301
|
Sibling species of the Anopheles funestus group, and their infection with malaria and lymphatic filarial parasites, in archived and newly collected specimens from northeastern Tanzania. Malar J 2015; 14:104. [PMID: 25885457 PMCID: PMC4352238 DOI: 10.1186/s12936-015-0616-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/20/2015] [Indexed: 11/13/2022] Open
Abstract
Background Studies on the East African coast have shown a recent dramatic decline in malaria vector density and change in composition of sibling species of the Anopheles gambiae complex, paralleled by a major decline in malaria incidence. In order to better understand the ongoing changes in vector-parasite dynamics in the area, and to allow for appropriate adjustment of control activities, the present study examined the composition, and malaria and lymphatic filarial infection, of sibling species of the Anopheles funestus group. Similar to the An. gambiae complex, the An. funestus group contains important vectors of both malaria and lymphatic filariasis. Methods Archived (from 2005–2012) and newly collected (from 2014) specimens of the An. funestus group collected indoors using CDC light traps in villages in northeastern Tanzania were analysed. They were identified to sibling species by PCR based on amplification of species-specific nucleotide sequence in the ITS2 region on rDNA genes. The specimens were furthermore examined for infection with Plasmodium falciparum and Wuchereria bancrofti by PCR. Results The identified sibling species were An. funestus s.s., Anopheles parensis, Anopheles rivulorum, and Anopheles leesoni, with the first being by far the most common (overall 94.4%). When comparing archived specimens from 2005–2007 to those from 2008–2012, a small but statistically significant decrease in proportion of An. funestus s.s. was noted, but otherwise observed temporal changes in sibling species composition were minor. No P. falciparum was detected in archived specimens, while 8.3% of the newly collected An. funestus s.s. were positive for this parasite. The overall W. bancrofti infection rate decreased from 14.8% in the 2005–2007 archived specimens to only 0.5% in the newly collected specimens, and with overall 93.3% of infections being in An. funestus s.s. Conclusion The study indicated that the composition of the An. funestus group had remained rather stable during the study period, with An. funestus s.s. being the most predominant. The study also showed increasing P. falciparum infection and decreasing W. bancrofti infection in An. funestus s.s. in the study period, most likely reflecting infection levels with these parasites in the human population in the area.
Collapse
|
302
|
Charlwood JD, Tomás EVE, Cuamba N, Pinto J. Analysis of the sporozoite ELISA for estimating infection rates in Mozambican anophelines. MEDICAL AND VETERINARY ENTOMOLOGY 2015; 29:10-16. [PMID: 25088021 DOI: 10.1111/mve.12084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/13/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
Comparisons were undertaken to investigate cost-effective methods of implementing the enzyme-linked immunosorbent assay (ELISA) for sporozoite determination in anophelines when large numbers require processing. Comparisons between ELISA plate reader and visual assessments were performed with Anopheles funestus and Anopheles gambiae s.l. (Diptera: Culicidae), as were comparisons between whole-body mosquito samples, heads and thoraces, and abdomens alone. Rates obtained from pools of five or 10 mosquitoes were compared with those for individual mosquitoes, as were rates obtained using different sampling methods. A total of 41 792 An. funestus and 9431 An. gambiae s.l. collected in light traps, and 22 323 An. funestus and 6860 An. gambiae s.l. from exit collections were analysed. Visual assessments gave results similar to those of machine readings. Sporozoite rates were similar in both species, as were rates by collection method. The use of whole mosquitoes increased estimates of infection rate by 0.6%. Pool size did not affect infection rates of An. gambiae s.l., but rates were higher among individually tested An. funestus than among those tested in pools. For large-scale surveys, the use of whole mosquitoes in pools of 10 mosquitoes, with correction for overestimation, and the noting of results according to a simple three-stage visual assessment of positivity is the most cost-effective approach and is sufficient to obtain reliable data for comparative purposes.
Collapse
Affiliation(s)
- J D Charlwood
- DBL Centre for Health Research and Development, Faculty of Life, University of Copenhagen, Fredriksberg, Denmark; Instituto Nacional de Saúde, Maputo, Mozambique; MOZDAN (Mozambican-Danish Rural Malaria Project), Morrumbene, Mozambique; Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | | | | |
Collapse
|
303
|
Choi KS. Diversity of clades I and II within Anopheles funestus sensu stricto in southern Africa. Genes Genomics 2015. [DOI: 10.1007/s13258-014-0236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
304
|
Das S, Henning TC, Simubali L, Hamapumbu H, Nzira L, Mamini E, Makuwaza A, Muleba M, Norris DE, Stevenson JC. Underestimation of foraging behaviour by standard field methods in malaria vector mosquitoes in southern Africa. Malar J 2015; 14:12. [PMID: 25927429 PMCID: PMC4318541 DOI: 10.1186/s12936-014-0527-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Defining the anopheline mosquito vectors and their foraging behaviour in malaria endemic areas is crucial for disease control and surveillance. The standard protocol for molecular identification of host blood meals in mosquitoes is to morphologically identify fed mosquitoes and then perform polymerase chain reaction (PCR), precipitin tests, or ELISA assays. The purpose of this study was to determine the extent to which the feeding rate and human blood indices (HBIs) of malaria vectors were underestimated when molecular confirmation by PCR was performed on both visually fed and unfed mosquitoes. METHODS In association with the Southern Africa International Centers of Excellence in Malaria Research (ICEMR), mosquito collections were performed at three sites: Choma district in southern Zambia, Nchelenge district in northern Zambia, and Mutasa district in eastern Zimbabwe. All anophelines were classified visually as fed or unfed, and tested for blood meal species using PCR methods. The HBIs of visually fed mosquitoes were compared to the HBIs of overall PCR confirmed fed mosquitoes by Pearson's Chi-Square Test of Independence. RESULTS The mosquito collections consisted of Anopheles arabiensis from Choma, Anopheles funestus s.s., Anopheles gambiae s.s. and Anopheles leesoni from Nchelenge, and An. funestus s.s. and An. leesoni from Mutasa. The malaria vectors at all three sites had large human blood indices (HBI) suggesting high anthropophily. When only visually fed mosquitoes tested by PCR for blood meal species were compared to testing those classified as both visually fed and unfed mosquitoes, it was found that the proportion blooded was underestimated by up to 18.7%. For most Anopheles species at each site, there was a statistically significant relationship (P < 0.05) between the HBIs of visually fed mosquitoes and that of the overall PCR confirmed fed mosquitoes. CONCLUSION The impact on HBI of analysing both visually fed and unfed mosquitoes varied from site to site. This discrepancy may be due to partial blood feeding behaviour by mosquitoes, digestion of blood meals, sample condition, and/or expertise of entomology field staff. It is important to perform molecular testing on all mosquitoes to accurately characterize vector feeding behaviour and develop interventions in malaria endemic areas.
Collapse
Affiliation(s)
- Smita Das
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Tyler C Henning
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | | | | | - Lukwa Nzira
- National Institute of Health Research, P.O. Box 573, Harare, Zimbabwe.
| | - Edmore Mamini
- Biomedical Research Training Institute, Harare, Zimbabwe.
| | - Aramu Makuwaza
- National Institute of Health Research, P.O. Box 573, Harare, Zimbabwe.
| | | | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | | | | |
Collapse
|
305
|
Widespread pyrethroid and DDT resistance in the major malaria vector Anopheles funestus in East Africa is driven by metabolic resistance mechanisms. PLoS One 2014; 9:e110058. [PMID: 25333491 PMCID: PMC4198208 DOI: 10.1371/journal.pone.0110058] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/08/2014] [Indexed: 11/30/2022] Open
Abstract
Background Establishing the extent, geographical distribution and mechanisms of insecticide resistance in malaria vectors is a prerequisite for resistance management. Here, we report a widespread distribution of insecticide resistance in the major malaria vector An. funestus across Uganda and western Kenya under the control of metabolic resistance mechanisms. Methodology/Principal Findings Female An. funestus collected throughout Uganda and western Kenya exhibited a Plasmodium infection rate between 4.2 to 10.4%. Widespread resistance against both type I (permethrin) and II (deltamethrin) pyrethroids and DDT was observed across Uganda and western Kenya. All populations remain highly susceptible to carbamate, organophosphate and dieldrin insecticides. Knockdown resistance plays no role in the pyrethroid and DDT resistance as no kdr mutation associated with resistance was detected despite the presence of a F1021C replacement. Additionally, no signature of selection was observed on the sodium channel gene. Synergist assays and qRT-PCR indicated that metabolic resistance plays a major role notably through elevated expression of cytochrome P450s. DDT resistance mechanisms differ from West Africa as the L119F-GSTe2 mutation only explains a small proportion of the genetic variance to DDT resistance. Conclusion The extensive distribution of pyrethroid and DDT resistance in East African An. funestus populations represents a challenge to the control of this vector. However, the observed carbamate and organophosphate susceptibility offers alternative solutions for resistance management.
Collapse
|
306
|
Choi KS, Christian R, Nardini L, Wood OR, Agubuzo E, Muleba M, Munyati S, Makuwaza A, Koekemoer LL, Brooke BD, Hunt RH, Coetzee M. Insecticide resistance and role in malaria transmission of Anopheles funestus populations from Zambia and Zimbabwe. Parasit Vectors 2014; 7:464. [PMID: 25293669 PMCID: PMC4197278 DOI: 10.1186/s13071-014-0464-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two mitochondrial DNA clades have been described in Anopheles funestus populations from southern Africa. Clade I is common across the continent while clade II is known only from Mozambique and Madagascar. The specific biological status of these clades is at present unknown. We investigated the possible role that each clade might play in the transmission of Plasmodium falciparum and the insecticide resistance status of An. funestus from Zimbabwe and Zambia. METHODS Mosquitoes were collected inside houses from Nchelenge District, Zambia and Honde Valley, Zimbabwe in 2013 and 2014. WHO susceptibility tests, synergist assays and resistance intensity tests were conducted on wild females and progeny of wild females. ELISA was used to detect Plasmodium falciparum circumsporozoite protein. Specimens were identified to species and mtDNA clades using standard molecular methods. RESULTS The Zimbabwean samples were all clade I while the Zambian population comprised 80% clade I and 20% clade II in both years of collection. ELISA tests gave an overall infection rate of 2.3% and 2.1% in 2013, and 3.5% and 9.2% in 2014 for Zimbabwe and Zambia respectively. No significant difference was observed between the clades. All populations were resistant to pyrethroids and carbamates but susceptible to organochlorines and organophosphates. Synergist assays indicated that pyrethroid resistance is mediated by cytochrome P450 mono-oxygenases. Resistance intensity tests showed high survival rates after 8-hrs continuous exposure to pyrethroids but exposure to bendiocarb gave the same results as the susceptible control. CONCLUSIONS This is the first record of An. funestus mtDNA clade II occurring in Zambia. No evidence was found to suggest that the clades are markers of biologically separate populations. The ability of An. funestus to withstand prolonged exposure to pyrethroids has serious implications for the use of these insecticides, either through LLINs or IRS, in southern Africa in general and resistance management strategies should be urgently implemented.
Collapse
Affiliation(s)
- Kwang S Choi
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa. .,School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 702-701, Korea.
| | - Riann Christian
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.
| | - Luisa Nardini
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.
| | - Oliver R Wood
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.
| | - Eunice Agubuzo
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.
| | | | - Shungu Munyati
- Biomedical Research and Training Institute, Harare, Zimbabwe.
| | - Aramu Makuwaza
- National Institute for Health Research, Harare, Zimbabwe.
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.
| | - Basil D Brooke
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.
| | - Richard H Hunt
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
307
|
Riveron JM, Ibrahim SS, Chanda E, Mzilahowa T, Cuamba N, Irving H, Barnes KG, Ndula M, Wondji CS. The highly polymorphic CYP6M7 cytochrome P450 gene partners with the directionally selected CYP6P9a and CYP6P9b genes to expand the pyrethroid resistance front in the malaria vector Anopheles funestus in Africa. BMC Genomics 2014; 15:817. [PMID: 25261072 PMCID: PMC4192331 DOI: 10.1186/1471-2164-15-817] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/23/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Pyrethroid resistance in the major malaria vector Anopheles funestus is rapidly expanding across Southern Africa. It remains unknown whether this resistance has a unique origin with the same molecular basis or is multifactorial. Knowledge of the origin, mechanisms and evolution of resistance are crucial to designing successful resistance management strategies. RESULTS Here, we established the resistance profile of a Zambian An. funestus population at the northern range of the resistance front. Similar to other Southern African populations, Zambian An. funestus mosquitoes are resistant to pyrethroids and carbamate, but in contrast to populations in Mozambique and Malawi, these insects are also DDT resistant. Genome-wide microarray-based transcriptional profiling and qRT-PCR revealed that the cytochrome P450 gene CYP6M7 is responsible for extending pyrethroid resistance northwards. Indeed, CYP6M7 is more over-expressed in Zambia [fold-change (FC) 37.7; 13.2 for qRT-PCR] than CYP6P9a (FC15.6; 8.9 for qRT-PCR) and CYP6P9b (FC11.9; 6.5 for qRT-PCR), whereas CYP6P9a and CYP6P9b are more highly over-expressed in Malawi and Mozambique. Transgenic expression of CYP6M7 in Drosophila melanogaster coupled with in vitro assays using recombinant enzymes and assessments of kinetic properties demonstrated that CYP6M7 is as efficient as CYP6P9a and CYP6P9b in conferring pyrethroid resistance. Polymorphism patterns demonstrate that these genes are under contrasting selection forces: the exceptionally diverse CYP6M7 likely evolves neutrally, whereas CYP6P9a and CYP6P9b are directionally selected. The higher variability of CYP6P9a and CYP6P9b observed in Zambia supports their lesser role in resistance in this country. CONCLUSION Pyrethroid resistance in Southern Africa probably has multiple origins under different evolutionary forces, which may necessitate the design of different resistance management strategies.
Collapse
Affiliation(s)
- Jacob M Riveron
- />Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke place, Liverpool, L3 5QA UK
| | - Sulaiman S Ibrahim
- />Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke place, Liverpool, L3 5QA UK
| | - Emmanuel Chanda
- />Ministry of Health, National Malaria Control Centre, Lusaka, Zambia
| | | | | | - Helen Irving
- />Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke place, Liverpool, L3 5QA UK
| | - Kayla G Barnes
- />Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke place, Liverpool, L3 5QA UK
| | - Miranda Ndula
- />Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke place, Liverpool, L3 5QA UK
| | - Charles S Wondji
- />Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke place, Liverpool, L3 5QA UK
| |
Collapse
|
308
|
Lwetoijera DW, Harris C, Kiware SS, Dongus S, Devine GJ, McCall PJ, Majambere S. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J 2014; 13:331. [PMID: 25150840 PMCID: PMC4150941 DOI: 10.1186/1475-2875-13-331] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/22/2014] [Indexed: 11/24/2022] Open
Abstract
Background In order to sustain the gains achieved by current malaria control strategies, robust surveillance systems that monitor dynamics of vectors and their roles in malaria transmission over time are essential. This longitudinal study demonstrates the trends in malaria vector dynamics and their relative contribution to malaria transmission in hyperendemic transmission settings in Tanzania. Methods The study was conducted in two villages within the Kilombero Valley, in rural Tanzania for five consecutive years (2008–2012). Seventy-two houses were selected per village and each house was sampled for mosquitoes monthly using a CDC light trap. Collected mosquitoes were assessed for species identity and sporozoite infection status using PCR and ELISA, respectively. Anopheles funestus and Anopheles arabiensis susceptibility to insecticides was assessed using WHO guidelines. Results A total of 100,810 malaria vectors were collected, of which 76% were Anopheles gambiae s. l. and 24% were An. funestus. Of all An. funestus samples that amplified with PCR (n = 2,737), 97% were An. funestus s.s., 2% were Anopheles rivorulum and 1% Anopheles leesoni. Whereas for An. gambiae s.l. (n = 8,117), 93% were An. arabiensis and 7% were Anopheles gambiae s.s. The proportion of An. gambiae s.s. identified by PCR (2,924) declined from 0.2% in the year 2008 to undetectable levels in 2012. Malaria transmission intensity significantly decreased from an EIR of 78.14 infectious bites/person/year in 2008 to 35 ib/p/yr in 2011 but rebounded to 226 ib/p/yr in 2012 coinciding with an increased role of An. funestus in malaria transmission. Insecticide susceptibility tests indicated high levels of resistance in An. funestus against deltamethrin (87%), permethrin (65%), lambda cyhalothrin (74%), bendiocarb (65%), and DDT (66%). Similarly, An. arabiensis showed insecticide resistance to deltamethrin (64%), permethrin (77%) and lambda cyhalothrin (42%) in 2014. Conclusion The results indicate the continuing role of An. arabiensis and the increasing importance of An. funestus in malaria transmission, and pyrethroid resistance development in both species. Complementary vector control and surveillance tools are needed that target the ecology, behaviour and insecticide resistance management of these vector species, in order to preserve the efficacy of LLINs.
Collapse
Affiliation(s)
- Dickson W Lwetoijera
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | | | | | | | | | | | | |
Collapse
|
309
|
Human exposure to early morning Anopheles funestus biting behavior and personal protection provided by long-lasting insecticidal nets. PLoS One 2014; 9:e104967. [PMID: 25115830 PMCID: PMC4130624 DOI: 10.1371/journal.pone.0104967] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/16/2014] [Indexed: 12/04/2022] Open
Abstract
A shift towards early morning biting behavior of the major malaria vector Anopheles funestus have been observed in two villages in south Benin following distribution of long-lasting insecticidal nets (LLINs), but the impact of these changes on the personal protection efficacy of LLINs was not evaluated. Data from human and An. funestus behavioral surveys were used to measure the human exposure to An. funestus bites through previously described mathematical models. We estimated the personal protection efficacy provided by LLINs and the proportions of exposure to bite occurring indoors and/or in the early morning. Average personal protection provided by using of LLIN was high (≥80% of the total exposure to bite), but for LLIN users, a large part of remaining exposure occurred outdoors (45.1% in Tokoli-V and 68.7% in Lokohoué) and/or in the early morning (38.5% in Tokoli-V and 69.4% in Lokohoué). This study highlights the crucial role of LLIN use and the possible need to develop new vector control strategies targeting malaria vectors with outdoor and early morning biting behavior. This multidisciplinary approach that supplements entomology with social science and mathematical modeling illustrates just how important it is to assess where and when humans are actually exposed to malaria vectors before vector control program managers, policy-makers and funders conclude what entomological observations imply.
Collapse
|
310
|
Koekemoer LL, Waniwa K, Brooke BD, Nkosi G, Mabuza A, Coetzee M. Larval salinity tolerance of two members of the Anopheles funestus group. MEDICAL AND VETERINARY ENTOMOLOGY 2014; 28:187-192. [PMID: 24987777 DOI: 10.1111/mve.12027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The Anopheles funestus group (Diptera: Culicidae) is one of the main species groups involved in malaria transmission in the Afrotropical regions. Basic research into this group has been limited because its members are eurygamic (they tend not to mate in confined spaces), which makes laboratory colonization difficult. Currently, only a few An. funestus Giles colonies are available and no colonies of other members of the group have been established. As information on the larval biology of members of the An. funestus group is limited, the present study aims to determine the effects of different salt concentrations on survival rates of the aquatic stages of two members of the An. funestus group, Anopheles funestus and Anopheles rivulorum Leeson. There were statistically significant negative trends in hatch rate and larval survival rate in An. funestus with increasing salt concentrations, with no larvae surviving to pupae at concentrations that included >15% seawater. Anopheles rivulorum, by contrast, showed no significant trends in hatch rate or larval survival with increasing salt concentrations. This is the first report on salinity tolerance in An. rivulorum. A basic understanding of these variations in salinity tolerance provides vital information on the biology, ecology and colony rearing of members of the An. funestus group.
Collapse
|
311
|
Kawada H, Ohashi K, Dida GO, Sonye G, Njenga SM, Mwandawiro C, Minakawa N. Insecticidal and repellent activities of pyrethroids to the three major pyrethroid-resistant malaria vectors in western Kenya. Parasit Vectors 2014; 7:208. [PMID: 24885499 PMCID: PMC4017225 DOI: 10.1186/1756-3305-7-208] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background The dramatic success of insecticide treated nets (ITNs) and long-lasting insecticidal nets (LLINs) in African countries has been countered by the rapid development of pyrethroid resistance in vector mosquitoes over the past decade. One advantage of the use of pyrethroids in ITNs is their excito-repellency. Use of the excito-repellency of pyrethroids might be biorational, since such repellency will not induce or delay the development of any physiological resistance. However, little is known about the relationship between the mode of insecticide resistance and excito-repellency in pyrethroid-resistant mosquitoes. Methods Differences in the reactions of 3 major malaria vectors in western Kenya to pyrethroids were compared in laboratory tests. Adult susceptibility tests were performed using World Health Organization (WHO) test tube kits for F1 progenies of field-collected An. gambiae s.s., An. arabiensis, and An. funestus s.s., and laboratory colonies of An. gambiae s.s. and An. arabiensis. The contact repellency to pyrethroids or permethrin-impregnated LLINs (Olyset® Nets) was evaluated with a simple choice test modified by WHO test tubes and with the test modified by the WHO cone bioassay test. Results Field-collected An. gambiae s.s., An. arabiensis, and An. funestus s.s. showed high resistance to both permethrin and deltamethrin. The allelic frequency of the point mutation in the voltage-gated sodium channel (L1014S) in An. gambiae s.s. was 99.3–100%, while no point mutations were detected in the other 2 species. The frequency of takeoffs from the pyrethroid-treated surface and the flying times without contacting the surface increased significantly in pyrethroid-susceptible An. gambiae s.s. and An. arabiensis colonies and wild An. arabiensis and An. funestus s.s. colonies, while there was no significant increase in the frequency of takeoffs or flying time in the An. gambiae s.s. wild colony. Conclusion A different repellent reaction was observed in the field-collected An. gambiae s.s. than in An. arabiensis and An. funestus s.s. It might be that resistant mosquitoes governed by knockdown resistance (kdr) loose repellency to pyrethroids, whereas those lacking kdr maintain high repellency irrespective of their possessing metabolic resistance factors to pyrethroids. Further genetic evaluation is required for the demonstration of the above hypothesis.
Collapse
Affiliation(s)
- Hitoshi Kawada
- Department of Vector Ecology & Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
312
|
Moiroux N, Djènontin A, Bio-Bangana AS, Chandre F, Corbel V, Guis H. Spatio-temporal analysis of abundances of three malaria vector species in southern Benin using zero-truncated models. Parasit Vectors 2014; 7:103. [PMID: 24620714 PMCID: PMC4008307 DOI: 10.1186/1756-3305-7-103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/03/2014] [Indexed: 11/23/2022] Open
Abstract
Background A better understanding of the ecology and spatial-temporal distribution of malaria vectors is essential to design more effective and sustainable strategies for malaria control and elimination. In a previous study, we analyzed presence-absence data of An. funestus, An. coluzzii, and An. gambiae s.s. in an area of southern Benin with high coverage of vector control measures. Here, we further extend the work by analysing the positive values of the dataset to assess the determinants of the abundance of these three vectors and to produce predictive maps of vector abundance. Methods Positive counts of the three vectors were assessed using negative-binomial zero-truncated (NBZT) mixed-effect models according to vector control measures and environmental covariates derived from field and remote sensing data. After 8-fold cross-validation of the models, predictive maps of abundance of the sympatric An. funestus, An. coluzzii, and An. gambiae s.s. were produced. Results Cross-validation of the NBZT models showed a satisfactory predictive accuracy. Almost all changes in abundance between two surveys in the same village were well predicted by the models but abundances for An. gambiae s.s. were slightly underestimated. During the dry season, predictive maps showed that abundance greater than 1 bite per person per night were observed only for An. funestus and An. coluzzii. During the rainy season, we observed both increase and decrease in abundance of An. funestus, which are dependent on the ecological setting. Abundances of both An. coluzzii and An. gambiae s.s. increased during the rainy season but not in the same areas. Conclusions Our models helped characterize the ecological preferences of three major African malaria vectors. This works highlighted the importance to study independently the binomial and the zero-truncated count processes when evaluating vector control strategies. The study of the bio-ecology of malaria vector species in time and space is critical for the implementation of timely and efficient vector control strategies.
Collapse
Affiliation(s)
- Nicolas Moiroux
- MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement (IRD), BP64501, 34394 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
313
|
Crainey JL, Mattos-Glória A, Hamada N, Luz SLB. New tools and insights to assist with the molecular identification of Simulium guianense s.l., main Onchocerca volvulus vector within the highland areas of the Amazonia onchocerciasis focus. Acta Trop 2014; 131:47-55. [PMID: 24200838 DOI: 10.1016/j.actatropica.2013.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 11/30/2022]
Abstract
Following the success of the Onchocerciasis Elimination Programme for the Americas (OEPA), there is now just one Latin American onchocerciasis focus where onchocerciasis transmission is described as 'on-going:' the Amazonia Onchocerciasis focus. In the hyperendemic highland areas of the Amazonia focus, Simulium guianense s.l. Wise are the most important vectors of the disease. Populations of S. guianense s.l. are, however, known to vary in their cytogenetics and in a range of behaviours, including in their biting habits. In the hypoendemic lowland areas of the Amazonia focus, for example, S. guianense s.l. are generally regarded as zoophilic and consequently unimportant to disease transmission. Robust tools, to discriminate among various populations of S. guianense s.l. have, however, not yet been developed. In the work reported here, we have assessed the utility of a ribosomal DNA sequence fragment spanning the nuclear ribosomal ITS-1, ITS-2 and 5.8S sequence regions and a ∼850 nucleotide portion of the mitochondrial cytochrome oxidase gene (CO1) for species-level identification and for resolving the within species substructuring. We report here how we have generated 78 CO1 sequences from a rich set of both zoophilic and anthropophilic populations of S. guianense s.l. that were collected from eight sites that are broadly distributed across Brazil. Consistent with previous findings, our analysis supports the genetic isolation of Simulium litobranchium from S. guianense s.l. In contrast with previous findings, however, our results did not provide support for the divergence of the two species prior to the radiation of S. guianense s.l. In our analysis of the S. guianense s.l. ribosomal DNA sequence trace files we generated, we provide clear evidence of multiple within-specimen single nucleotide polymorphisms and indels suggesting that S. guianense s.l. ribosomal DNA is not a good target for conventional DNA barcoding. This is the first report of S. guianense s.l. within individual ribosomal DNA variation and thus the first evidence that the species is not subject to the normal effects of concerted evolution. Collectively, these data illustrate the need for diverse sampling in the development of robust molecular tools for vector identification and suggest that ribosomal DNA might be able to assist with resolving S. guianense s.l. species substructuring that C01 barcoding has hitherto failed to.
Collapse
Affiliation(s)
- James L Crainey
- Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz Amazônia Rua Terezina, 476. Adrianópolis, CEP: 69057-070 Manaus, AM, Brazil
| | - Aline Mattos-Glória
- Lab de Citotaxonomia e Insetos Aquáticos, Instituto Nacional de Pesquisas da Amazônia-INPA, 69011-970 Manaus, AM, Brazil
| | - Neusa Hamada
- Lab de Citotaxonomia e Insetos Aquáticos, Instituto Nacional de Pesquisas da Amazônia-INPA, 69011-970 Manaus, AM, Brazil
| | - Sérgio L B Luz
- Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz Amazônia Rua Terezina, 476. Adrianópolis, CEP: 69057-070 Manaus, AM, Brazil.
| |
Collapse
|
314
|
Boussari O, Subtil F, Moiroux N, Djènontin A, Iwaz J, Corbel V, Fonton N, Garcia A, Etard JF, Ecochard R. Modeling the seasonality of Anopheles gambiae s.s. biting rates in a South Benin sanitary zone. Trans R Soc Trop Med Hyg 2014; 108:237-43. [PMID: 24578284 DOI: 10.1093/trstmh/tru027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Efficient malaria vector control requires knowledge of spatio-temporal vector dynamics. We have classified village groups according to the biting rate profiles of both Anopheles coluzzii and An. gambiae, the major malaria vectors in these villages. METHODS Mosquitoes were captured by human bait in 28 South Benin villages during 2009. Both An. coluzzii and An. gambiae counts in each village were standardized to focus on changes in the vector biting rate over time. Latent class trajectory modeling, allowing for random intercept at the 'village' level, was adjusted to standardized values. RESULTS The villages could be classified into two groups with distinct vector biting rate profiles (continuous/transient). This classification helped creating a map of vector biting rates in the area. The biting rate profiles were found to be significantly correlated with mean rainfall, altitude, average number of larval sites, and average normalized difference vegetation index. CONCLUSIONS In highly malaria-prone regions, knowledge of vector biting rate profiles is important to improve vector control interventions. A similar methodology may be applied to study the biting rate profiles of other vector-borne infections.
Collapse
Affiliation(s)
- Olayidé Boussari
- International Chair in Mathematical Physics and Applications, Laboratoire d'Etude et de Recherche en Statistique Appliquée et Modélisation, Université d'Abomey-Calavi, Abomey-Calavi, Bénin
| | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Mulamba C, Irving H, Riveron JM, Mukwaya LG, Birungi J, Wondji CS. Contrasting Plasmodium infection rates and insecticide susceptibility profiles between the sympatric sibling species Anopheles parensis and Anopheles funestus s.s: a potential challenge for malaria vector control in Uganda. Parasit Vectors 2014; 7:71. [PMID: 24533773 PMCID: PMC3937429 DOI: 10.1186/1756-3305-7-71] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the An. funestus group conceals one of the major malaria vectors in Africa, little is known about the dynamics of members of this group across the continent. Here, we investigated the species composition, infection rate and susceptibility to insecticides of this species group in Uganda. METHODS Indoor resting blood-fed Anopheles adult female mosquitoes were collected from 3 districts in Uganda. Mosquitoes morphologically belonging to the An. funestus group were identified to species by PCR. The sporozoite infection rates were determined by TaqMan and a nested PCR. Susceptibility to major insecticides was assessed using WHO bioassays. The potential role of four candidate resistance genes was assessed using qRT-PCR. RESULTS An. funestus s.s. and An. parensis, were the only members of the An. funestus group identified. Both species were sympatric in Masindi (North-West), whereas only An. parensis was present in Mityana (Central) and Ntungamo (South-West). The Plasmodium falciparum infection detected in An. parensis (4.2%) by TaqMan could not be confirmed by nested PCR, whereas the 5.3% infection in An. funestus s.s. was confirmed. An. parensis was susceptible to most insecticides, however, a moderate resistance was observed against deltamethrin and DDT. In the sympatric population of Masindi, resistance was observed to pyrethroids (permethrin and deltamethrin) and DDT, but all the resistant mosquitoes belonged to An. funestus s.s. No significant over-expression was observed for the four P450 candidate genes CYP6M7, CYP9K1, CYP6P9 and CYP6AA4 between deltamethrin resistant and control An. parensis. However, when compared with the susceptible FANG An. funestus s.s strain, the CYP9K1 is significantly over-expressed in An. parensis (15-fold change; P < 0.001), suggesting it could play a role in the deltamethrin resistance. CONCLUSION The contrasting infection rates and insecticide susceptibility profiles of both species highlights the importance of accurate species identification for successful vector control programs.
Collapse
Affiliation(s)
| | | | | | | | | | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| |
Collapse
|
316
|
Iwashita H, Dida GO, Sonye GO, Sunahara T, Futami K, Njenga SM, Chaves LF, Minakawa N. Push by a net, pull by a cow: can zooprophylaxis enhance the impact of insecticide treated bed nets on malaria control? Parasit Vectors 2014; 7:52. [PMID: 24472517 PMCID: PMC3917899 DOI: 10.1186/1756-3305-7-52] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mass insecticide treated bed net (ITN) deployment, and its associated coverage of populations at risk, had "pushed" a decline in malaria transmission. However, it is unknown whether malaria control is being enhanced by zooprophylaxis, i.e., mosquitoes diverted to feed on hosts different from humans, a phenomenon that could further reduce malaria entomological transmission risk in areas where livestock herding is common. METHODS Between May and July 2009, we collected mosquitoes in 104 houses from three neighboring villages with high ITN coverage (over 80%), along Lake Victoria. We also performed a census of livestock in the area and georeferenced tethering points for all herds, as well as, mosquito larval habitats. Bloodmeal contents from sampled mosquitoes were analyzed, and each mosquito was individually tested for malaria sporozoite infections. We then evaluated the association of human density, ITN use, livestock abundance and larval habitats with mosquito abundance, bloodfeeding on humans and malaria sporozoite rate using generalized linear mixed effects models. RESULTS We collected a total of 8123 mosquitoes, of which 1664 were Anopheles spp. malaria vectors over 295 household spray catches. We found that vector household abundance was mainly driven by the number of householders (P < 0.05), goats/sheep tethered around the house (P < 0.05) and ITNs, which halved mosquito abundance (P < 0.05). In general, similar patterns were observed for Anopheles arabiensis, but not An. gambiae s.s. and An. funestus s.s., whose density did not increase with the presence of livestock animals. Feeding on humans significantly increased in all species with the number of householders (P < 0.05), and only significantly decreased for An. arabiensis in the presence of cattle (P < 0.05). Only 26 Anopheles spp. vectors had malaria sporozoites with the sporozoite rate significantly decreasing as the proportion of cattle feeding mosquitoes increased (P < 0.05). CONCLUSION Our data suggest that cattle, in settings with large ITN coverage, have the potential to drive an unexpected "push-pull" malaria control system, where An. arabiensis mosquitoes "pushed" out of human contact by ITNs are likely being further "pulled" by cattle.
Collapse
Affiliation(s)
- Hanako Iwashita
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Gabriel O Dida
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | | | - Toshihiko Sunahara
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kyoko Futami
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Sammy M Njenga
- Eastern and Southern Africa Centre of International Parasite Control, Nairobi, Kenya
| | - Luis F Chaves
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Noboru Minakawa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
317
|
Munhenga G, Brooke BD, Spillings B, Essop L, Hunt RH, Midzi S, Govender D, Braack L, Koekemoer LL. Field study site selection, species abundance and monthly distribution of anopheline mosquitoes in the northern Kruger National Park, South Africa. Malar J 2014; 13:27. [PMID: 24460920 PMCID: PMC3925985 DOI: 10.1186/1475-2875-13-27] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Knowledge of the ecology and behaviour of a target species is a prerequisite for the successful development of any vector control strategy. Before the implementation of any strategy it is essential to have comprehensive information on the bionomics of species in the targeted area. The aims of this study were to conduct regular entomological surveillance and to determine the relative abundance of anopheline species in the northern Kruger National Park. In addition to this, the impact of weather conditions on an Anopheles arabiensis population were evaluated and a range of mosquito collection methods were assessed. METHODS A survey of Anopheles species was made between July 2010 and December 2012. Mosquitoes were collected from five sites in the northern Kruger National Park, using carbon dioxide-baited traps, human landing and larval collections. Specimens were identified morphologically and polymerase chain reaction assays were subsequently used where appropriate. RESULTS A total of 3,311 specimens belonging to nine different taxa was collected. Species collected were: Anopheles arabiensis (n = 1,352), Anopheles quadriannulatus (n = 870), Anopheles coustani (n = 395), Anopheles merus (n = 349), Anopheles pretoriensis (n = 35), Anopheles maculipalpis (n = 28), Anopheles rivulorum (n = 19), Anopheles squamosus (n = 3) and Anopheles rufipes (n = 2). Members of the Anopheles gambiae species complex were the most abundant and widely distributed, occurring across all collection sites. The highest number of mosquitoes was collected using CO2 baited net traps (58.2%) followed by human landing catches (24.8%). Larval collections (17%) provided an additional method to increase sample size. Mosquito sampling productivity was influenced by prevailing weather conditions and overall population densities fluctuated with seasons. CONCLUSION Several anopheline species occur in the northern Kruger National Park and their densities fluctuate between seasons. Species abundance and relative proportions within the An. gambiae complex varied between collection methods. There is a perennial presence of an isolated population of An. arabiensis at the Malahlapanga site which declined in density during the dry winter months, making this site suitable for a small pilot study site for Sterile Insect Technique as a malaria vector control strategy.
Collapse
Affiliation(s)
- Givemore Munhenga
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Basil D Brooke
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Belinda Spillings
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Leyya Essop
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard H Hunt
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen Midzi
- Shangoni Section, Kruger National Park, Private Bag X402, Skukuza 1350, South Africa
| | - Danny Govender
- Scientific Services, South African National Parks, Private Bag X402, Skukuza 1350, South Africa
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Leo Braack
- Zoonoses Research Unit, Faculty of Health Sciences, University of Pretoria, Pretoria 0007, South Africa
| | - Lizette L Koekemoer
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
318
|
Hardy AJ, Gamarra JGP, Cross DE, Macklin MG, Smith MW, Kihonda J, Killeen GF, Ling’ala GN, Thomas CJ. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa. PLoS One 2013; 8:e81931. [PMID: 24312606 PMCID: PMC3849348 DOI: 10.1371/journal.pone.0081931] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/18/2013] [Indexed: 11/24/2022] Open
Abstract
Background Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. Methods We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Results Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Conclusion Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools.
Collapse
Affiliation(s)
- Andrew J. Hardy
- Institute of Geography & Earth Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- Biomedical and Environmental Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
| | - Javier G. P. Gamarra
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Dónall E. Cross
- Biomedical and Environmental Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Mark G. Macklin
- Institute of Geography & Earth Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Mark W. Smith
- School of Geography, University of Leeds, Leeds, United Kingdom
| | - Japhet Kihonda
- Biomedical and Environmental Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
| | - Gerry F. Killeen
- Biomedical and Environmental Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - George N. Ling’ala
- Biomedical and Environmental Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
| | - Chris J. Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail:
| |
Collapse
|
319
|
Vezenegho SB, Chiphwanya J, Hunt RH, Coetzee M, Bass C, Koekemoer LL. Characterization of the Anopheles funestus group, including Anopheles funestus-like, from Northern Malawi. Trans R Soc Trop Med Hyg 2013; 107:753-62. [PMID: 24189481 DOI: 10.1093/trstmh/trt089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Limited information is available on malaria vector composition, feeding habits and malaria transmission in northern Malawi. Evidence of mosquito species diversity in this area was established in 2009, when Anopheles funestus-like, a new member of the An. funestus group was described. Additional biological information is needed to identify this species and to understand its role in malaria transmission. METHODS Anopheline mosquitoes were collected in northern Malawi and analyzed for Plasmodium species infection, blood meal source and susceptibility to insecticides. A new hydrolysis probe assay was designed to identify An. funestus-like. RESULTS Anopheles funestus and An. rivulorum predominated in the indoor collections. Most An. funestus-like were collected indoors, mainly fed on animals and were uninfected with P. falciparum. Anopheles funestus showed insecticide resistance to deltamethrin and bendiocarb. A high-precision hydrolysis probe assay was successfully developed to identify An. funestus-like. DISCUSSION Four species in the An. funestus group were collected in Karonga. Resistance to deltamethrin and bendiocarb was observed in An. funestus and further investigation is needed on the insecticide resistance mechanisms. Anopheles funestus-like, while collected indoors, is mainly zoophilic and most likely not a malaria vector. ACCESSION NUMBERS An. funestus (GenBank accession no. KC771136), An. funestus-like (GenBank accession no. KC771137), An. parensis GenBank accession no. KC771138) and An. vaneedeni GenBank accession no. KC771139).
Collapse
Affiliation(s)
- Samuel B Vezenegho
- Vector Control Reference Laboratory, Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
320
|
Temporal and micro-spatial heterogeneity in the distribution of Anopheles vectors of malaria along the Kenyan coast. Parasit Vectors 2013; 6:311. [PMID: 24330615 PMCID: PMC3843567 DOI: 10.1186/1756-3305-6-311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background The distribution of anopheline mosquitoes is determined by temporally dynamic environmental and human-associated variables, operating over a range of spatial scales. Macro-spatial short-term trends are driven predominantly by prior (lagged) seasonal changes in climate, which regulate the abundance of suitable aquatic larval habitats. Micro-spatial distribution is determined by the location of these habitats, proximity and abundance of available human bloodmeals and prevailing micro-climatic conditions. The challenge of analysing—in a single coherent statistical framework—the lagged and distributed effect of seasonal climate changes simultaneously with the effects of an underlying hierarchy of spatial factors has hitherto not been addressed. Methods Data on Anopheles gambiae sensu stricto and A. funestus collected from households in Kilifi district, Kenya, were analysed using polynomial distributed lag generalized linear mixed models (PDL GLMMs). Results Anopheline density was positively and significantly associated with amount of rainfall between 4 to 47 days, negatively and significantly associated with maximum daily temperature between 5 and 35 days, and positively and significantly associated with maximum daily temperature between 29 and 48 days in the past (depending on Anopheles species). Multiple-occupancy households harboured greater mosquito numbers than single-occupancy households. A significant degree of mosquito clustering within households was identified. Conclusions The PDL GLMMs developed here represent a generalizable framework for analysing hierarchically-structured data in combination with explanatory variables which elicit lagged effects. The framework is a valuable tool for facilitating detailed understanding of determinants of the spatio-temporal distribution of Anopheles. Such understanding facilitates delivery of targeted, cost-effective and, in certain circumstances, preventative antivectorial interventions against malaria.
Collapse
|
321
|
Kweka EJ, Kamau L, Munga S, Lee MC, Githeko AK, Yan G. A first report of Anopheles funestus sibling species in western Kenya highlands. Acta Trop 2013; 128:158-61. [PMID: 23792011 DOI: 10.1016/j.actatropica.2013.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/29/2013] [Accepted: 06/09/2013] [Indexed: 11/18/2022]
Abstract
Understanding disease vector composition is of priority in designing effective disease control programs. In integrated vector control management, understanding of disease vector species among species complexes simplifies priorities for effective control tools selection. This study identified members of the Anopheles funestus complex sampled in western Kenya from 2002 to 2011 from different breeding sites. Larval sampling was carried out using the standard dipper (350ml) in larval habitats in western Kenya highlands from January 2002 to December 2012. The morphologically identified An. funestus larvae were preserved in absolute ethanol for molecular identification using polymerase chain reaction (PCR). Among the 184 identified specimens of An. funestus sampled, only 76 specimens were clearly identified after DNA amplification and PCR. Among these, 25 (32.9%) were An. funestus s.s, 22 (28.9%) An. leesoni, 9 (11.8%) An. rivulorum and 20 (26.3%) were An. vaneedeni. None was identified as An. parensis. This study has demonstrated the existence of the siblings species of An. funestus complex in western Kenya highlands. However, there is need for further studies to evaluate the dynamics of the adults and sporozoite infectivity rates throughout the region based on these findings.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Tropical Pesticides Research Institute, Division of Livestock and Human Health Disease Vector Control, P.O. Box 3024, Arusha, Tanzania; Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578, Kisumu, Kenya.
| | | | | | | | | | | |
Collapse
|
322
|
Choi KS, Coetzee M, Koekemoer LL. Detection of clade types (clades I and II) within Anopheles funestus sensu stricto by the hydrolysis probe analysis (TaqMan assay). Parasit Vectors 2013; 6:173. [PMID: 23758959 PMCID: PMC3691741 DOI: 10.1186/1756-3305-6-173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022] Open
Abstract
Background Recent studies presented two clades (clades I and II) within the major malaria vector, Anopheles funestus s.s. on the mitochondrial DNA. We describe a hydrolysis probe analysis (Taqman assay) method for the rapid identification of these two clades. Findings A total of 53 An. funestus s.s. from Malawi and Mozambique were tested for detection of clade types using the hydrolysis probe analysis. Results were compared to DNA sequence analysis to verify the accuracy of the probes Taqman assay for this vector species. Analysis using the hydrolysis probe revealed that there were 21 individuals from Malawi and 13 individuals from Mozambique for clade I, and 19 individuals from Mozambique for clade II. The results were consistent with the results of DNA sequences. A field sample from northern Zambia revealed the presence of both clade types. Conclusion A diagnostic method using the hydrolysis probe analysis was developed to identify clade types within An. funestus s.s. This assay will be useful for screening clade types of field-collected An. funestus specimens accurately and efficiently in malaria vector research and control studies.
Collapse
Affiliation(s)
- Kwang Shik Choi
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
323
|
Marsden CD, Cornel A, Lee Y, Sanford MR, Norris LC, Goodell PB, Nieman CC, Han S, Rodrigues A, Denis J, Ouledi A, Lanzaro GC. An analysis of two island groups as potential sites for trials of transgenic mosquitoes for malaria control. Evol Appl 2013; 6:706-20. [PMID: 23789035 PMCID: PMC3684749 DOI: 10.1111/eva.12056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/13/2013] [Indexed: 11/29/2022] Open
Abstract
Considerable technological advances have been made towards the generation of genetically modified mosquitoes for vector control. In contrast, less progress has been made towards field evaluations of transformed mosquitoes which are critical for evaluating the success of, and hazards associated with, genetic modification. Oceanic islands have been highlighted as potentially the best locations for such trials. However, population genetic studies are necessary to verify isolation. Here, we used a panel of genetic markers to assess for evidence of genetic isolation of two oceanic island populations of the African malaria vector, Anopheles gambiae s.s. We found no evidence of isolation between the Bijagós archipelago and mainland Guinea-Bissau, despite separation by distances beyond the known dispersal capabilities of this taxon. Conversely, the Comoros Islands appear to be genetically isolated from the East African mainland, and thus represent a location worthy of further investigation for field trials. Based on assessments of gene flow within and between the Comoros islands, the island of Grande Comore was found to be genetically isolated from adjacent islands and also exhibited local population structure, indicating that it may be the most suitable site for trials with existing genetic modification technologies.
Collapse
Affiliation(s)
- Clare D Marsden
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Dadzie SK, Brenyah R, Appawu MA. Role of species composition in malaria transmission by the Anopheles funestus group (Diptera: Culicidae) in Ghana. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2013; 38:105-110. [PMID: 23701614 DOI: 10.1111/j.1948-7134.2013.12015.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Malaria remains a public health problem in Ghana, with Anopheles gambiae and Anopheles funestus as the predominant vectors. While much information exists on the species composition of An. gambiae, very little exists for An. funestus. This study was carried out to determine the species composition of An. funestus Giles populations from three ecological areas in Ghana and investigate their role in malaria transmission. Mosquitoes were collected using human landing and pyrethrum spray methods. A total of 10,254 Anopheles individuals were collected, out of which An. funestus constituted 53.6% (5,496). An. funestus sensu stricto (s.s.) and Anopheles lessoni were identified as the only members of the An. funestus group in all three ecological areas. All 62 sporozoite positive specimens that were identified as An. funestus s.s. were highly anthropophilic with a human blood index in the range of 80-96%, whereas more than 83% of the An. leesoni had fed on either bovine, goat, or sheep. Malaria transmission was higher in the Sahel savannah area than the rest of the ecological zones, with An. funestus s.s. being implicated as a vector of malaria in all ecological zones. Anopheles leesoni occurred in all the ecological areas but played no role in malaria transmission. The study established the importance of An. funestus s.s. in malaria transmission in Ghana.
Collapse
Affiliation(s)
- Samuel K Dadzie
- Noguchi Memorial Institute for Medical Research, Department of Parasitology, Legon, Accra, Ghana.
| | | | | |
Collapse
|
325
|
Matowo NS, Moore J, Mapua S, Madumla EP, Moshi IR, Kaindoa EW, Mwangungulu SP, Kavishe DR, Sumaye RD, Lwetoijera DW, Okumu FO. Using a new odour-baited device to explore options for luring and killing outdoor-biting malaria vectors: a report on design and field evaluation of the Mosquito Landing Box. Parasit Vectors 2013; 6:137. [PMID: 23642306 PMCID: PMC3655910 DOI: 10.1186/1756-3305-6-137] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/01/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. METHODS Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. RESULTS There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P≤0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P≤0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30 pm, and between 4:30 and 6:00 am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). CONCLUSION While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance.
Collapse
Affiliation(s)
- Nancy S Matowo
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O.Box 53, Ifakara, Tanzania
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Jason Moore
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O.Box 53, Ifakara, Tanzania
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Salum Mapua
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O.Box 53, Ifakara, Tanzania
| | - Edith P Madumla
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O.Box 53, Ifakara, Tanzania
| | - Irene R Moshi
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O.Box 53, Ifakara, Tanzania
| | - Emanuel W Kaindoa
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O.Box 53, Ifakara, Tanzania
| | - Stephen P Mwangungulu
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O.Box 53, Ifakara, Tanzania
| | - Deogratius R Kavishe
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O.Box 53, Ifakara, Tanzania
| | - Robert D Sumaye
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O.Box 53, Ifakara, Tanzania
| | - Dickson W Lwetoijera
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O.Box 53, Ifakara, Tanzania
- Vector Biology Department, Liverpool School of Hygiene and Tropical Medicine, Liverpool, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O.Box 53, Ifakara, Tanzania
| |
Collapse
|
326
|
Mwangangi JM, Muturi EJ, Muriu SM, Nzovu J, Midega JT, Mbogo C. The role of Anopheles arabiensis and Anopheles coustani in indoor and outdoor malaria transmission in Taveta District, Kenya. Parasit Vectors 2013; 6:114. [PMID: 23601146 PMCID: PMC3652741 DOI: 10.1186/1756-3305-6-114] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/17/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The scaling up of malaria vector control efforts in Africa has resulted in changing the malaria vectorial systems across different ecological settings. In view of the ongoing trends in vector population dynamics, abundance, species composition and parasite infectiousness, there is a need to understand vector distribution and their contribution to malaria transmission to facilitate future planning of control strategies. We studied indoor and outdoor malaria transmission dynamics and vector population variability of Anopheles mosquitoes in Taveta district along the Kenyan Coast. METHODS Anopheles mosquitoes were collected indoors and outdoors in 4 ecologically different villages using CDC light traps (both indoor and outdoor) and aspiration method (day resting indoors; DRI) methods. Mosquitoes were examined for infection with P. falciparum sporozoites and blood feeding preferences using enzyme linked immunosorbent assay (ELISA). The An. gambiae and An. funestus complexes were identified by PCR technique to determine the sibling species composition. RESULTS A total of 4,004 Anopheles mosquitoes were collected consisting of 34.9%% (n = 1,397) An. gambiae s.1., 28.1% (n = 1,124) An. funestus s.l., 33.5% (n = 1,340) An. coustani and 3.6% (n = 143) An. pharoensis. A total of 14,654 culicine mosquitoes were collected, mainly Cx. quinquefasciatus. Of the total Anopheles collected, 3,729 were tested for P. falciparum sporozoite infection. The sporozoite transmission was found to be occurring both indoors and outdoors. The overall sporozoite infectivity was 0.68% (n = 2,486) indoors and 1.29% (n = 1,243) outdoors. Indoor and outdoor sporozoite infectivity and the vectorial systems varied across the 4 ecological villages. Entomological inoculation rates for the 4 villages indicate that there was site-to-site variation. In the 4 villages, Mwarusa had the highest EIRs with An. arabiensis, An. funestus and An. coustani contributing to 23.91, 11.96 and 23.91 infectious bites per person per year ib/p/year respectively. In Kiwalwa and Njoro outdoor EIR was significantly higher than indoors. CONCLUSIONS This study shows that malaria transmission is occurring both indoors and outdoors. The main vectors are An. arabiensis, An. funestus and An. coustani indoors while An. coustani is playing a major role in outdoor transmission. Effective malaria control programmes, should therefore include tools that target both indoor and outdoor transmission.
Collapse
Affiliation(s)
- Joseph M Mwangangi
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research Coast, P,O, Box 42880108, Kilifi, Kenya.
| | | | | | | | | | | |
Collapse
|
327
|
Modelling the risk of being bitten by malaria vectors in a vector control area in southern Benin, west Africa. Parasit Vectors 2013; 6:71. [PMID: 23497700 PMCID: PMC3605808 DOI: 10.1186/1756-3305-6-71] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/06/2013] [Indexed: 01/18/2023] Open
Abstract
Background The diversity of malaria vector populations, expressing various resistance and/or behavioural patterns could explain the reduced effectiveness of vector control interventions reported in some African countries. A better understanding of the ecology and distribution of malaria vectors is essential to design more effective and sustainable strategies for malaria control and elimination. Here, we analyzed the spatio-temporal risk of the contact between humans and the sympatric An. funestus and both M and S molecular forms of An. gambiae s.s. in an area of Benin with high coverage of vector control measures with an unprecedented level of resolution. Methods Presence-absence data for the three vectors from 1-year human-landing collections in 19 villages were assessed using binomial mixed-effects models according to vector control measures and environmental covariates derived from field and remote sensing data. After 8-fold cross-validations of the models, predictive maps of the risk of the contact between humans and the sympatric An. funestus and both molecular M and S forms of An. gambiae s.s. were computed. Results Model validations showed that the An. funestus, An. gambiae M form, and S form models provided an excellent (Area Under Curve>0.9), a good (AUC>0.8), and an acceptable (AUC>0.7) level of prediction, respectively. The distribution area of the probability of contact between human and An. funestus largely overlaps that of An. gambiae M form but this latter showed important seasonal variation. An. gambiae S form also showed seasonal variation but with different ecological preferences. Landscape data were useful to discriminate between the species’ distributions. Conclusions These results showed that available remote sensing data could help in predicting the human-vector contact for several species of malaria vectors at a village level scale. The predictive maps showed seasonal and spatial variations in the risk of human-vector contact for all three vectors. Such maps could help Malaria Control Programmes to implement more effective vector control strategy by taking into account to the dynamics of malaria vector species.
Collapse
|
328
|
Lwetoijera DW, Kiware SS, Mageni ZD, Dongus S, Harris C, Devine GJ, Majambere S. A need for better housing to further reduce indoor malaria transmission in areas with high bed net coverage. Parasit Vectors 2013; 6:57. [PMID: 23497471 PMCID: PMC3599311 DOI: 10.1186/1756-3305-6-57] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The suppression of indoor malaria transmission requires additional interventions that complement the use of insecticide treated nets (ITNs) and indoor residual spraying (IRS). Previous studies have examined the impact of house structure on malaria transmission in areas of low transmission. This study was conducted in a high transmission setting and presents further evidence about the association between specific house characteristics and the abundance of endophilic malaria vectors. METHODS Mosquitoes were sampled using CDC light traps from 72 randomly selected houses in two villages on a monthly basis from 2008 to 2011 in rural Southern Tanzania. Generalized linear models using Poisson distributions were used to analyze the association of house characteristics (eave gaps, wall types, roof types, number of windows, rooms and doors, window screens, house size), number of occupants and ITN usage with mean catches of malaria vectors (An.gambiae s.l. and An. funestus). RESULTS A total of 36490 female An. gambiae s.l. were collected in Namwawala village and 21266 in Idete village. As for An. funestus females, 2268 were collected in Namwawala and 3398 in Idete. Individually, each house factor had a statistically significant impact (p < 0.05) on the mean catches for An. gambiae s.l. but not An. funestus. A multivariate analysis indicated that the combined absence or presence of eaves, treated or untreated bed-nets, the number of house occupants, house size, netting over windows, and roof type were significantly related (p < 0.05) to An.gambiae s.l. and An. funestus house entry in both villages. CONCLUSIONS Despite significant reductions in vector density and malaria transmission caused by high coverage of ITNs, high numbers of host-seeking malaria vectors are still found indoors due to house designs that favour mosquito entry. In addition to ITNs and IRS, significant efforts should focus on improving house design to prevent mosquito entry and eliminate indoor malaria transmission.
Collapse
Affiliation(s)
- Dickson W Lwetoijera
- Biomedical and Environmental Thematic Group, Ifakara Health Institute, P,O, Box 53, Ifakara, Tanzania.
| | | | | | | | | | | | | |
Collapse
|
329
|
Okumu FO, Mbeyela E, Lingamba G, Moore J, Ntamatungiro AJ, Kavishe DR, Kenward MG, Turner E, Lorenz LM, Moore SJ. Comparative field evaluation of combinations of long-lasting insecticide treated nets and indoor residual spraying, relative to either method alone, for malaria prevention in an area where the main vector is Anopheles arabiensis. Parasit Vectors 2013; 6:46. [PMID: 23433393 PMCID: PMC3606331 DOI: 10.1186/1756-3305-6-46] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 02/12/2013] [Indexed: 01/04/2023] Open
Abstract
Background Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are commonly used together in the same households to improve malaria control despite inconsistent evidence on whether such combinations actually offer better protection than nets alone or IRS alone. Methods Comparative tests were conducted using experimental huts fitted with LLINs, untreated nets, IRS plus untreated nets, or combinations of LLINs and IRS, in an area where Anopheles arabiensis is the predominant malaria vector species. Three LLIN types, Olyset®, PermaNet 2.0® and Icon Life® nets and three IRS treatments, pirimiphos-methyl, DDT, and lambda cyhalothrin, were used singly or in combinations. We compared, number of mosquitoes entering huts, proportion and number killed, proportions prevented from blood-feeding, time when mosquitoes exited the huts, and proportions caught exiting. The tests were done for four months in dry season and another six months in wet season, each time using new intact nets. Results All the net types, used with or without IRS, prevented >99% of indoor mosquito bites. Adding PermaNet 2.0® and Icon Life®, but not Olyset® nets into huts with any IRS increased mortality of malaria vectors relative to IRS alone. However, of all IRS treatments, only pirimiphos-methyl significantly increased vector mortality relative to LLINs alone, though this increase was modest. Overall, median mortality of An. arabiensis caught in huts with any of the treatments did not exceed 29%. No treatment reduced entry of the vectors into huts, except for marginal reductions due to PermaNet 2.0® nets and DDT. More than 95% of all mosquitoes were caught in exit traps rather than inside huts. Conclusions Where the main malaria vector is An. arabiensis, adding IRS into houses with intact pyrethroid LLINs does not enhance house-hold level protection except where the IRS employs non-pyrethroid insecticides such as pirimiphos-methyl, which can confer modest enhancements. In contrast, adding intact bednets onto IRS enhances protection by preventing mosquito blood-feeding (even if the nets are non-insecticidal) and by slightly increasing mosquito mortality (in case of LLINs). The primary mode of action of intact LLINs against An. arabiensis is clearly bite prevention rather than insecticidal activity. Therefore, where resources are limited, priority should be to ensure that everyone at risk consistently uses LLINs and that the nets are regularly replaced before being excessively torn. Measures that maximize bite prevention (e.g. proper net sizes to effectively cover sleeping spaces, stronger net fibres that resist tears and burns and net use practices that preserve net longevity), should be emphasized.
Collapse
Affiliation(s)
- Fredros O Okumu
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Antonio-Nkondjio C, Demanou M, Etang J, Bouchite B. Impact of cyfluthrin (Solfac EW050) impregnated bed nets on malaria transmission in the city of Mbandjock : lessons for the nationwide distribution of long-lasting insecticidal nets (LLINs) in Cameroon. Parasit Vectors 2013; 6:10. [PMID: 23311927 PMCID: PMC3556121 DOI: 10.1186/1756-3305-6-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/08/2013] [Indexed: 11/24/2022] Open
Abstract
Background Insecticide treated materials remain the mainstay for malaria prevention. The current study reports on the entomological impact of cyfluthrin impregnated bed nets on malaria transmission in Mbandjock, a semi urban locality in southern Cameroon. Several findings pertaining to the recent distribution of LLINs across Cameroon are discussed. Methods Malaria transmission and vector bionomics were monitored before and after impregnated net coverage. Bed nets were distributed in Mbandjock, whereas the locality of Nkoteng was free of bed nets during the entire study period. January to June 1997 represented the period before bed net coverage and September 1997 to September 1998 was the period after bed net coverage. Adult mosquitoes were collected by human landing catches. Mosquito genus and species were identified with morphological and molecular diagnostic tools. Anopheline salivary glands and ovaries were dissected to determine female infectious status and parity rates respectively. Results A total of 6959 anophelines corresponding to 6029 in Mbandjock and 930 in Nkoteng were collected in the course of the study. Seven species were recorded in both cities : Anopheles coustani, An. funestus, An. gambiae sl, An. moucheti, An. ziemanni, An. nili and An. paludis. An. gambiae s.l. (>95% An. gambiae S molecular form) was the most abundant species representing 75.6% and 86.6% of the total anophelines caught in Mbandjock before and after bed net coverage respectively. The human biting rate (HBR) in Mbandjock decreased from 17 bites/human/night before bed net coverage to less than 4 bites/human/night during the first 7 months following impregnated bed net coverage. A significant decrease of mosquito parity rate was recorded when comparing the period before (52%) and after (46.5%) bed net distribution. The average infection rate of malaria vectors significantly decreased from 5.3% before to 1.8% after bed net coverage (p < 0.0001). The entomological inoculation rate in Mbandjock was reduced by 74% varying from 124.1 infected bites/human/year before bed net distribution, to 32.5 infected bites/human/year after bed net coverage. All entomological indexes were relatively stable in Nkoteng and no reduction of malaria transmission was recorded in this locality. Conclusion The study confirms the effectiveness of cyfluthrin impregnated nets in reducing malaria transmission. Lessons from this study could be essential to draw guidelines for the management of the recent nationwide distribution of LLINs across Cameroon in 2011.
Collapse
Affiliation(s)
- Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.
| | | | | | | |
Collapse
|
331
|
Mwangangi JM, Mbogo CM, Orindi BO, Muturi EJ, Midega JT, Nzovu J, Gatakaa H, Githure J, Borgemeister C, Keating J, Beier JC. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J 2013; 12:13. [PMID: 23297732 PMCID: PMC3544599 DOI: 10.1186/1475-2875-12-13] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya. METHODS Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates. RESULTS Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR = 0.94, 95% CI 0.90-0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010. CONCLUSION Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in many areas An. arabiensis has replaced An. gambiae as the major malaria vector. This has important implications for malaria epidemiology and control given that this vector predominately rests and feeds on humans outdoors. Strategies for vector control need to continue focusing on tools for protecting residents inside houses but additionally employ outdoor control tools because these are essential for further reducing the levels of malaria transmission.
Collapse
Affiliation(s)
- Joseph M Mwangangi
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Kilifi, Coast, Kenya.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Coetzee M, Koekemoer LL. Molecular systematics and insecticide resistance in the major African malaria vector Anopheles funestus. ANNUAL REVIEW OF ENTOMOLOGY 2013; 58:393-412. [PMID: 23317045 DOI: 10.1146/annurev-ento-120811-153628] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Anopheles funestus is one of three major African vectors of malaria. Its distribution extends over much of the tropics and subtropics wherever suitable swampy breeding habitats are present. As with members of the Anopheles gambiae complex, An. funestus shows marked genetic heterogeneity across its range. Currently, two unnamed species are recognized in the group, with molecular and cytogenetic data indicating that more may be present. The control of malaria vectors in Africa has received increased attention in the past decade with the scaling up of insecticide-treated bed nets and indoor residual house spraying. Also in the past decade, the frequency of insecticide-resistant mosquitoes has increased exponentially. Whether this increase is in response to vector control initiatives or because of insecticide use in agriculture is debatable. In this article we examine the progress made on the systematics of the An. funestus group and review research on insecticide resistance and its mechanisms.
Collapse
Affiliation(s)
- Maureen Coetzee
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa.
| | | |
Collapse
|
333
|
Optimized Pan-species and speciation duplex real-time PCR assays for Plasmodium parasites detection in malaria vectors. PLoS One 2012; 7:e52719. [PMID: 23285168 PMCID: PMC3532469 DOI: 10.1371/journal.pone.0052719] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/20/2012] [Indexed: 11/19/2022] Open
Abstract
Background An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. Methods Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. Results The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. Conclusion This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations.
Collapse
|
334
|
Choi KS, Koekemoer LL, Coetzee M. Population genetic structure of the major malaria vector Anopheles funestus s.s. and allied species in southern Africa. Parasit Vectors 2012; 5:283. [PMID: 23216696 PMCID: PMC3533957 DOI: 10.1186/1756-3305-5-283] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/28/2012] [Indexed: 11/13/2022] Open
Abstract
Background Anopheles funestus s.s., one of the major malaria vectors in sub-Saharan Africa, belongs to a group of eleven African species that are morphologically similar at the adult stage, most of which do not transmit malaria. The population structure of An. funestus based on mitochondrial DNA data led to the description of two cryptic subdivisions, clade I widespread throughout Africa and clade II known only from Mozambique and Madagascar. In this study, we investigated five common members of the Anopheles funestus group in southern Africa in order to determine relationships within and between species. Methods A total of 155 specimens of An. funestus, An. parensis, An. vaneedeni, An. funestus-like and An. rivulorum from South Africa, Mozambique and Malawi were used for the study. The population genetic structure was assessed within and between populations using mitochondrial DNA. Results The phylogenetic trees revealed three main lineages: 1) An. rivulorum; 2) An. funestus-like clade I and An. parensis clade II; and 3) An. funestus clades I and II, An. funestus-like clade II, An. parensis clade I and An. vaneedeni clades I and II. Within An. funestus, 32 specimens from Mozambique consisted of 40.6% clade I and 59.4% clade II while all 21 individuals from Malawi were clade I. In the analysis of mitochondrial DNA sequences, there were 37 polymorphic sites and 9 fixed different nucleotides for ND5 and 21 polymorphic sites and 6 fixed different nucleotides for COI between the two An. funestus clades. The results for COI supported the ND5 analysis. Conclusion This is the first report comparing An. funestus group species including An. funestus clades I and II and the new species An. funestus-like. Anopheles funestus clade I is separated from the rest of the members of the An. funestus subgroup and An. funestus-like is distinctly distributed from the other species in this study. However, there were two clades for An. funestus-like, An. parensis and An. vaneedeni. Further investigations are needed to determine what these results mean in terms of the specific status of the clades within each taxon and whether this has any epidemiological implications for malaria transmission.
Collapse
Affiliation(s)
- Kwang Shik Choi
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | | | | |
Collapse
|
335
|
Impact of pyrethroid resistance on operational malaria control in Malawi. Proc Natl Acad Sci U S A 2012; 109:19063-70. [PMID: 23118337 DOI: 10.1073/pnas.1217229109] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The impact of insecticide resistance on insect-borne disease programs is difficult to quantify. The possibility of eliminating malaria in high-transmission settings is heavily dependent on effective vector control reducing disease transmission rates. Pyrethroids are the dominant insecticides used for malaria control, with few options for their replacement. Their failure will adversely affect our ability to control malaria. Pyrethroid resistance has been selected in Malawi over the last 3 y in the two major malaria vectors Anopheles gambiae and Anopheles funestus, with a higher frequency of resistance in the latter. The resistance in An. funestus is metabolically based and involves the up-regulation of two duplicated P450s. The same genes confer resistance in Mozambican An. funestus, although the levels of up-regulation differ. The selection of resistance over 3 y has not increased malaria transmission, as judged by annual point prevalence surveys in 1- to 4-y-old children. This is true in areas with long-lasting insecticide-treated nets (LLINs) alone or LLINs plus pyrethroid-based insecticide residual spraying (IRS). However, in districts where IRS was scaled up, it did not produce the expected decrease in malaria prevalence. As resistance increases in frequency from this low initial level, there is the potential for vector population numbers to increase with a concomitant negative impact on control efficacy. This should be monitored carefully as part of the operational activities in country.
Collapse
|
336
|
Kawada H, Dida GO, Sonye G, Njenga SM, Mwandawiro C, Minakawa N. Reconsideration of Anopheles rivulorum as a vector of Plasmodium falciparum in western Kenya: some evidence from biting time, blood preference, sporozoite positive rate, and pyrethroid resistance. Parasit Vectors 2012; 5:230. [PMID: 23050856 PMCID: PMC3485129 DOI: 10.1186/1756-3305-5-230] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/05/2012] [Indexed: 11/17/2022] Open
Abstract
Background Anopheles gambiae, An. arabiensis, and An. funestus are widespread malaria vectors in Africa. Anopheles rivulorum is the next most widespread species in the An. funestus group. The role of An. rivulorum as a malaria vector has not been fully studied, although it has been found to be a minor or opportunistic transmitter of Plasmodium falciparum. Methods Mosquitoes were collected indoors over a 12-hour period using a light source attached to a rotating bottle collector in order to determine peak activity times and to provide DNA for meal source identification. Gravid female mosquitoes were collected indoors via an aspirator to generate F1 progeny for testing insecticidal susceptibility. Blood meal sources were identified using a multiplexed PCR assay for human and bovine cytochrome-B, and by matching sequences generated with primers targeting vertebrate and mammalian cytochrome-B segments to the Genbank database. Results Anopheles rivulorum fed on human blood in the early evening between 18:00 and 20:00, when insecticide-treated bed nets are not in use, and the presence of Plasmodium falciparum sporozoites in 0.70% of the An. rivulorum individuals tested was demonstrated. Susceptibility to permethrin, deltamethrin, and DDT is higher in An. rivulorum (84.8%, 91.4%, and 100%, respectively) than in An. funestus s.s. (36.8%, 36.4%, and 70%, respectively), whereas mortality rates for propoxur and fenitrothion were 100% for both species. Resistance to pyrethroids was very high in An. funestus s.s. and the potential of the development of high resistance was suspected in An. rivulorum. Conclusion Given the tendency for An. rivulorum to be active early in the evening, the presence of P. falciparum in the species, and the potential for the development of pyrethroid resistance, we strongly advocate reconsideration of the latent ability of this species as an epidemiologically important malaria vector.
Collapse
Affiliation(s)
- Hitoshi Kawada
- Department of Vector Ecology & Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | |
Collapse
|
337
|
Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, Djègbé I, Guis H, Corbel V. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis 2012; 206:1622-9. [PMID: 22966127 DOI: 10.1093/infdis/jis565] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Behavioral modification of malaria vectors in response to vector control methods is of great concern. We investigated whether full coverage of long-lasting insecticide-treated mosquito nets (LLINs) may induce a switch in biting behavior in Anopheles funestus, a major malaria vector in Africa. METHODS Human-landing collections were conducted indoor and outdoor in 2 villages (Lokohouè and Tokoli) in Benin before and 1 year and 3 years after implementation of universal LLIN coverage. Proportion of outdoor biting (POB) and median catching times (MCT) were compared. The resistance of A. funestus to deltamethrin was monitored using bioassays. RESULTS MCT of A. funestus switched from 2 AM in Lokohoué and 3 AM in Tokoli to 5 AM after 3 years (Mann-Whitney U test, P < .0001). In Tokoli, POB increased from 45% to 68.1% (odds ratio = 2.55; 95 confidence interval = 1.72-3.78; P < .0001) 1 year after the universal coverage, whereas POB was unchanged in Lokohoué. In Lokohoué, however, the proportion of A. funestus that bites after 6 am was 26%. Bioassays showed no resistance to deltamethrin. CONCLUSIONS This study provides evidence for a switch in malaria vectors' biting behavior after the implementation of LLIN at universal coverage. These findings might have direct consequences for malaria control in Africa and highlighted the need for alternative strategies for better targeting malaria vectors.
Collapse
Affiliation(s)
- Nicolas Moiroux
- MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Samb B, Dia I, Konate L, Ayala D, Fontenille D, Cohuet A. Population genetic structure of the malaria vector Anopheles funestus, in a recently re-colonized area of the Senegal River basin and human-induced environmental changes. Parasit Vectors 2012; 5:188. [PMID: 22950576 PMCID: PMC3503558 DOI: 10.1186/1756-3305-5-188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022] Open
Abstract
Background Anopheles funestus is one of the major malaria vectors in tropical Africa. Because of several cycles of drought events that occurred during the 1970s, this species had disappeared from many parts of sahelian Africa, including the Senegal River basin. However, this zone has been re-colonized during the last decade by An. funestus, following the implementation of two dams on the Senegal River. Previous studies in that area revealed heterogeneity at the biological and chromosomal level among these recent populations. Methods Here, we studied the genetic structure of the newly established mosquito populations using eleven microsatellite markers in four villages of the Senegal River basin and compared it to another An. funestus population located in the sudanian domain. Results Our results presume Hardy Weinberg equilibrium in each An. funestus population, suggesting a situation of panmixia. Moreover, no signal from bottleneck or population expansion was detected across populations. The tests of genetic differentiation between sites revealed a slight but significant division into three distinct genetic entities. Genetic distance between populations from the Senegal River basin and sudanian domain was correlated to geographical distance. In contrast, sub-division into the Senegal River basin was not correlated to geographic distance, rather to local adaptation. Conclusions The high genetic diversity among populations from Senegal River basin coupled with no evidence of bottleneck and with a gene flow with southern population suggests that the re-colonization was likely carried out by a massive and repeated stepping-stone dispersion starting from the neighboring areas where An. funestus endured.
Collapse
Affiliation(s)
- Badara Samb
- Département de Biologie Animale Laboratoire d'Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar-Fann BP 5005, Sénégal
| | | | | | | | | | | |
Collapse
|
339
|
Chanda E, Kandyata A, Chanda J, Phiri FN, Muzia L, Kamuliwo M. The Efficacy of Vectron 20 WP, Etofenprox, for Indoor Residual Spraying in Areas of High Vector Resistance to Pyrethroids and Organochlorines in Zambia. ISRN PREVENTIVE MEDICINE 2012; 2013:371934. [PMID: 24967135 PMCID: PMC4062862 DOI: 10.5402/2013/371934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/15/2012] [Indexed: 11/23/2022]
Abstract
The selection of insecticide resistance in malaria vectors has the potential to compromise any insecticide-based vector control programme. To ensure that the insecticides used for indoor residual spraying and insecticide-treated nets in Zambia remain effective and their choice is evidence based, insecticide resistance surveillance and monitoring are essential. This study assessed and compared the residual efficacy of etofenprox (Vectron 20 WP), an ether pyrethroid, at 0.1 g/m2 with pyrethroids: bifenthrin (Bistar 10 WP) and lambda-cyhalothrin (Icon 10 CS) at 25 mg/m2 for indoor residual spraying. We also assessed the resistance status of etofenprox to local malaria vectors, An. funestus s.s and An. gambiae s.s, using World Health Organization standard protocols. The residual efficacy of Vectron 20 WP on cement, rendered walls of houses lasted for four months with 100% mortality. By the eighth month, the killing effect had reduced to 73.8% compared to 63.3% for bifenthrin and 77.0% for lambda-cyhalothrin. Susceptibility tests using standard World Health Organization assays on An. gambiae s.s showed susceptibility to etofenprox (0.1%) but some resistance was detected to Anopheles funestus s.s. The product is recommended as an ideal insecticide for indoor residual spraying for malaria control in Zambia as part of a resistance management programme in selected areas of the country.
Collapse
Affiliation(s)
- Emmanuel Chanda
- National Malaria Control Centre, Ministry of Health, Directorate of Public Health and Research, P.O. Box 32509, Chainama College Grounds, 10101 Lusaka, Zambia
| | - Alister Kandyata
- National Malaria Control Centre, Ministry of Health, Directorate of Public Health and Research, P.O. Box 32509, Chainama College Grounds, 10101 Lusaka, Zambia
| | - Javan Chanda
- National Malaria Control Centre, Ministry of Health, Directorate of Public Health and Research, P.O. Box 32509, Chainama College Grounds, 10101 Lusaka, Zambia
| | - Faustina N Phiri
- National Malaria Control Centre, Ministry of Health, Directorate of Public Health and Research, P.O. Box 32509, Chainama College Grounds, 10101 Lusaka, Zambia
| | - Lucy Muzia
- Zambia Integrated Systems Strengthening Programme, Malaria Control Unit, Plot 1321 Enock Kavu Road, Rhodes Park, P.O. Box 39090, 10101 Lusaka, Zambia
| | - Mulakwa Kamuliwo
- National Malaria Control Centre, Ministry of Health, Directorate of Public Health and Research, P.O. Box 32509, Chainama College Grounds, 10101 Lusaka, Zambia
| |
Collapse
|
340
|
Diversity of anopheline species and their Plasmodium infection status in rural Bandarban, Bangladesh. Parasit Vectors 2012; 5:150. [PMID: 22839212 PMCID: PMC3419674 DOI: 10.1186/1756-3305-5-150] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/15/2012] [Indexed: 11/15/2022] Open
Abstract
Background Historically, the Chittagong Hill Tracts (CHT) of Bangladesh was considered hyperendemic for malaria. To better understand the contemporary malaria epidemiology and to develop new and innovative control strategies, comprehensive epidemiologic studies are ongoing in two endemic unions of Bandarban district of CHT. Within these studies entomological surveillance has been undertaken to study the role of the existing anopheline species involved in the malaria transmission cycle throughout the year. Methods CDC miniature light traps were deployed to collect anopheline mosquitoes from the sleeping room of the selected houses each month in a single union (Kuhalong). Molecular identification was carried out for available Anopheles species complexes. Circumsporozoite proteins (CSP) for Plasmodium falciparum, Plasmodium vivax-210 (Pv-210) and Plasmodium vivax-247(Pv-247) were detected by Enzyme-linked immunosorbent assay (ELISA) from the female anopheline mosquitoes. To confirm CSP-ELISA results, polymerase chain reaction (PCR) was also performed. Results A total of 2,837 anopheline mosquitoes, of which 2,576 were female, belonging to 20 species were collected from July 2009 -June 2010. Anopheles jeyporiensis was the most abundant species (18.9%), followed by An. vagus (16.8%) and An. kochi (14.4%). ELISA was performed on 2,467 female mosquitoes of 19 species. 15 (0.6%) female anophelines belonging to eight species were found to be positive for Plasmodium infection by CSP-ELISA. Of those, 11 (0.4%) mosquitoes were positive for P. falciparum and four (0.2%) for Pv-210. No mosquito was found positive for Pv-247. An. maculatus (2.1%, 2/97) had the highest infection rate followed by An. umbrosus (1.7%, 2/115) and An. barbirostris (1.1%, 2/186). Other infected species were An. nigerrimus, An. nivipes, An. jeyporiensis, An. kochi, and An. vagus. Out of 11 P. falciparum CSP positive samples, seven turned out to be positive by PCR. None of the samples positive for Pv-210 was positive by PCR. In terms of abundance and incrimination, the results suggest that An. maculatus, An. jeyporiensis and An. nivipes play important roles in malaria transmission in Kuhalong. Conclusion The findings of this study suggest that even in the presence of an insecticide impregnated bed-net intervention, a number of Anopheles species still play a role in the transmission of malaria. Further investigations are required to reveal the detailed biology and insecticide resistance patterns of the vector mosquito species in endemic areas in Bangladesh in order to assist with the planning and implementation of improved malaria control strategies.
Collapse
|
341
|
Lyons CL, Coetzee M, Terblanche JS, Chown SL. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus. Malar J 2012; 11:226. [PMID: 22770378 PMCID: PMC3507762 DOI: 10.1186/1475-2875-11-226] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/06/2012] [Indexed: 12/19/2022] Open
Abstract
Background Malaria affects large parts of the developing world and is responsible for almost 800,000 deaths annually. As climates change, concerns have arisen as to how this vector-borne disease will be impacted by changing rainfall patterns and warming temperatures. Despite the importance and controversy surrounding the impact of climate change on the potential spread of this disease, little information exists on the tolerances of several of the vector species themselves. Methods Using a ramping protocol (to assess critical thermal limits - CT) and plunge protocol (to assess lethal temperature limits - LT) information on the thermal tolerance of two of Africa’s important malaria vectors, Anopheles arabiensis and Anopheles funestus was collected. The effects of age, thermal acclimation treatment, sex and strain (laboratory versus wild adults) were investigated for CT determinations for each species. The effects of age and sex for adults and life stage (larvae, pupae, adults) were investigated for LT determinations. Results In both species, females are more tolerant to low and high temperatures than males; larvae and pupae have higher upper lethal limits than do adults. Thermal acclimation of adults has large effects in some instances but small effects in others. Younger adults tend to be more tolerant of low or high temperatures than older age groups. Long-standing laboratory colonies are sufficiently similar in thermal tolerance to field-collected animals to provide reasonable surrogates when making inferences about wild population responses. Differences between these two vectors in their thermal tolerances, especially in larvae and pupae, are plausibly a consequence of different habitat utilization. Conclusions Limited plasticity is characteristic of the adults of these vector species relative to others examined to date, suggesting limited scope for within-generation change in thermal tolerance. These findings and the greater tolerance of females to thermal extremes may have significant implications for future malaria transmission, especially in areas of current seasonal transmission and in areas on the boundaries of current vector distribution.
Collapse
Affiliation(s)
- Candice L Lyons
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | | | |
Collapse
|
342
|
Kobylinski KC, Sylla M, Black W, Foy BD. Mermithid nematodes found in adult Anopheles from southeastern Senegal. Parasit Vectors 2012; 5:131. [PMID: 22741946 PMCID: PMC3439686 DOI: 10.1186/1756-3305-5-131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/18/2012] [Indexed: 12/03/2022] Open
Abstract
Background Over two dozen mermithid nematodes have been described parasitizing mosquitoes worldwide, however, only two species were found in Africa. Mermithid nematodes kill their mosquito host upon emergence, which suggests that they could be developed as biological control agents of mosquitoes. Both Romanomermis culicivorax and Romanomermis iyengari have been reared for mass release to control numerous Anopheles species vector populations, and in one instance this may have led to reduced malaria prevalence in a human population. Methods Anopheles mosquitoes were collected during a malaria study in southeastern Senegal. Two different adult blood fed mosquitoes had a single mermithid nematode emerge from their anus while they were being held post-capture. Primers from the 18 S rDNA were developed to sequence nematode DNA and screen mosquitoes for mermithid DNA. 18 S rDNA from the Senegalese mermithid and other mermithid entries in GenBank were used to create a Maximum Parsimony tree of the Mermithidae family. Results The mermithid was present in 1.8% (10/551) of the sampled adult Anopheles species in our study area. The mermithid was found in An. gambiae s.s., An. funestus, and An. rufipes from the villages of Ndebou, Boundoucondi, and Damboucoye. Maximum parsimony analysis confirmed that the nematode parasites found in Anopheles were indeed mermithid parasites, and of the mermithid sequences available in GenBank, they are most closely related to Strelkovimermis spiculatus. Conclusions To our knowledge, this is the first report of mermithids from adult Anopheles mosquitoes in Senegal. The mermithid appears to infect Anopheles mosquitoes that develop in diverse larval habitats. Although maximum parsimony analysis determined the mermithid was closely related to Strelkovimermis spiculatus, several characteristics of the mermithid were more similar to the Empidomermis genus. Future mermithid isolations will hopefully allow: formal taxonomic identification, laboratory colonization, determination of life history traits and species specificity, and characterize its usefulness as a biological control agent.
Collapse
Affiliation(s)
- Kevin C Kobylinski
- Arthropod-borne Infectious Disease Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, 1692 Campus Delivery, Fort Collins, CO 80523-1692, USA.
| | | | | | | |
Collapse
|
343
|
Derua YA, Alifrangis M, Hosea KM, Meyrowitsch DW, Magesa SM, Pedersen EM, Simonsen PE. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania. Malar J 2012; 11:188. [PMID: 22681999 PMCID: PMC3469399 DOI: 10.1186/1475-2875-11-188] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded) by an equally dramatic decline in malaria vector density, despite absence of organized vector control. As part of investigations into possible causes for the change in vector population density, the present study analysed the Anopheles gambiae s.l. sibling species composition in north-eastern Tanzania. METHODS The study was in two parts. The first compared current species complex composition in freshly caught An. gambiae s.l. complex from three villages to the composition reported from previous studies carried out 2-4 decades ago in the same villages. The second took advantage of a sample of archived dried An. gambiae s.l. complex specimens collected regularly from a fourth study village since 2005. Both fresh and archived dried specimens were identified to sibling species of the An. gambiae s.l. complex by PCR. The same specimens were moreover examined for Plasmodium falciparum and Wuchereria bancrofti infection by PCR. RESULTS As in earlier studies, An. gambiae s.s., Anopheles merus and Anopheles arabiensis were identified as sibling species found in the area. However, both study parts indicated a marked change in sibling species composition over time. From being by far the most abundant in the past An. gambiae s.s. was now the most rare, whereas An. arabiensis had changed from being the most rare to the most common. P. falciparum infection was rarely detected in the examined specimens (and only in An. arabiensis) whereas W. bancrofti infection was prevalent and detected in all three sibling species. CONCLUSION The study indicates that a major shift in An. gambiae s.l. sibling species composition has taken place in the study area in recent years. Combined with the earlier reported decline in overall malaria vector density, the study suggests that this decline has been most marked for An. gambiae s.s., and least for An. arabiensis, leading to current predominance of the latter. Due to differences in biology and vectorial capacity of the An. gambiae s.l. complex the change in sibling species composition will have important implications for the epidemiology and control of malaria and lymphatic filariasis in the study area.
Collapse
Affiliation(s)
- Yahya A Derua
- National Institute for Medical Research, Amani Centre, P, O, Box 81, Muheza, Tanzania.
| | | | | | | | | | | | | |
Collapse
|
344
|
Corbel V, Akogbeto M, Damien GB, Djenontin A, Chandre F, Rogier C, Moiroux N, Chabi J, Banganna B, Padonou GG, Henry MC. Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2012; 12:617-26. [PMID: 22682536 DOI: 10.1016/s1473-3099(12)70081-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Malaria control efforts and elimination in Africa are being challenged by the development of resistance of parasites to antimalarial drugs and vectors to insecticides. We investigated whether the combination of long-lasting insecticidal mosquito nets (LLINs) with indoor residual spraying (IRS) or carbamate-treated plastic sheeting (CTPS) conferred enhanced protection against malaria and better management of pyrethroid-resistance in vectors than did LLINs alone. METHODS We did a cluster randomised controlled trial in 28 villages in southern Benin, west Africa. Inclusion criteria of the villages were moderate level of pyrethroid resistance in malaria vectors and minimum distance between villages of 2 km. We assessed four malaria vector control interventions: LLIN targeted coverage to pregnant women and children younger than 6 years (TLLIN, reference group), LLIN universal coverage of all sleeping units (ULLIN), TLLIN plus full coverage of carbamate-IRS applied every 8 months (TLLIN+IRS), and ULLIN plus full coverage of CTPS lined up to the upper part of the household walls (ULLIN+CTPS). The interventions were allocated to villages by a block randomisation on the basis of preliminary surveys and children of each village were randomly selected to participate with computer-generated numbers. The primary endpoint was the incidence density rate of Plasmodium falciparum clinical malaria in children younger than 6 years as was analysed by Poisson regression taking into account the effect of age and the sampling design with a generalised estimating equation approach. Clinical and parasitological information were obtained by active case detection of malaria episodes during 12 periods of 6 consecutive days scheduled at six weekly intervals and by cross-sectional surveys of asymptomatic plasmodial infections. Children or study investigators were not masked to study group. This study is registered with Current Controlled Trials, number ISRCTN07404145. FINDINGS Of 58 villages assessed, 28 were randomly assigned to intervention groups. 413-429 children were followed up in each intervention group for 18 months. The clinical incidence density of malaria was not reduced in the children from the ULLIN group (incidence density rate 0·95, 95% CI 0·67-1·36, p=0·79), nor in those from the TLLIN+IRS group (1·32, 0·90-1·93, p=0·15) or from the ULLIN+CTPS group (1·05, 0·75-1·48, p=0·77) compared with the reference group (TLLIN). The same trend was observed with the prevalence and parasite density of asymptomatic infections (non significant regression coefficients). INTERPRETATION No significant benefit for reducing malaria morbidity, infection, and transmission was reported when combining LLIN+IRS or LLIN+CTPS compared with a background of LLIN coverage. These findings are important for national malaria control programmes and should help the design of more cost-effective strategies for malaria control and elimination. FUNDING Ministère Français des Affaires Etrangères et Européennes (FSP project 2006-22), Institut de Recherche pour le Développement, President's Malaria Initiative (PMI) of US Governement.
Collapse
Affiliation(s)
- Vincent Corbel
- Institut de Recherche pour lDéveloppement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 5290 UM1-UM2), Cotonou, Benin, and Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
345
|
Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Burkot TR, Harbach RE, Hay SI. A global map of dominant malaria vectors. Parasit Vectors 2012; 5:69. [PMID: 22475528 PMCID: PMC3349467 DOI: 10.1186/1756-3305-5-69] [Citation(s) in RCA: 412] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 11/21/2022] Open
Abstract
Background Global maps, in particular those based on vector distributions, have long been used to help visualise the global extent of malaria. Few, however, have been created with the support of a comprehensive and extensive evidence-based approach. Methods Here we describe the generation of a global map of the dominant vector species (DVS) of malaria that makes use of predicted distribution maps for individual species or species complexes. Results Our global map highlights the spatial variability in the complexity of the vector situation. In Africa, An. gambiae, An. arabiensis and An. funestus are co-dominant across much of the continent, whereas in the Asian-Pacific region there is a highly complex situation with multi-species coexistence and variable species dominance. Conclusions The competence of the mapping methodology to accurately portray DVS distributions is discussed. The comprehensive and contemporary database of species-specific spatial occurrence (currently available on request) will be made directly available via the Malaria Atlas Project (MAP) website from early 2012.
Collapse
Affiliation(s)
- Marianne E Sinka
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Okumu FO, Moore J, Mbeyela E, Sherlock M, Sangusangu R, Ligamba G, Russell T, Moore SJ. A modified experimental hut design for studying responses of disease-transmitting mosquitoes to indoor interventions: the Ifakara experimental huts. PLoS One 2012; 7:e30967. [PMID: 22347415 PMCID: PMC3276535 DOI: 10.1371/journal.pone.0030967] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/30/2011] [Indexed: 11/24/2022] Open
Abstract
Differences between individual human houses can confound results of studies aimed at evaluating indoor vector control interventions such as insecticide treated nets (ITNs) and indoor residual insecticide spraying (IRS). Specially designed and standardised experimental huts have historically provided a solution to this challenge, with an added advantage that they can be fitted with special interception traps to sample entering or exiting mosquitoes. However, many of these experimental hut designs have a number of limitations, for example: 1) inability to sample mosquitoes on all sides of huts, 2) increased likelihood of live mosquitoes flying out of the huts, leaving mainly dead ones, 3) difficulties of cleaning the huts when a new insecticide is to be tested, and 4) the generally small size of the experimental huts, which can misrepresent actual local house sizes or airflow dynamics in the local houses. Here, we describe a modified experimental hut design - The Ifakara Experimental Huts- and explain how these huts can be used to more realistically monitor behavioural and physiological responses of wild, free-flying disease-transmitting mosquitoes, including the African malaria vectors of the species complexes Anopheles gambiae and Anopheles funestus, to indoor vector control-technologies including ITNs and IRS. Important characteristics of the Ifakara experimental huts include: 1) interception traps fitted onto eave spaces and windows, 2) use of eave baffles (panels that direct mosquito movement) to control exit of live mosquitoes through the eave spaces, 3) use of replaceable wall panels and ceilings, which allow safe insecticide disposal and reuse of the huts to test different insecticides in successive periods, 4) the kit format of the huts allowing portability and 5) an improved suite of entomological procedures to maximise data quality.
Collapse
Affiliation(s)
- Fredros O Okumu
- Biomedical and Environmental Sciences Thematic Group, Ifakara Health Institute, Ifakara, Republic of Tanzania.
| | | | | | | | | | | | | | | |
Collapse
|
347
|
Okorie PN, McKenzie FE, Ademowo OG, Bockarie M, Kelly-Hope L. Nigeria Anopheles vector database: an overview of 100 years' research. PLoS One 2011; 6:e28347. [PMID: 22162764 PMCID: PMC3230596 DOI: 10.1371/journal.pone.0028347] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/07/2011] [Indexed: 11/19/2022] Open
Abstract
Anopheles mosquitoes are important vectors of malaria and lymphatic filariasis (LF), which are major public health diseases in Nigeria. Malaria is caused by infection with a protozoan parasite of the genus Plasmodium and LF by the parasitic worm Wuchereria bancrofti. Updating our knowledge of the Anopheles species is vital in planning and implementing evidence based vector control programs. To present a comprehensive report on the spatial distribution and composition of these vectors, all published data available were collated into a database. Details recorded for each source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, morphological and molecular species identification methods, insecticide resistance status, including evidence of the kdr allele, and P. falciparum sporozoite rate and W. bancrofti microfilaria prevalence. This collation resulted in a total of 110 publications, encompassing 484,747 Anopheles mosquitoes in 632 spatially unique descriptions at 142 georeferenced locations being identified across Nigeria from 1900 to 2010. Overall, the highest number of vector species reported included An. gambiae complex (65.2%), An. funestus complex (17.3%), An. gambiae s.s. (6.5%). An. arabiensis (5.0%) and An. funestus s.s. (2.5%), with the molecular forms An. gambiae M and S identified at 120 locations. A variety of sampling/collection and species identification methods were used with an increase in molecular techniques in recent decades. Insecticide resistance to pyrethroids and organochlorines was found in the main Anopheles species across 45 locations. Presence of P. falciparum and W. bancrofti varied between species with the highest sporozoite rates found in An. gambiae s.s, An. funestus s.s. and An. moucheti, and the highest microfilaria prevalence in An. gambiae s.l., An. arabiensis, and An. gambiae s.s. This comprehensive geo-referenced database provides an essential baseline on Anopheles vectors and will be an important resource for malaria and LF vector control programmes in Nigeria.
Collapse
Affiliation(s)
- Patricia Nkem Okorie
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | | | | | | | | |
Collapse
|
348
|
Exploring mechanisms of multiple insecticide resistance in a population of the malaria vector Anopheles funestus in Benin. PLoS One 2011; 6:e27760. [PMID: 22110757 PMCID: PMC3218031 DOI: 10.1371/journal.pone.0027760] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/24/2011] [Indexed: 11/24/2022] Open
Abstract
Background The insecticide resistance status of the malaria vector Anopheles funestus and the underlying resistance mechanisms remain uncharacterised in many parts of Africa, notably in Benin, West Africa. To fill this gap in our knowledge, we assessed the susceptibility status of a population of this species in Pahou, Southern Benin and investigated the potential resistance mechanisms. Methodology/Principal Findings WHO bioassays revealed a multiple resistance profile for An. funestus in Pahou. This population is highly resistant to DDT with no mortality in females after 1h exposure to 4%DDT. Resistance was observed against the Type I pyrethroid permethrin and the carbamate bendiocarb. A moderate resistance was detected against deltamethrin (type II pyrethroids). A total susceptibility was observed against malathion, an organophosphate. Pre-exposure to PBO did not change the mortality rates for DDT indicating that cytochrome P450s play no role in DDT resistance in Pahou. No L1014F kdr mutation was detected but a correlation between haplotypes of two fragments of the Voltage-Gated Sodium Channel gene and resistance was observed suggesting that mutations in other exons may confer the knockdown resistance in this species. Biochemical assays revealed elevated levels of GSTs and cytochrome mono-oxygenases in Pahou. No G119S mutation and no altered acetylcholinesterase gene were detected in the Pahou population. qPCR analysis of five detoxification genes revealed that the GSTe2 is associated to the DDT resistance in this population with a significantly higher expression in DDT resistant samples. A significant over-expression of CYP6P9a and CYP6P9b previously associated with pyrethroid resistance was also seen but at a lower fold change than in southern Africa. Conclusion The multiple insecticide resistance profile of this An. funestus population in Benin shows that more attention should be paid to this important malaria vector for the implementation and management of current and future malaria vector control programs in this country.
Collapse
|
349
|
Munhenga G, Brooke BD, Chirwa TF, Hunt RH, Coetzee M, Govender D, Koekemoer LL. Evaluating the potential of the sterile insect technique for malaria control: relative fitness and mating compatibility between laboratory colonized and a wild population of Anopheles arabiensis from the Kruger National Park, South Africa. Parasit Vectors 2011; 4:208. [PMID: 22041133 PMCID: PMC3216276 DOI: 10.1186/1756-3305-4-208] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The successful suppression of a target insect population using the sterile insect technique (SIT) partly depends on the premise that the laboratory insects used for mass rearing are genetically compatible with the target population, that the mating competitiveness of laboratory reared males is at least comparable to that of their wild counterparts, and that mass rearing and sterilization processes do not in themselves compromise male fitness to a degree that precludes them from successfully competing for mates in the wild. This study investigated the fitness and sexual cross-compatibility between samples of field collected and laboratory reared An. arabiensis under laboratory conditions. RESULTS The physiological and reproductive fitness of the MALPAN laboratory strain is not substantially modified with respect to the field population at Malahlapanga. Further, a high degree of mating compatibility between MALPAN and the Malahlapanga population was established based on cross-mating experiments. Lastly, the morphological characteristics of hybrid ovarian polytene chromosomes further support the contention that the MALPAN laboratory colony and the An. arabiensis population at Malahlapanga are genetically homogenous and therefore compatible. CONCLUSIONS It is concluded that the presence of a perennial and isolated population of An. arabiensis at Malahlapanga presents a unique opportunity for assessing the feasibility of SIT as a malaria vector control option. The MALPAN laboratory colony has retained sufficient enough measures of reproductive and physiological fitness to present as a suitable candidate for male sterilization, mass rearing and subsequent mass release of sterile males at Malahlapanga in order to further assess the feasibility of SIT in a field setting.
Collapse
Affiliation(s)
- Givemore Munhenga
- Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Basil D Brooke
- Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tobias F Chirwa
- Epidemiology and Biostatistics Division, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard H Hunt
- Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maureen Coetzee
- Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Danny Govender
- Scientific Services, South African National Parks, Private Bag X402, Skukuza, 1350, South Africa
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Lizette L Koekemoer
- Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
350
|
Chanda E, Hemingway J, Kleinschmidt I, Rehman AM, Ramdeen V, Phiri FN, Coetzer S, Mthembu D, Shinondo CJ, Chizema-Kawesha E, Kamuliwo M, Mukonka V, Baboo KS, Coleman M. Insecticide resistance and the future of malaria control in Zambia. PLoS One 2011; 6:e24336. [PMID: 21915314 PMCID: PMC3167838 DOI: 10.1371/journal.pone.0024336] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/04/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In line with the Global trend to improve malaria control efforts a major campaign of insecticide treated net distribution was initiated in 1999 and indoor residual spraying with DDT or pyrethroids was reintroduced in 2000 in Zambia. In 2006, these efforts were strengthened by the President's Malaria Initiative. This manuscript reports on the monitoring and evaluation of these activities and the potential impact of emerging insecticide resistance on disease transmission. METHODS Mosquitoes were captured daily through a series of 108 window exit traps located at 18 sentinel sites. Specimens were identified to species and analyzed for sporozoites. Adult Anopheles mosquitoes were collected resting indoors and larva collected in breeding sites were reared to F1 and F0 generations in the lab and tested for insecticide resistance following the standard WHO susceptibility assay protocol. Annual cross sectional household parasite surveys were carried out to monitor the impact of the control programme on prevalence of Plasmodium falciparum in children aged 1 to 14 years. RESULTS A total of 619 Anopheles gambiae s.l. and 228 Anopheles funestus s.l. were captured from window exit traps throughout the period, of which 203 were An. gambiae malaria vectors and 14 An. funestus s.s.. In 2010 resistance to DDT and the pyrethroids deltamethrin, lambda-cyhalothrin and permethrin was detected in both An. gambiae s.s. and An. funestus s.s.. No sporozoites were detected in either species. Prevalence of P. falciparum in the sentinel sites remained below 10% throughout the study period. CONCLUSION Both An. gambiae s.s. and An. funestus s.s. were controlled effectively with the ITN and IRS programme in Zambia, maintaining a reduced disease transmission and burden. However, the discovery of DDT and pyrethroid resistance in the country threatens the sustainability of the vector control programme.
Collapse
Affiliation(s)
- Emmanuel Chanda
- Ministry of Health, National Malaria Control Centre, Lusaka, Zambia
| | - Janet Hemingway
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Immo Kleinschmidt
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrea M. Rehman
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Varsha Ramdeen
- Malaria Research Programme, Medical Research Council, Durban, South Africa
| | | | - Sarel Coetzer
- Malaria Research Programme, Medical Research Council, Durban, South Africa
| | - David Mthembu
- Malaria Research Programme, Medical Research Council, Durban, South Africa
| | | | | | - Mulakwa Kamuliwo
- Ministry of Health, National Malaria Control Centre, Lusaka, Zambia
| | | | - Kumar S. Baboo
- School of Medicine, University of Zambia, Lusaka, Zambia
| | - Michael Coleman
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|