin-creatinine ratio (ACR ≥30 mg/g). PREDICTORS Baseline SCysC, SCr, and mGFR. OUTCOMES & MEASUREMENTS Individuals were followed up from their first examination with diabetes and ACR ≥30 mg/g until December 2010, onset of ESRD, or death, whichever came first. Incidence rates adjusted for age and sex were computed by Mantel-Haenszel stratification. The abilities of SCysC, SCr, and mGFR values to predict ESRD were compared with receiver operating characteristic curves. RESULTS Of 234 Pima Indians with a mean age of 42.8 years who were followed up for a median of 10.7 (range, 0.6-21.3) years, 68 (29%) developed ESRD. The incidence of ESRD was significantly higher in patients in the lowest versus highest tertile of 1/SCysC (incidence rate ratio, 2.43; 95% CI, 1.31-4.50). By contrast, mGFR and 1/SCr had J-shaped associations with ESRD. In unadjusted analyses, 1/SCysC had the highest area under the receiver operating characteristic curve (AUROC; 0.719 ± 0.035) and mGFR had the lowest (0.585 ± 0.042; P < 0.001); the AUROC for 1/SCr was intermediate (0.672 ± 0.040; P = 0.1 and P = 0.03 vs 1/SCysC and mGFR, respectively). In analyses adjusted for age, sex, diabetes duration, height, weight, hemoglobin A1c level, and ACR, 1/SCysC had the highest AUROC (0.845 ± 0.026). Models with mGFR or 1/SCr alone had similar AUROCs (P = 0.9) and both were lower than the model with 1/SCysC alone (P = 0.02 and P = 0.03, respectively). LIMITATIONS The predictive values of the filtration markers are limited to the extent that their precision is based on a single measurement. CONCLUSIONS SCysC level was a better predictor of ESRD than mGFR or SCr level in Pima Indians with type 2 diabetes and elevated albuminuria.
Collapse
Affiliation(s)
- Meda E Pavkov
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
340
|
Abstract
With the widespread use of combination antiretroviral agents, the incidence of HIV-associated nephropathy has decreased. Currently, HIV-infected patients live much longer and often suffer from comorbidities such as diabetes mellitus. Recent epidemiological studies suggest that concurrent HIV infection and diabetes mellitus may have a synergistic effect on the incidence of chronic kidney disease. To address this, we determined whether HIV-1 transgene expression accelerates diabetic kidney injury using a diabetic HIV-1 transgenic (Tg26) murine model. Diabetes was initially induced with low-dose streptozotocin in both Tg26 and wild-type mice on a C57BL/6 background, which is resistant to classic HIV-associated nephropathy. Although diabetic nephropathy is minimally observed on the C57BL/6 background, diabetic Tg26 mice exhibited a significant increase in glomerular injury compared with nondiabetic Tg26 mice and diabetic wild-type mice. Validation of microarray gene expression analysis from isolated glomeruli showed a significant upregulation of proinflammatory pathways in diabetic Tg26 mice. Thus, our study found that expression of HIV-1 genes aggravates diabetic kidney disease.
Collapse
|
341
|
Bailey KA, Wu MC, Ward WO, Smeester L, Rager JE, García-Vargas G, Del Razo LM, Drobná Z, Stýblo M, Fry RC. Arsenic and the epigenome: interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation. J Biochem Mol Toxicol 2013; 27:106-15. [PMID: 23315758 DOI: 10.1002/jbt.21462] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/09/2012] [Accepted: 10/24/2012] [Indexed: 12/17/2022]
Abstract
Biotransformation of inorganic arsenic (iAs) is one of the factors that determines the character and magnitude of the diverse detrimental health effects associated with chronic iAs exposure, but it is unknown how iAs biotransformation may impact the epigenome. Here, we integrated analyses of genome-wide, gene-specific promoter DNA methylation levels of peripheral blood leukocytes with urinary arsenical concentrations of subjects from a region of Mexico with high levels of iAs in drinking water. These analyses revealed dramatic differences in DNA methylation profiles associated with concentrations of specific urinary metabolites of arsenic (As). The majority of individuals in this study had positive indicators of As-related disease, namely pre-diabetes mellitus or diabetes mellitus (DM). Methylation patterns of genes with known associations with DM were associated with urinary concentrations of specific iAs metabolites. Future studies will determine whether these DNA methylation profiles provide mechanistic insight into the development of iAs-associated disease, predict disease risk, and/or serve as biomarkers of iAs exposure in humans.
Collapse
Affiliation(s)
- Kathryn A Bailey
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Arora MK, Singh UK. Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update. Vascul Pharmacol 2013; 58:259-71. [PMID: 23313806 DOI: 10.1016/j.vph.2013.01.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is known to trigger retinopathy, neuropathy and nephropathy. Diabetic nephropathy, a long-term major microvascular complication of uncontrolled hyperglycemia, affects a large population worldwide. Recent findings suggest that numerous pathways are activated during the course of diabetes mellitus and that these pathways individually or collectively play a role in the induction and progression of diabetic nephropathy. However, clinical strategies targeting these pathways to manage diabetic nephropathy remain unsatisfactory, as the number of diabetic patients with nephropathy is increasing yearly. To develop ground-breaking therapeutic options to prevent the development and progression of diabetic nephropathy, a comprehensive understanding of the molecular mechanisms involved in the pathogenesis of the disease is mandatory. Therefore, the purpose of this paper is to discuss the underlying mechanisms and downstream pathways involved in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Mandeep Kumar Arora
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut 250005, Uttar Pradesh, India.
| | | |
Collapse
|
343
|
Gao G, Zhang B, Ramesh G, Betterly D, Tadagavadi RK, Wang W, Reeves WB. TNF-α mediates increased susceptibility to ischemic AKI in diabetes. Am J Physiol Renal Physiol 2013; 304:F515-21. [PMID: 23283990 DOI: 10.1152/ajprenal.00533.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Diabetes is a risk factor for the development of acute kidney injury (AKI) in humans and rodents. However, the mechanistic basis for this observation is unknown. The present studies evaluated the role of inflammation and TNF-α in ischemic AKI in a model of type 2 diabetes mellitus (DM). Diabetic (db/db) and nondiabetic (db/+) littermates were subjected to 20 min of bilateral renal ischemia. The nondiabetic mice developed only mild and transient renal dysfunction. In contrast, the equivalent ischemic insult provoked severe and sustained renal dysfunction in the db/db mice. The expression of TNF-α and Toll-like receptor 4 (TLR4) mRNA was measured in the kidneys of diabetic mice before and after renal ischemia; db/db mice exhibited greater increases in TNF-α and TLR4 mRNA expression following ischemia than did db/+. In addition, urinary excretion of TNF-α after ischemia was higher in db/db mice than in db/+ mice. To determine the possible role of TNF-α in mediating the enhanced susceptibility of diabetic mice to ischemic injury, db/db mice were injected with either a neutralizing anti-mouse TNF-α antibody or nonimmune globulin and then subjected to 20 min of bilateral renal ischemia. Treatment of the db/db mice with the TNF-α antibody provided significant protection against the ischemic injury. These data support the view that diabetes increases the susceptibility to ischemia-induced renal dysfunction. This increased susceptibility derives from a heightened inflammatory response involving TNF-α and perhaps TLR4 signaling.
Collapse
Affiliation(s)
- Guofeng Gao
- Div. of Nephrology, Rm. C5830, Penn State College of Medicine, 500 Univ. Dr., Hershey, PA 17033, USA.
| | | | | | | | | | | | | |
Collapse
|
344
|
|
345
|
Bansal N, Fan D, Hsu CY, Ordonez JD, Marcus GM, Go AS. Incident atrial fibrillation and risk of end-stage renal disease in adults with chronic kidney disease. Circulation 2012; 127:569-74. [PMID: 23275377 DOI: 10.1161/circulationaha.112.123992] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) frequently occurs in patients with chronic kidney disease (CKD). However, the long-term impact of development of AF on the risk of adverse renal outcomes in patients with CKD is unknown. In this study, we determined the association between incident AF and risk of end-stage renal disease (ESRD) among adults with CKD. METHODS AND RESULTS We studied adults with CKD (defined as estimated glomerular filtration rate eGFR <60 mL/min per 1.73 m(2) by the Chronic Kidney Disease Epidemiology Collaboration equation) enrolled in Kaiser Permanente Northern California who were identified between 2002 and 2010 and who did not have previous ESRD or previously documented AF. Incident AF was identified by using primary hospital discharge diagnoses or 2 or more outpatient visits for AF. Incident ESRD was ascertained from a comprehensive health plan registry for dialysis and renal transplant. Among 206 229 adults with CKD, 16 463 developed incident AF. During a mean follow-up of 5.1±2.5 years, there were 345 cases of ESRD that occurred after development of incident AF (74 per 1000 person-years) in comparison with 6505 cases of ESRD during periods without AF (64 per 1000 person-years, P<0.001). After adjustment for potential confounders, incident AF was associated with a 67% increase in the rate of ESRD (hazard ratio, 1.67; 95% confidence interval, 1.46-1.91). CONCLUSIONS Incident AF is independently associated with increased risk of developing ESRD in adults with CKD. Further study is needed to identify potentially modifiable pathways through which AF leads to a higher risk of progression to ESRD.
Collapse
Affiliation(s)
- Nisha Bansal
- Division of Nephrology, Department of Medicine, University of California, San Francisco, 521 Parnassus Ave, Box 0532, San Francisco, CA 94143, USA.
| | | | | | | | | | | |
Collapse
|
346
|
Krolewski AS, Warram JH, Forsblom C, Smiles AM, Thorn L, Skupien J, Harjutsalo V, Stanton R, Eckfeldt JH, Inker LA, Groop PH. Serum concentration of cystatin C and risk of end-stage renal disease in diabetes. Diabetes Care 2012; 35:2311-6. [PMID: 22851596 PMCID: PMC3476893 DOI: 10.2337/dc11-2220] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with diabetes have a high risk of end-stage renal disease (ESRD). We examined whether prediction of this outcome, according to chronic kidney disease (CKD) staging by creatinine-based estimates of the glomerular filtration rate (eGFRcreat), is improved by further staging with serum cystatin C-based estimates (eGFRcyst). RESEARCH DESIGN AND METHODS Patients with diabetes in CKD stages 1-3 were selected from three cohorts: two from Joslin Diabetes Center, one with type 1 diabetes (N = 364) and one with type 2 diabetes (N = 402), and the third from the Finnish Diabetic Nephropathy (FinnDiane) Study of type 1 (N = 399). Baseline serum concentrations of creatinine and cystatin C were measured in all patients. Follow-up averaged 8-10 years and onsets of ESRD (n = 246) and death unrelated to ESRD (n = 159) were ascertained. RESULTS Although CKD staging by eGFRcyst was concordant with that by eGFRcreat for 62% of Joslin patients and 73% of FinnDiane patients, those given a higher stage by eGFRcyst than eGFRcreat had a significantly higher risk of ESRD than those with concordant staging in all three cohorts (hazard ratio 2.3 [95% CI 1.8-3.1]). Similarly, patients at a lower stage by eGFRcyst than by eGFRcreat had a lower risk than those with concordant staging (0.30 [0.13-0.68]). Deaths unrelated to ESRD followed the same pattern, but differences were not as large. CONCLUSIONS In patients with diabetes, CKD staging based on eGFRcyst significantly improves ESRD risk stratification based on eGFRcreat. This conclusion can be generalized to patients with type 1 and type 2 diabetes and to diabetic patients in the U.S. and Finland.
Collapse
Affiliation(s)
- Andrzej S Krolewski
- Research and Clinic Divisions, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Vlassara H, Cai W, Chen X, Serrano EJ, Shobha MS, Uribarri J, Woodward M, Striker GE. Managing chronic inflammation in the aging diabetic patient with CKD by diet or sevelamer carbonate: a modern paradigm shift. J Gerontol A Biol Sci Med Sci 2012; 67:1410-6. [PMID: 23109677 DOI: 10.1093/gerona/gls195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The maintenance of normal metabolism and body defenses depends on the balance between cellular antioxidant and anti-inflammatory factors. This balance can be disrupted by agents/mechanisms in the extracellular milieu that induce excess reactive oxygen species (ROS) and inflammation. Cytopathic advanced glycation endproducts, present in ever increasing amounts in the modern diet, are one of the major environmental factors that cause excess ROS and/or inflammation at all ages and induce complications in aging, such as chronic kidney disease (CKD) and type 2 diabetes. Increased ROS and/or inflammation are present in both aging and CKD, and are associated with reduced cellular defenses against ROS and/or inflammation. Affected individuals have reduced defenses against further stress and are predisposed to organ failure, now a well-known phenomenon in aging. Thus, new methods are urgently needed to safely reduce ROS and/or inflammation in the aging type 2 diabetes patient with CKD. Studies of both normal aging and diabetic patients with kidney disease underline the fact that increased ROS and/or inflammation can be managed in these conditions by economical, safe, and effective interventions that reduce the uptake of advanced glycation endproducts by either modifying preparation of food or an oral drug. This communication reviews these data and adds new information on the efficacy of a drug, sevelamer carbonate, required to reduce ROS and/or inflammation in the aging type 2 diabetes patient complicated by CKD. If larger and longer studies confirm the hypothesis that one or both of these interventions reduce progression of CKD, it could represent a new paradigm in the management of complications in the type 2 diabetes patient with CKD.
Collapse
Affiliation(s)
- H Vlassara
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Palliative Care, Mount Sinai School of Medicine, 1 Gustave Levy Place, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
348
|
Gupta J, Mitra N, Kanetsky PA, Devaney J, Wing MR, Reilly M, Shah VO, Balakrishnan VS, Guzman NJ, Girndt M, Periera BG, Feldman HI, Kusek JW, Joffe MM, Raj DS. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol 2012; 7:1938-46. [PMID: 23024164 DOI: 10.2215/cjn.03500412] [Citation(s) in RCA: 385] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Increased risk of mortality in patients with CKD has been attributed to inflammation. However, the association between kidney function, albuminuria, and biomarkers of inflammation has not been examined in a large cohort of CKD patients. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This study measured the plasma levels of IL-1β, IL-1 receptor antagonist (IL-1RA), IL-6, TNF-α, TGF-β, high-sensitivity C-reactive protein (hs-CRP), fibrinogen, and serum albumin in 3939 participants enrolled in the Chronic Renal Insufficiency Cohort study between June 2003 and September 2008. An inflammation score was established based on plasma levels of IL-1β, IL-6, TNF-α, hs-CRP, and fibrinogen. Estimated GFR (eGFR) and serum cystatin C were used as measures of kidney function. Albuminuria was quantitated by urine albumin to creatinine ratio (UACR). RESULTS Plasma levels of IL-1β, IL-1RA, IL-6, TNF-α, hs-CRP, and fibrinogen were higher among participants with lower levels of eGFR. Inflammation score was higher among those with lower eGFR and higher UACR. In regression analysis adjusted for multiple covariates, eGFR, cystatin C, and UACR were strongly associated with fibrinogen, serum albumin, IL-6, and TNF-α. Each unit increase in eGFR, cystatin C, and UACR was associated with a -1.2% (95% confidence interval, -1.4, -1), 64.9% (56.8, 73.3) and 0.6% (0.4, 0.8) change in IL-6, respectively (P<0.001). CONCLUSIONS Biomarkers of inflammation were inversely associated with measures of kidney function and positively with albuminuria.
Collapse
Affiliation(s)
- Jayanta Gupta
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Speeckaert MM, Speeckaert R, Laute M, Vanholder R, Delanghe JR. Tumor necrosis factor receptors: biology and therapeutic potential in kidney diseases. Am J Nephrol 2012; 36:261-70. [PMID: 22965073 DOI: 10.1159/000342333] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/02/2012] [Indexed: 12/19/2022]
Abstract
The major evolutionary advance represented in the human immune system is a mechanism of antigen-directed immunity in which tumor necrosis factor (TNF)-α and TNF receptors (TNFRs) play essential roles. Binding of TNF-α to the 55-kDa type I TNFR (TNFR1, TNFRSF1A, CD120a, p55) or the 75-kDa type II TNFR (TNFR2, TNFRSF1B, CD120b, p75) activates signaling pathways controlling inflammatory, immune and stress responses, as well as host defense and apoptosis. Multiple studies have investigated the role of TNFRs in the development of early and late renal failure (diabetic nephropathy, nephroangiosclerosis, acute kidney transplant rejection, renal cell carcinoma, glomerulonephritis, sepsis and obstructive renal injury). This article reviews the general characteristics, the analytical aspects and the biology of TNFRs in this domain. In addition, the potential therapeutic application of specific TNFR blockers is discussed.
Collapse
|
350
|
Doria A, Niewczas MA, Fiorina P. Can existing drugs approved for other indications retard renal function decline in patients with type 1 diabetes and nephropathy? Semin Nephrol 2012; 32:437-44. [PMID: 23062984 PMCID: PMC3474984 DOI: 10.1016/j.semnephrol.2012.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mounting evidence from human, animal, and in vitro studies indicates that existing drugs, developed to treat other disorders, also might be effective in preventing or slowing the progression of diabetic nephropathy to end-stage renal disease. Examples of such drugs include the urate-lowering agent allopurinol, the anti-tumor necrosis factor agents etanercept and infliximab, and the immunomodulating drug abatacept. Because some of these medications are already on the market and have been used for a number of years for other indications, they can be tested immediately in human beings for a beneficial effect on renal function in diabetes. Special emphasis should be placed on evaluating the use of these drugs early in the course of diabetic nephropathy when renal damage is most likely to be reversible and interventions can yield the greatest delay to end-stage renal disease.
Collapse
Affiliation(s)
- Alessandro Doria
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston
- Harvard Medical School, Boston, USA
| | - Monika A. Niewczas
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston
- Harvard Medical School, Boston, USA
| | - Paolo Fiorina
- Harvard Medical School, Boston, USA
- Transplantation Research Center (TRC), Nephrology Division, Children’s Hospital and Brigham and Women's Hospital
- San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|