301
|
Hutchinson PJ, O'Connell MT, Coles JP, Chatfield DA, Coleman MR, Al-Rawi PG, Kett-White CR, Gupta AK, Menon DK, Boniface SJ, Heazell M, Kirkpatrick PJ, Pickard JD. Investigation of the effect of chlormethiazole on cerebral chemistry in neurosurgical patients: a combined study of microdialysis and a neuroprotective agent. Br J Clin Pharmacol 2002; 53:275-83. [PMID: 11874391 PMCID: PMC1874304 DOI: 10.1046/j.0306-5251.2001.01552.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2001] [Accepted: 10/18/2001] [Indexed: 11/20/2022] Open
Abstract
AIMS Promising pre-clinical results from laboratory studies of neuro-protective drugs for the treatment of patients with stroke and head injury have not been translated into benefit during clinical trials. The objective of the study was to assess the feasibility of administrating a potential neuro-protective drug (chlormethiazole) in conjunction with multimodality monitoring (including microdialysis) to patients with severe head injury in order to determine the effect of the agent on surrogate endpoints and penetration into the brain. METHODS Multimodality monitoring including cerebral and peripheral microdialysis was applied to five head-injured patients on the neuro-intensive care unit. Chlormethiazole (0.8%) was administered as a rapid (10 ml min(-1)) intravenous loading infusion for 5 min followed by a slow (1 ml min(-1)) continuous infusion for 60 min. The following parameters were monitored: heart rate, mean arterial blood pressure, intracranial pressure, cerebral perfusion pressure, peripheral oxygen saturation, continuous arterial oxygen partial pressure, arterial carbon dioxide partial pressure, arterial pH, arterial temperature, cerebral tissue oxygen pressure, cerebral tissue carbon dioxide pressure, cerebral pH, cerebral temperature, electroencephalograph (EEG), bi-spectral index, plasma glucose, plasma chlormethiazole, and cerebral and peripheral microdialysis assay for chlormethiazole, glucose, lactate, pyruvate and amino acids. RESULTS Despite achieving adequate plasma concentrations, chlormethiazole was not detected in the peripheral or cerebral microdialysis samples. The drug was well tolerated and did not induce hypotension, hyperglycaemia or withdrawal seizures. The drug did not change the values of the physiological or chemical parameters including levels of GABA, lactate/pyruvate ratio and glutamate. The drug did, however, induce EEG changes, including burst suppression in two patients. CONCLUSIONS Chlormethiazole can be safely given to ventilated patients with severe head injury. There was no evidence of hypotension or withdrawal seizures. Combining a pilot clinical study of a neuro-protective agent with multimodality monitoring is feasible and, despite the lack of effect on physiological and chemical parameters in this study, may be a useful adjunct to the development of neuro-protective drugs in the future. Further investigation of the capability of microdialysis in this setting is required. By investigating the effect of a drug on surrogate end-points, it may be possible to identify promising agents from small pilot clinical studies before embarking on large phase III clinical trials.
Collapse
Affiliation(s)
- P J Hutchinson
- Department of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Suzuki M, Kudo A, Sugawara A, Yoshida K, Kubo Y, Suzuki T, Ogasawara K, Doi M, Ogawa A. Amino acid concentrations in the blood of the jugular vein and peripheral artery after traumatic brain injury: decreased release of glutamate into the jugular vein in the early phase. J Neurotrauma 2002; 19:285-92. [PMID: 11893028 DOI: 10.1089/08977150252807027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The gross behavior of excitatory amino acids in patients with traumatic brain injury (TBI), including uptake, transport, metabolism, and clearance, was investigated by analysis of the levels of 41 amino acids in the blood of the jugular vein (JV), which is the primary venous drainage conduit of the brain, and a peripheral artery. Blood samples from the JV and a peripheral artery of eight patients with TBI were collected at 6 h, 6 to 24 h, and over 24 h after TBI, and analyzed using high performance liquid chromatography. Blood samples from 101 normal subjects were also measured. The levels of glutamate (Glu), gamma-aminobutyric acid (GABA), aspartate, glutamine, and cystine deviated from the normal range, and were considered pathological. The level of Glu in the JV was significantly lower than that in the artery (p < 0.05), and the level of GABA in the JV was significantly higher than that in the artery (p < 0.01), but the other three amino acids showed no significant differences. Significantly chronological changes in the difference between the blood levels in the JV and artery were observed for Glu. Measurement of the Glu level in the JV and artery may indicate gross metabolic change in the brain following TBI.
Collapse
Affiliation(s)
- Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Wilson JX, Gelb AW. Free radicals, antioxidants, and neurologic injury: possible relationship to cerebral protection by anesthetics. J Neurosurg Anesthesiol 2002; 14:66-79. [PMID: 11773828 DOI: 10.1097/00008506-200201000-00014] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxygen-centered free radicals cause brain injury associated with trauma and stroke. These reactive oxygen species may be detoxified by endogenous antioxidants, but cell death occurs after antioxidants become depleted. General anesthetics penetrate into brain parenchyma, where they may abrogate oxidative injury to neurons by several mechanisms that prevent the initiation of free radical chain reactions or terminate the propagation of highly reactive radicals. First, general anesthetics may inhibit free radical generation because these drugs slow cerebral utilization of oxygen and glucose, inhibit oxidative metabolism in neutrophils, and prevent redox changes in hemoglobin. Second, antioxidant anesthetics, such as thiopental and propofol, directly scavenge reactive oxygen species and inhibit lipid peroxidation. Finally, anesthetics may prevent the elevation of extracellular glutamate concentration and inhibit the activation of excitatory glutamatergic receptors that augment oxidative stress after ischemia.
Collapse
Affiliation(s)
- John X Wilson
- Department of Physiology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
304
|
Hutchinson PJ, O'Connell MT, Al-Rawi PG, Kett-White CR, Gupta AK, Maskell LB, Pickard JD, Kirkpatrick PJ. Increases in GABA concentrations during cerebral ischaemia: a microdialysis study of extracellular amino acids. J Neurol Neurosurg Psychiatry 2002; 72:99-105. [PMID: 11784833 PMCID: PMC1737714 DOI: 10.1136/jnnp.72.1.99] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Increases in the extracellular concentration of the excitatory amino acids glutamate and aspartate during cerebral ischaemia in patients are well recognised. Less emphasis has been placed on the concentrations of the inhibitory amino acid neurotransmitters, notably gamma-amino-butyric acid (GABA), despite evidence from animal studies that GABA may act as a neuroprotectant in models of ischaemia. The objective of this study was to investigate the concentrations of various excitatory, inhibitory and non-transmitter amino acids under basal conditions and during periods of cerebral ischaemia in patients with head injury or a subarachnoid haemorrhage. METHODS Cerebral microdialysis was established in 12 patients with head injury (n=7) or subarachnoid haemorrhage (n=5). Analysis was performed using high performance liquid chromatography for a total of 19 (excitatory, inhibitory and non-transmitter) amino acids. Patients were monitored in neurointensive care or during aneurysm clipping. RESULTS During stable periods of monitoring the concentrations of amino acids were relatively constant enabling basal values to be established. In six patients, cerebral ischaemia was associated with increases (up to 1350 fold) in the concentration of GABA, in addition to the glutamate and aspartate. Parallel increases in the concentration of glutamate and GABA were found (r=0.71, p<0.005). CONCLUSIONS The results suggest that, in the human brain, acute cerebral ischaemia is not accompanied by an imbalance between excitatory and inhibitory amino acids, but by an increase in all neurotransmitter amino acids. These findings concur with the animal models of ischaemia and raise the possibility of an endogenous GABA mediated neuroprotective mechanism in humans.
Collapse
Affiliation(s)
- P J Hutchinson
- Academic Department of Neurosurgery, University of Cambridge, Box 167, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
305
|
Toyota S, Graf R, Dohmen C, Valentino M, Grond M, Wienhard K, Heiss WD. Elevation of extracellular glutamate in the final, ischemic stage of progressive epidural mass lesion in cats. J Neurotrauma 2001; 18:1349-57. [PMID: 11780865 DOI: 10.1089/08977150152725641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epidural mass lesions may cause ischemia due to progressive intracranial hypertension. In order to investigate the impact of intracranial pressure on accumulation of neuroactive substances, we gradually raised intracranial pressure in five halothane anesthetized cats by inflation of an epidural balloon. We evaluated in the parietal cortex contralateral to the site of balloon inflation, alterations of extracellular glutamate and purine catabolites and of the lactate/pyruvate ratio in relation to changes of intracranial, cerebral perfusion and mean arterial blood pressure. In a complementary experiment, regional cerebral blood flow was assessed by sequential positron emission tomography. In this simplified mass lesion model, extracellular glutamate increased in all cats at a late, critical stage after tentorial herniation, when intracranial pressure had increased to more than 90 mm Hg, cerebral perfusion pressure had decreased below 40-50 mm Hg. Positron emission tomography assessments revealed that the ischemic threshold for glutamate accumulation was in the range of 15-20 mL/100 g/min. Purine catabolites and the lactate/pyruvate ratio increased somewhat earlier than glutamate, but also after reaching the critical, terminal stage. We conclude that in this model of progressive epidural compression, glutamate-mediated excitotoxic processes at sites remote from the initial focal lesion depend on processes such as delayed ischemia in combination with tentorial herniation and systemic hypotension. These processes seem to be initiated by a decrease of cerebral perfusion pressure below a threshold of 40-50 mm Hg.
Collapse
Affiliation(s)
- S Toyota
- MPI für neurologische Forschung, Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
306
|
Meixensberger J, Kunze E, Barcsay E, Vaeth A, Roosen K. Clinical cerebral microdialysis: brain metabolism and brain tissue oxygenation after acute brain injury. Neurol Res 2001; 23:801-6. [PMID: 11760869 DOI: 10.1179/016164101101199379] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
While continuous monitoring of brain tissue oxygenation (P(ti)O2) is known as a practicable, safe and reliable monitoring technology supplementing traditional ICP-CPP-monitoring, the impact of cerebral microdialysis, now available bedside, is not proven extensively. Therefore our studies focused on the practicability, complications and clinical impact of microdialysis during long term monitoring after acute brain injury, especially the analysis of the correlation between changes of local brain oxygenation and metabolism. Advanced neuromonitoring including ICP-CPP-p(ti)O2 was performed in 20 patients suffering from acute brain injury. Analysis of the extracellular fluid metabolites (glucose, lactate, pyruvate, glutamate) were performed bedside hourly. No catheter associated complications, like infection and bleeding, occurred. However, longterm monitoring was limited in 5 out of 20 patients caused by obliteration of the microdialysis catheter after 3-4 days. In the individual patients partly a correlation between increased lactate levels as well as lactate pyruvate ratios and hypoxic brain tissue oxygenation could be found. Analysing the data sets of all patients only a low correlation was detected indicating physiological and increased lactate and lactate/pyruvate ratio during sufficient brain oxygenation. Additionally, concentrations of excitatory amino acid glutamate were found in normal and elevated range during periods of hypoxic oxygenation (P(ti)O2 < 10 mmHg) and intracranial hypertension. Our data strongly suggest partly evidence of correlation between hypoxic oxygenation and metabolic disturbances after brain injury. On the other hand brain metabolism is altered without changes of cerebral oxygenation. Further studies are indicated to improve our pathophysiological knowledge before microdialysis is routinely useful in neurointensive care.
Collapse
Affiliation(s)
- J Meixensberger
- Department of Neurosurgery, University of Würzburg, Germany.
| | | | | | | | | |
Collapse
|
307
|
Robertson CL, Bell MJ, Kochanek PM, Adelson PD, Ruppel RA, Carcillo JA, Wisniewski SR, Mi Z, Janesko KL, Clark RS, Marion DW, Graham SH, Jackson EK. Increased adenosine in cerebrospinal fluid after severe traumatic brain injury in infants and children: association with severity of injury and excitotoxicity. Crit Care Med 2001; 29:2287-93. [PMID: 11801827 DOI: 10.1097/00003246-200112000-00009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To measure adenosine concentration in the cerebrospinal fluid of infants and children after severe traumatic brain injury and to evaluate the contribution of patient age, Glasgow Coma Scale score, mechanism of injury, Glasgow Outcome Score, and time after injury to cerebrospinal fluid adenosine concentrations. To evaluate the relationship between cerebrospinal fluid adenosine and glutamate concentrations in this population. DESIGN Prospective survey. SETTING Pediatric intensive care unit in a university-based children's hospital. PATIENTS Twenty-seven critically ill infants and children who had severe traumatic brain injury (Glasgow Coma Scale < 8), who required placement of an intraventricular catheter and drainage of cerebrospinal fluid as part of their neurointensive care. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Patients ranged in age from 2 months to 14 yrs. Cerebrospinal fluid samples (n = 304) were collected from 27 patients during the first 7 days after traumatic brain injury. Control cerebrospinal fluid samples were obtained from lumbar puncture on 21 infants and children without traumatic brain injury or meningitis. Adenosine concentration was measured by using high-pressure liquid chromatography. Adenosine concentration was increased markedly in cerebrospinal fluid of children after traumatic brain injury vs. controls (p < .001). The increase in cerebrospinal fluid adenosine was independently associated with Glasgow Coma Scale < or = 4 vs. > 4 and time after injury (both p < .005). Cerebrospinal fluid adenosine concentration was not independently associated with either age (< or = 4 vs. > 4 yrs), mechanism of injury (abuse vs. other), or Glasgow Outcome Score (good/moderately disabled vs. severely disabled, vegetative, or dead). Of the 27 patients studied, 18 had cerebrospinal fluid glutamate concentration previously quantified by high-pressure liquid chromatography. There was a strong association between increases in cerebrospinal fluid adenosine and glutamate concentrations (p < .005) after injury. CONCLUSIONS Cerebrospinal fluid adenosine concentration is increased in a time- and severity-dependent manner in infants and children after severe head injury. The association between cerebrospinal fluid adenosine and glutamate concentrations may reflect an endogenous attempt at neuroprotection against excitotoxicity after severe traumatic brain injury.
Collapse
Affiliation(s)
- C L Robertson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Ståhl N, Mellergård P, Hallström A, Ungerstedt U, Nordström CH. Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions. Acta Anaesthesiol Scand 2001; 45:977-85. [PMID: 11576049 DOI: 10.1034/j.1399-6576.2001.450810.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Microdialysis with bedside biochemical analysis was used to monitor cerebral biochemical alterations that precede and accompany increase in intracranial pressure (ICP), resulting in a complete cessation of cerebral blood flow. METHODS Seven patients, who died due to an untreatable increase in ICP, were included. The patients originate from a large, consecutive series of severely head injured patients (n: 95) monitored with intracerebral microdialysis (perfusion rate 0.3 microl/min). One microdialysis catheter was inserted via a separate burr hole frontally to that used for the intraventricular catheter ("better" position) and one catheter was inserted into cerebral cortex surrounding an evacuated focal contusion or underlying an evacuated haematoma ("worse" position). Biochemical analyses of glucose, lactate, glycerol, urea, glutamate, and pyruvate were performed at the bedside. All samples were frozen for subsequent HPLC (high-performance liquid chromatography) analyses of amino acids and ions. RESULTS Decreases in glucose and pyruvate and increases in lactate, glycerol, glutamate, and lactate/pyruvate (la/py) ratio characterized cerebral ischaemia. The measured markers give information regarding substrate availability (glucose), redox state of the tissue (la/py ratio), degradation of glycerophospholipids in cell membranes (glycerol), and extracellular concentration of excitatory amino acids (glutamate). In the "worse" position biochemical deterioration occurred before the increase in ICP. In the "better" position biochemical deterioration was usually observed after the increase in ICP. CONCLUSION Changes of cerebral energy metabolism that accompany cerebral ischaemia follow a certain pattern and may be detected at the bedside by intracerebral microdialysis before the secondary damage causes an increase in ICP.
Collapse
Affiliation(s)
- N Ståhl
- Department of Clinical Neuroscience, Lund University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
309
|
Cruz J. Traumatic brain ischemia during neuro intensive care: myth rather than fact. ARQUIVOS DE NEURO-PSIQUIATRIA 2001; 59:479-82. [PMID: 11588622 DOI: 10.1590/s0004-282x2001000400001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In non-missile severe acute brain trauma, brain ischemia was a frequent finding in cadavers. Studies during neuro intensive care, however, have failed to disclose brain ischemia under most circumstances, except when cerebral hemodynamic and metabolic parameters have been misinterpreted, or when cerebral blood flow (CBF) alone has been addressed in a biased fashion, without mandatory metabolic data. Indeed, comprehensive and unbiased studies focusing on global cerebral metabolic activity have invariably revealed a condition of normal coupling between reduced CBF and oxygen consumption in the early postinjury hours, which is then followed by a prolonged, sustained pattern of relative cerebral hyperperfusion (the opposite of ischemia). Accordingly, traumatic brain ischemia during intensive care represents myth rather than fact.
Collapse
Affiliation(s)
- J Cruz
- Comprehensive International Center for Neuroemergencies, São Paulo, SP, 04093-970, Brasil
| |
Collapse
|
310
|
Chen T, Qian YZ, Di X, Zhu JP, Bullock R. Evidence for lactate uptake after rat fluid percussion brain injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2001; 76:359-64. [PMID: 11450045 DOI: 10.1007/978-3-7091-6346-7_75] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
UNLABELLED Traumatic brain injury (TBI) places enormous early energy demand on brain tissue to reinstate normal ionic balance. Glucose declines and lactate increases after TBI as demonstrated in clinical and lab studies, suggesting increased glycolysis. This led us to hypothesize that high extracellular fluid (ECF) lactate may be beneficial after TBI. We measured cerebral dialysate lactate and glucose, and arterial lactate and glucose, before & after rat Fluid Percussion Injury (FPI) (2.06 +/- 0.13 atm) with and without i.v. lactate infusion (100 mM x 4.5 hours) to test the hypotheses that arterial lactate determines ECF lactate. 14C-lactate autoradiography was also performed, to demonstrate whether lactate is taken up by traumatized brain. RESULTS Dialysate lactate was always significantly higher than arterial. After lactate infusion, both the dialysate and the arterial lactate were significantly increased (P < 0.0001). Dialysate lactate increased within 10 min. following FPI, with significantly higher values in the lactate infusion group (82% higher with lactate infusion after FPI). Dialysate glucose fell following FPI, with a more severe decline in the saline group (129% lower), suggesting lactate infusion preserves or "spares" glucose in ECF. In our autoradiographic study, i.v. 14C-lactate accumulated at the injury site, with levels 2-4 times higher than in contralateral cortex. In conclusion, arterial lactate augmentation thus increases brain dialysate lactate and results in less reduction in ECF glucose, after FPI. Infused lactate accumulates at the injury site, where metabolism is probably the greatest.
Collapse
Affiliation(s)
- T Chen
- Division of Neurosurgery Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | |
Collapse
|
311
|
Di X, Goforth PB, Bullock R, Ellis E, Satin L. Mechanical injury alters volume activated ion channels in cortical astrocytes. ACTA NEUROCHIRURGICA. SUPPLEMENT 2001; 76:379-83. [PMID: 11450049 DOI: 10.1007/978-3-7091-6346-7_79] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Although astrocytic swelling is likely to mediate brain edema and high ICP after traumatic brain injury, the mechanism is not understood. We employed whole cell patch clamp electrophysiology and a stretch injury model to understand whether volume regulating ion currents are altered following cell injury. Mixed rat astrocytes and neurons were co-cultured on deformable silastic membranes. Mild-moderate cell injury was produced using a timed pulse of pressurized air to deform the silastic substrates by 6.5 mm. Then, ion currents were recorded with patch clamp methods. Cells were held at -65 mV and were stepped to +10 mV to monitor current changes. RESULTS In unstretched astrocytes, small amplitude currents were obtained under isotonic conditions. Hypotonic solution activated an outwardly-rectifying current which reversed near -40 mV. This current resembled a previously reported anion current whose activation may restore cell volume by mediating a net solute efflux. In contrast, stretch injured cells exhibited a large amplitude, nonrectifying current. This current was not due to non-specific ionic leakage, since it was fully suppressed by the cation channel blocker gadolinium. Activation of novel stretch-activated cation currents may exacerbate cell swelling in injured astrocytes. Stretch injured astrocytes thus express a dysfunctional cation current as opposed to an osmoregulatory anion current. This mechanism, if present in vivo, may contribute to the cytotoxic swelling seen after traumatic brain injury.
Collapse
Affiliation(s)
- X Di
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Virginia, USA
| | | | | | | | | |
Collapse
|
312
|
Hutchinson PJ, al-Rawi PG, O'Connell MT, Gupta AK, Maskell LB, Hutchinson DB, Pickard JD, Kirkpatrick PJ. On-line monitoring of substrate delivery and brain metabolism in head injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2001; 76:431-5. [PMID: 11450061 DOI: 10.1007/978-3-7091-6346-7_89] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Head injury is associated with complex pathophysiological changes in metabolism. The objective of the study was to investigate these changes by applying on-line bedside monitoring of cerebral metabolism using microdialysis. Following approval by the Local Ethics Committee and consent from the next of kin, a microdialysis catheter was inserted into the frontal cortex of patients with severe head injury. Twenty-one patients were studied for 102.3 +/- 26.9 hours (mean +/- 95% confidence interval; total 89.4 patient monitoring days). The overall cerebral glucose (mean of means) was 1.63 +/- 0.31 mM with periods of undetectable glucose recorded. The cerebral lactate and lactate/pyruvate ratio were 4.69 +/- 0.61 mM and 29.9 +/- 3.73 respectively. Patients who died (n = 4) or who were severely disabled (not proceeding to rehabilitation, n = 5) had a tendency towards lower glucose (1.39 +/- 0.35 mM), higher lactate (5.10 +/- 1.02 mM) and higher lactate/pyruvate ratios (35.5 +/- 7.67) compared to patients with good outcome (home or proceeding to rehabilitation, n = 12, glucose 1.80 +/- 0.49 mM, lactate 4.38 +/- 0.85 mM, lactate/pyruvate ratio 27.9 +/- 4.33). Trends in these metabolic parameters relating to outcome were identifiable. In the majority of patients, cerebral glutamate levels (overall mean of means 9.47 +/- 4.59 microM) were initially high and then declined to stable levels. Patients in whom the glutamate level remained elevated or in whom secondary rises in glutamate were seen had a poor outcome. The application of bedside analysis of microdialysis enables the progress of the patient to be monitored on-line. In addition to establishing trends of improving and deteriorating metabolism, the technique has the potential to monitor the effects of therapeutic manoeuvres on the biochemistry.
Collapse
Affiliation(s)
- P J Hutchinson
- Academic Department of Neurosurgery, Department of Neuroanaesthesia and Medical Research Council, Centre for Brain Repair, University of Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
313
|
Matz PG, Lewén A, Chan PH. Neuronal, but not microglial, accumulation of extravasated serum proteins after intracerebral hemolysate exposure is accompanied by cytochrome c release and DNA fragmentation. J Cereb Blood Flow Metab 2001; 21:921-8. [PMID: 11487727 DOI: 10.1097/00004647-200108000-00004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vasogenic edema after oxidative injury has been accompanied by intracellular accumulation of serum proteins and nuclear damage. This study sought to determine whether serum protein accumulation, along with other markers of brain injury, was present after exposure to intracerebral hemolysate, an oxidant model of intracerebral hemorrhage (ICH). Saline (n = 24) or hemolysate (n = 30) was injected into the caudate-putamen of adult Sprague-Dawley rats. Compared with saline, hemolysate deposition was associated with intracellular accumulation of serum proteins as evidenced by Evans blue uptake in neurons and microglia at 4 and 24 hours. Intracellular Evans blue colocalized with DNA fragmentation detected by nick end-labeling and whose presence was confirmed by gel electrophoresis. Immunoblots of cytosolic fractions confirmed cytochrome c release. Immunostaining established colocalization of cytosolic cytochrome c and intracellular Evans blue at 4 hours. At 24 hours, cytosolic cytochrome c was evident in astrocytes surrounding Evans blue-positive cells. Immunoblot analysis and immunostaining revealed HSP70 induction at 24 hours in regions adjacent to intracellular serum accumulation. Neuronal accumulation of extravasated serum proteins in this model of ICH was associated with cytochrome c release, DNA fragmentation, and cell death. Stress protein induction in adjacent regions suggested that vasogenic edema might have exacerbated cellular dysfunction and cell death after ICH.
Collapse
Affiliation(s)
- P G Matz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
314
|
Regner A, Alves LB, Chemale I, Costa MS, Friedman G, Achaval M, Leal L, Emanuelli T. Neurochemical characterization of traumatic brain injury in humans. J Neurotrauma 2001; 18:783-92. [PMID: 11526984 DOI: 10.1089/089771501316919148] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trauma is the leading cause of death in individuals between the ages of 1 and 44 years. And, in the case of severe head injury mortality can reach as high as 35-70%. Despite this fact, there has been little progress in the development of effective pharmacological agents to protect brain injured patients. To date, there is little data on the mechanisms involved in neuronal cellular insult after severe head injury, especially in humans. Glutamate acts both as a primary excitatory neurotransmitter and a potential neurotoxin within the mammalian brain. Evidence indicates that hyperactivity of the glutamate system contributes to neuronal death in brain trauma. Also, in animal models of neurotrauma, this neural injury is followed by gliosis which has been linked to the severity of brain injury. To investigate the glutamate system in brain trauma, we carried out [3H]glutamate and [3H]MK801 (a noncompetitive NMDA-receptor antagonist) binding and [3H]glutamate uptake assays in human cerebral cortex preparations obtained from severely brain injured and control victims. Additionally, to investigate gliosis following brain injury, we performed GFAP immunohistochemistry. There were no significant differences in [3H]glutamate binding (affinity or density of sites) between the control and head injured groups. In contrast, cerebral cortical [3H]MK801 binding revealed both a significant increase in the density of sites (Bmax) and a decrease in the dissociation constant (Kd) in the head injured group when compared to controls. There were no significant differences in [3H]glutamate uptake between groups. The injured brains presented an increased number of GFAP-positive astrocytes and more intense GFAP reaction in comparison to control brains. In the context of traumatic brain injury, our results encourage further investigation into compounds capable of selective modulation of NMDA receptor subtype in humans while also therapeutically manipulating glial cell responses following brain trauma.
Collapse
Affiliation(s)
- A Regner
- Department of Biochemistry of the Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
315
|
Clausen T, Zauner A, Levasseur JE, Rice AC, Bullock R. Induced mitochondrial failure in the feline brain: implications for understanding acute post-traumatic metabolic events. Brain Res 2001; 908:35-48. [PMID: 11457429 DOI: 10.1016/s0006-8993(01)02566-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Recently, evidence has become available implicating mitochondrial failure as a crucial factor in the pathogenesis of acute brain damage following severe traumatic brain injury (TBI). However, it remains unclear how mitochondrial dysfunction affects cerebral metabolism. Therefore the aim of the study was to evaluate the impact of 'isolated' mitochondrial failure on local cerebral metabolism. METHODS Cerebral mitochondrial metabolism was blocked by local microdialysis perfusion with cyanide in seven cats. Local brain tissue oxygen tension (p(tiO(2))), carbon dioxide tension (p(tiCO(2))) and pH, as well as extracellular cerebral fluid, glucose, lactate, pyruvate and glutamate were monitored, using a Neurotrend sensor and microdialysis, respectively. Tissue oxygen consumption was measured in a microrespirometric system, and ultrastructural changes evaluated via electron microscopy. RESULTS Brain tissue oxygen tension increased from a baseline of 31+/-9 mmHg to 84+/-30 mmHg after 60 min of cyanide perfusion (P<0.05), concomitant a decrease in oxygen consumption from 14.45+/-3.91 microl/h/mg to 10.83+/-1.74 microl/h/mg (P<0.05). Brain tissue pH was decreased after 60 min of cyanide perfusion (6.83+/-0.16) compared to baseline (7.07+/-0.39) (P<0.05), whereas p(tiCO(2)) did not show significant changes. Lactate massively increased from a baseline of 599+/-270 micromol/l to 2609+/-1188 micromol/l immediately after cyanide perfusion (P<0.05). The lactate:glucose ratio increased from 0.79+/-0.15 before cyanide perfusion to 6.40+/-1.44 at 40 min after cyanide perfusion (P<0.05), while no significant changes in the lactate:pyruvate ratio could be observed. Glutamate increased from a baseline of 11.6+/-7.2 micromol/l to 61.4+/-44.7 micromol/l after cyanide perfusion (P<0.05). CONCLUSION The results of this study show that 'isolated' cerebral mitochondrial failure initiates changes in cerebral substrates and biochemistry, which are very similar to most of the changes seen after severe human head injury, except for the early fall in p(tiO(2)), further indicating a crucial involvement of mitochondrial impairment in the development of brain damage after TBI.
Collapse
Affiliation(s)
- T Clausen
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, P.O. Box 980631, 23298-0631, Richmond, VA, USA
| | | | | | | | | |
Collapse
|
316
|
Enblad P, Frykholm P, Valtysson J, Silander HC, Andersson J, Fasth KJ, Watanabe Y, Långström B, Hillered L, Persson L. Middle cerebral artery occlusion and reperfusion in primates monitored by microdialysis and sequential positron emission tomography. Stroke 2001; 32:1574-80. [PMID: 11441204 DOI: 10.1161/01.str.32.7.1574] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In a previous investigation concerning the hemodynamic and metabolic changes over time displayed by sequential positron emission tomography (PET) in a middle cerebral artery (MCA) occlusion/reperfusion primate model, a metabolic threshold for irreversible ischemia could be identified (reduction of metabolic rate of oxygen [CMRO(2)] to approximately 60% of the contralateral hemisphere). To evaluate the potential of microdialysis (MD) as an instrument for chemical brain monitoring, the aim of this subsequent study was to relate the chemical changes in MD levels directly to the regional metabolic status (CMRO(2) above or below the metabolic threshold) and the occurrence of reperfusion, as assessed by PET. METHODS Continuous MD (2 probes in each brain) and sequential PET measurements were performed during MCA occlusion (2 hours) and 18 hours (mean) of reperfusion in 8 monkeys (Macaca mulatta). Energy-related metabolites (lactate, pyruvate, and hypoxanthine) and glutamate were analyzed. The MD probe regions were divided into 3 categories on the basis of whether CMRO(2) was below or above 60% of the contralateral region (metabolic threshold level) during MCA occlusion and whether reperfusion was obtained: severe ischemia with reperfusion (n=4), severe ischemia without reperfusion (n=4), and penumbra with reperfusion (n=5). RESULTS The lactate/pyruvate ratio, hypoxanthine, and glutamate showed similar patterns. MD probe regions with severe ischemia and reperfusion and probe regions with severe ischemia and no reperfusion displayed high and broad peaks, respectively, during MCA occlusion, and the levels almost never decreased to baseline. Penumbra MD probe regions displayed only slight transient increases during MCA occlusion and returned to baseline. CONCLUSIONS This experimental study of focal ischemia showed that the extracellular changes of energy-related metabolites and glutamate differed depending on the ischemic state of the brain during MCA occlusion and depending on whether reperfusion occurred. If MD proves to be beneficial in clinical practice, it appears important to observe relative changes over time.
Collapse
Affiliation(s)
- P Enblad
- Department of Clinical Neurosciences/Neurosurgery, Uppsala University Hospital, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Unterberg AW, Sakowitz OW, Sarrafzadeh AS, Benndorf G, Lanksch WR. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg 2001; 94:740-9. [PMID: 11354405 DOI: 10.3171/jns.2001.94.5.0740] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECT Ischemia due to vasospasm is a feared complication in patients following aneurysmal subarachnoid hemorrhage (SAH). Cerebral online microdialysis monitoring may detect the metabolic changes in the extracellular fluid associated with ischemia. The aims of the present study were to correlate clinical course, microdialysis-recorded data, transcranial Doppler (TCD) ultrasonography findings, and angiographic findings in patients with SAH. METHODS In 60 patients a microdialysis catheter was inserted into the brain parenchyma that is most likely to be affected by vasospasm directly after aneurysm clipping. Hourly analyses of glucose, pyruvate, lactate, and glutamate levels were performed using a bedside device. Blood-flow velocities were obtained using serial TCD measurements. Cerebral angiography was routinely performed on Day 7 after aneurysm clipping or earlier in cases of clinical deterioration (30 patients). In all patients the results of microdialysis monitoring, TCD ultrasonography, and angiography were correlated. The mean duration of monitoring was 7.3+/-2.5 days. In patients with acute ischemic neurological deficits (18 patients) immediate microdialysis-recorded alterations were observed if the probe was placed close to the malperfused region. In 13 of 15 patients with symptomatic vasospasm (delayed ischemic neurological deficit [DIND]), the microdialysis-recorded values revealed secondary deterioration. In terms of confirming DIND, microdialysis had the highest specificity (0.89, 95% confidence interval [CI] 0.78-1) compared with TCD ultrasonography (0.63, 95% CI 0.46-0.8) and angiography (0.53, 95% CI 0.35-0.7). For microdialysis, the positive likelihood ratio was 7.8, whereas this was significantly lower for TCD ultrasonography (1.7) and angiography (2.1). CONCLUSIONS Although angiography also demonstrates vessel narrowing in asymptomatic patients, online microdialysis reveals characteristic metabolic changes that occur during vasospasm. Thus, online microdialysis may be used to confirm the diagnosis of vasospasm.
Collapse
Affiliation(s)
- A W Unterberg
- Department of Neurosurgery and Radiology, Charité, Humboldt University, Berlin, Germany.
| | | | | | | | | |
Collapse
|
318
|
Kochanek PM, Clark RS, Ruppel RA, Dixon CE. Cerebral resuscitation after traumatic brain injury and cardiopulmonary arrest in infants and children in the new millennium. Pediatr Clin North Am 2001; 48:661-81. [PMID: 11411299 DOI: 10.1016/s0031-3955(05)70333-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As outlined in Figure 1, it is likely that a series of interventions beginning in the field and continuing through the emergency department, ICU, rehabilitation center, and possibly beyond, will be needed to optimize clinical outcome after severe TBI or asphyxial CA in infants and children. Despite the many differences between these two important pediatric insults, it is likely that many of the therapies targeting neuronal death, in either condition, will need to be administered early after the insult, possibly at the injury scene. Even cerebral swelling, a pathophysiologic derangement routinely treated in the PICU, almost certainly is better prevented rather than treated. Finally, this review includes, for one of the first times, a brief discussion of additional horizons in the management of patients with severe brain injury, namely, manipulation of the injured circuitry and stimulation of regeneration. Further research is needed to define better the pathobiology of these two important conditions at the bedside, to understand the optimal application of contemporary therapies, and to develop and apply novel therapies. The tools necessary to carry out these studies are materializing, although the obstacles are great. This difficult but important challenge awaits further investigation by clinician-scientists in pediatric neurointensive care.
Collapse
Affiliation(s)
- P M Kochanek
- Department of Anesthesiology and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | |
Collapse
|
319
|
Abstract
The role of neuroprotection in traumatic brain injury (TBI) is reviewed. Basic research and experimental investigations have identified many different compounds with potential neuroprotective effect. However, none of the Phase III trials performed in TBI have been successful in convincingly demonstrating efficacy in the overall population. A common misconception is that consequently these agents are ineffective. The negative results as reported in the overall population may in part be caused by specific aspects of the head injury population as well as by aspects of clinical trial design and analysis. The heterogeneity of the TBI population causes specific problems, such as a risk of imbalances between placebo and treated groups but also causes problems when a possible treatment effect is evaluated in relation to the prognostic effect present. Trials of neuroprotective agents should be targeted first of all to a population in which the mechanism at which the agent is directed is likely to be present and secondly to a population in which the chances of demonstrating efficacy are realistic, e.g., to patients with an intermediate prognosis. The possibilities for concomitant or sequential administration of different neuroprotective agents at different times deserve consideration. The potential for neuroprotection in TBI remains high and we should not be discouraged by recent failures obtained up until now. Rather, prior to initiating new trials, careful consideration of experimental evidence is required in order to optimise chances for mechanistic targeting and lessons learned from previous experience need to be taken to heart in the design of future studies.
Collapse
Affiliation(s)
- A I Maas
- Erasmus University Medical Center Rotterdam, Department of Neurosurgery, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.
| |
Collapse
|
320
|
Runnerstam M, Bao F, Huang Y, Shi J, Gutierrez E, Hamberger A, Hansson HA, Viano D, Haglid K. A new model for diffuse brain injury by rotational acceleration: II. Effects on extracellular glutamate, intracranial pressure, and neuronal apoptosis. J Neurotrauma 2001; 18:259-73. [PMID: 11284547 DOI: 10.1089/08977150151070892] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The aim of this study is to monitor excitatory amino acids (EAAs) in the extracellular fluids of the brain and to characterize regional neuronal damage in a new experimental model for brain injury, in which rabbits were exposed to 180-260 krad/s2 rotational head acceleration. This loading causes extensive subarachnoid hemorrhage, focal tissue bleeding, reactive astrocytosis, and axonal damage. Animals were monitored for intracranial pressure (ICP) and for amino acids in the extracellular fluids. Immunohistochemistry was used to study expression of the gene c-Jun and apoptosis with the terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) technique. Extracellular glutamate, glycine, and taurine increased significantly in the hippocampus within a few hours and remained high after 24 h. Neuronal nuclei in the granule layers of the hippocampus and cerebellum were positive for c-Jun after 24 h. Little immunoreactivity was detected in the cerebral cortex. c-Jun-positive neuronal perikarya and processes were found in granule and pyramidal CA4 layers of the hippocampus and among the Purkinje cells of the cerebellum. Also some microglial cells stained positively for c-Jun. TUNEL reactivity was most intense at 10 days after trauma and was extensive in neurons of the cerebral cortex, hippocampus, and cerebellum. The initial response of the brain after rotational head injury involves brain edema after 24 h and an excitotoxic neuronal microenvironment in the first hour, which leads to extensive delayed neuronal cell death by apoptosis necrosis in the cerebral cortex, hippocampus and cerebellum.
Collapse
Affiliation(s)
- M Runnerstam
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Ronne-Engström E, Cesarini KG, Enblad P, Hesselager G, Marklund N, Nilsson P, Salci K, Persson L, Hillered L. Intracerebral microdialysis in neurointensive care: the use of urea as an endogenous reference compound. J Neurosurg 2001; 94:397-402. [PMID: 11235942 DOI: 10.3171/jns.2001.94.3.0397] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT When evaluating the results of intracerebral microdialysis, the in vivo performance of the microdialysis probe must be considered, because this determines the fraction of the interstitial concentration obtained in the microdialysis samples. The in vivo performance is dependent on several factors, for example, the interstitial compartment's diffusion characteristics, which may vary during the course of the acute brain injury process. In the present study the authors investigated the method of controlling the in vivo performance by using urea, which is evenly distributed in all body fluid compartments, as an endogenous reference compound and by comparing the urea levels in three compartments: the brain (CNS), abdominal subcutaneous tissue (SC), and blood serum (BS). METHODS Sixty-nine patients with traumatic brain injury or cerebrovascular disease were included in the study. In 63 of these patients a CNS probe was used, an SC probe was used in 40, and both were used in 34. Urea was measured by enzymatic methods, at bedside for the microdialysis samples and in routine clinical laboratory studies for the BS samples, with the probe calibrated to give identical results. The correlation coefficient for CNS/SC urea was 0.88 (2414 samples), for CNS/BS urea it was 0.89 (180 samples), and for SC/BS urea it was 0.98 (112 samples). CONCLUSIONS Urea levels in the CNS, SC, and BS were highly correlated, which supports the assumption that urea is evenly distributed. The CNS/SC urea ratio can therefore be used for monitoring the CNS probe's in vivo performance. Fluctuations in other substances measured with microdialysis are probably caused by biological changes in the brain, as long as the CNS/SC urea ratio remains constant.
Collapse
Affiliation(s)
- E Ronne-Engström
- Department of Neuroscience, University Hospital, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Abstract
In patients with severe brain injury, brain edema, elevated intracranial pressure, and cerebral ischemia are accountable for a significant morbidity and mortality. New invasive methods of monitoring attempt to foresee the physiopathological mechanisms responsible for the production of secondary brain injuries. The available methods for monitoring severely brain-injured patients, their potential usefulness, advantages, and disadvantages are reviewed.
Collapse
Affiliation(s)
- F C Viñas
- Department of Neurological Surgery, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
323
|
Doyle JA, Davis DP, Hoyt DB. The use of hypertonic saline in the treatment of traumatic brain injury. THE JOURNAL OF TRAUMA 2001; 50:367-83. [PMID: 11242309 DOI: 10.1097/00005373-200102000-00030] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J A Doyle
- Department of Emergency Medicine, University of California at San Diego, 200 West Arbor Drive, San Diego, CA 92103-8676, USA
| | | | | |
Collapse
|
324
|
Bell MJ, Robertson CS, Kochanek PM, Goodman JC, Gopinath SP, Carcillo JA, Clark RS, Marion DW, Mi Z, Jackson EK. Interstitial brain adenosine and xanthine increase during jugular venous oxygen desaturations in humans after traumatic brain injury. Crit Care Med 2001; 29:399-404. [PMID: 11246323 DOI: 10.1097/00003246-200102000-00033] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Adenosine decreases the cerebral metabolic rate for oxygen and increases cerebral blood flow, and it may play an important role in cerebrometabolic and cerebrovascular responses to hypoperfusion after traumatic brain injury. Jugular venous oxygen saturation is monitored after traumatic brain injury to assess brain oxygen extraction, and desaturations may reflect secondary brain insults. We hypothesized that brain interstitial adenosine and related purine metabolites would be increased during jugular venous oxygen saturation desaturations (<50%) and determined associations between the purines, lactate, and glucose to assess the role of adenosine during secondary insults in humans. DESIGN Study of critically ill adults with severe traumatic brain injury. SETTING Adult neurointensive care unit. PATIENTS We prospectively defined periods of normal saturation and desaturation in six patients after severe traumatic brain injury. INTERVENTIONS During these periods, cerebral microdialysis samples of brain interstitial fluid were collected, and adenosine and purine metabolites were measured by high-pressure liquid chromatography. MEASUREMENTS AND MAIN RESULTS Adenosine increased 3.1-fold and xanthine increased 2.5-fold during desaturation periods (both p <.05 vs. normal saturation period, signed rank). Adenosine, xanthine, hypoxanthine, and cyclic-adenosine monophosphate correlated with lactate over both study periods (r(2) =.32,.14,.31,.07, and.26, respectively, all p <.05, Pearson product moment correlation). CONCLUSION The marked increases in interstitial brain adenosine that occur during jugular venous oxygen desaturations suggest that adenosine may play an important role during periods of secondary insults after traumatic brain injury. The correlation of these metabolites with lactate further suggests that adenosine is increased during periods of enhanced glycolytic metabolism.
Collapse
Affiliation(s)
- M J Bell
- Safar Center for Resuscitation Research and the University of Pittsburgh Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Matz PG, Fujimura M, Lewen A, Morita-Fujimura Y, Chan PH. Increased cytochrome c-mediated DNA fragmentation and cell death in manganese-superoxide dismutase-deficient mice after exposure to subarachnoid hemolysate. Stroke 2001; 32:506-15. [PMID: 11157190 DOI: 10.1161/01.str.32.2.506] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We sought to investigate the mechanisms for oxidative injury caused by subarachnoid hemolysate, a pro-oxidant. METHODS Injection of 50 microL of subarachnoid hemolysate or saline was performed in CD1 mice (n=75), mutant mice deficient in Mn-superoxide dismutase (Sod2+/-; n=23), and their wild-type littermates (n=23). Subcellular location of cytochrome c was studied by immunocytochemistry, immunofluorescence, and immunoblotting of cellular fractions. DNA fragmentation was assessed though DNA laddering and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL). Cell death was examined through basic histology. RESULTS Cytochrome c immunoreactivity was present in the cytosol of neurons at 2 hours after hemolysate injection and increased by 4 hours compared with saline-injected animals (P:<0.02). Cytosolic cytochrome c was more abundant in Sod2+/- mutants. DNA fragmentation was evident at 24 hours, but not 4 hours, after hemolysate injection as determined by DNA laddering and TUNEL staining (P:<0.02). DNA fragmentation colocalized to cells with cytosolic cytochrome c and iron. In Sod2+/- mutants, the extent of fragmentation was increased as determined by TUNEL staining (52% increase; P:<0.02) and DNA laddering (optical density=0.819 versus 0.391; P:<0.01). Cell death was evident on basic histology as early as 4 hours after hemolysate injection. No cell death was evident in controls. In Sod2+/- mutants, cell death was increased by 51% compared with wild-type littermates (P:<0.05). CONCLUSIONS These results demonstrate that subarachnoid blood products are associated with the presence of cytochrome c in the cytosol and subsequent cell death in neurons. It appears that Mn-superoxide dismutase plays a role in preventing cell death after exposure to subarachnoid blood products.
Collapse
Affiliation(s)
- P G Matz
- Department of Neurosurgery, Stanford University School of Medicine, and Surgical Service, Palo Alto Veterans Affairs Health Care System, CA 94304, USA.
| | | | | | | | | |
Collapse
|
326
|
Abstract
There is a growing volume of research on trauma brain injury (TBI) as evidenced by a recent Medline search that reported over 6000 articles published on TBI in the past 5 years.
Collapse
Affiliation(s)
- D Lovasik
- University of Pittsburgh Health System, Pennsylvania, USA
| | | | | |
Collapse
|
327
|
|
328
|
Borsody MK, Coco ML. A hypothesis accounting for the inconsistent benefit of glucocorticoid therapy in closed head trauma. Med Hypotheses 2001; 56:65-72. [PMID: 11133257 DOI: 10.1054/mehy.2000.1113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Because of disagreement between clinical studies, the American College of Neurological Surgeons (ACNS) most recent recommendation (1996) is that glucocorticoids should not be used in the treatment of closed head trauma (CHT). The current paper reviews clinical studies of glucocorticoids and CHT in order to examine what factors might have accounted for the inconsistent results leading to the ACNS's recommendation. A careful analysIs of these studies reveals that, contrary to the ACNS's sweeping conclusion, the available data support the use of glucocorticoids for patients with CHT, but only in specific cases. Glucocorticoids may be beneficial in the treatment of CHT uncomplicated by intracranial hemorrhage; in situations where intracranial hemorrhage accompanies CHT, glucocorticoid treatment appears detrimental. The second part of this paper examines possible mechanisms accounting for the differential effectiveness of glucocorticoids in CHT patients with and without intracranial hemorrhage. These mechanisms include vasospasm, free radical damage, blood-borne factors, and glutamate neurotoxicity.
Collapse
Affiliation(s)
- M K Borsody
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | |
Collapse
|
329
|
Abstract
THE FUTURE OF neurosurgery is intimately related to the future of neuroscientific research. Although the field of neuroscience is immense and not subject to brief review, it is clear that certain trends have become critical to future thinking regarding neurosurgery. An important theme that recurs in much of the current research and that will become more prominent in the future is the concept of plasticity. This refers not only to the changes in cortical representation that can occur after a variety of perturbations but also to a wide variety of neurologically relevant biological processes. In this review, we describe three areas of plasticity, i.e., the response of the brain to ischemia, cortical representational changes, and the potential for stem cell biological processes to allow us to manipulate plasticity. We posit that these trends will be crucial to the future of our specialty.
Collapse
|
330
|
Ruppel RA, Kochanek PM, Adelson PD, Rose ME, Wisniewski SR, Bell MJ, Clark RS, Marion DW, Graham SH. Excitatory amino acid concentrations in ventricular cerebrospinal fluid after severe traumatic brain injury in infants and children: the role of child abuse. J Pediatr 2001; 138:18-25. [PMID: 11148507 DOI: 10.1067/mpd.2001.110979] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Excitotoxicity is an important mechanism in secondary neuronal injury after traumatic brain injury (TBI). Excitatory amino acids (EAAs) are increased in cerebrospinal fluid (CSF) in adults after TBI; however, studies in pediatric head trauma are lacking. We hypothesized that CSF glutamate, aspartate, and glycine would be increased after TBI in children and that these increases would be associated with age, child abuse, poor outcome, and cerebral ischemia. METHODS EAAs were measured in 66 CSF samples from 18 children after severe TBI. Control samples were obtained from 19 children who received lumbar punctures to rule out meningitis. RESULTS Peak and mean CSF glycine and peak CSF glutamate levels were increased versus control values. Subgroups of patients with TBI were compared by using univariate regression analysis. Massive increases in CSF glutamate were found in children <4 years old and in child abuse victims. Increased CSF glutamate and glycine were associated with poor outcome. A trend toward an association between high glutamate concentration and ischemic blood flow was observed. CONCLUSIONS CSF EAAs are increased in infants and children with severe TBI. Young age and child abuse were associated with extremely high CSF glutamate concentrations after TBI. A possible role for excitotoxicity after pediatric TBI is supported.
Collapse
Affiliation(s)
- R A Ruppel
- Department of Anesthesiology, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
331
|
|
332
|
|
333
|
|
334
|
Altered Cellular Anatomy and Physiology of Acute Brain Injury and Spinal Cord Injury. Crit Care Nurs Clin North Am 2000. [DOI: 10.1016/s0899-5885(18)30077-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
335
|
Kroppenstedt SN, Stover JF, Unterberg AW. Effects of dopamine on posttraumatic cerebral blood flow, brain edema, and cerebrospinal fluid glutamate and hypoxanthine concentrations. Crit Care Med 2000; 28:3792-8. [PMID: 11153616 DOI: 10.1097/00003246-200012000-00004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Dopamine is often used in the treatment of traumatic brain injury to maintain cerebral perfusion pressure. However, it remains unclear whether dopamine contributes to secondary brain injury caused by vasoconstriction and resulting diminished cerebral perfusion. The present study investigated the effects of dopamine in different concentrations on posttraumatic cortical cerebral blood flow (CBF), brain edema formation, and cerebrospinal fluid concentrations of glutamate and hypoxanthine. DESIGN Randomized, placebo-controlled trial. SETTING Animal laboratory. SUBJECTS Eighteen male Sprague-Dawley rats subjected to a focal cortical brain injury. INTERVENTIONS Four hours after controlled cortical impact, rats were randomized to receive physiologic saline solution (n = 6), 10-12 tig/kg/min dopamine (n = 6), or 40-50 microg/kg/min dopamine (n = 6), for 3 hrs. Cortical CBF was measured over both hemispheres by using laser-Doppler flowmetry before trauma and before, during, and after the infusion period. At 8 hrs after trauma, brains were removed to determine hemispheric swelling and water content. Cisternal cerebrospinal fluid was sampled to measure glutamate and hypoxanthine. MEASUREMENTS AND MAIN RESULTS After trauma, cortical CBF was significantly decreased by 46% within the vicinity of the cortical contusion in all rats. Infusion of saline and 10-12 ig/kg/min dopamine did not change mean arterial blood pressure (MABP) or cortical CBF. However, infusion of 40-50 microg/kg/min dopamine, which elevated MABP from 89 to 120 mm Hg, significantly increased posttraumatic CBF within and around the contusion by 35%. Over the nontraumatized hemisphere, CBF remained unchanged. Hemispheric swelling, water content, cerebrospinal fluid glutamate, and hypoxanthine levels were not affected by dopamine in the given dosages. CONCLUSIONS Under the present study design, there was no evidence for a dopamine-mediated vasoconstriction, because posttraumatic cortical CBF was increased by dopamine-induced elevation of MABP. However, the increase in CBF did not significantly affect edema formation or cerebrospinal fluid glutamate and hypoxanthine levels.
Collapse
Affiliation(s)
- S N Kroppenstedt
- Department of Neurosurgery, Charité, Virchow Medical Center, Humboldt-University Berlin, Germany
| | | | | |
Collapse
|
336
|
|
337
|
O'Leary DM, Movsesyan V, Vicini S, Faden AI. Selective mGluR5 antagonists MPEP and SIB-1893 decrease NMDA or glutamate-mediated neuronal toxicity through actions that reflect NMDA receptor antagonism. Br J Pharmacol 2000; 131:1429-37. [PMID: 11090117 PMCID: PMC1572472 DOI: 10.1038/sj.bjp.0703715] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The metabotropic glutamate receptors (mGluRs) are a family of G-protein linked receptors that can be divided into three groups (group I, II and III). A number of studies have implicated group I mGluR activation in acute neuronal injury, but until recently it was not possible to pharmacologically differentiate the roles of the two individual subunits (mGluR1 and mGluR5) in this group. 2. We investigated the role of mGluR5 in acute NMDA and glutamate mediated neurodegeneration in cultured rat cortical cells using the mGluR5 antagonists MPEP and SIB-1893, and found that they provide significant protection at concentrations of 20 or 200 microM. 3. These compounds act as effective mGluR5 antagonists in our cell culture system, as indicated by the ability of SIB-1893 to prevent phosphoinositol hydrolysis induced by the specific mGluR5 agonist, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG). 4. However, they also significantly reduce NMDA evoked current recorded from whole cells voltage clamped at -60 mV, and significantly decrease the duration of opening of NMDA channels recorded in the outside out patch configuration. 5. This suggests that although MPEP and SIB-1893 are effective mGluR5 antagonists, they also act as noncompetitive NMDA receptor antagonists. Therefore, the neuroprotective effects of these compounds are most likely mediated through their NMDA receptor antagonist action, and caution should be exercised when drawing conclusions about the roles of mGluR5 based on their use.
Collapse
Affiliation(s)
- D M O'Leary
- Department of Neuroscience, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington DC 20007, USA
| | | | | | | |
Collapse
|
338
|
Sarrafzadeh AS, Sakowitz OW, Callsen TA, Lanksch WR, Unterberg AW. Bedside microdialysis for early detection of cerebral hypoxia in traumatic brain injury. Neurosurg Focus 2000; 9:e2. [PMID: 16821754 DOI: 10.3171/foc.2000.9.5.2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECT The authors evaluated the use of bedside cerebral online microdialysis for the detection of impending and present cerebral hypoxia in patients who had sustained traumatic brain injury. METHODS Thirty-five severely head injured patients (with Glasgow Coma Scale scores < or = 8) were studied. Patients underwent continuous brain tissue PO2 (PtiO2) monitoring. The PtiO2 catheter was placed into the unaffected frontal white matter within 32.2 hours postinjury (range 7-48 hours). The microdialysis catheter was placed close to the PtiO2 probe via a 2- or 3-way skull screw that was connected to a pump and perfused with Ringer's solution at 0.3 microl/minute. The microdialysis samples were collected hourly and analyzed at the bedside for glucose, lactate, lactate-pyruvate ratio, and glutamate. Data were analyzed for identification of episodes of impending (PtiO2 10-15 mm, Hg > 5-minute duration) and present cerebral hypoxia (PtiO2 10 mm Hg, > 5-minute duration). In 62% of the patients hypoxic episodes occurred and were most frequently associated with hyperventilation (p < 0.001). During impending hypoxia, extracellular glutamate concentrations were increased (p = 0.006) whereas energy metabolites remained stable. During cerebral hypoxia, the extracellular glutamate (p < 0.001) and lactate (p = 0.001) concentrations were significantly higher than during normal oxygenation, whereas the lactate-pyruvate ratio was only slightly increased (p = 0.088, not significant). CONCLUSIONS The authors conclude that a PtiO2 below 10 mm Hg is critical to induce metabolic changes seen during hypoxia/ischemia. Early markers of cerebral hypoxia are increased levels of glutamate and lactate. Regional hypoxia is not always associated with anaerobic cerebral metabolism. In the future, this technology of bedside monitoring may allow optimization of the treatment of severely head injured patients.
Collapse
Affiliation(s)
- A S Sarrafzadeh
- Department of Neurosurgery, Charité Campus Virchow Medical Center, Humboldt University of Berlin, Germany.
| | | | | | | | | |
Collapse
|
339
|
Staub F, Graf R, Gabel P, Köchling M, Klug N, Heiss WD. Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage. Neurosurgery 2000; 47:1106-15; discussion 1115-6. [PMID: 11063103 DOI: 10.1097/00006123-200011000-00016] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Intracerebral microdialysis is a tool to monitor metabolic disturbances in the brains of patients with severe head injuries or subarachnoid hemorrhage (SAH). In the search for putative indicators of primary and secondary brain damage, we measured multiple metabolites in the dialysates of patients with SAH, to elucidate their significance for the outcomes of the patients as well as their temporal profiles of liberation after the insult. METHODS Microdialysis probes were placed, with a ventriculostomy catheter for drainage of cerebrospinal fluid, into a frontal lobe of 10 patients with aneurysmal SAH, for 4.6 +/- 0.5 days. Amino acids, metabolites of glycolysis, purines, catecholamines, and nitric oxide oxidation byproducts were measured by high-performance liquid chromatography. Spearman's correlation coefficient and Student's t test were used to compare the levels of the metabolites with the outcomes of the patients, as assessed using the Glasgow Outcome Scale, 3 months after the ictus. RESULTS For patients with unfavorable outcomes (Glasgow Outcome Scale scores of 1-3), which were primarily associated with the development of large infarctions, dialysate levels of excitatory amino acids increased up to 30-fold, those of lactate up to 10-fold, and those of nitrite up to 5-fold, compared with normal levels observed for patients with favorable outcomes (Glasgow Outcome Scale scores of 4 or 5). When average peak concentrations in the dialysates of patients with favorable and unfavorable outcomes were compared, significantly higher levels of excitatory amino acids, taurine, lactate, and nitrite, but not of purines and catecholamines, were observed for those with poor outcomes (P < 0.05). With respect to the temporal profiles of the average metabolite concentrations, the significantly increased levels of amino acids observed for patients with poor outcomes followed a biphasic course, with maximal concentrations on the first and second days or the seventh day after the insult (P < 0.01). CONCLUSION These data confirm the usefulness of excitatory amino acids and lactate as major parameters for neurochemical monitoring for patients threatened by acute cerebral disorders. Other substances, such as taurine and nitrite, were also demonstrated to be potentially predictive. Release of these substances into the extracellular fluid of the brain might be particularly relevant for the development of secondary brain damage after SAH, e.g., infarction or brain swelling.
Collapse
Affiliation(s)
- F Staub
- Department of Neurosurgery, University of Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
340
|
Reinert M, Khaldi A, Zauner A, Doppenberg E, Choi S, Bullock R. High level of extracellular potassium and its correlates after severe head injury: relationship to high intracranial pressure. J Neurosurg 2000; 93:800-7. [PMID: 11059661 DOI: 10.3171/jns.2000.93.5.0800] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Disturbed ionic and neurotransmitter homeostasis are now recognized as probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brain injury (TBI). Evidence obtained in animal models indicates that posttraumatic neuronal excitation by excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with measurements of intracranial pressure (ICP), patient outcome, and levels of dialysate glutamate and lactate, and cerebral blood flow (CBF) to determine the role of ischemia in this posttraumatic ion dysfunction. METHODS Eighty-five patients with severe TBI (Glasgow Coma Scale Score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed using flame photometry, and dialysate glutamate and dialysate lactate levels were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients, respectively. Cerebral blood flow studies (stable xenon computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, dialysate potassium values were increased (dialysate potassium > 1.8 mM) for 3 hours or more. A mean amount of dialysate potassium greater than 2 mM throughout the entire monitoring period was associated with ICP above 30 mm Hg and fatal outcome, as were progressively rising levels of dialysate potassium. The presence of dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate (p < 0.0001) levels. Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). CONCLUSIONS Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase in dialysate potassium, together with dialysate glutamate and lactate, supports the concept that glutamate induces ionic flux and consequently increases ICP, which the authors speculate may be due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered vasoreactivity in cerebral blood vessels caused by higher levels of potassium after trauma. Additional studies in which potassium-sensitive microelectrodes are used are needed to validate these ionic events more clearly.
Collapse
Affiliation(s)
- M Reinert
- Department of Biostatistics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0631, USA
| | | | | | | | | | | |
Collapse
|
341
|
Lockowandt U, Liska J, Bäckström T, Franco-Cereceda A. Microdialysis of blood from the cardiac venous outflow: a technique for monitoring myocardial ischemia. SCAND CARDIOVASC J 2000; 34:501-6. [PMID: 11191941 DOI: 10.1080/140174300750064675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
OBJECTIVE To evaluate the possibility of using microdialysis of blood from the great cardiac vein for detecting myocardial ischemia. DESIGN Microdialysis catheters were placed in the great cardiac vein and the left atrium of pigs for analysis of lactate, glycerol, pyruvate and glucose. Blood samples were drawn for measurement of aspartate aminotransferase, alanine aminotransferase, lactic dehydrogenase and myoglobin with the objective of verifying myocardial damage. Ischemia was induced for 3 h. RESULTS Fifteen minutes after induction of ischemia a significant elevation of lactate to 917 +/- 223%; p < 0.001 in the great cardiac vein could be registered. No significant changes in lactate levels were detected in the left atrium. Changes in glycerol and pyruvate showed similar patterns, with an increase to 722 +/- 297%; p < 0.001 and to 281 +/- 56%; p < 0.05, respectively. The outflow of aspartate aminotransferase and myoglobine in the great cardiac vein increased significantly. CONCLUSION Early detection of metabolic substances is possible through the assessment of metabolic substances using microdialysis in the great cardiac vein.
Collapse
Affiliation(s)
- U Lockowandt
- Department of Thoracic Surgery, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | |
Collapse
|
342
|
|
343
|
Abstract
There is no question that substantial progress has been made over the last 30 years, since the pioneering multinational studies of Jennett and colleagues, in our understanding of the mechanisms involved in the production, progression, and amelioration of brain damage. The introduction of computed tomography and simple but elegant classifications of the severity of injury (e.g., the Glasgow Coma Scale and the Glasgow Outcome Scale) were seminal milestones in neurotraumatology. When neurosurgeons such as Langfitt, Becker, and Miller took advantage of the pioneering investigations of intracranial hypertension by Janny and Lundberg and combined them with imaging, classification of brain damage, and improvements in emergency medical services, substantial gains were soon made. However, given the perspective of the beginning of the 21 st century, one can see those gains as relatively straightforward, as they have required the consolidation of concepts and ideas that fit together relatively easily. Better attention to easily delineated abnormalities, such as shock, hypoxia, and hypercarbia, and the early evacuation of mass lesions coupled with the concurrent development of modern principles of critical care account for substantial reductions in mortality and a reduction in the number of vegetative, contracted, spastic survivors. Future improvement in the care of patients with head injuries will increasingly be dependent on advances in molecular neurobiology and psychology, our ability to successfully modulate genetic expression, and progress in the treatment of related illnesses, such as stroke, subarachnoid hemorrhage, depression, and Alzheimer's disease.
Collapse
|
344
|
|
345
|
Kochanek PM, Clark RS, Ruppel RA, Adelson PD, Bell MJ, Whalen MJ, Robertson CL, Satchell MA, Seidberg NA, Marion DW, Jenkins LW. Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: Lessons learned from the bedside. Pediatr Crit Care Med 2000; 1:4-19. [PMID: 12813280 DOI: 10.1097/00130478-200007000-00003] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE: To present a state-of-the-art review of mechanisms of secondary injury in the evolution of damage after severe traumatic brain injury in infants and children. DATA SOURCES: We reviewed 152 peer-reviewed publications, 15 abstracts and proceedings, and other material relevant to the study of biochemical, cellular, and molecular mechanisms of damage in traumatic brain injury. Clinical studies of severe traumatic brain injury in infants and children were the focus, but reports in experimental models in immature animals were also considered. Results from both clinical studies in adults and models of traumatic brain injury in adult animals were presented for comparison. DATA SYNTHESIS: Categories of mechanisms defined were those associated with ischemia, excitotoxicity, energy failure, and resultant cell death cascades; secondary cerebral swelling; axonal injury; and inflammation and regeneration. CONCLUSIONS: A constellation of mediators of secondary damage, endogenous neuroprotection, repair, and regeneration are set into motion in the brain after severe traumatic injury. The quantitative contribution of each mediator to outcome, the interplay between these mediators, and the integration of these mechanistic findings with novel imaging methods, bedside physiology, outcome assessment, and therapeutic intervention remain an important target for future research.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research (Drs. Kochanek, Clark, Ruppel, Adelson, Robertson, Satchell, Seidberg, Marion, and Jenkins), the Departments of Anesthesiology and Critical Care Medicine (Drs. Kochanek, Clark, Ruppel, Robertson, Satchell, and Seidberg), Pediatrics (Drs. Kochanek and Clark), Neurological Surgery (Drs. Adelson, Marion, and Jenkins), the Center for Injury Control and Research (Drs. Marion and Kochanek,), and the Brain Trauma Research Center (Drs. Marion, Kochanek, Clark, Adelson, and Jenkins), of the University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, PA; the Children's Hospital National Medical Center (Dr. Bell), Washington, D.C.; and Massachusetts General Hospital (Dr. Whalen), Boston, MA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 2000; 60:55-69. [PMID: 10873515 DOI: 10.1006/mvre.2000.2244] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Any perturbation of the blood brain barrier, whether from changes in cell physiology or from direct injury, may result in microvascular dysfunction and disease. We examined, at the ultrastructural level, microvascular pericyte responses in a well-defined model of traumatic brain injury in the rat. In areas close to the site of impact cortical pericytes underwent a number of changes within the first hour. Approximately 40% of pericytes migrated from their microvascular location. Migration occurred concomitant with a thinning of the abluminal surface of the basal lamina and an accumulation of the receptor for the urokinase plasminogen activator on the leading surface of the migrating cell. Migrated pericytes appeared viable and remained in a perivascular location in the adjacent neuropil. Nonmigrating pericytes in the same section displayed cytoplasmic alterations and nuclear chromatin changes consistent with a rapid degenerative process.
Collapse
Affiliation(s)
- P Dore-Duffy
- Department of Neurology, Detroit Medical Center, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
347
|
Hutchinson PJ, O'Connell MT, Al-Rawi PG, Maskell LB, Kett-White R, Gupta AK, Richards HK, Hutchinson DB, Kirkpatrick PJ, Pickard JD. Clinical cerebral microdialysis: a methodological study. J Neurosurg 2000; 93:37-43. [PMID: 10883903 DOI: 10.3171/jns.2000.93.1.0037] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Clinical microdialysis enables monitoring of the cerebral extracellular chemistry of neurosurgical patients. Introduction of the technique into different hospitals' neurosurgical units has resulted in variations in the method of application. There are several variables to be considered, including length of the catheter membrane, type of perfusion fluid, flow rate of perfusion fluid, and on-line compared with delayed analysis of samples. The objects of this study were as follows: 1) to determine the effects of varying catheter characteristics on substance concentration; 2) to determine the relative recovery and true extracellular concentration by varying the flow rate and extrapolating to zero flow; and 3) to compare substance concentration obtained using a bedside enzyme analyzer with that of off-line high-performance liquid chromatography (HPLC). METHODS A specially designed bolt was used to conduct two adjacent microdialysis catheters into the frontal cortex of patients with head injury or poor-grade subarachnoid hemorrhage who were receiving ventilation. One reference catheter (10-mm membrane, perfused with Ringer's solution at 0.3 microl/minute) was constant for all studies. The other catheter was varied in terms of membrane length (10 mm or 30 mm), perfusion fluid (Ringer's solution or normal saline), and flow rate (0.1-1.5 microl/minute). The effect of freezing the samples on substance concentration was established by on-line analysis and then repeated analysis after storage at -70 degrees C for 3 months. Samples assayed with the bedside enzyme analyzer were reassessed using HPLC for the determination of glutamate concentrations. CONCLUSIONS Two adjacent microdialysis catheters that were identical in membrane length, perfusion fluid, and flow rate showed equivalent results. Variations in perfusion fluid and freezing and thawing of samples did not result in differences in substance concentration. Catheter length had a significant impact on substance recovery. Variations in flow rate enabled the relative recovery to be calculated using a modification of the extrapolation-to-zero-flow method. The recovery was approximately 70% at 0.3 microl/minute and 30% at 1 microl/minute (10-mm membrane) for all analytes. Glutamate results obtained with the enzyme analyzer showed good correlation with those from HPLC.
Collapse
Affiliation(s)
- P J Hutchinson
- Academic Department of Neurosurgery and Wolfson Brain Imaging Centre, University of Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Chen T, Qian YZ, Rice A, Zhu JP, Di X, Bullock R. Brain lactate uptake increases at the site of impact after traumatic brain injury. Brain Res 2000; 861:281-7. [PMID: 10760489 DOI: 10.1016/s0006-8993(00)01992-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although glucose is the main carbohydrate energy substrate for the normal brain, several studies published over the last 10 years now challenge this assumption. The activated brain increases its metabolism to meet increased energy demands by glycolysis after injury. In vitro studies now show that lactate alone can serve as an energy source to maintain synaptic function. In this study, we used 14C-lactate to test the hypothesis that blood lactate is acutely taken up by the injured brain, after fluid percussion injury (FPI) in the rat. 50 microCi radioactive lactate was injected i.v. immediately after FPI, in injured and sham rats. After 30 min, the brain was removed, frozen, and cut into 20 microm sections for autoradiography. Uptake of 14C-label was mainly concentrated at the injury site (2.5 times greater) although uninjured brain also took up the 14C-label. This increased concentration of radioactive lactate at the injury site suggests that the injured brain may use the lactate as an energy source.
Collapse
Affiliation(s)
- T Chen
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, P.O. Box 980631, Richmond, VA 23298-0631, USA
| | | | | | | | | | | |
Collapse
|
349
|
Cruz J. Brain tissue oxygenation. J Neurosurg 2000; 92:736-8. [PMID: 10761672 DOI: 10.3171/jns.2000.92.4.0736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
350
|
Forecasting survival after acute neurologic disease. Curr Opin Crit Care 2000. [DOI: 10.1097/00075198-200004000-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|