3551
|
Integrated Genomic Analysis Identifies ANKRD36 Gene as a Novel and Common Biomarker of Disease Progression in Chronic Myeloid Leukemia. BIOLOGY 2021; 10:biology10111182. [PMID: 34827175 PMCID: PMC8615070 DOI: 10.3390/biology10111182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023]
Abstract
Simple Summary Chronic myeloid leukemia is a type of blood cancer that is regarded as a success story in determining the exact biological origin, pathogenesis and development of a molecularly targeted (mutation-specific) therapy that has led to successful treatment of this fatal cancer. It is caused by the BCR-ABL fusion gene, which is formed from the translocation between chromosomes 9 and 22. Anti-BCR-ABL drugs, known as tyrosine kinase inhibitors (TKIs), have led to long-term remissions in more than 80% of CML patients and even cure in about one-third of patients. Nevertheless, many patients face drug resistance, and disease progression occurs in about 30% of CML patients, leading to morbidities and mortality. Unfortunately, no biomarkers of CML progression are available due to a poor understanding of the mechanism of progression. Therefore, finding reliable molecular biomarkers of CML progression is one of the most attractive research areas in 21st-century cancer research. In this study, we report novel genomic variants exclusively found in all our advanced-phase CML patients. This study will help in identifying CML patients at risk of disease progression and timely therapeutic interventions to avoid or at least delay fatal disease progression in this cancer. Abstract Background: Chronic myeloid leukemia (CML) is initiated in bone marrow due to chromosomal translocation t(9;22) leading to fusion oncogene BCR-ABL. Targeting BCR-ABL by tyrosine kinase inhibitors (TKIs) has changed fatal CML into an almost curable disease. Despite that, TKIs lose their effectiveness due to disease progression. Unfortunately, the mechanism of CML progression is poorly understood and common biomarkers for CML progression are unavailable. This study was conducted to find novel biomarkers of CML progression by employing whole-exome sequencing (WES). Materials and Methods: WES of accelerated phase (AP) and blast crisis (BC) CML patients was carried out, with chronic-phase CML (CP-CML) patients as control. After DNA library preparation and exome enrichment, clustering and sequencing were carried out using Illumina platforms. Statistical analysis was carried out using SAS/STAT software version 9.4, and R package was employed to find mutations shared exclusively by all AP-/BC-CML patients. Confirmation of mutations was carried out using Sanger sequencing and protein structure modeling using I-TASSER followed by mutant generation and visualization using PyMOL. Results: Three novel genes (ANKRD36, ANKRD36B and PRSS3) were mutated exclusively in all AP-/BC-CML patients. Only ANKRD36 gene mutations (c.1183_1184 delGC and c.1187_1185 dupTT) were confirmed by Sanger sequencing. Protein modeling studies showed that mutations induce structural changes in ANKRD36 protein. Conclusions: Our studies show that ANKRD36 is a potential common biomarker and drug target of early CML progression. ANKRD36 is yet uncharacterized in humans. It has the highest expression in bone marrow, specifically myeloid cells. We recommend carrying out further studies to explore the role of ANKRD36 in the biology and progression of CML.
Collapse
|
3552
|
Verification of the Potential Targets of the Herbal Prescription Sochehwan for Drug Repurposing Processes as Deduced by Network Pharmacology. Processes (Basel) 2021. [DOI: 10.3390/pr9112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Network pharmacology (NP) is a useful, emerging means of understanding the complex pharmacological mechanisms of traditional herbal medicines. Sochehwan (SCH) is a candidate herbal prescription for drug repurposing as it has been suggested to have beneficial effects on metabolic syndrome. In this study, NP was adopted to complement the shortcomings of literature-based drug repurposing strategies in traditional herbal medicine. We conducted in vitro studies to confirm the effects of SCH on potential pharmacological targets identified by NP analysis. Herbal compounds and molecular targets of SCH were explored and screened from a traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and an oriental medicine advanced searching integrated system (OASIS). Forty-seven key targets selected from a protein-protein interaction (PPI) network were analyzed with gene ontology (GO) term enrichment and KEGG pathway enrichment analysis to identify relevant categories. The tumor necrosis factor (TNF) and mitogen-activated protein kinase (MAPK) signaling pathways were presented as significant signaling pathways with lowest p-values by NP analysis, which were downregulated by SCH treatment. The signal transducer and activator of transcription 3 (STAT3) was identified as a core key target by NP analysis, and its phosphorylation ratio was confirmed to be significantly suppressed by SCH. In conclusion, the NP-based approach used for target prediction and experimental data obtained from Raw 264.7 cells strongly suggested that SCH can attenuate inflammatory status by modulating the phosphorylation status of STAT3.
Collapse
|
3553
|
Laskowski RA, Thornton JM. PDBsum extras: SARS-CoV-2 and AlphaFold models. Protein Sci 2021; 31:283-289. [PMID: 34779073 PMCID: PMC8662102 DOI: 10.1002/pro.4238] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022]
Abstract
The PDBsum web server provides structural analyses of the entries in the Protein Data Bank (PDB). Two recent additions are described here. The first is the detailed analysis of the SARS-CoV-2 virus protein structures in the PDB. These include the variants of concern, which are shown both on the sequences and 3D structures of the proteins. The second addition is the inclusion of the available AlphaFold models for human proteins. The pages allow a search of the protein against existing structures in the PDB via the Sequence Annotated by Structure (SAS) server, so one can easily compare the predicted model against experimentally determined structures. The server is freely accessible to all at http://www.ebi.ac.uk/pdbsum.
Collapse
Affiliation(s)
- Roman A Laskowski
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge
| |
Collapse
|
3554
|
Yates AD, Allen J, Amode RM, Azov AG, Barba M, Becerra A, Bhai J, Campbell LI, Carbajo Martinez M, Chakiachvili M, Chougule K, Christensen M, Contreras-Moreira B, Cuzick A, Da Rin Fioretto L, Davis P, De Silva NH, Diamantakis S, Dyer S, Elser J, Filippi CV, Gall A, Grigoriadis D, Guijarro-Clarke C, Gupta P, Hammond-Kosack KE, Howe KL, Jaiswal P, Kaikala V, Kumar V, Kumari S, Langridge N, Le T, Luypaert M, Maslen GL, Maurel T, Moore B, Muffato M, Mushtaq A, Naamati G, Naithani S, Olson A, Parker A, Paulini M, Pedro H, Perry E, Preece J, Quinton-Tulloch M, Rodgers F, Rosello M, Ruffier M, Seager J, Sitnik V, Szpak M, Tate J, Tello-Ruiz MK, Trevanion SJ, Urban M, Ware D, Wei S, Williams G, Winterbottom A, Zarowiecki M, Finn RD, Flicek P. Ensembl Genomes 2022: an expanding genome resource for non-vertebrates. Nucleic Acids Res 2021; 50:D996-D1003. [PMID: 34791415 PMCID: PMC8728113 DOI: 10.1093/nar/gkab1007] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022] Open
Abstract
Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.
Collapse
Affiliation(s)
- Andrew D Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - James Allen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ridwan M Amode
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andrey G Azov
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthieu Barba
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andrés Becerra
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jyothish Bhai
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Lahcen I Campbell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Manuel Carbajo Martinez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Marc Chakiachvili
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Mikkel Christensen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Bruno Contreras-Moreira
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Alayne Cuzick
- Rothamsted Research, Department of Biointeractions and Crop Protection, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Luca Da Rin Fioretto
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Davis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nishadi H De Silva
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Stavros Diamantakis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sarah Dyer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Carla V Filippi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.,Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Astrid Gall
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Dionysios Grigoriadis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Cristina Guijarro-Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Kim E Hammond-Kosack
- Rothamsted Research, Department of Biointeractions and Crop Protection, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Kevin L Howe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Vinay Kaikala
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Vivek Kumar
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Nick Langridge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Tuan Le
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Manuel Luypaert
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Gareth L Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thomas Maurel
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Benjamin Moore
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Aleena Mushtaq
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Guy Naamati
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Anne Parker
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Michael Paulini
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Helder Pedro
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Emily Perry
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Mark Quinton-Tulloch
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Faye Rodgers
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Marc Rosello
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Magali Ruffier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - James Seager
- Rothamsted Research, Department of Biointeractions and Crop Protection, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Vasily Sitnik
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Michal Szpak
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John Tate
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Stephen J Trevanion
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Martin Urban
- Rothamsted Research, Department of Biointeractions and Crop Protection, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Doreen Ware
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.,USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, NY 14853, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Gary Williams
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andrea Winterbottom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Magdalena Zarowiecki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
3555
|
Beyer ASL, Kaemmerer D, Sänger J, Evert K, Lupp A. Immunohistochemical Evaluation of Adaptor Protein FAM159B Expression in Normal and Neoplastic Human Tissues. Int J Mol Sci 2021; 22:ijms222212250. [PMID: 34830137 PMCID: PMC8621455 DOI: 10.3390/ijms222212250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
FAM159B is a so-called adaptor protein. These proteins are essential components in numerous cell signalling pathways. However, little is known regarding FAM159B expression in normal and neoplastic human tissues. The commercially available rabbit polyclonal anti-human FAM159B antibody HPA011778 was initially characterised for its specificity using Western blot analyses and immunocytochemistry and then applied to a large series of formalin-fixed, paraffin-embedded normal and neoplastic human tissue samples. Confirmation of FAM159B's predicted size and antibody specificity was achieved in BON-1 cells, a neuroendocrine tumour cell line endogenously expressing FAM159B, using targeted siRNA. Immunocytochemical experiments additionally revealed cytoplasmic expression of the adaptor protein. Immunohistochemical staining detected FAM159B expression in neuronal and neuroendocrine tissues such as the cortex, the trigeminal ganglia, dorsal root and intestinal ganglia, the pancreatic islets and the neuroendocrine cells of the bronchopulmonary and gastrointestinal tract, but also in the syncytiotrophoblasts of the placenta. FAM159B was also expressed in many of the 28 tumour entities investigated, with high levels in medullary and anaplastic thyroid carcinomas, parathyroid adenomas, lung and ovarian carcinomas, lymphomas and neuroendocrine tumours of different origins. The antibody HPA011778 can act as a useful tool for basic research and identifying FAM159B expression in tissue samples.
Collapse
Affiliation(s)
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, 99438 Bad Berka, Germany;
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, 99438 Bad Berka, Germany;
| | - Katja Evert
- Department of Pathology, University of Regensburg, 93053 Regensburg, Germany;
- Institute of Pathology, University Medicine of Greifswald, 17475 Greifswald, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, 04474 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-9325678; Fax: +49-3641-9325652
| |
Collapse
|
3556
|
Birch J, Quigley A. The high-throughput production of membrane proteins. Emerg Top Life Sci 2021; 5:655-663. [PMID: 34623416 PMCID: PMC8726054 DOI: 10.1042/etls20210196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Membrane proteins, found at the junctions between the outside world and the inner workings of the cell, play important roles in human disease and are used as biosensors. More than half of all therapeutics directly affect membrane protein function while nanopores enable DNA sequencing. The structural and functional characterisation of membrane proteins is therefore crucial. However, low levels of naturally abundant protein and the hydrophobic nature of membrane proteins makes production difficult. To maximise success, high-throughput strategies were developed that rely upon simple screens to identify successful constructs and rapidly exclude those unlikely to work. Parameters that affect production such as expression host, membrane protein origin, expression vector, fusion-tags, encapsulation reagent and solvent composition are screened in parallel. In this way, constructs with divergent requirements can be produced for a variety of structural applications. As structural techniques advance, sample requirements will change. Single-particle cryo-electron microscopy requires less protein than crystallography and as cryo-electron tomography and time-resolved serial crystallography are developed new sample production requirements will evolve. Here we discuss different methods used for the high-throughput production of membrane proteins for structural biology.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, U.K
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, U.K
| |
Collapse
|
3557
|
Chan ACY, Wong HY, Chong YF, Lai PS, Teoh HL, Ng AYY, Hung JHM, Chan YC, Ng KWP, Vijayan J, Ong JJY, Chandra B, Tan CH, Rutt NH, Tan TM, Ismail NH, Wilder-Smith E, Schwarz H, Choi H, Sharma VK, Mak A. Novel Autoantibodies in Idiopathic Small Fiber Neuropathy. Ann Neurol 2021; 91:66-77. [PMID: 34761434 PMCID: PMC9300200 DOI: 10.1002/ana.26268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023]
Abstract
Objective Small fiber neuropathy (SFN) is clinically and etiologically heterogeneous. Although autoimmunity has been postulated to be pathophysiologically important in SFN, few autoantibodies have been described. We aimed to identify autoantibodies associated with idiopathic SFN (iSFN) by a novel high‐throughput protein microarray platform that captures autoantibodies expressed in the native conformational state. Methods Sera from 58 SFN patients and 20 age‐ and gender‐matched healthy controls (HCs) were screened against >1,600 immune‐related antigens. Fluorescent unit readout and postassay imaging were performed, followed by composite data normalization and protein fold change (pFC) analysis. Analysis of an independent validation cohort of 33 SFN patients against the same 20 HCs was conducted to identify reproducible proteins in both cohorts. Results Nine autoantibodies were screened with statistical significance and pFC criteria in both cohorts, with at least 50% change in serum levels. Three proteins showed consistently high fold changes in main and validation cohorts: MX1 (FC = 2.99 and 3.07, respectively, p = 0.003, q = 0.076), DBNL (FC = 2.11 and 2.16, respectively, p = 0.009, q < 0.003), and KRT8 (FC = 1.65 and 1.70, respectively, p = 0.043, q < 0.003). Further subgroup analysis into iSFN and SFN by secondary causes (secondary SFN) in the main cohort showed that MX1 is higher in iSFN compared to secondary SFN (FC = 1.61 vs 0.106, p = 0.009). Interpretation Novel autoantibodies MX1, DBNL, and KRT8 are found in iSFN. MX1 may allow diagnostic subtyping of iSFN patients. ANN NEUROL 2022;91:66–77
Collapse
Affiliation(s)
- Amanda C Y Chan
- Division of Neurology, Department of Medicine, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hiu Yi Wong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Pak Shek Kok, China
| | - Yao Feng Chong
- Division of Neurology, Department of Medicine, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Poh San Lai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hock Luen Teoh
- Division of Neurology, Department of Medicine, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alison Y Y Ng
- Division of Neurology, Department of Medicine, National University Health System, Singapore
| | - Jennifer H M Hung
- Division of Neurology, Department of Medicine, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yee Cheun Chan
- Division of Neurology, Department of Medicine, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kay W P Ng
- Division of Neurology, Department of Medicine, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joy Vijayan
- Division of Neurology, Department of Medicine, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jonathan J Y Ong
- Division of Neurology, Department of Medicine, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bharatendu Chandra
- Division of Neurology, Department of Medicine, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Medical Genetics, University of Iowa, Iowa City, IA, USA
| | - Chi Hsien Tan
- Division of Neurology, Department of Medicine, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | - Einar Wilder-Smith
- Department of Neurology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vijay K Sharma
- Division of Neurology, Department of Medicine, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anselm Mak
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore
| |
Collapse
|
3558
|
Zhang W, Qin T, Yang Z, Yin L, Zhao C, Feng L, Lin S, Liu B, Cheng S, Zhang K. Telomerase-positive circulating tumor cells are associated with poor prognosis via a neutrophil-mediated inflammatory immune environment in glioma. BMC Med 2021; 19:277. [PMID: 34763698 PMCID: PMC8588721 DOI: 10.1186/s12916-021-02138-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gliomas are the most common aggressive cancer in the central nervous system. Considering the difficulty in monitoring glioma response and progression, an approach is needed to evaluate the progression or survival of patients with glioma. We propose an application to facilitate clinical detection and treatment monitoring in glioma patients by using telomerase-positive circulating tumor cells (CTCs) and to further evaluate the relationship between the immune microenvironment and CTCs in glioma patients. METHODS From October 2014 to June 2017, 106 patients newly diagnosed with glioma were enrolled. We used the telomerase reverse transcriptase CTC detection method to detect and analyze the CTC statuses of glioma patients before and after surgery. FlowSight and FISH confirmed the CTCs detected by the telomerase-based method. To verify the correlation between CTCs and the immune response, peripheral white blood cell RNA sequencing was performed. RESULTS CTCs were common in the peripheral blood of glioma patients and were not correlated with the pathological classification or grade of patients. The results showed that the presence of postoperative CTCs but not preoperative CTCs in glioma patients was a poor prognostic factor. The level of postoperative CTCs, which predicts a poor prognosis after surgery, may be associated with neutrophils. RNA sequencing suggested that postoperative CTCs were positively correlated with innate immune responses, especially the activation of neutrophils and the generation of neutrophil extracellular traps, but negatively correlated with the cytotoxic response. CONCLUSIONS Our results showed that telomerase-positive CTCs can predict a poor prognosis of patients with glioma. Our results also showed a correlation between CTCs and the immune macroenvironment, which provides a new perspective for the treatment of glioma.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tiancheng Qin
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liyuan Yin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyun Zhao
- Chongqing Diatech Biotechnological Limited Company, Chongqing, 400020, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China.
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China.
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3559
|
Li Z, Li S, Luo M, Jhong JH, Li W, Yao L, Pang Y, Wang Z, Wang R, Ma R, Yu J, Huang Y, Zhu X, Cheng Q, Feng H, Zhang J, Wang C, Hsu JBK, Chang WC, Wei FX, Huang HD, Lee TY. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucleic Acids Res 2021; 50:D471-D479. [PMID: 34788852 PMCID: PMC8728263 DOI: 10.1093/nar/gkab1017] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
Protein post-translational modifications (PTMs) play an important role in different cellular processes. In view of the importance of PTMs in cellular functions and the massive data accumulated by the rapid development of mass spectrometry (MS)-based proteomics, this paper presents an update of dbPTM with over 2 777 000 PTM substrate sites obtained from existing databases and manual curation of literature, of which more than 2 235 000 entries are experimentally verified. This update has manually curated over 42 new modification types that were not included in the previous version. Due to the increasing number of studies on the mechanism of PTMs in the past few years, a great deal of upstream regulatory proteins of PTM substrate sites have been revealed. The updated dbPTM thus collates regulatory information from databases and literature, and merges them into a protein-protein interaction network. To enhance the understanding of the association between PTMs and molecular functions/cellular processes, the functional annotations of PTMs are curated and integrated into the database. In addition, the existing PTM-related resources, including annotation databases and prediction tools are also renewed. Overall, in this update, we would like to provide users with the most abundant data and comprehensive annotations on PTMs of proteins. The updated dbPTM is now freely accessible at https://awi.cuhk.edu.cn/dbPTM/.
Collapse
Affiliation(s)
- Zhongyan Li
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Shangfu Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Mengqi Luo
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jhih-Hua Jhong
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Wenshuo Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lantian Yao
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuxuan Pang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Rulan Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Renfei Ma
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jinhan Yu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuqi Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xiaoning Zhu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qifan Cheng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hexiang Feng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiahong Zhang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chunxuan Wang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Justin Bo-Kai Hsu
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Wen-Chi Chang
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Feng-Xiang Wei
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, China.,Department of Cell Biology, Jiamusi University, Jiamusi 154007, China.,Shenzhen Children's Hospital of China Medical University, Shenzhen 518172, China
| | - Hsien-Da Huang
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
3560
|
Del Toro N, Shrivastava A, Ragueneau E, Meldal B, Combe C, Barrera E, Perfetto L, How K, Ratan P, Shirodkar G, Lu O, Mészáros B, Watkins X, Pundir S, Licata L, Iannuccelli M, Pellegrini M, Martin MJ, Panni S, Duesbury M, Vallet SD, Rappsilber J, Ricard-Blum S, Cesareni G, Salwinski L, Orchard S, Porras P, Panneerselvam K, Hermjakob H. The IntAct database: efficient access to fine-grained molecular interaction data. Nucleic Acids Res 2021; 50:D648-D653. [PMID: 34761267 PMCID: PMC8728211 DOI: 10.1093/nar/gkab1006] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
The IntAct molecular interaction database (https://www.ebi.ac.uk/intact) is a curated resource of molecular interactions, derived from the scientific literature and from direct data depositions. As of August 2021, IntAct provides more than one million binary interactions, curated by twelve global partners of the International Molecular Exchange consortium, for which the IntAct database provides a shared curation and dissemination platform. The IMEx curation policy has always emphasised a fine-grained data and curation model, aiming to capture the relevant experimental detail essential for the interpretation of the provided molecular interaction data. Here, we present recent curation focus and progress, as well as a completely redeveloped website which presents IntAct data in a much more user-friendly and detailed way.
Collapse
Affiliation(s)
- Noemi Del Toro
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Anjali Shrivastava
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Eliot Ragueneau
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Birgit Meldal
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Colin Combe
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Elisabet Barrera
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Livia Perfetto
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK.,Fondazione Human Technopole, Milan 20157, Italy
| | - Karyn How
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Prashansa Ratan
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Gautam Shirodkar
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Odilia Lu
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Bálint Mészáros
- Gibson Group, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Xavier Watkins
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Sangya Pundir
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Luana Licata
- Bioinformatics and Computational Biology Unit, Dept. of Molecular Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marta Iannuccelli
- Bioinformatics and Computational Biology Unit, Dept. of Molecular Biology, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Maria Jesus Martin
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Simona Panni
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Rende, Italy
| | - Margaret Duesbury
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK.,UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Sylvain D Vallet
- ICBMS UMR CNRS 5246, University Lyon 1, Lyon, Villeurbanne 69622, France
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.,Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Sylvie Ricard-Blum
- ICBMS UMR CNRS 5246, University Lyon 1, Lyon, Villeurbanne 69622, France
| | - Gianni Cesareni
- Bioinformatics and Computational Biology Unit, Dept. of Molecular Biology, University of Rome Tor Vergata, Rome, Italy
| | - Lukasz Salwinski
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Sandra Orchard
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Pablo Porras
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Kalpana Panneerselvam
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Henning Hermjakob
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridgeshire CB10 1SD, UK
| |
Collapse
|
3561
|
Ayala-Marin YM, Grant AH, Rodriguez G, Kirken RA. Quadruple and Truncated MEK3 Mutants Identified from Acute Lymphoblastic Leukemia Promote Degradation and Enhance Proliferation. Int J Mol Sci 2021; 22:12210. [PMID: 34830095 PMCID: PMC8618549 DOI: 10.3390/ijms222212210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Compared to other ethnicities, Hispanic children incur the highest rates of leukemia, and most cases are diagnosed as Acute Lymphoblastic Leukemia (ALL). Despite improved treatment and survival for ALL, disproportionate health outcomes in Hispanics persist. Thus, it is essential to identify oncogenic mutations within this demographic to aid in the development of new strategies to diagnose and treat ALL. Using whole-exome sequencing, five single nucleotide polymorphisms within mitogen-activated protein kinase 3 (MAP2K3) were identified in an ALL cancer patient library from the U.S./Mexico border. MAP2K3 R26T and P11T are located near the substrate-binding site, while R65L and R67W localized to the kinase domain. Truncated-MAP2K3 mutant Q73* was also identified. Transfection in HEK293 cells showed that the quadruple-MEK3 mutant (4M-MEK3) impacted protein stability, inducing degradation and reducing expression. The expression of 4M-MEK3 could be rescued by cysteine/serine protease inhibition, and proteasomal degradation of truncated-MEK3 occurred in a ubiquitin-independent manner. MEK3 mutants displayed reduced auto-phosphorylation and enzymatic activity, as seen by decreases in p38 phosphorylation. Furthermore, uncoupling of the MEK3/p38 signaling pathway resulted in less suppressive activity on HEK293 cell viability. Thus, disruption of MEK3 activation may promote proliferative signals in ALL. These findings suggest that MEK3 represents a potential therapeutic target for treating ALL.
Collapse
Affiliation(s)
| | | | | | - Robert A. Kirken
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA; (Y.M.A.-M.); (A.H.G.); (G.R.)
| |
Collapse
|
3562
|
Wheeler RJ. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One 2021; 16:e0259871. [PMID: 34762696 PMCID: PMC8584756 DOI: 10.1371/journal.pone.0259871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
AlphaFold2 and RoseTTAfold represent a transformative advance for predicting protein structure. They are able to make very high-quality predictions given a high-quality alignment of the protein sequence with related proteins. These predictions are now readily available via the AlphaFold database of predicted structures and AlphaFold or RoseTTAfold Colaboratory notebooks for custom predictions. However, predictions for some species tend to be lower confidence than model organisms. Problematic species include Trypanosoma cruzi and Leishmania infantum: important unicellular eukaryotic human parasites in an early-branching eukaryotic lineage. The cause appears to be due to poor sampling of this branch of life (Discoba) in the protein sequences databases used for the AlphaFold database and ColabFold. Here, by comprehensively gathering openly available protein sequence data for Discoba species, significant improvements to AlphaFold2 protein structure prediction over the AlphaFold database and ColabFold are demonstrated. This is made available as an easy-to-use tool for the parasitology community in the form of Colaboratory notebooks for generating multiple sequence alignments and AlphaFold2 predictions of protein structure for Trypanosoma, Leishmania and related species.
Collapse
Affiliation(s)
- Richard John Wheeler
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3563
|
Gui M, Farley H, Anujan P, Anderson JR, Maxwell DW, Whitchurch JB, Botsch JJ, Qiu T, Meleppattu S, Singh SK, Zhang Q, Thompson J, Lucas JS, Bingle CD, Norris DP, Roy S, Brown A. De novo identification of mammalian ciliary motility proteins using cryo-EM. Cell 2021; 184:5791-5806.e19. [PMID: 34715025 PMCID: PMC8595878 DOI: 10.1016/j.cell.2021.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Dynein-decorated doublet microtubules (DMTs) are critical components of the oscillatory molecular machine of cilia, the axoneme, and have luminal surfaces patterned periodically by microtubule inner proteins (MIPs). Here we present an atomic model of the 48-nm repeat of a mammalian DMT, derived from a cryoelectron microscopy (cryo-EM) map of the complex isolated from bovine respiratory cilia. The structure uncovers principles of doublet microtubule organization and features specific to vertebrate cilia, including previously unknown MIPs, a luminal bundle of tektin filaments, and a pentameric dynein-docking complex. We identify a mechanism for bridging 48- to 24-nm periodicity across the microtubule wall and show that loss of the proteins involved causes defective ciliary motility and laterality abnormalities in zebrafish and mice. Our structure identifies candidate genes for diagnosis of ciliopathies and provides a framework to understand their functions in driving ciliary motility.
Collapse
Affiliation(s)
- Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Farley
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Priyanka Anujan
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore; Department of Infection, Immunity & Cardiovascular Disease, The Medical School and The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, UK
| | - Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Dale W Maxwell
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore; School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | - J Josephine Botsch
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tao Qiu
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore
| | - Shimi Meleppattu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sandeep K Singh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Qi Zhang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Thompson
- Biomedical Imaging Unit, Southampton General Hospital, Southampton, UK; Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; University of Southampton Faculty of Medicine, School of Clinical and Experimental Medicine, Southampton, UK
| | - Colin D Bingle
- Department of Infection, Immunity & Cardiovascular Disease, The Medical School and The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, UK
| | - Dominic P Norris
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK.
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore; Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore; Department of Pediatrics, Yong Loo Ling School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119288 Singapore, Singapore.
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3564
|
Kotlyar M, Pastrello C, Ahmed Z, Chee J, Varyova Z, Jurisica I. IID 2021: towards context-specific protein interaction analyses by increased coverage, enhanced annotation and enrichment analysis. Nucleic Acids Res 2021; 50:D640-D647. [PMID: 34755877 PMCID: PMC8728267 DOI: 10.1093/nar/gkab1034] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
Improved bioassays have significantly increased the rate of identifying new protein-protein interactions (PPIs), and the number of detected human PPIs has greatly exceeded early estimates of human interactome size. These new PPIs provide a more complete view of disease mechanisms but precise understanding of how PPIs affect phenotype remains a challenge. It requires knowledge of PPI context (e.g. tissues, subcellular localizations), and functional roles, especially within pathways and protein complexes. The previous IID release focused on PPI context, providing networks with comprehensive tissue, disease, cellular localization, and druggability annotations. The current update adds developmental stages to the available contexts, and provides a way of assigning context to PPIs that could not be previously annotated due to insufficient data or incompatibility with available context categories (e.g. interactions between membrane and cytoplasmic proteins). This update also annotates PPIs with conservation across species, directionality in pathways, membership in large complexes, interaction stability (i.e. stable or transient), and mutation effects. Enrichment analysis is now available for all annotations, and includes multiple options; for example, context annotations can be analyzed with respect to PPIs or network proteins. In addition to tabular view or download, IID provides online network visualization. This update is available at http://ophid.utoronto.ca/iid.
Collapse
Affiliation(s)
- Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Zuhaib Ahmed
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Justin Chee
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Zofia Varyova
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON M5S 1A4, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3565
|
Gastfriend BD, Nishihara H, Canfield SG, Foreman KL, Engelhardt B, Palecek SP, Shusta EV. Wnt signaling mediates acquisition of blood-brain barrier properties in naïve endothelium derived from human pluripotent stem cells. eLife 2021; 10:70992. [PMID: 34755601 PMCID: PMC8664294 DOI: 10.7554/elife.70992] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Endothelial cells (ECs) in the central nervous system (CNS) acquire their specialized blood-brain barrier (BBB) properties in response to extrinsic signals, with Wnt/β-catenin signaling coordinating multiple aspects of this process. Our knowledge of CNS EC development has been advanced largely by animal models, and human pluripotent stem cells (hPSCs) offer the opportunity to examine BBB development in an in vitro human system. Here we show that activation of Wnt signaling in hPSC-derived naïve endothelial progenitors, but not in matured ECs, leads to robust acquisition of canonical BBB phenotypes including expression of GLUT-1, increased claudin-5, decreased PLVAP and decreased permeability. RNA-seq revealed a transcriptome profile resembling ECs with CNS-like characteristics, including Wnt-upregulated expression of LEF1, APCDD1, and ZIC3. Together, our work defines effects of Wnt activation in naïve ECs and establishes an improved hPSC-based model for interrogation of CNS barriergenesis.
Collapse
Affiliation(s)
- Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | | | - Scott G Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | - Koji L Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | | | - Sean P Palecek
- Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | - Eric V Shusta
- Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
3566
|
Analysis of evolutionary conservation of GPI-anchored proteins between humans and mice. Blood Cells Mol Dis 2021; 92:102622. [PMID: 34749066 DOI: 10.1016/j.bcmd.2021.102622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022]
|
3567
|
Bisardi M, Rodriguez-Rivas J, Zamponi F, Weigt M. Modeling sequence-space exploration and emergence of epistatic signals in protein evolution. Mol Biol Evol 2021; 39:6424001. [PMID: 34751386 PMCID: PMC8789065 DOI: 10.1093/molbev/msab321] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During their evolution, proteins explore sequence space via an interplay between random mutations and phenotypic selection. Here, we build upon recent progress in reconstructing data-driven fitness landscapes for families of homologous proteins, to propose stochastic models of experimental protein evolution. These models predict quantitatively important features of experimentally evolved sequence libraries, like fitness distributions and position-specific mutational spectra. They also allow us to efficiently simulate sequence libraries for a vast array of combinations of experimental parameters like sequence divergence, selection strength, and library size. We showcase the potential of the approach in reanalyzing two recent experiments to determine protein structure from signals of epistasis emerging in experimental sequence libraries. To be detectable, these signals require sufficiently large and sufficiently diverged libraries. Our modeling framework offers a quantitative explanation for different outcomes of recently published experiments. Furthermore, we can forecast the outcome of time- and resource-intensive evolution experiments, opening thereby a way to computationally optimize experimental protocols.
Collapse
Affiliation(s)
- M Bisardi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, F-75005, France.,Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative LCQB, Paris, F-75005, France
| | - J Rodriguez-Rivas
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative LCQB, Paris, F-75005, France
| | - F Zamponi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, F-75005, France
| | - M Weigt
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative LCQB, Paris, F-75005, France
| |
Collapse
|
3568
|
Cunha Nascimento P, Alana Bragança Aragão W, Oliveira Bittencourt L, Dionizio A, A. R. Buzalaf M, Crespo-Lopez ME, Lima RR. Maternal methylmercury exposure changes the proteomic profile of the offspring's salivary glands: Prospects on translational toxicology. PLoS One 2021; 16:e0258969. [PMID: 34748590 PMCID: PMC8575261 DOI: 10.1371/journal.pone.0258969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Background Methylmercury (MeHg) remains a public health issue since developing organisms are particularly vulnerable to this environmental contaminant. This study investigated the effect of maternal MeHg exposure on the modulation of proteomic profile of parotid (PA), submandibular (SM), and sublingual (SL) glands of offspring rats. Materials and methods Pregnant Wistar rats were daily exposed to 40 μg/kg MeHg during both gestational and lactation periods. The proteomic profiles of the major salivary glands of the offspring rats were analyzed through mass spectrometry. Results The offspring rats exposed to MeHg showed significant alterations in the proteomic profiles of the PA, SM, and SL glands. Altered proteins were associated with cytoskeleton components, tissue morphogenesis, and response to stimulus and stress. Conclusion This original study showed that maternal MeHg exposure significantly modulates the expression of proteins and induces alterations in the proteomic profiles of developing salivary glands.
Collapse
Affiliation(s)
- Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Marilia A. R. Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
- * E-mail:
| |
Collapse
|
3569
|
Walsh AT, Triant DA, Le Tourneau JJ, Shamimuzzaman M, Elsik CG. Hymenoptera Genome Database: new genomes and annotation datasets for improved go enrichment and orthologue analyses. Nucleic Acids Res 2021; 50:D1032-D1039. [PMID: 34747465 PMCID: PMC8728238 DOI: 10.1093/nar/gkab1018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 01/02/2023] Open
Abstract
We report an update of the Hymenoptera Genome Database (HGD; http://HymenopteraGenome.org), a genomic database of hymenopteran insect species. The number of species represented in HGD has nearly tripled, with fifty-eight hymenopteran species, including twenty bees, twenty-three ants, eleven wasps and four sawflies. With a reorganized website, HGD continues to provide the HymenopteraMine genomic data mining warehouse and JBrowse/Apollo genome browsers integrated with BLAST. We have computed Gene Ontology (GO) annotations for all species, greatly enhancing the GO annotation data gathered from UniProt with more than a ten-fold increase in the number of GO-annotated genes. We have also generated orthology datasets that encompass all HGD species and provide orthologue clusters for fourteen taxonomic groups. The new GO annotation and orthology data are available for searching in HymenopteraMine, and as bulk file downloads.
Collapse
Affiliation(s)
- Amy T Walsh
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Deborah A Triant
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Md Shamimuzzaman
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.,Division of Plant Science & Technology, University of Missouri, Columbia, MO 65211, USA.,MU Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3570
|
Fu T, Li F, Zhang Y, Yin J, Qiu W, Li X, Liu X, Xin W, Wang C, Yu L, Gao J, Zheng Q, Zeng S, Zhu F. VARIDT 2.0: structural variability of drug transporter. Nucleic Acids Res 2021; 50:D1417-D1431. [PMID: 34747471 PMCID: PMC8728241 DOI: 10.1093/nar/gkab1013] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
The structural variability data of drug transporter (DT) are key for research on precision medicine and rational drug use. However, these valuable data are not sufficiently covered by the available databases. In this study, a major update of VARIDT (a database previously constructed to provide DTs' variability data) was thus described. First, the experimentally resolved structures of all DTs reported in the original VARIDT were discovered from PubMed and Protein Data Bank. Second, the structural variability data of each DT were collected by literature review, which included: (a) mutation-induced spatial variations in folded state, (b) difference among DT structures of human and model organisms, (c) outward/inward-facing DT conformations and (d) xenobiotics-driven alterations in the 3D complexes. Third, for those DTs without experimentally resolved structural variabilities, homology modeling was further applied as well-established protocol to enrich such valuable data. As a result, 145 mutation-induced spatial variations of 42 DTs, 1622 inter-species structures originating from 292 DTs, 118 outward/inward-facing conformations belonging to 59 DTs, and 822 xenobiotics-regulated structures in complex with 57 DTs were updated to VARIDT (https://idrblab.org/varidt/ and http://varidt.idrblab.net/). All in all, the newly collected structural variabilities will be indispensable for explaining drug sensitivity/selectivity, bridging preclinical research with clinical trial, revealing the mechanism underlying drug-drug interaction, and so on.
Collapse
Affiliation(s)
- Tingting Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenqi Qiu
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuedong Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xingang Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wenwen Xin
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chengzhao Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
3571
|
A Missense Variant in the Bardet-Biedl Syndrome 2 Gene ( BBS2) Leads to a Novel Syndromic Retinal Degeneration in the Shetland Sheepdog. Genes (Basel) 2021; 12:genes12111771. [PMID: 34828377 PMCID: PMC8624581 DOI: 10.3390/genes12111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Canine progressive retinal atrophy (PRA) describes a group of hereditary diseases characterized by photoreceptor cell death in the retina, leading to visual impairment. Despite the identification of multiple PRA-causing variants, extensive heterogeneity of PRA is observed across and within dog breeds, with many still genetically unsolved. This study sought to elucidate the causal variant for a distinct form of PRA in the Shetland sheepdog, using a whole-genome sequencing approach. Filtering variants from a single PRA-affected Shetland sheepdog genome compared to 176 genomes of other breeds identified a single nucleotide variant in exon 11 of the Bardet-Biedl syndrome-2 gene (BBS2) (c.1222G>C; p.Ala408Pro). Genotyping 1386 canids of 155 dog breeds, 15 cross breeds and 8 wolves indicated the c.1222G>C variant was only segregated within Shetland sheepdogs. Out of 505 Shetland sheepdogs, seven were homozygous for the variant. Clinical history and photographs for three homozygotes indicated the presence of a novel phenotype. In addition to PRA, additional clinical features in homozygous dogs support the discovery of a novel syndromic PRA in the breed. The development and utilization of a diagnostic DNA test aim to prevent the mutation from becoming more prevalent in the breed.
Collapse
|
3572
|
Leo L, Bridelli MG, Polverini E. Reversible processes in collagen dehydration: A molecular dynamics study. Arch Biochem Biophys 2021; 714:109079. [PMID: 34748734 DOI: 10.1016/j.abb.2021.109079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022]
Abstract
Collagen dehydration is an unavoidable damaging process that causes the lack of fibers' physical properties and it is usually irreversible. However, the identification of low hydration conditions that permit a recovering of initial collagen features after a rehydration treatment is particularly of interest. Monitoring structural changes by means of MD simulations, we investigated the hydration-dehydration-rehydration cycle of two microfibril models built on different fragments of the sequence of rat tail collagen type I. The microfibrils have different hydropathic features, to investigate the influence of amino acid composition on the whole process. We showed that with low hydration at a level corresponding to the first shell, microfibril gains in compactness and tubularity. Crucially, some water molecules remain trapped inside the fibrils, allowing, by rehydrating, a recovery of the initial collagen structural features. Water rearranges in cluster around the protein, and its first layer is more anchored to the surface. However, these changes in distribution and mobility in low hydration conditions get back with rehydration.
Collapse
Affiliation(s)
- Ludovica Leo
- Department of Mathematical, Physical and Computer Science, University of Parma, Parco Area Delle Scienze, 7/A, 43124, Parma, Italy.
| | - Maria Grazia Bridelli
- Department of Mathematical, Physical and Computer Science, University of Parma, Parco Area Delle Scienze, 7/A, 43124, Parma, Italy.
| | - Eugenia Polverini
- Department of Mathematical, Physical and Computer Science, University of Parma, Parco Area Delle Scienze, 7/A, 43124, Parma, Italy.
| |
Collapse
|
3573
|
Ramachandran D, Huebner CD, Daly M, Haimovitz J, Swale T, Barrett CF. Chromosome Level Genome Assembly and Annotation of Highly Invasive Japanese Stiltgrass (Microstegium vimineum). Genome Biol Evol 2021; 13:6413638. [PMID: 34718556 PMCID: PMC8598173 DOI: 10.1093/gbe/evab238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
The invasive Japanese stiltgrass (Microstegium vimineum) affects a wide range of ecosystems and threatens biodiversity across the eastern USA. However, the mechanisms underlying rapid adaptation, plasticity, and epigenetics in the invasive range are largely unknown. We present a chromosome-level assembly for M. vimineum to investigate genome dynamics, evolution, adaptation, and the genomics of phenotypic plasticity. We generated a 1.12-Gb genome with scaffold N50 length of 53.44 Mb respectively, taking a de novo assembly approach that combined PacBio and Dovetail Genomics Omni-C sequencing. The assembly contains 23 pseudochromosomes, representing 99.96% of the genome. BUSCO assessment indicated that 80.3% of Poales gene groups are present in the assembly. The genome is predicted to contain 39,604 protein-coding genes, of which 26,288 are functionally annotated. Furthermore, 66.68% of the genome is repetitive, of which unclassified (35.63%) and long-terminal repeat (LTR) retrotransposons (26.90%) are predominant. Similar to other grasses, Gypsy (41.07%) and Copia (32%) are the most abundant LTR-retrotransposon families. The majority of LTR-retrotransposons are derived from a significant expansion in the past 1-2 Myr, suggesting the presence of relatively young LTR-retrotransposon lineages. We find corroborating evidence from Ks plots for a stiltgrass-specific duplication event, distinct from the more ancient grass-specific duplication event. The assembly and annotation of M. vimineum will serve as an essential genomic resource facilitating studies of the invasion process, the history and consequences of polyploidy in grasses, and provides a crucial tool for natural resource managers.
Collapse
Affiliation(s)
| | - Cynthia D Huebner
- Department of Biology, West Virginia University, USA.,USDA Forest Service, Northern Research Station, Morgantown, West Virginia, USA
| | - Mark Daly
- Dovetail Genomics, LLC, Scotts Valley, California, USA
| | | | - Thomas Swale
- Dovetail Genomics, LLC, Scotts Valley, California, USA
| | | |
Collapse
|
3574
|
Louisse J, Dorne JLCM, Dellafiora L. Investigating the interaction between organic anion transporter 1 and ochratoxin A: An in silico structural study to depict early molecular events of substrate recruitment and the impact of single point mutations. Toxicol Lett 2021; 355:19-30. [PMID: 34748852 DOI: 10.1016/j.toxlet.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
Organic anion transporters (OATs) belong to a subgroup of the solute carrier 22 transporter family. OATs have a central role in xenobiotic disposition affecting the toxicokinetics of its substrates and inter-individual differences in their expression, activity and function impact both toxicokinetics and toxicodynamics. Amongst OATs, OAT1 (solute carrier family 22 member 6) is involved in the urinary excretion of many xenobiotics bringing substrates into renal proximal tubular cells which can then be secreted across the apical membrane into the tubule lumen. The mycotoxin ochratoxin A has been shown to have a high affinity for OAT1, which is an important renal transporter involved in its urinary excretion. Nowadays, molecular modeling techniques are widely applied to assess protein-ligand interactions and may provide a tool to depict the mechanic of xenobiotic action be it toxicokinetics or toxicodynamics. This work provides a structured pipeline consisting of docking and molecular dynamic simulations to study OAT1-ligand interactions and the impact of OAT1 polymorphisms on such interactions. Such a computational structure-based analytical framework allowed to: i) model OAT1-substrate complex formation and depict the features correlating its sequence, structure and its capability to recruit substrates; and ii) investigate the impact of OAT1 missense mutations on substrate recruitment. Perspectives on applying such a structured pipeline to xenobiotic-metabolising enzymes are discussed.
Collapse
Affiliation(s)
- Jochem Louisse
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE, Wageningen, the Netherlands
| | - Jean Lou C M Dorne
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1A, Parma, 43124, Italy
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, 43124, Italy.
| |
Collapse
|
3575
|
Transcriptomic Profile of the Cockle Cerastoderma edule Exposed to Seasonal Diarrhetic Shellfish Toxin Contamination. Toxins (Basel) 2021; 13:toxins13110784. [PMID: 34822568 PMCID: PMC8625317 DOI: 10.3390/toxins13110784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/04/2023] Open
Abstract
Bivalves constitute an important source of proteins for human consumption, but some accumulate biotoxins such as diarrhetic shellfish toxins (DSTs), constituting a risk to human health. The cockle Cerastoderma edule is one of the most important species harvested in the Portuguese coast but also one of the most affected species due to recurrent DSTs exposure. However, little is known regarding the effects of the toxins produced by blooming dinoflagellates on C. edule. Herein, we explore the Differentially Expressed Genes (DEGs) of two tissues (gills and digestive gland) from wild cockles sampled in Portugal, through their whole transcriptomic response in two different seasons (exposed and not exposed to DSTs). The de novo transcriptome assembly returned 684,723 contigs, N50 of 1049, and 98.53% completeness. Altogether, 1098 DEGs were identified, of which 353 DEGs were exclusive for the digestive gland, 536 unique for the gills and 209 DEGs were common. Among DEGs were identified known DSTs-biomarkers including glutathione peroxidase, glutathione S-transferase, superoxide dismutase, cytochrome P450, ABC transporters, actin and tubulin-related proteins, Heat shock proteins and complement C1Q-like proteins. This study provides the first transcriptomic profile of C. edule, giving new insights about its molecular responses under different environmental conditions of DSTs exposure.
Collapse
|
3576
|
Nayak S, Zhao Y, Mao Y, Li N. System-Wide Quantitative N-Glycoproteomic Analysis from K562 Cells and Mouse Liver Tissues. J Proteome Res 2021; 20:5196-5202. [PMID: 34596409 DOI: 10.1021/acs.jproteome.1c00451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a key regulator of many biological processes, glycosylation is an essential post-translational modification (PTM) in the living system. Over 50% of human proteins are known to be glycosylated. Alterations in glycoproteins are directly linked to many diseases, making it crucial to understand system-wide glycosylation changes. The majority of known glycoproteins are from plasma membrane; however, glycosylation is a dynamic process that occurs throughout multiple subcellular organelles and involves sets of enzymes, chaperones, transporters, and sugar donor molecules. Many glycoproteins are expressed not only in plasma membranes but also in subcellular organelles. Here, we developed a mass-spectrometry-based quantitative workflow for the system-wide N-glycoproteomic analysis of membrane and cytosolic proteins extracted using a MEM-PER kit. The kit facilitates the extraction and solubilization of both membrane and cytosolic proteins in a simple, efficient, and reproducible manner. We analyzed the K562 cell line and mouse liver tissue to evaluate this approach. A total of 934 glycosites, 5154 glycopeptides, and 536 glycoproteins from the K562 cell line and a total of 1449 glycosites, 7549 glycopeptides, and 660 glycoproteins from mouse liver tissue were identified. This simple and reproducible approach provides a unique way to understand system-wide glycosylation in biological processes and enables the identification and quantitation of glycan profiles at glycosylation sites in proteins.
Collapse
Affiliation(s)
- Shruti Nayak
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Yunlong Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Yuan Mao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| |
Collapse
|
3577
|
Geraghty S, Koutsouveli V, Hall C, Chang L, Sacristan-Soriano O, Hill M, Riesgo A, Hill A. Establishment of Host-Algal Endosymbioses: Genetic Response to Symbiont Versus Prey in a Sponge Host. Genome Biol Evol 2021; 13:6427630. [PMID: 34791195 PMCID: PMC8633732 DOI: 10.1093/gbe/evab252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The freshwater sponge Ephydatia muelleri and its Chlorella-like algal partner is an emerging model for studying animal: algal endosymbiosis. The sponge host is a tractable laboratory organism, and the symbiotic algae are easily cultured. We took advantage of these traits to interrogate questions about mechanisms that govern the establishment of durable intracellular partnerships between hosts and symbionts in facultative symbioses. We modified a classical experimental approach to discern the phagocytotic mechanisms that might be co-opted to permit persistent infections, and identified genes differentially expressed in sponges early in the establishment of endosymbiosis. We exposed algal-free E. muelleri to live native algal symbionts and potential food items (bacteria and native heat-killed algae), and performed RNA-Seq to compare patterns of gene expression among treatments. We found a relatively small but interesting suite of genes that are differentially expressed in the host exposed to live algal symbionts, and a larger number of genes triggered by host exposure to heat-killed algae. The upregulated genes in sponges exposed to live algal symbionts were mostly involved in endocytosis, ion transport, metabolic processes, vesicle-mediated transport, and oxidation–reduction. One of the host genes, an ATP-Binding Cassette transporter that is downregulated in response to live algal symbionts, was further evaluated for its possible role in the establishment of the symbiosis. We discuss the gene expression profiles associated with host responses to living algal cells in the context of conditions necessary for long-term residency within host cells by phototrophic symbionts as well as the genetic responses to sponge phagocytosis and immune-driven pathways.
Collapse
Affiliation(s)
- Sara Geraghty
- Department of Biology, University of Richmond, Virginia, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, New Jersey, USA
| | - Vasiliki Koutsouveli
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Chelsea Hall
- Department of Biology, University of Richmond, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lillian Chang
- Department of Biology, Bates College, Lewiston, Maine, USA
| | - Oriol Sacristan-Soriano
- Department of Biology, University of Richmond, Virginia, USA.,Centro de Estudios Avanzados de Blanes (CEAB, CSIC), Blanes, Spain
| | - Malcolm Hill
- Department of Biology, University of Richmond, Virginia, USA.,Department of Biology, Bates College, Lewiston, Maine, USA
| | - Ana Riesgo
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Madrid, Spain
| | - April Hill
- Department of Biology, University of Richmond, Virginia, USA.,Department of Biology, Bates College, Lewiston, Maine, USA
| |
Collapse
|
3578
|
Gupta S, Ozimek-Kulik JE, Phillips JK. Nephronophthisis-Pathobiology and Molecular Pathogenesis of a Rare Kidney Genetic Disease. Genes (Basel) 2021; 12:genes12111762. [PMID: 34828368 PMCID: PMC8623546 DOI: 10.3390/genes12111762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
The exponential rise in our understanding of the aetiology and pathophysiology of genetic cystic kidney diseases can be attributed to the identification of cystogenic genes over the last three decades. The foundation of this was laid by positional cloning strategies which gradually shifted towards next-generation sequencing (NGS) based screenings. This shift has enabled the discovery of novel cystogenic genes at an accelerated pace unlike ever before and, most notably, the past decade has seen the largest increase in identification of the genes which cause nephronophthisis (NPHP). NPHP is a monogenic autosomal recessive cystic kidney disease caused by mutations in a diverse clade of over 26 identified genes and is the most common genetic cause of renal failure in children. NPHP gene types present with some common pathophysiological features alongside a diverse range of extra-renal phenotypes associated with specific syndromic presentations. This review provides a timely update on our knowledge of this disease, including epidemiology, pathophysiology, anatomical and molecular features. We delve into the diversity of the NPHP causing genes and discuss known molecular mechanisms and biochemical pathways that may have possible points of intersection with polycystic kidney disease (the most studied renal cystic pathology). We delineate the pathologies arising from extra-renal complications and co-morbidities and their impact on quality of life. Finally, we discuss the current diagnostic and therapeutic modalities available for disease management, outlining possible avenues of research to improve the prognosis for NPHP patients.
Collapse
Affiliation(s)
- Shabarni Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- Correspondence:
| | - Justyna E. Ozimek-Kulik
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia
- Department of Paediatric Nephrology, Sydney Children’s Hospital Network, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Jacqueline Kathleen Phillips
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
| |
Collapse
|
3579
|
van Wijk KJ, Leppert T, Sun Q, Boguraev SS, Sun Z, Mendoza L, Deutsch EW. The Arabidopsis PeptideAtlas: Harnessing worldwide proteomics data to create a comprehensive community proteomics resource. THE PLANT CELL 2021; 33:3421-3453. [PMID: 34411258 PMCID: PMC8566204 DOI: 10.1093/plcell/koab211] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
We developed a resource, the Arabidopsis PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/), to solve central questions about the Arabidopsis thaliana proteome, such as the significance of protein splice forms and post-translational modifications (PTMs), or simply to obtain reliable information about specific proteins. PeptideAtlas is based on published mass spectrometry (MS) data collected through ProteomeXchange and reanalyzed through a uniform processing and metadata annotation pipeline. All matched MS-derived peptide data are linked to spectral, technical, and biological metadata. Nearly 40 million out of ∼143 million MS/MS (tandem MS) spectra were matched to the reference genome Araport11, identifying ∼0.5 million unique peptides and 17,858 uniquely identified proteins (only isoform per gene) at the highest confidence level (false discovery rate 0.0004; 2 non-nested peptides ≥9 amino acid each), assigned canonical proteins, and 3,543 lower-confidence proteins. Physicochemical protein properties were evaluated for targeted identification of unobserved proteins. Additional proteins and isoforms currently not in Araport11 were identified that were generated from pseudogenes, alternative start, stops, and/or splice variants, and small Open Reading Frames; these features should be considered when updating the Arabidopsis genome. Phosphorylation can be inspected through a sophisticated PTM viewer. PeptideAtlas is integrated with community resources including TAIR, tracks in JBrowse, PPDB, and UniProtKB. Subsequent PeptideAtlas builds will incorporate millions more MS/MS data.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, USA
| | - Sascha S Boguraev
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| |
Collapse
|
3580
|
Mateeva T, Klähn M, Rosta E. Structural Dynamics and Catalytic Mechanism of ATP13A2 (PARK9) from Simulations. J Phys Chem B 2021; 125:11835-11847. [PMID: 34676749 DOI: 10.1021/acs.jpcb.1c05337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP13A2 is a gene encoding a protein of the P5B subfamily of ATPases and is a PARK gene. Molecular defects of the gene are mainly associated with variations of Parkinson's disease (PD). Despite the established importance of the protein in regulating neuronal integrity, the three-dimensional structure of the protein currently remains unresolved crystallographically. We have modeled the structure and reactivity of the full-length protein in its E1-ATP state. Using molecular dynamics (MD), quantum cluster, and quantum mechanical/molecular mechanical (QM/MM) methods, we aimed at describing the main catalytic reaction, leading to the phosphorylation of Asp513. Our MD simulations suggest that two positively charged Mg2+ cations are present at the active site during the catalytic reaction, stabilizing a specific triphosphate binding mode. Using QM/MM calculations, we subsequently calculated the reaction profiles for the phosphoryl transfer step in the presence of one and two Mg2+ cations. The calculated barrier heights in both cases are found to be ∼12.5 and 7.5 kcal mol-1, respectively. We elucidated details of the catalytically competent ATP conformation and the binding mode of the second Mg2+ cofactor. We also examined the role of the conserved Arg686 and Lys859 catalytic residues. We observed that by significantly lowering the barrier height of the ATP cleavage reaction, Arg686 had major effect on the reaction. The removal of Arg686 increased the barrier height for the ATP cleavage by more than 5.0 kcal mol-1 while the removal of key electrostatic interactions created by Lys859 to the γ-phosphate and Asp513 destabilizes the reactant state. When missense mutations occur in close proximity to an active site residue, they can interfere with the barrier height of the reaction, which can halt the normal enzymatic rate of the protein. We also found large binding pockets in the full-length structure, including a transmembrane domain pocket, which is likely where the ATP13A2 cargo binds.
Collapse
Affiliation(s)
- Teodora Mateeva
- Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London, London SE1 1DB, U.K
| | - Marco Klähn
- Department of Materials Science and Chemistry, Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138 632, Singapore
| | - Edina Rosta
- Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London, London SE1 1DB, U.K.,Department of Physics and Astronomy, Faculty of Maths & Physical Sciences, University College London, London WC1E 6BT, U.K
| |
Collapse
|
3581
|
Gannesen A, Schelkunov M, Geras'kina O, Makarova N, Sukhacheva M, Danilova N, Ovcharova M, Mart'yanov S, Pankratov T, Muzychenko D, Zhurina M, Feofanov A, Botchkova E, Plakunov V. Epinephrine affects gene expression levels and has a complex effect on biofilm formation in M icrococcus luteus strain C01 isolated from human skin. Biofilm 2021; 3:100058. [PMID: 34729469 PMCID: PMC8543384 DOI: 10.1016/j.bioflm.2021.100058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, the effect of epinephrine on the biofilm formation of Micrococcus luteus C01 isolated from human skin was investigated in depth for the first time. This hormone has a complex effect on biofilms in various systems. In a system with polytetrafluoroethylene (PTFE) cubes, treatment with epinephrine at a physiological concentration of 4.9 × 10-9 M increased the total amount of 72-h biofilm biomass stained with crystal violet and increased the metabolic activity of biofilms, but at higher and lower concentrations, the treatment had no significant effect. On glass fiber filters, treatment with the hormone decreased the number of colony forming units (CFUs) and changed the aggregation but did not affect the metabolic activity of biofilm cells. In glass bottom plates examined by confocal microscopy, epinephrine notably inhibited the growth of biofilms. RNA-seq analysis and RT-PCR demonstrated reproducible upregulation of genes encoding Fe-S cluster assembly factors and cyanide detoxification sulfurtransferase, whereas genes encoding the co-chaperone GroES, the LysE superfamily of lysine exporters, short-chain alcohol dehydrogenase and the potential c-di-GMP phosphotransferase were downregulated. Our results suggest that epinephrine may stimulate matrix synthesis in M. luteus biofilms, thereby increasing the activity of NAD(H) oxidoreductases. Potential c-di-GMP pathway proteins are essential in these processes.
Collapse
Affiliation(s)
- A.V. Gannesen
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
- Corresponding author.
| | - M.I. Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Moscow, Russia
| | - O.V. Geras'kina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - N.E. Makarova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - M.V. Sukhacheva
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - N.D. Danilova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - M.A. Ovcharova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - S.V. Mart'yanov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - T.A. Pankratov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - D.S. Muzychenko
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - M.V. Zhurina
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - A.V. Feofanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E.A. Botchkova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - V.K. Plakunov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3582
|
Broekhuizen M, Danser AHJ, Reiss IKM, Merkus D. The Function of the Kynurenine Pathway in the Placenta: A Novel Pharmacotherapeutic Target? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111545. [PMID: 34770059 PMCID: PMC8582682 DOI: 10.3390/ijerph182111545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/21/2022]
Abstract
(L-)tryptophan is metabolized via the kynurenine pathway into several kynurenine metabolites with distinct functions. Dysfunction of the kynurenine pathway can lead to impairments in vascular regulation, immune regulation, and tolerance. The first and rate limiting enzyme of this pathway, indoleamine 2,3-dioxygenase (IDO), is highly expressed in the placenta and reduced in placentas from complicated pregnancies. IDO is essential during pregnancy, as IDO inhibition in pregnant mice resulted in fetal loss. However, the exact function of placental IDO, as well as its exact placental localization, remain controversial. This review identified that two isoforms of IDO; IDO1 and IDO2, are differently expressed between placental cells, suggesting spatial segregation. Furthermore, this review summarizes how the placental kynurenine pathway is altered in pregnancy complications, including recurrent miscarriage, preterm birth, preeclampsia, and fetal growth restriction. Importantly, we describe that these alterations do not affect maternally circulating metabolite concentrations, suggesting that the kynurenine pathway functions as a local signaling pathway. In the placenta, it is an important source of de novo placental NAD+ synthesis and regulates fetal tryptophan and kynurenine metabolite supply. Therefore, kynurenine pathway interventions might provide opportunities to treat pregnancy complications, and this review discusses how such treatment could affect placental function and pregnancy development.
Collapse
Affiliation(s)
- Michelle Broekhuizen
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence:
| | - A. H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Irwin K. M. Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
3583
|
Changes in the distribution of membrane lipids during growth of Thermotoga maritima at different temperatures: Indications for the potential mechanism of biosynthesis of ether-bound diabolic acid (membrane-spanning) lipids. Appl Environ Microbiol 2021; 88:e0176321. [PMID: 34731048 PMCID: PMC8788747 DOI: 10.1128/aem.01763-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane-spanning lipids are present in a wide variety of archaea but they are rarely in bacteria. Nevertheless, the (hyper)thermophilic members of the order Thermotogales harbor tetraester, tetraether, and mixed ether/ester membrane-spanning lipids mostly composed of core lipids derived from diabolic acids, C30, C32 and C34 dicarboxylic acids with two adjacent mid-chain methyl substituents. Lipid analysis of Thermotoga maritima across growth phases revealed a decrease of the relative abundance of fatty acids together with an increase of diabolic acids with independence of growth temperature. We also identified isomers of C30 and C32 diabolic acids, i.e. dicarboxylic acids with only one methyl group at C-15. Their distribution suggests they are products of the condensation reaction but preferably produced when the length of the acyl chains is not optimal. In comparison with growth at the optimal temperature of 80°C, an increase of glycerol ether-derived lipids was observed at 55°C. Besides, our analysis only detected diabolic acid-containing intact polar lipids with phosphoglycerol (PG) headgroups. Considering these findings, we hypothesize a biosynthetic pathway for the synthesis of membrane-spanning lipids based on PG polar lipid formation, suggesting that the protein catalyzing this process could be a membrane protein. We also identified, by genomic and protein domain analyses, a gene coding for a putative plasmalogen synthase homologue in T. maritima, which is also present in other bacteria producing sn1-alkyl ether lipids but not plasmalogens, suggesting it could be involved in the conversion of the ester to ether bond in the diabolic acids bound in membrane-spanning lipids. Importance Membrane-spanning lipids are unique compounds found in most archaeal membranes, but they are also present in specific bacterial groups like the Thermotogales. The synthesis and physiological role of membrane-spanning lipids in bacteria represent an evolutionary and biochemical open question that points to the differentiation of the membrane lipids composition. Understanding the formation of membrane-spanning lipids is crucial to solving this question and identifying the enzymatic and biochemical mechanism performing this procedure. In the present work, we found changes at the core lipid level, and we propose that the growth phase drives the biosynthesis of these lipids rather than temperature. Our results identified physiological conditions influencing the membrane-spanning lipids biosynthetic process which can further clarify the pathway leading to the biosynthesis of these compounds.
Collapse
|
3584
|
Temporal dynamics of base excision/single-strand break repair protein complex assembly/disassembly are modulated by the PARP/NAD +/SIRT6 axis. Cell Rep 2021; 37:109917. [PMID: 34731617 PMCID: PMC8607749 DOI: 10.1016/j.celrep.2021.109917] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023] Open
Abstract
Assembly and disassembly of DNA repair protein complexes at DNA damage sites are essential for maintaining genomic integrity. Investigating factors coordinating assembly of the base excision repair (BER) proteins DNA polymerase β (Polβ) and XRCC1 to DNA lesion sites identifies a role for Polβ in regulating XRCC1 disassembly from DNA repair complexes and, conversely, demonstrates Polβ’s dependence on XRCC1 for complex assembly. LivePAR, a genetically encoded probe for live-cell imaging of poly(ADP-ribose) (PAR), reveals that Polβ and XRCC1 require PAR for repair-complex assembly, with PARP1 and PARP2 playing unique roles in complex dynamics. Further, BER complex assembly is modulated by attenuation/augmentation of NAD+ biosynthesis. Finally, SIRT6 does not modulate PARP1 or PARP2 activation but does regulate XRCC1 recruitment, leading to diminished Polβ abundance at sites of DNA damage. These findings highlight coordinated yet independent roles for PARP1, PARP2, and SIRT6 and their regulation by NAD+ bioavailability to facilitate BER. Koczor et al. use quantitative confocal microscopy to characterize DNA-damage-induced poly(ADP-ribose) (PAR) formation and assembly/disassembly kinetics in human cells. These studies highlight the coordinated yet independent roles for XRCC1, POLΒ, PARP1, PARP2, and SIRT6 (and regulation by NAD+) to facilitate BER/SSBR protein complex dynamics.
Collapse
|
3585
|
Zhao VY, Rodrigues JV, Lozovsky ER, Hartl DL, Shakhnovich EI. Switching an active site helix in dihydrofolate reductase reveals limits to subdomain modularity. Biophys J 2021; 120:4738-4750. [PMID: 34571014 PMCID: PMC8595743 DOI: 10.1016/j.bpj.2021.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
To what degree are individual structural elements within proteins modular such that similar structures from unrelated proteins can be interchanged? We study subdomain modularity by creating 20 chimeras of an enzyme, Escherichia coli dihydrofolate reductase (DHFR), in which a catalytically important, 10-residue α-helical sequence is replaced by α-helical sequences from a diverse set of proteins. The chimeras stably fold but have a range of diminished thermal stabilities and catalytic activities. Evolutionary coupling analysis indicates that the residues of this α-helix are under selection pressure to maintain catalytic activity in DHFR. Reversion to phenylalanine at key position 31 was found to partially restore catalytic activity, which could be explained by evolutionary coupling values. We performed molecular dynamics simulations using replica exchange with solute tempering. Chimeras with low catalytic activity exhibit nonhelical conformations that block the binding site and disrupt the positioning of the catalytically essential residue D27. Simulation observables and in vitro measurements of thermal stability and substrate-binding affinity are strongly correlated. Several E. coli strains with chromosomally integrated chimeric DHFRs can grow, with growth rates that follow predictions from a kinetic flux model that depends on the intracellular abundance and catalytic activity of DHFR. Our findings show that although α-helices are not universally substitutable, the molecular and fitness effects of modular segments can be predicted by the biophysical compatibility of the replacement segment.
Collapse
Affiliation(s)
- Victor Y Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - João V Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Elena R Lozovsky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
3586
|
Avraham O, Bayer EA, Livnah O. Wilavidin* - a novel member of the avidin family that forms unique biotin-binding hexamers. FEBS J 2021; 289:1700-1714. [PMID: 34726340 DOI: 10.1111/febs.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
Nature's optimization of protein functions is a highly intricate evolutionary process. In addition to optimal tertiary folding, the intramolecular recognition among the monomers that generate higher-order quaternary arrangements is driven by stabilizing interactions that have a pivotal role for ideal activity. Homotetrameric avidin and streptavidin are regularly utilized in many applications, whereby their ultra-high affinity toward biotin is dependent on their quaternary arrangements. In recent years, a new subfamily of avidins was discovered that comprises homodimers rather than tetramers, in which the high affinity toward biotin is maintained. Intriguingly, several of the respective dimers have been shown to assemble into higher-order cylindrical hexamers or octamers that dissociate into dimers upon biotin binding. Here, we present wilavidin, a newly discovered member of the dimeric subfamily, forming hexamers in the apo form, which are uniquely maintained upon biotin binding with six high-affinity binding sites. Removal of the short C-terminal segment of wilavidin resulted in the presence of the dimer only, thus emphasizing the role of this segment in stabilizing the hexamer. Utilization of a hexavalent biotin-binding form of avidin would be beneficial for expanding the biotechnological toolbox. Additionally, this unique family of dimeric avidins and their propensity to oligomerize to hexamers or octamers can serve as a basis for protein oligomerization and intermonomeric recognition as well as cumulative interactions that determine molecular assemblies.
Collapse
Affiliation(s)
- Orly Avraham
- The Wolfson Centre for Applied Structural Biology, Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.,Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
3587
|
Hawkins C, Ginzburg D, Zhao K, Dwyer W, Xue B, Xu A, Rice S, Cole B, Paley S, Karp P, Rhee SY. Plant Metabolic Network 15: A resource of genome-wide metabolism databases for 126 plants and algae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1888-1905. [PMID: 34403192 DOI: 10.1111/jipb.13163] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/14/2021] [Indexed: 05/18/2023]
Abstract
To understand and engineer plant metabolism, we need a comprehensive and accurate annotation of all metabolic information across plant species. As a step towards this goal, we generated genome-scale metabolic pathway databases of 126 algal and plant genomes, ranging from model organisms to crops to medicinal plants (https://plantcyc.org). Of these, 104 have not been reported before. We systematically evaluated the quality of the databases, which revealed that our semi-automated validation pipeline dramatically improves the quality. We then compared the metabolic content across the 126 organisms using multiple correspondence analysis and found that Brassicaceae, Poaceae, and Chlorophyta appeared as metabolically distinct groups. To demonstrate the utility of this resource, we used recently published sorghum transcriptomics data to discover previously unreported trends of metabolism underlying drought tolerance. We also used single-cell transcriptomics data from the Arabidopsis root to infer cell type-specific metabolic pathways. This work shows the quality and quantity of our resource and demonstrates its wide-ranging utility in integrating metabolism with other areas of plant biology.
Collapse
Affiliation(s)
- Charles Hawkins
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Daniel Ginzburg
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Kangmei Zhao
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - William Dwyer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Bo Xue
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Angela Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Selena Rice
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Benjamin Cole
- DOE-Joint Genome Institute, Lawrence Berkeley Laboratory, Berkeley, California, 94720, USA
| | - Suzanne Paley
- SRI International, Menlo Park, California, 94025, USA
| | - Peter Karp
- SRI International, Menlo Park, California, 94025, USA
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| |
Collapse
|
3588
|
Weng Y, Wang Z, Fukuhara Y, Tanai A, Ikegame M, Yamada D, Takarada T, Izawa T, Hayano S, Yoshida K, Kamioka H, Okamura H. O-GlcNAcylation drives calcium signaling toward osteoblast differentiation: A bioinformatics-oriented study. Biofactors 2021; 47:992-1015. [PMID: 34418170 DOI: 10.1002/biof.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to reveal the possible mechanisms by which O-linked-N-acetylglucosaminylation (O-GlcNAcylation) regulates osteoblast differentiation using a series of bioinformatics-oriented experiments. To examine the influence of O-GlcNAcylation levels on osteoblast differentiation, osteoblastic MC3T3-E1 cells were treated with O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) inhibitors. Correlations between the levels of O-GlcNAcylation and the expression of osteogenic markers as well as OGT were evaluated by qPCR and western blotting. The O-GlcNAcylated proteins assumed to correlate with Runx2 expression were retrieved from several public databases and used for further bioinformatics analysis. Following the findings of the bioinformatics analysis, intracellular calcium ([Ca2+ ]i ) was monitored in the cells treated with OGT and OGA inhibitors using a confocal laser-scanning microscope (CLS). The interaction effect between O-GlcNAcylation and [Ca2+ ]i on osteogenic marker expression was determined using stable OGT knockdown MC3T3-E1 cells. O-GlcNAcylation was positively associated with osteoblast differentiation. The time-course profile of global O-GlcNAcylated proteins showed a distinctive pattern with different molecular weights during osteoblast differentiation. The expression pattern of several O-GlcNAcylated proteins was significantly similar to that of Runx2 expression. Bioinformatic analysis of the retrieved Runx2-related-O-GlcNAcylated-proteins revealed the importance of [Ca2+ ]i . CLS showed that alteration of O-GlcNAcylation rapidly changed [Ca2+ ]i in MC3T3-E1 cells. O-GlcNAcylation and [Ca2+ ]i showed an interaction effect on the expression of osteogenic markers. OGT knockdown disrupted the [Ca2+ ]i -induced expression changes of osteogenic markers. O-GlcNAcylation interacts with [Ca2+ ]i and elicits osteoblast differentiation by regulating the expression of osteogenic markers.
Collapse
Affiliation(s)
- Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoko Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Airi Tanai
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Izawa
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoru Hayano
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
3589
|
Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann A. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genom 2021; 7:000685. [PMID: 34739369 PMCID: PMC8743544 DOI: 10.1099/mgen.0.000685] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
Command-line annotation software tools have continuously gained popularity compared to centralized online services due to the worldwide increase of sequenced bacterial genomes. However, results of existing command-line software pipelines heavily depend on taxon-specific databases or sufficiently well annotated reference genomes. Here, we introduce Bakta, a new command-line software tool for the robust, taxon-independent, thorough and, nonetheless, fast annotation of bacterial genomes. Bakta conducts a comprehensive annotation workflow including the detection of small proteins taking into account replicon metadata. The annotation of coding sequences is accelerated via an alignment-free sequence identification approach that in addition facilitates the precise assignment of public database cross-references. Annotation results are exported in GFF3 and International Nucleotide Sequence Database Collaboration (INSDC)-compliant flat files, as well as comprehensive JSON files, facilitating automated downstream analysis. We compared Bakta to other rapid contemporary command-line annotation software tools in both targeted and taxonomically broad benchmarks including isolates and metagenomic-assembled genomes. We demonstrated that Bakta outperforms other tools in terms of functional annotations, the assignment of functional categories and database cross-references, whilst providing comparable wall-clock runtimes. Bakta is implemented in Python 3 and runs on MacOS and Linux systems. It is freely available under a GPLv3 license at https://github.com/oschwengers/bakta. An accompanying web version is available at https://bakta.computational.bio.
Collapse
Affiliation(s)
- Oliver Schwengers
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Lukas Jelonek
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Marius Alfred Dieckmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Sebastian Beyvers
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| |
Collapse
|
3590
|
Paiz EA, Allen JH, Correia JJ, Fitzkee NC, Hough LE, Whitten ST. Beta turn propensity and a model polymer scaling exponent identify intrinsically disordered phase-separating proteins. J Biol Chem 2021; 297:101343. [PMID: 34710373 PMCID: PMC8592878 DOI: 10.1016/j.jbc.2021.101343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
The complex cellular milieu can spontaneously demix, or phase separate, in a process controlled in part by intrinsically disordered (ID) proteins. A protein's propensity to phase separate is thought to be driven by a preference for protein-protein over protein-solvent interactions. The hydrodynamic size of monomeric proteins, as quantified by the polymer scaling exponent (v), is driven by a similar balance. We hypothesized that mean v, as predicted by protein sequence, would be smaller for proteins with a strong propensity to phase separate. To test this hypothesis, we analyzed protein databases containing subsets of proteins that are folded, disordered, or disordered and known to spontaneously phase separate. We find that the phase-separating disordered proteins, on average, had lower calculated values of v compared with their non-phase-separating counterparts. Moreover, these proteins had a higher sequence-predicted propensity for β-turns. Using a simple, surface area-based model, we propose a physical mechanism for this difference: transient β-turn structures reduce the desolvation penalty of forming a protein-rich phase and increase exposure of atoms involved in π/sp2 valence electron interactions. By this mechanism, β-turns could act as energetically favored nucleation points, which may explain the increased propensity for turns in ID regions (IDRs) utilized biologically for phase separation. Phase-separating IDRs, non-phase-separating IDRs, and folded regions could be distinguished by combining v and β-turn propensity. Finally, we propose a new algorithm, ParSe (partition sequence), for predicting phase-separating protein regions, and which is able to accurately identify folded, disordered, and phase-separating protein regions based on the primary sequence.
Collapse
Affiliation(s)
- Elisia A Paiz
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Jeffre H Allen
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - John J Correia
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Loren E Hough
- Department of Physics, University of Colorado Boulder, Boulder, Colorado, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.
| | - Steven T Whitten
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA.
| |
Collapse
|
3591
|
Modahl CM, Saviola AJ, Mackessy SP. Integration of transcriptomic and proteomic approaches for snake venom profiling. Expert Rev Proteomics 2021; 18:827-834. [PMID: 34663159 DOI: 10.1080/14789450.2021.1995357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Snake venoms contain many protein and peptide isoforms with high levels of sequence variation, even within a single species. AREAS COVERED In this review, we highlight several examples, from both published and unpublished work in our lab, demonstrating how a combined venom gland transcriptome and proteome methodology allows for comprehensive characterization of venoms, including those from understudied rear-fanged snake species, and we provide recommendations for using these approaches. EXPERT OPINION When characterizing venoms, peptide mass fingerprinting using databases built predominately from protein sequences originating from model organisms can be disadvantageous, especially when the intention is to document protein diversity. Therefore, the use of species-specific venom gland transcriptomes corrects for the absence of these unique peptide sequences in databases. The integration of transcriptomics and proteomics improves the accuracy of either approach alone for venom profiling.
Collapse
Affiliation(s)
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, USA
| |
Collapse
|
3592
|
Urhan A, Abeel T. A comparative study of pan-genome methods for microbial organisms: Acinetobacter baumannii pan-genome reveals structural variation in antimicrobial resistance-carrying plasmids. Microb Genom 2021; 7:000690. [PMID: 34761737 PMCID: PMC8743560 DOI: 10.1099/mgen.0.000690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/10/2021] [Indexed: 11/25/2022] Open
Abstract
Microbial organisms have diverse populations, where using a single linear reference sequence in comparative studies introduces reference-bias in downstream analyses, and leads to a failure to account for variability in the population. Recently, pan-genome graphs have emerged as an alternative to the traditional linear reference with many successful applications and a rapid increase in the number of methods available in the literature. Despite this enthusiasm, there has been no attempt at exploring these graph construction methods in depth, demonstrating their practical use. In this study, we aim to develop a general guide to help researchers who may want to incorporate pan-genomes in their analyses of microbial organisms. We evaluated the state-of-the art pan-genome construction tools to model a collection of 70 Acinetobacter baumannii strains. Our results suggest that all tools produced pan-genome graphs conforming to our expectations based on previous literature, and that their approach to homologue detection is likely to be the most influential in determining the final size and complexity of the pan-genome. The graphs overlapped most in the core pan-genome content while the cloud genes varied significantly among tools. We propose an alternative approach for pan-genome construction by combining two of the tools, Panaroo and Ptolemy, to further exploit them in downstream analyses, and demonstrate the effectiveness of our pipeline for structural variant calling in beta-lactam resistance genes in the same set of A. baumannii isolates, identifying various transposon structures for carbapenem resistance in chromosome, as well as plasmids. We identify a novel plasmid structure in two multidrug-resistant clinical isolates that had previously been studied, and which could be important for their resistance phenotypes.
Collapse
Affiliation(s)
- Aysun Urhan
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| |
Collapse
|
3593
|
Protein Structure, Models of Sequence Evolution, and Data Type Effects in Phylogenetic Analyses of Mitochondrial Data: A Case Study in Birds. DIVERSITY 2021. [DOI: 10.3390/d13110555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phylogenomic analyses have revolutionized the study of biodiversity, but they have revealed that estimated tree topologies can depend, at least in part, on the subset of the genome that is analyzed. For example, estimates of trees for avian orders differ if protein-coding or non-coding data are analyzed. The bird tree is a good study system because the historical signal for relationships among orders is very weak, which should permit subtle non-historical signals to be identified, while monophyly of orders is strongly corroborated, allowing identification of strong non-historical signals. Hydrophobic amino acids in mitochondrially-encoded proteins, which are expected to be found in transmembrane helices, have been hypothesized to be associated with non-historical signals. We tested this hypothesis by comparing the evolution of transmembrane helices and extramembrane segments of mitochondrial proteins from 420 bird species, sampled from most avian orders. We estimated amino acid exchangeabilities for both structural environments and assessed the performance of phylogenetic analysis using each data type. We compared those relative exchangeabilities with values calculated using a substitution matrix for transmembrane helices estimated using a variety of nuclear- and mitochondrially-encoded proteins, allowing us to compare the bird-specific mitochondrial models with a general model of transmembrane protein evolution. To complement our amino acid analyses, we examined the impact of protein structure on patterns of nucleotide evolution. Models of transmembrane and extramembrane sequence evolution for amino acids and nucleotides exhibited striking differences, but there was no evidence for strong topological data type effects. However, incorporating protein structure into analyses of mitochondrially-encoded proteins improved model fit. Thus, we believe that considering protein structure will improve analyses of mitogenomic data, both in birds and in other taxa.
Collapse
|
3594
|
Bradford BR, Jin C. Stem-loop binding protein and metal carcinogenesis. Semin Cancer Biol 2021; 76:38-44. [PMID: 34416372 PMCID: PMC8627438 DOI: 10.1016/j.semcancer.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022]
Abstract
Pre-mRNA processing of the replication-dependent canonical histone mRNAs requires an endonucleolytic cleavage immediately after a conserved stem loop structure which occurs before RNA Pol II encounters any poly(A) signal. Thus, in contrast to all other eukaryotic mRNAs, the canonical histone mRNAs are not polyadenylated in their 3' ends. The binding of stem-loop binding protein (SLBP) to the stem loop structure of the histone mRNAs is required for this process. SLBP is also involved in regulation of histone mRNA nuclear export, degradation, and translation. Depletion of SLBP has been shown to induce polyadenylation of histone mRNAs and alteration of histone protein levels, which are considered to contribute to the observed aberrant cell cycle progress and genomic instability resulting from the loss of SLBP function. Recent studies have demonstrated that some heavy metal carcinogens, including arsenic and nickel, can induce the loss of SLBP and the gain of polyadenylation of canonical histone mRNAs. Polyadenylated canonical histone H3 can result in abnormal transcription, cell cycle arrest, genomic instability, and cell transformation, which links SLBP depletion and subsequent histone mRNA misprocessing to cancer. This review seeks to briefly summarize what is known about regulation of SLBP expression, consequences of SLBP depletion, its roles in cancer-related end points, with particular focus on metal-induced SLBP depletion and the potential of SLBP depletion as a new mechanism for metal-induced carcinogenesis.
Collapse
Affiliation(s)
- Beatrix R Bradford
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Chunyuan Jin
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25th Street, New York, NY, 10010, USA.
| |
Collapse
|
3595
|
Luu GT, Sanchez LM. Toward improvement of screening through mass spectrometry-based proteomics: ovarian cancer as a case study. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 469:116679. [PMID: 34744497 PMCID: PMC8570641 DOI: 10.1016/j.ijms.2021.116679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ovarian cancer is one of the leading causes of cancer related deaths affecting United States women. Early-stage detection of ovarian cancer has been linked to increased survival, however, current screening methods, such as biomarker testing, have proven to be ineffective in doing so. Therefore, further developments are necessary to be able to achieve positive patient prognosis. Ongoing efforts are being made in biomarker discovery towards clinical applications in screening for early-stage ovarian cancer. In this perspective, we discuss and provide examples for several workflows employing mass spectrometry-based proteomics towards protein biomarker discovery and characterization in the context of ovarian cancer; workflows include protein identification and characterization as well as intact protein profiling. We also discuss the opportunities to merge these workflows for a multiplexed approach for biomarkers. Lastly, we provide our insight as to future developments that may serve to enhance biomarker discovery workflows while also considering translational potential.
Collapse
Affiliation(s)
- Gordon T Luu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St. Santa Cruz, CA, 95064
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St. Santa Cruz, CA, 95064
| |
Collapse
|
3596
|
Shao F, Pan H, Li P, Ni L, Xu Y, Peng Z. Chromosome-Level Genome Assembly of the Asian Red-Tail Catfish ( Hemibagrus wyckioides). Front Genet 2021; 12:747684. [PMID: 34712270 PMCID: PMC8546334 DOI: 10.3389/fgene.2021.747684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Affiliation(s)
- Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Huamei Pan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Ping Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China.,College of Fisheries, Southwest University, Chongqing, China
| | - Luyun Ni
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Yuan Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| |
Collapse
|
3597
|
Kang J, Tang Q, He J, Li L, Yang N, Yu S, Wang M, Zhang Y, Lin J, Cui T, Hu Y, Tan P, Cheng J, Zheng H, Wang D, Su X, Chen W, Huang Y. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res 2021; 50:D326-D332. [PMID: 34718726 PMCID: PMC8728132 DOI: 10.1093/nar/gkab997] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Establishing an RNA-associated interaction repository facilitates the system-level understanding of RNA functions. However, as these interactions are distributed throughout various resources, an essential prerequisite for effectively applying these data requires that they are deposited together and annotated with confidence scores. Hence, we have updated the RNA-associated interaction database RNAInter (RNA Interactome Database) to version 4.0, which is freely accessible at http://www.rnainter.org or http://www.rna-society.org/rnainter/. Compared with previous versions, the current RNAInter not only contains an enlarged data set, but also an updated confidence scoring system. The merits of this 4.0 version can be summarized in the following points: (i) a redefined confidence scoring system as achieved by integrating the trust of experimental evidence, the trust of the scientific community and the types of tissues/cells, (ii) a redesigned fully functional database that enables for a more rapid retrieval and browsing of interactions via an upgraded user-friendly interface and (iii) an update of entries to >47 million by manually mining the literature and integrating six database resources with evidence from experimental and computational sources. Overall, RNAInter will provide a more comprehensive and readily accessible RNA interactome platform to investigate the regulatory landscape of cellular RNAs.
Collapse
Affiliation(s)
- Juanjuan Kang
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan 528000, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiang Tang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Jun He
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Le Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Nianling Yang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Shuiyan Yu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Mengyao Wang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Yuchen Zhang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Jiahao Lin
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianyu Cui
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongfei Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun Cheng
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan 528000, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hailong Zheng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xi Su
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan 528000, China
| | - Wei Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Yan Huang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308, China
| |
Collapse
|
3598
|
Xue H, Zhang Q, Wang P, Cao B, Jia C, Cheng B, Shi Y, Guo WF, Wang Z, Liu ZX, Cheng H. qPTMplants: an integrative database of quantitative post-translational modifications in plants. Nucleic Acids Res 2021; 50:D1491-D1499. [PMID: 34718741 PMCID: PMC8728288 DOI: 10.1093/nar/gkab945] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
As a crucial molecular mechanism, post-translational modifications (PTMs) play critical roles in a wide range of biological processes in plants. Recent advances in mass spectrometry-based proteomic technologies have greatly accelerated the profiling and quantification of plant PTM events. Although several databases have been constructed to store plant PTM data, a resource including more plant species and more PTM types with quantitative dynamics still remains to be developed. In this paper, we present an integrative database of quantitative PTMs in plants named qPTMplants (http://qptmplants.omicsbio.info), which hosts 1 242 365 experimentally identified PTM events for 429 821 nonredundant sites on 123 551 proteins under 583 conditions for 23 PTM types in 43 plant species from 293 published studies, with 620 509 quantification events for 136 700 PTM sites on 55 361 proteins under 354 conditions. Moreover, the experimental details, such as conditions, samples, instruments and methods, were manually curated, while a variety of annotations, including the sequence and structural characteristics, were integrated into qPTMplants. Then, various search and browse functions were implemented to access the qPTMplants data in a user-friendly manner. Overall, we anticipate that the qPTMplants database will be a valuable resource for further research on PTMs in plants.
Collapse
Affiliation(s)
- Han Xue
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Panqin Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bijin Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chongchong Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ben Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wei-Feng Guo
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3599
|
Calcaterra V, Chiricosta L, Mazzon E, Gugnandolo A, Alberti D, Maestri L, Meroni M, Vestri E, Verduci E, Dilillo D, Zuccotti G, Pelizzo G. Determining oncogenic patterns and cancer predisposition through the transcriptomic profile in Mitchell-Riley syndrome with heterotopic gastric mucosa and duodenal atresia: a case report. Orphanet J Rare Dis 2021; 16:455. [PMID: 34715892 PMCID: PMC8556982 DOI: 10.1186/s13023-021-02093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/17/2021] [Indexed: 11/25/2022] Open
Abstract
Background Homozygous mutations in the transcription factor RFX6 are the cause of the Mitchell–Riley syndrome (MRS) associating neonatal diabetes, congenital digestive system, such as biliary atresia, pancreatic hypoplasia, duodenal and/or jejunal atresia, intestinal malrotation, gallbladder aplasia, cholestasis. A constitutive inactivation of RFX6 leads also to gastric heterotopia. Application of RNA-seq in human diseases may help to better understand pathogenic mechanism of diseases and to predict the risk of developing chronic disorders and personalizing their prevention and treatment. We evaluated oncogenic patterns and cancer predisposition using the transcriptomic profile in a case of MRS with neonatal diabetes, duodenal atresia, and extensive intestinal tract gastric heterotopia. Results We signalled the interactors of RFX6 with other up and downregulated genes, that may be interested in severity of diabetic condition, in multi-organs impairment and cancer predisposition. Furthermore, several dysregulated genes are involved in biological processes that can lead to promote cancer including “Evading apoptosis” (BAD, BBC3, EGF, FGFR2, FLT3LG, HMOX1, HRAS, IFNAR2, IGF1R, IL12RB1, IL13RA1, IL15, IL2RB, IL2RG, IL6R, KEAP1, MGST1, PDGFA, PDGFRB, PIK3R3, RALB, RALGDS, RASSF1, SOS1, TGFA, TXNRD3), “Proliferation” (APC, BRAF, CCND2, CCND3, CCNE2, FGFR2, FLT3LG, FZD1, FZD6, HMOX1, HRAS, IGF1R, KEAP1, LRP6, MAPK3, MGST1, PDGFA, PDGFB, PDGFRB, RB1, SOS1, TGFA, TXNRD3, WNT10B), “Sustained angiogenesis” (BRAF, FGFR2, FLT3LG, HRAS, IGF1R, JAG1, MAPK3, NOTCH2, PDGFA, PDGFB, PDGFRB, SOS1, TGFA, TGFB1), “Genomic instability” (BAD, BBC3) and “Insensitivity to anti-growth signals” (SMAD2, TGFB1). We also inspected the signalings and their related genes in cancer, such as “PI3K signaling”, “ERK signaling”, “JAK-STAT signaling”, “Calcium signaling”, “Other RAS signaling”, “WNT signaling”. Conclusions In our MRS patient, we signaled the interactors of RFX6 with other up- and downregulated genes that may be related to severe diabetic condition, multi-organ impairment, and cancer predisposition. Notably, many dysregulated genes may lead to triggering carcinogenesis. The possibility of the patient developing cancer degeneration in heterotopic gastric mucosa and/or additional long-term tumoral sequelae is not excluded. Personalized prevention and treatment strategies should be proposed.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy.,Pediatric Department, Children's Hospital "Vittore Buzzi", Milan, Italy
| | | | | | | | - Daniele Alberti
- Pediatric Surgery Department, "Spedali Civili" Children's Hospital, Brescia, Italy
| | - Luciano Maestri
- Pediatric Surgery Department, Children's Hospital "Vittore Buzzi", Via Lodovico Castelvetro n.32, 20154, Milan, Italy
| | - Milena Meroni
- Pediatric Surgery Department, Children's Hospital "Vittore Buzzi", Via Lodovico Castelvetro n.32, 20154, Milan, Italy
| | - Elettra Vestri
- Pediatric Surgery Department, Children's Hospital "Vittore Buzzi", Via Lodovico Castelvetro n.32, 20154, Milan, Italy
| | - Elvira Verduci
- Pediatric Department, Children's Hospital "Vittore Buzzi", Milan, Italy.,Department of Health Sciences, University of Milano, Milan, Italy
| | - Dario Dilillo
- Pediatric Department, Children's Hospital "Vittore Buzzi", Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Children's Hospital "Vittore Buzzi", Milan, Italy.,Department of Biomedical and Clinical Science "L. Sacco", University of Milano, Milan, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital "Vittore Buzzi", Via Lodovico Castelvetro n.32, 20154, Milan, Italy. .,Department of Biomedical and Clinical Science "L. Sacco", University of Milano, Milan, Italy.
| |
Collapse
|
3600
|
Zhou Y, Zhang Y, Lian X, Li F, Wang C, Zhu F, Qiu Y, Chen Y. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res 2021; 50:D1398-D1407. [PMID: 34718717 PMCID: PMC8728281 DOI: 10.1093/nar/gkab953] [Citation(s) in RCA: 319] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022] Open
Abstract
Drug discovery relies on the knowledge of not only drugs and targets, but also the comparative agents and targets. These include poor binders and non-binders for developing discovery tools, prodrugs for improved therapeutics, co-targets of therapeutic targets for multi-target strategies and off-target investigations, and the collective structure-activity and drug-likeness landscapes of enhanced drug feature. However, such valuable data are inadequately covered by the available databases. In this study, a major update of the Therapeutic Target Database, previously featured in NAR, was therefore introduced. This update includes (a) 34 861 poor binders and 12 683 non-binders of 1308 targets; (b) 534 prodrug-drug pairs for 121 targets; (c) 1127 co-targets of 672 targets regulated by 642 approved and 624 clinical trial drugs; (d) the collective structure-activity landscapes of 427 262 active agents of 1565 targets; (e) the profiles of drug-like properties of 33 598 agents of 1102 targets. Moreover, a variety of additional data and function are provided, which include the cross-links to the target structure in PDB and AlphaFold, 159 and 1658 newly emerged targets and drugs, and the advanced search function for multi-entry target sequences or drug structures. The database is accessible without login requirement at: https://idrblab.org/ttd/.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoxin Wang
- Department of Computer Science, Kansas State University, Manhattan 66506, USA
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|