3601
|
Abstract
The F4/80 monoclonal antibody was first reported in this journal 30 years ago (Eur. J. Immunol. 1981. 11: 805-815). F4/80 has become a widely used marker for monocytes and many, but not all, tissue macrophages in the mouse. F4/80 is a member of the EGF-TM7 family of leukocyte plasma membrane heptahelical molecules, which includes CD97 and EMR2. This Viewpoint summarises current knowledge of the expression, structure and functions of the EGF-TM7 family, as part of a larger family of tissue adhesion-GPCRs.
Collapse
Affiliation(s)
- Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
3602
|
Huang Z, Zhang Z, Jiang Y, Zhang D, Chen J, Dong L, Zhang J. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J Control Release 2011; 158:286-92. [PMID: 22119956 DOI: 10.1016/j.jconrel.2011.11.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 12/31/2022]
Abstract
Tumor-associated macrophages (TAMs) have been proven to be a driving force in the initiation, proliferation, metastasis and angiogenesis of various tumors. Specifically, alterations in the functions of TAMs exhibited inhibitory effects on tumor growth. However, there is currently no research being conducted on the targeting delivery of drugs into TAMs for cell-specific tumor immunotherapy. In the present study, we developed a TAMs targeted delivery system that is triggered by the acidic microenvironment in the tumor to release a TAMs-recognizing nano-complex loaded with oligonucleotides. By using this system, we demonstrated a significant anti-tumor effect of an oligonucleotide combination of CpG oligonucleotide, anti-IL-10 and anti-IL-10 receptor oligonucleotides. These nucleic acid drugs delivered by the delivery system accumulated in the TAMs of an allograft hepatoma murine model by intravenous injection, suppressed the pro-tumor functions and stimulated the anti-tumor activities of TAMs. More importantly, the nucleic acid drug-based immune-regulation was restricted to the tumor microenvironment and did not cause an upregulation of serum inflammatory cytokines. Our present study provides an effective therapeutic strategy for regulating cell-specific functions using nucleic acid drugs.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | |
Collapse
|
3603
|
Mantovani A, Germano G, Marchesi F, Locatelli M, Biswas SK. Cancer-promoting tumor-associated macrophages: new vistas and open questions. Eur J Immunol 2011; 41:2522-5. [PMID: 21952810 DOI: 10.1002/eji.201141894] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor-associated macrophages (TAMs) are key components of the tumor macroenvironment. Cancer- and host cell-derived signals generally drive the functions of TAMs towards an M2-like polarized, tumor-propelling mode; however, when appropriately re-educated. TAMs also have the potential to elicit tumor destructive reactions. Here, we discuss recent advances regarding the immunobiology of TAMs and highlight open questions including the mechanisms of their accumulation (recruitment versus proliferation), their diversity and how to best therapeutically target these cells.
Collapse
Affiliation(s)
- Alberto Mantovani
- Istituto Clinico Humanitas IRCCS and Dept. Translational Medicine, University of Milan, Rozzano, Italy.
| | | | | | | | | |
Collapse
|
3604
|
Abstract
From many perspectives, cardiovascular diseases and cancers are fundamentally different. On the one hand, atherosclerosis is a disease of lipid accumulation driven by diet and lifestyle, whereas cancer is an attack "from within" driven by mutations. Nevertheless, studies over the past 20 years have forced us to re-evaluate such a view. We are learning that, among other factors, the immune system is indispensable for the development and progression of both diseases. Its components are not only reactive but can also orchestrate both tumor and atherosclerotic lesion growth. In this Viewpoint, we explore how monocytes, which are key constituents of the immune system, forge links between cardiovascular diseases and cancers.
Collapse
Affiliation(s)
- Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
3605
|
Schlesinger M, Schmitz P, Zeisig R, Naggi A, Torri G, Casu B, Bendas G. The inhibition of the integrin VLA-4 in MV3 melanoma cell binding by non-anticoagulant heparin derivatives. Thromb Res 2011; 129:603-10. [PMID: 22099706 DOI: 10.1016/j.thromres.2011.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/07/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
Abstract
INTRODUCTION The integrin VLA-4-mediated binding is important for the metastatic dissemination of melanoma cells. Recently we found that heparin possesses a binding capacity to VLA-4. This could contribute to the heparin function to attenuate metastasis in a selectin-dependent manner. Aiming to a purposive, anti-adhesive heparin application, structural requirements of heparin for VLA-4 recognition have to be elucidated. MATERIALS AND METHODS A series of non-anticoagulant heparin derivatives were investigated concerning their inhibitory capacities for VLA-4 mediated binding of human melanoma MV3 cells to VCAM-1 under physiological flow conditions in vitro. A surface acoustic wave biosensor was applied to detect kinetic constants of selected derivatives binding to both, VLA-4 or P- and L-selectin. RESULTS Experimental metastasis of MV3 cells in mice confirmed the relevance of VLA-4 for metastatic dissemination. LMWHs (enoxaparin, tinzaparin) efficiently blocked VLA-4 cell binding, dominantly via the integrin`s α-chain. Desulfation at 2-O-position, N-acetylation or a size smaller than tetradecasaccharide disfavoured VLA-4 inhibition. Glycol-splitting of heparin and thus higher chain flexibility is a tolerable parameter. A derivative with 50% 6-O-desulfation appeared promising and exceeded tinzaparin in VLA-4 inhibition, both compounds displayed binding affinities to VLA-4 in the low micromolar range. CONCLUSIONS These findings provide structure-activity relationships for heparin VLA-4 binding, which partly differ from P- and L-selectin requirements. The data confirm that anti-coagulative and anti-adhesive function of heparin can be distinguished favouring applications of non-anticoagulant heparins in antimetastatic approaches without the risk of bleeding complications. The 50% 6-O-desulfated heparin-derivative appears promising to further evaluate the interference with selectin and VLA-4 binding functions in vivo.
Collapse
Affiliation(s)
- Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich Wilhelms University Bonn, 53121 Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
3606
|
Bosurgi L, Manfredi AA, Rovere-Querini P. Macrophages in injured skeletal muscle: a perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration. Front Immunol 2011; 2:62. [PMID: 22566851 PMCID: PMC3341990 DOI: 10.3389/fimmu.2011.00062] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/28/2011] [Indexed: 12/12/2022] Open
Abstract
Macrophages are present in regenerating skeletal muscles and participate in the repair process. This is due to a unique feature of macrophages, i.e., their ability to perceive signals heralding ongoing tissue injury and to broadcast the news to cells suited at regenerating the tissue such as stem and progenitor cells. Macrophages play a complex role in the skeletal muscle, probably conveying information on the pattern of healing which is appropriate to ensure an effective healing of the tissue, yielding novel functional fibers. Conversely, they are likely to be involved in limiting the efficacy of regeneration, with formation of fibrotic scars and fat replacement of the tissue when the original insult persists. In this review we consider the beneficial versus the detrimental actions of macrophages during the response to muscle injury, with attention to the available information on the molecular code macrophages rely on to guide, throughout the various phases of muscle healing, the function of conventional and unconventional stem cells. Decrypting this code would represent a major step forward toward the establishment of novel targeted therapies for muscle diseases.
Collapse
Affiliation(s)
- Lidia Bosurgi
- Unit of Innate Immunity and Tissue Remodelling, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto Scientifico San Raffaele Milano, Italy
| | | | | |
Collapse
|
3607
|
Moldobaeva A, van Rooijen N, Wagner EM. Effects of ischemia on lung macrophages. PLoS One 2011; 6:e26716. [PMID: 22110592 PMCID: PMC3217923 DOI: 10.1371/journal.pone.0026716] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 10/03/2011] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis after pulmonary ischemia is initiated by reactive O(2) species and is dependent on CXC chemokine growth factors, and its magnitude is correlated with the number of lavaged macrophages. After complete obstruction of the left pulmonary artery in mice, the left lung is isolated from the peripheral circulation until 5-7 days later, when a new systemic vasculature invades the lung parenchyma. Consequently, this model offers a unique opportunity to study the differentiation and/or proliferation of monocyte-derived cells within the lung. In this study, we questioned whether macrophage subpopulations were differentially expressed and which subset contributed to growth factor release. We characterized the change in number of all macrophages (MHCII(int), CD11C+), alveolar macrophages (MHCII(int), CD11C+, CD11B-) and mature lung macrophages (MHCII(int), CD11C+, CD11B+) in left lungs from mice immediately (0 h) or 24 h after left pulmonary artery ligation (LPAL). In left lung homogenates, only lung macrophages increased 24 h after LPAL (vs. 0 h; p<0.05). No changes in proliferation were seen in any subset by PCNA expression (0 h vs. 24 h lungs). When the number of monocytic cells was reduced with clodronate liposomes, systemic blood flow to the left lung 14 days after LPAL decreased by 42% (p<0.01) compared to vehicle controls. Furthermore, when alveolar macrophages and lung macrophages were sorted and studied in vitro, only lung macrophages secreted the chemokine MIP-2α (ELISA). These data suggest that ischemic stress within the lung contributes to the differentiation of immature monocytes to lung macrophages within the first 24 h after LPAL. Lung macrophages but not alveolar macrophages increase and secrete the proangiogenic chemokine MIP-2α. Overall, an increase in the number of lung macrophages appears to be critical for neovascularization in the lung, since clodronate treatment decreased their number and attenuated functional angiogenesis.
Collapse
Affiliation(s)
- Aigul Moldobaeva
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nico van Rooijen
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elizabeth M. Wagner
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
3608
|
Hashimoto D, Miller J, Merad M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 2011; 35:323-35. [PMID: 21943488 DOI: 10.1016/j.immuni.2011.09.007] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Indexed: 12/17/2022]
Abstract
Macrophage and dendritic cell (DC) are hematopoietic cells found in all tissues in the steady state that share the ability to sample the environment but have distinct function in tissue immunity. Controversies remain on the best way to distinguish macrophages from DCs in vivo. In this Perspective, we discuss how recent discoveries in the origin of the DC and macrophage lineage help establish key functional differences between tissue DC and macrophage subsets. We also emphasize the need to further understand the functional heterogeneity of the tissue DC and macrophage lineages to better comprehend the complex role of these cells in tissue homeostasis and immunity.
Collapse
Affiliation(s)
- Daigo Hashimoto
- Department of Oncological Sciences, 1425 Madison Avenue, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
3609
|
Zaki MH, Vogel P, Subbarao Malireddi RK, Body-Malapel M, Anand PK, Bertin J, Green DR, Lamkanfi M, Kanneganti TD. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 2011; 20:649-60. [PMID: 22094258 PMCID: PMC3761879 DOI: 10.1016/j.ccr.2011.10.022] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 09/03/2011] [Accepted: 10/21/2011] [Indexed: 01/03/2023]
Abstract
NLRP12 is a member of the intracellular Nod-like receptor (NLR) family that has been suggested to downregulate the production of inflammatory cytokines, but its physiological role in regulating inflammation has not been characterized. We analyzed mice deficient in Nlrp12 to study its role in inflammatory diseases such as colitis and colorectal tumorigenesis. We show that Nlrp12-deficient mice are highly susceptible to colon inflammation and tumorigenesis, which is associated with increased production of inflammatory cytokines, chemokines, and tumorigenic factors. Enhanced colon inflammation and colorectal tumor development in Nlrp12-deficient mice are due to a failure to dampen NF-κB and ERK activation in macrophages. These results reveal a critical role for NLRP12 in maintaining intestinal homeostasis and providing protection against colorectal tumorigenesis.
Collapse
Affiliation(s)
- Md. Hasan Zaki
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | | | - Mathilde Body-Malapel
- Department of Physiopathology of inflammatory bowel diseases, INSERM U995, Lille, France
| | - Paras K. Anand
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | | | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Mohamed Lamkanfi
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
- Correspondence should be addressed to: Thirumala-Devi Kanneganti, Department of Immunology, St Jude Children’s Research Hospital, MS #351, 570, St. Jude Place, Suite E7004, Memphis TN 38105-2794, Tel: (901) 595-3634; Fax. (901) 595-5766.
| |
Collapse
|
3610
|
Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 2011; 146:873-87. [PMID: 21925313 DOI: 10.1016/j.cell.2011.08.039] [Citation(s) in RCA: 2005] [Impact Index Per Article: 154.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/12/2011] [Accepted: 08/29/2011] [Indexed: 12/18/2022]
Abstract
Blood vessels form extensive networks that nurture all tissues in the body. Abnormal vessel growth and function are hallmarks of cancer and ischemic and inflammatory diseases, and they contribute to disease progression. Therapeutic approaches to block vascular supply have reached the clinic, but limited efficacy and resistance pose unresolved challenges. Recent insights establish how endothelial cells communicate with each other and with their environment to form a branched vascular network. The emerging principles of vascular growth provide exciting new perspectives, the translation of which might overcome the current limitations of pro- and antiangiogenic medicine.
Collapse
Affiliation(s)
- Michael Potente
- Vascular Epigenetics Group, Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, D-60590 Frankfurt, Germany
| | | | | |
Collapse
|
3611
|
The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation. Nat Immunol 2011; 12:1176-83. [PMID: 22057290 PMCID: PMC3219826 DOI: 10.1038/ni.2157] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/05/2011] [Indexed: 12/15/2022]
Abstract
Chronic inflammation has been strongly associated with tumor progression, but the underlying mechanisms remain elusive. Here we demonstrate that E3 ligase Itch and deubiquitinase Cyld form a complex via the interaction through ‘WW-PPXY’ motifs. The Itch-Cyld complex sequentially cleaved K63-linked ubiquitin chains and catalyzed K48-linked ubiquitination on the kinase Tak1 to terminate inflammatory tumor necrosis factor signaling. Reconstitution of wild-type Cyld but not mutant Cyld(Y485A), which cannot associate with Itch, blocked the sustained Tak1 activation and proinflammatory cytokine production by Cyld−/− bone marrow-derived macrophages. Itch or Cyld deficiency resulted in chronic production of tumor-promoting cytokines by the tumor-associated macrophages and aggressive growth of lung carcinoma. Thus, we have uncovered an Itch-Cyld mediated regulatory mechanism in innate inflammatory cells.
Collapse
|
3612
|
Cottone L, Valtorta S, Capobianco A, Belloli S, Rovere-Querini P, Fazio F, Manfredi AA, Moresco RM. Evaluation of the Role of Tumor-Associated Macrophages in an Experimental Model of Peritoneal Carcinomatosis Using 18F-FDG PET. J Nucl Med 2011; 52:1770-7. [DOI: 10.2967/jnumed.111.089177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
3613
|
Capobianco A, Monno A, Cottone L, Venneri MA, Biziato D, Di Puppo F, Ferrari S, De Palma M, Manfredi AA, Rovere-Querini P. Proangiogenic Tie2(+) macrophages infiltrate human and murine endometriotic lesions and dictate their growth in a mouse model of the disease. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2651-9. [PMID: 21924227 PMCID: PMC3204092 DOI: 10.1016/j.ajpath.2011.07.029] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/15/2011] [Accepted: 07/13/2011] [Indexed: 11/19/2022]
Abstract
Endometriosis affects women of reproductive age, causing infertility and pain. Although immune cells are recruited in endometriotic lesions, their role is unclear. Tie2-expressing macrophages (TEMs) have nonredundant functions in promoting angiogenesis and growth of experimental tumors. Here we show that human TEMs infiltrate areas surrounding newly formed endometriotic blood vessels. We set up an ad hoc mouse model in which TEMs, and not Tie2-expressing endothelial cells, are targeted. We transplanted in wild-type recipients bone marrow cells expressing a suicide gene (Herpes simplex virus type 1 thymidine kinase) under the Tie2 promoter/enhancer. TEMs infiltrated endometriotic lesions. TEM depletion by ganciclovir administration arrested the growth of established lesions, without toxicity. Lesion architecture was disrupted, with: i) loss of glandular organization, ii) reduced neovascularization, and iii) activation of caspase 3 in CD31(+) endothelial cells. Thus, TEMs are important for maintaining the viability of newly formed vessels and represent a potential therapeutic target in endometriosis.
Collapse
Affiliation(s)
- Annalisa Capobianco
- Autoimmunity and Vascular Inflammation Unit, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3614
|
Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 2011. [PMID: 22039576 DOI: 10.1158/2159-8274.cd-10-0028.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Immune-regulated pathways influence multiple aspects of cancer development. In this article we demonstrate that both macrophage abundance and T-cell abundance in breast cancer represent prognostic indicators for recurrence-free and overall survival. We provide evidence that response to chemotherapy is in part regulated by these leukocytes; cytotoxic therapies induce mammary epithelial cells to produce monocyte/macrophage recruitment factors, including colony stimulating factor 1 (CSF1) and interleukin-34, which together enhance CSF1 receptor (CSF1R)-dependent macrophage infiltration. Blockade of macrophage recruitment with CSF1R-signaling antagonists, in combination with paclitaxel, improved survival of mammary tumor-bearing mice by slowing primary tumor development and reducing pulmonary metastasis. These improved aspects of mammary carcinogenesis were accompanied by decreased vessel density and appearance of antitumor immune programs fostering tumor suppression in a CD8+ T-cell-dependent manner. These data provide a rationale for targeting macrophage recruitment/response pathways, notably CSF1R, in combination with cytotoxic therapy, and identification of a breast cancer population likely to benefit from this novel therapeutic approach. SIGNIFICANCE These findings reveal that response to chemotherapy is in part regulated by the tumor immune microenvironment and that common cytotoxic drugs induce neoplastic cells to produce monocyte/macrophage recruitment factors, which in turn enhance macrophage infiltration into mammary adenocarcinomas. Blockade of pathways mediating macrophage recruitment, in combination with chemotherapy, significantly decreases primary tumor progression, reduces metastasis, and improves survival by CD8+ T-cell-dependent mechanisms, thus indicating that the immune microenvironment of tumors can be reprogrammed to instead foster antitumor immunity and improve response to cytotoxic therapy.
Collapse
|
3615
|
Ysebaert L, Fournié JJ. Genomic and phenotypic characterization of nurse-like cells that promote drug resistance in chronic lymphocytic leukemia. Leuk Lymphoma 2011; 52:1404-6. [PMID: 21699388 DOI: 10.3109/10428194.2011.568078] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Here, we examined both genetic and phenotypic determinants of nurse-like cells (NLCs) to better predict their putative functions in chronic lymphocytic leukemia (CLL). We showed that NLCs belong to the wound-healing macrophage subset (so-called 'M2 subset'), but most of all, unsupervised clustering analysis positions NLCs as CLL-specific tumor associated macrophages (TAMs). Chemokinome assays confirmed that NLCs secrete prototypical M2 cytokines and chemokines. Extending previous reports of fludarabine resistance, NLCs are able to promote multidrug resistance. Altogether, we propose that NLCs are not just nursing, but actively participate in the setting of an environment-mediated drug resistance (EM-DR) and immune escape for CLL cells.
Collapse
Affiliation(s)
- Loic Ysebaert
- Inserm U1037, Université Toulouse 3-ERL CNRS, CHU Purpan, Toulouse, France.
| | | |
Collapse
|
3616
|
Abstract
Microglia - resident myeloid-lineage cells in the brain and the spinal cord parenchyma - function in the maintenance of normal tissue homeostasis. Microglia also act as sentinels of infection and injury, and participate in both innate and adaptive immune responses in the central nervous system. Microglia can become activated and/or dysregulated in the context of neurodegenerative disease and cancer, and thereby contribute to disease severity. Here, we discuss recent studies that provide new insights into the origin and phenotypes of microglia in health and disease.
Collapse
|
3617
|
Abstract
Parkinson's disease is caused by the premature death of neurons in the midbrain. By contrast, cancer spawns from cells that refuse to die. We would therefore expect their pathogenic mechanisms to be very different. However, recent genetic studies and emerging functional work show that strikingly similar and overlapping pathways are involved in both diseases. We consider these areas of convergence and discuss how insights from one disease can inform us about, and possibly help us to treat, the other.
Collapse
Affiliation(s)
- Michael J Devine
- Department of Molecular Neuroscience, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | |
Collapse
|
3618
|
Jézéquel P, Campion L, Spyratos F, Loussouarn D, Campone M, Guérin-Charbonnel C, Joalland MP, André J, Descotes F, Grenot C, Roy P, Carlioz A, Martin PM, Chassevent A, Jourdan ML, Ricolleau G. Validation of tumor-associated macrophage ferritin light chain as a prognostic biomarker in node-negative breast cancer tumors: A multicentric 2004 national PHRC study. Int J Cancer 2011; 131:426-37. [PMID: 21898387 DOI: 10.1002/ijc.26397] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/27/2011] [Indexed: 12/11/2022]
Abstract
Novel prognostic biomarkers are imperatively needed to help direct treatment decisions by typing subgroups of node-negative breast cancer patients. Large screening of different biological compartments, such as the proteome, by means of high throughput techniques may greatly help scientists to find such markers. The present retrospective multicentric study included 268 node-negative breast cancer patients. We used a proteomic approach of SELDI-TOF-MS screening to identify differentially expressed cytosolic proteins with prognostic impact. The screening cohort was composed of 198 patients. Seventy supplementary patients were included for validation. Immunohistochemistry (IHC) and immunoassay (IA) were run to confirm the prognostic role of the marker identified by SELDI-TOF-MS screening. IHC was also used to explore links between selected marker and epithelial-mesenchymal transition (EMT)-like, proliferation and macrophage markers. Ferritin light chain (FTL) was identified as an independent prognostic marker (HR = 1.30-95% CI: 1.10-1.50, p = 0.001). Validation step by means of IHC and IA confirmed the prognostic value of FTL level. CD68 IHC showed that FTL was stored in tumor-associated macrophages (TAM), which exhibit an M2-like phenotype. We report here, first, the validation of FTL as a breast tumor prognostic biomarker in node-negative patients, and second, the fact that FTL is stored in TAM.
Collapse
Affiliation(s)
- Pascal Jézéquel
- Département de Biologie Oncologique, Institut de Cancérologie de l'Ouest - René Gauducheau, Bd J Monod, Nantes - Saint Herblain Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3619
|
Abstract
Numerous signaling pathways are misregulated in pancreatic ductal adenocarcinoma (PDAC), a highly malignant type of cancer. One of these is the Hedgehog (HH) pathway, which is normally involved in patterning processes in the developing embryo. Expression of the main ligand Sonic Hedgehog is an early event in carcinogenesis and correlates with the mutation of the KRAS oncogene, the cardinal molecular feature of pancreatic cancer. Recent data establish a functional role for HH signaling primarily in the tumor microenvironment, where it is involved in myofibroblast differentiation and the induction of stroma-derived growth promoting molecules. Given the protumorigenic functions of the abundant stromal desmoplasia typically associated with pancreatic cancer, targeting the HH pathway might prove beneficial in the treatment of the disease. First data using small molecule antagonists of HH signaling in mouse models of pancreatic cancer are promising and reveal a substantial, yet transient, effect on the myofibroblastic stroma. In this review, we try to give an outline on the current knowledge about HH signaling in pancreatic cancer including a perspective of using pharmacological inhibitors of this pathway in the clinic.
Collapse
Affiliation(s)
- Matthias Lauth
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | | |
Collapse
|
3620
|
Chen Q, Zhang XHF, Massagué J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 2011; 20:538-49. [PMID: 22014578 PMCID: PMC3293160 DOI: 10.1016/j.ccr.2011.08.025] [Citation(s) in RCA: 448] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 07/07/2011] [Accepted: 08/17/2011] [Indexed: 12/22/2022]
Abstract
Aberrant expression of vascular cell adhesion molecule-1 (VCAM-1) in breast cancer cells is associated with lung relapse, but the role of VCAM-1 as a mediator of metastasis has remained unknown. We report that VCAM-1 provides a survival advantage to breast cancer cells that infiltrate leukocyte-rich microenvironments such as the lungs. VCAM-1 tethers metastasis-associated macrophages to cancer cells via counter-receptor α4-integrins. Clustering of cell surface VCAM-1, acting through Ezrin, triggers Akt activation and protects cancer cells from proapoptotic cytokines such as TRAIL. This prosurvival function of VCAM-1 can be blocked by antibodies against α4-integrins. Thus, newly disseminated cancer cells expressing VCAM-1 can thrive in leukocyte-rich microenvironments through juxtacrine activation of a VCAM-1-Ezrin-PI3K/Akt survival pathway.
Collapse
Affiliation(s)
- Qing Chen
- Cancer Biology and Genetics Program Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiang H.-F. Zhang
- Cancer Biology and Genetics Program Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3621
|
Daurkin I, Eruslanov E, Stoffs T, Perrin GQ, Algood C, Gilbert SM, Rosser CJ, Su LM, Vieweg J, Kusmartsev S. Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res 2011; 71:6400-9. [PMID: 21900394 DOI: 10.1158/0008-5472.can-11-1261] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Renal cell carcinoma (RCC), the most common human kidney cancer, is frequently infiltrated with tumor-associated macrophages (TAM) that can promote malignant progression. Here, we show that TAMs isolated from human RCC produce substantial amounts of the proinflammatory chemokine CCL2 and immunosuppressive cytokine IL-10, in addition to enhanced eicosanoid production via an activated 15-lipoxygenase-2 (15-LOX2) pathway. TAMs isolated from RCC tumors had a high 15-LOX2 expression and secreted substantial amounts of 15(S)-hydroxyeicosatetraenoic acid, its major bioactive lipid product. Inhibition of lipoxygenase activity significantly reduced production of CCL2 and IL-10 by RCC TAMs. In addition, TAMs isolated from RCC were capable of inducing in T lymphocytes, the pivotal T regulatory cell transcription factor forkhead box P3 (FOXP3), and the inhibitory cytotoxic T-lymphocyte antigen 4 (CTLA-4) coreceptor. However, this TAM-mediated induction of FOXP3 and CTLA-4 in T cells was independent of lipoxygenase and could not be reversed by inhibiting lipoxygenase activity. Collectively, our results show that TAMs, often present in RCCs, display enhanced 15-LOX2 activity that contributes to RCC-related inflammation, immunosuppression, and malignant progression. Furthermore, we show that TAMs mediate the development of immune tolerance through both 15-LOX2-dependent and 15-LOX2-independent pathways. We propose that manipulating LOX-dependent arachidonic acid metabolism in the tumor microenvironment could offer new strategies to block cancer-related inflammation and immune escape in patients with RCC.
Collapse
Affiliation(s)
- Irina Daurkin
- Department of Urology, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3622
|
Chen P, Huang Y, Bong R, Ding Y, Song N, Wang X, Song X, Luo Y. Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin Cancer Res 2011; 17:7230-9. [PMID: 21994414 DOI: 10.1158/1078-0432.ccr-11-1354] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Elevated numbers of tumor-associated macrophages (TAM) in the tumor microenvironment are often correlated with poor prognosis in melanoma. However, the mechanisms by which TAMs modulate melanoma growth are still poorly understood. This study was aimed at examining the function and mechanism of TAM-derived adrenomedullin (ADM) in angiogenesis and melanoma growth. EXPERIMENTAL DESIGN We established in vitro and in vivo models to investigate the relationship between TAMs and ADM in melanoma, the role and mechanism of ADM in TAM-induced angiogenesis and melanoma growth. The clinical significance of ADM and its receptors was evaluated using melanoma tissue microarrays. RESULTS ADM was expressed by infiltrating TAMs in human melanoma, and its secretion from macrophages was upregulated upon coculture with melanoma cells, or with melanoma cells conditioned media. Meanwhile, TAMs enhanced endothelial cell migration and tubule formation and also increased B16/F10 tumor growth. Neutralizing ADM antibody and ADM receptor antagonist, AMA, attenuated TAM-induced angiogenesis in vitro and melanoma growth in vivo, respectively. Furthermore, ADM promoted angiogenesis and melanoma growth via both the paracrine effect, mediated by the endothelial nitric oxide synthase signaling pathway, and the autocrine effect, which stimulated the polarization of macrophages toward an alternatively activated (M2) phenotype. Finally, immunofluorescence analysis on human melanomas showed that the expression of ADM in TAMs and its receptors was greatly increased compared with adjacent normal skins. CONCLUSION Our study reveals a novel mechanism that TAMs enhance angiogenesis and melanoma growth via ADM and provides potential targets for melanoma therapies.
Collapse
Affiliation(s)
- Peiwen Chen
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
3623
|
Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, Lee KM, Kim JI, Markmann JF, Marinelli B, Panizzi P, Lee WW, Iwamoto Y, Milstein S, Epstein-Barash H, Cantley W, Wong J, Cortez-Retamozo V, Newton A, Love K, Libby P, Pittet MJ, Swirski FK, Koteliansky V, Langer R, Weissleder R, Anderson DG, Nahrendorf M. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 2011; 29:1005-10. [PMID: 21983520 PMCID: PMC3212614 DOI: 10.1038/nbt.1989] [Citation(s) in RCA: 653] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/29/2011] [Indexed: 12/24/2022]
Abstract
Inflammatory monocytes -- but not the non-inflammatory subset -- depend on the chemokine receptor CCR2 for distribution to injured tissue and stimulate disease progression. Precise therapeutic targeting of this inflammatory monocyte subset could spare innate immunity's essential functions for maintenance of homeostasis and thus limit unwanted effects. Here we developed siRNA nanoparticles targeting CCR2 expression in inflammatory monocytes. We identified an optimized lipid nanoparticle and silencing siRNA sequence that when administered systemically, had rapid blood clearance, accumulated in spleen and bone marrow and showed high cellular localization of fluorescently tagged siRNA inside monocytes. Efficient degradation of CCR2 mRNA in monocytes prevented their accumulation in sites of inflammation. Specifically, the treatment attenuated their number in atherosclerotic plaques, reduced infarct size following coronary artery occlusion, prolonged normoglycemia in diabetic mice after pancreatic islet transplantation and resulted in reduced tumor volumes and lower numbers of tumor-associated macrophages. Taken together, siRNA nanoparticle-mediated CCR2 gene silencing in leukocytes selectively modulates functions of innate immune cell subtypes and may allow for the development of specific anti-inflammatory therapy.
Collapse
Affiliation(s)
- Florian Leuschner
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3624
|
Gingis-Velitski S, Loven D, Benayoun L, Munster M, Bril R, Voloshin T, Alishekevitz D, Bertolini F, Shaked Y. Host response to short-term, single-agent chemotherapy induces matrix metalloproteinase-9 expression and accelerates metastasis in mice. Cancer Res 2011; 71:6986-96. [PMID: 21978934 DOI: 10.1158/0008-5472.can-11-0629] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mounting evidence suggests that bone marrow-derived cells (BMDC) contribute to tumor growth, angiogenesis, and metastasis. In acute reactions to cancer therapy, several types of BMDCs are rapidly mobilized to home tumors. Although this host reaction to therapy can promote tumor regrowth, its contribution to metastasis has not been explored. To focus only on the effects of chemotherapy on the host, we studied non-tumor-bearing mice. Plasma from animals treated with the chemotherapy paclitaxel induced angiogenesis, migration, and invasion of tumor cells along with host cell colonization. Lesser effects were seen with the chemotherapy gemcitabine. Conditioned medium from BMDCs and plasma from chemotherapy-treated mice each promoted metastatic properties in tumor cells by inducing matrix metalloproteinase-9 (MMP9) and epithelial-to-mesenchymal transition. In mice in which Lewis lung carcinoma cells were injected intravenously, treatment with paclitaxel, but not gemcitabine or vehicle, accelerated metastases in a manner that could be blocked by an MMP9 inhibitor. Moreover, chimeric mice reconstituted with BMDC where MMP9 activity was attenuated did not support accelerated metastasis by carcinoma cells that were pretreated with chemotherapy before their introduction to host animals. Taken together, our findings illustrate how some chemotherapies can exert prometastatic effects that may confound treatment outcomes.
Collapse
|
3625
|
Rothmeier AS, Ruf W. Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol 2011; 34:133-49. [PMID: 21971685 DOI: 10.1007/s00281-011-0289-1] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/05/2011] [Indexed: 12/17/2022]
Abstract
Protease-activated receptors (PARs) are G protein-coupled receptors that are activated by proteolytical cleavage of the amino-terminus and thereby act as sensors for extracellular proteases. While coagulation proteases activate PARs to regulate hemostasis, thrombosis, and cardiovascular function, PAR2 is also activated in extravascular locations by a broad array of serine proteases, including trypsin, tissue kallikreins, coagulation factors VIIa and Xa, mast cell tryptase, and transmembrane serine proteases. Administration of PAR2-specific agonistic and antagonistic peptides, as well as studies in PAR2 knockout mice, identified critical functions of PAR2 in development, inflammation, immunity, and angiogenesis. Here, we review these roles of PAR2 with an emphasis on the role of coagulation and other extracellular protease pathways that cleave PAR2 in epithelial, immune, and neuronal cells to regulate physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Andrea S Rothmeier
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
3626
|
Liguori M, Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages as incessant builders and destroyers of the cancer stroma. Cancers (Basel) 2011; 3:3740-61. [PMID: 24213109 PMCID: PMC3763394 DOI: 10.3390/cancers3043740] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 12/15/2022] Open
Abstract
Tumor-Associated Macrophages (TAM) are key components of the reactive stroma of tumors. In most, although not all cancers, their presence is associated with poor patient prognosis. In addition to releasing cytokines and growth factors for tumor and endothelial cells, a distinguished feature of TAM is their high-rate degradation of the extra-cellular matrix. This incessant stroma remodelling favours the release of matrix-bound growth factors and promotes tumor cell motility and invasion. In addition, TAM produce matrix proteins, some of which are typical of the neoplastic tissues. The gene expression profile of TAM isolated from human tumors reveals a matrix-related signature with the up-regulation of genes coding for different matrix proteins, as well as several proteolytic enzymes. Among ECM components are: osteopontin, osteoactivin, collagens and fibronectin, including also a truncated isoform of fibronectin termed migration stimulation factor. In addition to serve as structural proteins, these matrix components have key functions in the regulation of the vessel network, in the inductionof tumor cell motility and degradation of cellular debris. Among proteolytic enzymes are: matrix metalloproteases, cathepsins, lysosomal and ADAM proteases, and the urokinase-type plasminogen activator. The degrading activity of TAM, coupled to the production of bio-active ECM proteins, co-operate to the build-up and maintenance of an inflammatory micro-environment which eventually promotes tumor progression.
Collapse
Affiliation(s)
- Manuela Liguori
- Department of Immunology and Inflammation Istituto Clinico Humanitas, Via Manzoni 113, Rozzano-Milano 20089, Italy; E-Mails: (M.L.); (S.G.); (G.G.); (M.A.)
| | - Graziella Solinas
- Department of Immunology and Inflammation Istituto Clinico Humanitas, Via Manzoni 113, Rozzano-Milano 20089, Italy; E-Mails: (M.L.); (S.G.); (G.G.); (M.A.)
| | - Giovanni Germano
- Department of Immunology and Inflammation Istituto Clinico Humanitas, Via Manzoni 113, Rozzano-Milano 20089, Italy; E-Mails: (M.L.); (S.G.); (G.G.); (M.A.)
| | - Alberto Mantovani
- Department of Immunology and Inflammation Istituto Clinico Humanitas, Via Manzoni 113, Rozzano-Milano 20089, Italy; E-Mails: (M.L.); (S.G.); (G.G.); (M.A.)
- Department of Translational Medicine, University of Milano, Milano 20089, Italy
| | - Paola Allavena
- Department of Immunology and Inflammation Istituto Clinico Humanitas, Via Manzoni 113, Rozzano-Milano 20089, Italy; E-Mails: (M.L.); (S.G.); (G.G.); (M.A.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-02-8224-5112; Fax: +39-02-8224-5101
| |
Collapse
|
3627
|
Toh B, Wang X, Keeble J, Sim WJ, Khoo K, Wong WC, Kato M, Prevost-Blondel A, Thiery JP, Abastado JP. Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol 2011; 9:e1001162. [PMID: 21980263 PMCID: PMC3181226 DOI: 10.1371/journal.pbio.1001162] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/19/2011] [Indexed: 12/26/2022] Open
Abstract
In order to metastasize, cancer cells need to acquire a motile phenotype. Previously, development of this phenotype was thought to rely on the acquisition of selected, random mutations and thus would occur late in cancer progression. However, recent studies show that cancer cells disseminate early, implying the existence of a different, faster route to the metastatic motile phenotype. Using a spontaneous murine model of melanoma, we show that a subset of bone marrow-derived immune cells (myeloid-derived suppressor cells or MDSC) preferentially infiltrates the primary tumor and actively promotes cancer cell dissemination by inducing epithelial-mesenchymal transition (EMT). CXCL5 is the main chemokine attracting MDSC to the primary tumor. In vitro assay using purified MDSC showed that TGF-β, EGF, and HGF signaling pathways are all used by MDSC to induce EMT in cancer cells. These findings explain how cancer cells acquire a motile phenotype so early and provide a mechanistic explanation for the long recognized link between inflammation and cancer progression. Cancer progression has been depicted as a linear process, during which the incipient cancer cell sequentially accumulates mutations that confer the ability to metastasize. However, recent studies show that cancer cells disseminate early, before such mutations can accumulate, implying the existence of a different, faster route to the metastatic phenotype. Using a mouse model of melanoma, we show that the primary tumor attracts a subset of immune cells that actively promote cancer cell motility, dissemination, and metastasis. These tumor-infiltrating immune cells do so by reactivating a cellular program (mesenchymal transition) used by melanocytes during their development to colonize the skin, and also believed to be an essential step in cancer cell dissemination and metastasis. Once the melanoma cells migrate out of the primary tumor, they can lapse back to their original phenotype and lose their migratory potential. This transient phenotypic switch may accelerate carcinogenesis and participate in the plasticity of cancer. It explains how cancer cells might spread to other organs even before the original tumor is detected. In addition to the evidence gleaned from our mouse melanoma model, we show that these immune cells induce typical features of epithelial-mesechymal transition in both melanoma and bladder human cell lines when examined in culture dishes. These findings provide an underlying mechanism for the long-recognized link between inflammation and cancer progression.
Collapse
Affiliation(s)
- Benjamin Toh
- Singapore Immunology Network, BMSI, A-STAR, Singapore
| | - Xiaojie Wang
- Singapore Immunology Network, BMSI, A-STAR, Singapore
| | - Jo Keeble
- Singapore Immunology Network, BMSI, A-STAR, Singapore
| | - Wen Jing Sim
- Institute for Molecular and Cellular Biology, BMSI, A-STAR, Singapore
| | - Karen Khoo
- Singapore Immunology Network, BMSI, A-STAR, Singapore
| | | | - Masashi Kato
- College of Life and Health Sciences, Chubu University, Aichi, Japan
| | | | - Jean-Paul Thiery
- Institute for Molecular and Cellular Biology, BMSI, A-STAR, Singapore
- Cancer Science Institute, National University of Singapore, Singapore
| | | |
Collapse
|
3628
|
Steidl C, Farinha P, Gascoyne RD. Macrophages predict treatment outcome in Hodgkin's lymphoma. Haematologica 2011; 96:186-9. [PMID: 21282720 DOI: 10.3324/haematol.2010.033316] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
3629
|
Abstract
Most malignant brain tumours contain various numbers of cells with characteristics of activated or dysmorphic macrophages/microglia. These cells are generally considered part of the tumour stroma and are often described as TAM (tumour-associated macrophages). These types of cells are thought to either enhance or inhibit brain tumour progression. Recent evidence indicates that neoplastic cells with macrophage characteristics are found in numerous metastatic cancers of non-CNS (central nervous system) origin. Evidence is presented here suggesting that subpopulations of cells within human gliomas, specifically GBM (glioblastoma multiforme), are neoplastic macrophages/microglia. These cells are thought to arise following mitochondrial damage in fusion hybrids between neoplastic stem cells and macrophages/microglia.
Collapse
|
3630
|
Canet B, Pons C, Espinosa I, Prat J. CDC42-positive macrophages may prevent malignant transformation of ovarian endometriosis. Hum Pathol 2011; 43:720-5. [PMID: 21944080 DOI: 10.1016/j.humpath.2011.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 12/27/2022]
Abstract
It is currently thought that most clear cell and endometrioid carcinomas arise from ovarian endometriosis. We recently suggested that, besides their origin in the ovary, reduction of CDC42 messenger RNA (a member of the RHO GTPase family) may contribute to explain why clear cell carcinomas are not uncommonly found limited to the ovary (stage I). On the other hand, little is known about the expression of CDC42 in ovarian endometriosis with and without carcinoma. Twenty-two endometriotic cysts not associated with carcinoma, 19 endometriotic cysts associated with carcinoma (contiguous endometriosis), as well as the 19 corresponding tumors (11 clear cell, 4 endometrioid, and 4 mixed-clear cell and endometrioid-carcinomas) were investigated. We analyzed CDC42 expression both by real-time polymerase chain reaction and immunohistochemistry. Endometriotic cysts not associated with carcinoma showed higher expression of CDC42 messenger RNA than cysts associated with carcinoma (P = .002). Immunohistochemically, CDC42 was exclusively expressed by macrophages. CDC42-positive macrophages were present in most of the endometriotic cysts not associated with carcinoma (11/19, or 58%). In contrast, only 5 endometriotic cysts containing carcinoma (contiguous endometriosis) (5/18, or 28%) and 1 ovarian carcinoma arising from endometriosis (1/18, or 5%) had CDC42-positive macrophages (58% versus 28%, P = .065; 28% versus 5%, P = .046). Our results raise the possibility that CDC42-positive macrophages may prevent the development of endometrioid and clear cell carcinomas.
Collapse
Affiliation(s)
- Belen Canet
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Institute of Biomedical Research (IIB Sant Pau), Autonomous University of Barcelona, Barcelona -08041, Spain
| | | | | | | |
Collapse
|
3631
|
Chioda M, Peranzoni E, Desantis G, Papalini F, Falisi E, Solito S, Samantha S, Mandruzzato S, Bronte V. Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer Metastasis Rev 2011; 30:27-43. [PMID: 21267772 DOI: 10.1007/s10555-011-9268-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumour development is accompanied by an enhanced haematopoiesis. This is not a widespread activation since only cells belonging to the myelo-monocytic compartment are expanded and mobilized from primary sites of haematopoiesis to other organs, reaching also the tumour stroma. This process occurs early during tumour formation but becomes more evident in advanced disease. Far from being a simple, unwanted consequence of cancer development, accumulation of myelo-monocytitc cells plays a role in tumour vascularization, local spreading, establishment of metastasis at distant sites, and contribute to create an environment unfavourable for the adoptive immunity against tumour-associated antigens. Myeloid populations involved in these process are likely different but many cells, expanded in primary and secondary lymphoid organs of tumour-bearing mice, share various levels of the CD11b and Gr-1 (Ly6C/G) markers. CD11b(+)Gr-1(+) cells are currently named myeloid-derived suppressor cells for their ability to inhibit T lymphocyte responses in tumour-bearing hosts. In this manuscript, we review the recent literature on tumour-conditioned myeloid subsets that assist tumour growth, both in mice and humans.
Collapse
|
3632
|
Gab2 promotes colony-stimulating factor 1-regulated macrophage expansion via alternate effectors at different stages of development. Mol Cell Biol 2011; 31:4563-81. [PMID: 21930791 DOI: 10.1128/mcb.05706-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colony-stimulating factor 1 (CSF-1) receptor (CSF-1R, or macrophage CSF receptor [M-CSFR]) is the primary regulator of the proliferation, survival, and differentiation of mononuclear phagocytes (MNPs), but the critical CSF-1 signals for these functions are unclear. The scaffold protein Gab2 is a major tyrosyl phosphoprotein in the CSF-1R signaling network. Here we demonstrate that Gab2 deficiency results in profoundly defective expansion of CSF-1R-dependent MNP progenitors in the bone marrow, through decreased proliferation and survival. Reconstitution and phospho-flow studies show that downstream of CSF-1R, Gab2 uses phosphatidylinositol 3-kinase (PI3K)-Akt and extracellular signal-regulated kinase (Erk) to regulate MNP progenitor expansion. Unexpectedly, Gab2 ablation enhances Jun N-terminal protein kinase 1 (JNK1) phosphorylation in differentiated MNPs but reduces their proliferation; inhibition of JNK signaling or reduction of JNK1 levels restores proliferation. MNP recruitment to inflammatory sites and the corresponding bone marrow response is strongly impaired in Gab2-deficient mice. Our data provide genetic and biochemical evidence that CSF-1R, through Gab2, utilizes different effectors at different stages of MNP development to promote their expansion.
Collapse
|
3633
|
Rahat MA, Bitterman H, Lahat N. Molecular mechanisms regulating macrophage response to hypoxia. Front Immunol 2011; 2:45. [PMID: 22566835 PMCID: PMC3342364 DOI: 10.3389/fimmu.2011.00045] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/29/2011] [Indexed: 12/24/2022] Open
Abstract
Monocytes and Macrophages (Mo/Mɸ) exhibit great plasticity, as they can shift between different modes of activation and, driven by their immediate microenvironment, perform divergent functions. These include, among others, patrolling their surroundings and maintaining homeostasis (resident Mo/Mɸ), combating invading pathogens and tumor cells (classically activated or M1 Mo/Mɸ), orchestrating wound healing (alternatively activated or M2 Mo/Mɸ), and restoring homeostasis after an inflammatory response (resolution Mɸ). Hypoxia is an important factor in the Mɸ microenvironment, is prevalent in many physiological and pathological conditions, and is interdependent with the inflammatory response. Although Mo/Mɸ have been studied in hypoxia, the mechanisms by which hypoxia influences the different modes of their activation, and how it regulates the shift between them, remain unclear. Here we review the current knowledge about the molecular mechanisms that mediate this hypoxic regulation of Mɸ activation. Much is known about the hypoxic transcriptional regulatory network, which includes the master regulators hypoxia-induced factor-1 and NF-κB, as well as other transcription factors (e.g., AP-1, Erg-1), but we also highlight the role of post-transcriptional and post-translational mechanisms. These mechanisms mediate hypoxic induction of Mɸ pro-angiogenic mediators, suppress M1 Mɸ by post-transcriptionally inhibiting pro-inflammatory mediators, and help shift the classically activated Mɸ into an activation state which approximate the alternatively activated or resolution Mɸ.
Collapse
Affiliation(s)
- Michal A Rahat
- Immunology Research Unit, Carmel Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Haifa, Israel.
| | | | | |
Collapse
|
3634
|
Bograd AJ, Suzuki K, Vertes E, Colovos C, Morales EA, Sadelain M, Adusumilli PS. Immune responses and immunotherapeutic interventions in malignant pleural mesothelioma. Cancer Immunol Immunother 2011; 60:1509-27. [PMID: 21913025 DOI: 10.1007/s00262-011-1103-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/19/2011] [Indexed: 12/20/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive, primary pleural malignancy with poor prognosis, hypothesized to originate from a chronic inflammatory state within the pleura. Similar to what has been observed in other solid tumors (melanoma, ovarian and colorectal cancer), clinical and pre-clinical MPM investigations have correlated anti-tumor immune responses with improved survival. As such, a better understanding of the complex MPM tumor microenvironment is imperative in strategizing successful immunotherapies. Herein, we review the immune responses vital to the development and progression of MPM, as well as assess the role of immunomodulatory therapies, highlighting recent pre-clinical and clinical immunotherapy investigations.
Collapse
Affiliation(s)
- Adam J Bograd
- Division of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
3635
|
Ungefroren H, Sebens S, Seidl D, Lehnert H, Hass R. Interaction of tumor cells with the microenvironment. Cell Commun Signal 2011; 9:18. [PMID: 21914164 PMCID: PMC3180438 DOI: 10.1186/1478-811x-9-18] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/13/2011] [Indexed: 12/18/2022] Open
Abstract
Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma) is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM) of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT), migration, invasion (i.e. migration through connective tissue), metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | | | | | | | | |
Collapse
|
3636
|
VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 2011; 13:1202-13. [PMID: 21909098 DOI: 10.1038/ncb2331] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/03/2011] [Indexed: 11/08/2022]
Abstract
Angiogenesis, the growth of new blood vessels, involves specification of endothelial cells to tip cells and stalk cells, which is controlled by Notch signalling, whereas vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 have been implicated in angiogenic sprouting. Surprisingly, we found that endothelial deletion of Vegfr3, but not VEGFR-3-blocking antibodies, postnatally led to excessive angiogenic sprouting and branching, and decreased the level of Notch signalling, indicating that VEGFR-3 possesses passive and active signalling modalities. Furthermore, macrophages expressing the VEGFR-3 and VEGFR-2 ligand VEGF-C localized to vessel branch points, and Vegfc heterozygous mice exhibited inefficient angiogenesis characterized by decreased vascular branching. FoxC2 is a known regulator of Notch ligand and target gene expression, and Foxc2(+/-);Vegfr3(+/-) compound heterozygosity recapitulated homozygous loss of Vegfr3. These results indicate that macrophage-derived VEGF-C activates VEGFR-3 in tip cells to reinforce Notch signalling, which contributes to the phenotypic conversion of endothelial cells at fusion points of vessel sprouts.
Collapse
|
3637
|
Kiefer F, Siekmann AF. The role of chemokines and their receptors in angiogenesis. Cell Mol Life Sci 2011; 68:2811-30. [PMID: 21479594 PMCID: PMC11115067 DOI: 10.1007/s00018-011-0677-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/09/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
Chemokines are a vertebrate-specific group of small molecules that regulate cell migration and behaviour in diverse contexts. So far, around 50 chemokines have been identified in humans, which bind to 18 different chemokine receptors. These are members of the seven-transmembrane receptor family. Initially, chemokines were identified as modulators of the immune response. Subsequently, they were also shown to regulate cell migration during embryonic development. Here, we discuss the influence of chemokines and their receptors on angiogenesis, or the formation of new blood vessels. We highlight recent advances in our understanding of how chemokine signalling might directly influence endothelial cell migration. We furthermore examine the contributions of chemokine signalling in immune cells during this process. Finally, we explore possible implications for disease settings, such as chronic inflammation and tumour progression.
Collapse
Affiliation(s)
- Friedemann Kiefer
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| |
Collapse
|
3638
|
Kees T, Egeblad M. Innate immune cells in breast cancer--from villains to heroes? J Mammary Gland Biol Neoplasia 2011; 16:189-203. [PMID: 21789554 DOI: 10.1007/s10911-011-9224-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/18/2011] [Indexed: 12/13/2022] Open
Abstract
The innate immune system ensures effective protection against foreign pathogens and plays important roles in tissue remodeling. There are many types of innate immune cells, including monocytes, macrophages, dendritic cells, and granulocytes. Interestingly, these cells accumulate in most solid tumors, including those of the breast. There, they play a tumor-promoting role through secretion of growth and angiogenic factors, as well as immunosuppressive molecules. This is in strong contrast to the tumor-suppressing effects that innate immune cells exert in vitro upon proper activation. Therapeutic approaches have been developed with the aim of achieving similar suppressive activities in vivo. However, multiple factors in the tumor microenvironment, many of which are immunosuppressive, represent a major obstacle to effective treatment. Here, we discuss the potential of combating breast cancer through activation of the innate immune system, including possible strategies to enhance the success of immunotherapy.
Collapse
Affiliation(s)
- Tim Kees
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
3639
|
Martínez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F. The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev 2011; 63:967-1000. [PMID: 21880988 DOI: 10.1124/pr.111.004523] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The scavenger receptor cysteine-rich (SRCR) superfamily of soluble or membrane-bound protein receptors is characterized by the presence of one or several repeats of an ancient and highly conserved protein module, the SRCR domain. This superfamily (SRCR-SF) has been in constant and progressive expansion, now up to more than 30 members. The study of these members is attracting growing interest, which parallels that in innate immunity. No unifying function has been described to date for the SRCR domains, this being the result of the limited knowledge still available on the physiology of most members of the SRCR-SF, but also of the sequence versatility of the SRCR domains. Indeed, involvement of SRCR-SF members in quite different functions, such as pathogen recognition, modulation of the immune response, epithelial homeostasis, stem cell biology, and tumor development, have all been described. This has brought to us new information, unveiling the possibility that targeting or supplementing SRCR-SF proteins could result in diagnostic and/or therapeutic benefit for a number of physiologic and pathologic states. Recent research has provided structural and functional insight into these proteins, facilitating the development of means to modulate the activity of SRCR-SF members. Indeed, some of these approaches are already in use, paving the way for a more comprehensive use of SRCR-SF members in the clinic. The present review will illustrate some available evidence on the potential of well known and new members of the SRCR-SF in this regard.
Collapse
Affiliation(s)
- Vanesa Gabriela Martínez
- Center Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | |
Collapse
|
3640
|
NF-kappaB activation within macrophages leads to an anti-tumor phenotype in a mammary tumor lung metastasis model. Breast Cancer Res 2011; 13:R83. [PMID: 21884585 PMCID: PMC3236346 DOI: 10.1186/bcr2935] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/05/2011] [Accepted: 08/31/2011] [Indexed: 01/30/2023] Open
Abstract
Introduction Metastasis from primary tumor to the lungs is a major cause of the mortality associated with breast cancer. Both immune and inflammatory responses impact whether circulating mammary tumor cells successfully colonize the lungs leading to established metastases. Nuclear factor -kappaB (NF-κB) transcription factors regulate both immune and inflammatory responses mediated in part by the activities of macrophages. Therefore, NF-κB activity specifically within macrophages may be a critical determinant of whether circulating tumor cells successfully colonize the lungs. Methods To investigate NF-κB signaling within macrophages during metastasis, we developed novel inducible transgenic models which target expression of the reverse tetracycline transactivator (rtTA) to macrophages using the cfms promoter in combination with inducible transgenics that express either an activator (cIKK2) or an inhibitor (IκBα-DN). Doxycyline treatment led to activation or inhibition of NF-κB within macrophages. We used a tail vein metastasis model with mammary tumor cell lines established from MMTV-Polyoma Middle T-Antigen-derived tumors to investigate the effects of modulating NF-κB in macrophages during different temporal windows of the metastatic process. Results We found that activation of NF-κB in macrophages during seeding leads to a reduction in lung metastases. The mechanism involved expression of inflammatory cytokines and reactive oxygen species, leading to apoptosis of tumor cells and preventing seeding in the lung. Activation of NF-κB within macrophages after the seeding phase has no significant impact on establishment of metastases. Conclusions Our results have identified a brief, defined window in which activation of NF-κB has significant anti-metastatic effects and inhibition of NF-κB results in a worse outcome.
Collapse
|
3641
|
|
3642
|
Gabrusiewicz K, Ellert-Miklaszewska A, Lipko M, Sielska M, Frankowska M, Kaminska B. Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One 2011; 6:e23902. [PMID: 21901144 PMCID: PMC3162015 DOI: 10.1371/journal.pone.0023902] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/27/2011] [Indexed: 12/22/2022] Open
Abstract
Microglia (brain resident macrophages) accumulate in malignant gliomas and instead of initiating the anti-tumor response, they switch to a pro-invasive phenotype, support tumor growth, invasion, angiogenesis and immunosuppression by release of cytokines/chemokines and extracellular matrix proteases. Using immunofluorescence and flow cytometry, we demonstrate an early accumulation of activated microglia followed by accumulation of macrophages in experimental murine EGFP-GL261 gliomas. Those cells acquire the alternative phenotype, as evidenced by evaluation of the production of ten pro/anti-inflammatory cytokines and expression profiling of 28 genes in magnetically-sorted CD11b+ cells from tumor tissues. Furthermore, we show that infiltration of implanted gliomas by amoeboid, Iba1-positive cells can be reduced by a systematically injected cyclosporine A (CsA) two or eight days after cell inoculation. The up-regulated levels of IL-10 and GM-CSF, increased expression of genes characteristic for the alternative and pro-invasive phenotype (arg-1, mt1-mmp, cxcl14) in glioma-derived CD11b+ cells as well as enhanced angiogenesis and tumor growth were reduced in CsA-treated mice. Our findings define for the first time kinetics and biochemical characteristics of glioma-infiltrating microglia/macrophages. Inhibition of the alternative activation of tumor-infiltrating macrophages significantly reduced tumor growth. Thus, blockade of microglia/macrophage infiltration and their pro-invasive functions could be a novel therapeutic strategy in malignant gliomas.
Collapse
Affiliation(s)
- Konrad Gabrusiewicz
- Laboratory of Transcription Regulation, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Maciej Lipko
- Laboratory of Transcription Regulation, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Malgorzata Sielska
- Laboratory of Transcription Regulation, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Frankowska
- Laboratory of Transcription Regulation, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Transcription Regulation, Nencki Institute of Experimental Biology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
3643
|
Lemaire I, Falzoni S, Zhang B, Pellegatti P, Di Virgilio F. The P2X7 receptor and Pannexin-1 are both required for the promotion of multinucleated macrophages by the inflammatory cytokine GM-CSF. THE JOURNAL OF IMMUNOLOGY 2011; 187:3878-87. [PMID: 21865551 DOI: 10.4049/jimmunol.1002780] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The P2X(7) receptor (P2X(7)R), an ATP-gated ion channel, has been implicated in the process of cell-to-cell fusion into multinucleated macrophages (MA), but its contribution to MA fusion driven by physiological/pathological stimuli is not clearly established. Based on several lines of evidence, we demonstrate that P2X(7)R is critical for the induction of multinucleated MA by the inflammatory cytokine GM-CSF: 1) pharmacological inhibition of P2X(7)R with oxidized ATP (oATP), KN-62, and the selective antagonist A740003 abrogated GM-CSF action on rat alveolar MA and murine peritoneal MA; 2) a murine J774 P2X(7) low MA clone, selected for defective P2X(7)R function, was unresponsive; 3) MA from mice lacking P2X(7)R failed to respond to GM-CSF, in contrast to wild-type. GM-CSF also stimulated ATP-induced membrane permeabilization in J774 P2X(7) high MA and rat alveolar MA, an effect absent in the P2X(7) low MA clone and inhibited by the P2X(7) blockers oATP and KN-62. Notably, the stimulatory effects of GM-CSF on pore formation and MA fusion were both inhibited by blocking functional Pannexin-1 (Panx-1), and GM-CSF failed to stimulate MA fusion in cells from Panx-1 knockout mice. We provide further evidence that extracellular ATP release from peritoneal MA is dependent on P2X(7) but not on Panx-1 expression and that its metabolism to adenosine mediates P2X(7)-dependent MA fusion. These data demonstrate that both P2X(7) and Panx-1 are required for GM-CSF promotion of MA fusion but likely act independently through different signaling pathway(s).
Collapse
Affiliation(s)
- Irma Lemaire
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| | | | | | | | | |
Collapse
|
3644
|
Li X, Kumar A, Zhang F, Lee C, Li Y, Tang Z, Arjuna P. VEGF-independent angiogenic pathways induced by PDGF-C. Oncotarget 2011; 1:309-314. [PMID: 20871734 PMCID: PMC2944232 DOI: 10.18632/oncotarget.141] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
VEGF is believed to be a master regulator in both developmental and pathological angiogenesis. The role of PDGF-C in angiogenesis, however, is only at the beginning of being revealed. We and others have shown that PDGF-C is a critical player in pathological angiogenesis because of its pleiotropic effects on multiple cellular targets. The angiogenic pathways induced by PDGF-C are, to a large extent, VEGF-independent. These pathways may include, but not limited to, the direct effect of PDGF-C on vascular cells, the effect of PDGF-C on tissue stroma fibroblasts, and its effect on macrophages. Taken together, the pleiotropic, versatile and VEGF-independent angiogenic nature of PDGF-C has placed it among the most important target genes for antiangiogenic therapy.
Collapse
Affiliation(s)
- Xuri Li
- National Eye Institute, NIH, Rockville, MD 20852, USA.
| | | | | | | | | | | | | |
Collapse
|
3645
|
Espinosa I, Edris B, Lee CH, Cheng HW, Gilks CB, Wang Y, Montgomery KD, Varma S, Li R, Marinelli RJ, West RB, Nielsen T, Beck AH, van de Rijn M. CSF1 expression in nongynecological leiomyosarcoma is associated with increased tumor angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2100-7. [PMID: 21854753 DOI: 10.1016/j.ajpath.2011.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 12/13/2022]
Abstract
Leiomyosarcoma (LMS) is a malignant tumor of smooth muscle cells for which few effective therapies exist. A subset of LMS cases express macrophage colony-stimulating factor (CSF1) and the resultant tumor-associated macrophage (TAM) infiltration predicts poor clinical outcome. Further, TAMs have been shown to increase tumor angiogenesis. Here, we analyzed 149 LMS cases by immunohistochemistry for vascular marker CD34 and show that high microvessel density (MVD) in nongynecological LMS cases significantly predicts poor patient outcome. The majority of high MVD cases were also CSF1-positive, and when combining high MVD with CSF1 expression, an even stronger prognostic correlation with patient outcome was obtained. Gene expression profiling revealed that MVD has a stronger correlation with CSF1 expression than with expression of vascular endothelial growth factor isoforms, which have traditionally been used as markers of angiogenesis and as anti-angiogenic therapeutic targets. Finally, patterns of CSF1 expression and TAM recruitment remained consistent between primary tumors and their metastases, and between primary tumors and those grown as xenografts in mice, highlighting the stability of these features to the biology of LMS tumors. Together, these findings suggest an important role for CSF1 and the resulting TAM infiltration in the pathological neovascularization of LMS tumors and provide a rationale for CSF1-targeted therapies in LMS.
Collapse
Affiliation(s)
- Iñigo Espinosa
- Department of Pathology, Stanford University Medical Center, Stanford, California, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3646
|
Vascularity of nongynecological leiomyosarcoma depends on colony-stimulating factor 1 but not on vascular endothelial growth factor. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1591-3. [PMID: 21839060 DOI: 10.1016/j.ajpath.2011.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/06/2011] [Indexed: 11/22/2022]
|
3647
|
Abstract
Retrospective clinical studies have used immune-based biomarkers, alone or in combination, to predict survival outcomes for women with breast cancer (BC); however, the limitations inherent to immunohistochemical analyses prevent comprehensive descriptions of leukocytic infiltrates, as well as evaluation of the functional state of leukocytes in BC stroma. To more fully evaluate this complexity, and to gain insight into immune responses after chemotherapy (CTX), we prospectively evaluated tumor and nonadjacent normal breast tissue from women with BC, who either had or had not received neoadjuvant CTX before surgery. Tissues were evaluated by polychromatic flow cytometry in combination with confocal immunofluorescence and immunohistochemical analysis of tissue sections. These studies revealed that activated T lymphocytes predominate in tumor tissue, whereas myeloid lineage cells are more prominant in "normal" breast tissue. Notably, residual tumors from an unselected group of BC patients treated with neoadjuvant CTX contained increased percentages of infiltrating myeloid cells, accompanied by an increased CD8/CD4 T-cell ratio and higher numbers of granzyme B-expressing cells, compared with tumors removed from patients treated primarily by surgery alone. These data provide an initial evaluation of differences in the immune microenvironment of BC compared with nonadjacent normal tissue and reveal the degree to which CTX may alter the complexity and presence of selective subsets of immune cells in tumors previously treated in the neoadjuvant setting.
Collapse
|
3648
|
Deficiency of the macrophage growth factor CSF-1 disrupts pancreatic neuroendocrine tumor development. Oncogene 2011; 31:1459-67. [PMID: 21822305 DOI: 10.1038/onc.2011.337] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor-associated macrophages have recently emerged as a key regulatory cell type during cancer progression, and have been found to promote tumor malignancy in the majority of studies performed to date. We show in this study that CD68(+) macrophages positively correlate with tumor grade and liver metastasis in human pancreatic neuroendocrine tumors (PNETs). To investigate the potential mechanisms whereby macrophages can promote PNET progression, we crossed the RIP1-Tag2 (RT2) mouse model of pancreatic islet cancer to colony-stimulating factor-1 (CSF-1)-deficient Csf1(op/op) mice, which have reduced numbers of tissue macrophages. Csf1(op/op) RT2 mice had a substantial reduction in cumulative tumor burden, which interestingly resulted from a significant decrease in angiogenic switching and tumor number, rather than an evident effect on tumor growth. In the tumors that did develop in CSF-1-deficient animals, however, there were no significant differences in tumor cell proliferation, apoptosis, angiogenesis or invasion. CSF-1 deficiency decreased macrophage infiltration by approximately 50% during all stages of RT2 tumor progression. Interestingly, several cytokines were upregulated in CSF-1-deficient RT2 tumors, and neutrophil infiltration was increased. These results show that macrophages are important for promoting PNET development and suggest that additional factors contribute to the recruitment and survival of myeloid cells in RT2 tumors in the absence of CSF-1.
Collapse
|
3649
|
Wu Y, Zhao Q, Peng C, Sun L, Li XF, Kuang DM. Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3K activation loop. J Pathol 2011; 225:438-47. [PMID: 21826665 DOI: 10.1002/path.2947] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/25/2011] [Accepted: 05/25/2011] [Indexed: 01/06/2023]
Abstract
Inflammation is a component of tumour progression mechanisms. Neutrophils are a common inflammatory infiltrate in many tumours, but their regulation and functions in neoplasia are not understood. We recently demonstrated that pro-inflammatory IL-17-producing cells recruited blood neutrophils into the peritumoural stroma of hepatocellular carcinoma by epithelium-derived CXC chemokines. Here we show that a substantial population of neutrophils accumulates in the peritumoural stroma of hepatocellular, cervical, colorectal, and gastric carcinomas, and that this correlates with metastases in hepatocellular and gastric carcinomas. Exposure of neutrophils to culture supernatants from several types of solid tumour cells (TSN) resulted in sustained survival and pro-tumourigenic effects of cells. Kinetic experiments reveal that, shortly after exposure to TSN, neutrophils began to provoke activation and then produced significant inflammatory cytokines and expressed more anti-apoptotic Mcl-1 but less pro-apoptotic Bax. These long-lived neutrophils effectively enhanced the cancer cell motility via a contact-dependent mechanism; this effect, together with early activation and subsequent longevity of TSN-exposed neutrophils, could be reversed by blocking the activation of PI3K/Akt signalling in neutrophils. Moreover, we found that hyaluronan (HA) fragments constitute a common factor produced by various tumours that mimics the effect of TSN to induce long-lived neutrophils and subsequent malignant cell migration. The effects of TSN were inhibited by function blocking interactions between HA and its receptor TLR4 on neutrophils, suggesting that this is a key signalling pathway involved. These results indicate that HA derived from malignant cells educates neutrophils to adopt an activated phenotype, and in that way stimulates the metastasis of malignant cells, which represents a positive regulatory loop between tumours and their stroma during neoplastic progression.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
3650
|
Wang B, Li Q, Qin L, Zhao S, Wang J, Chen X. Transition of tumor-associated macrophages from MHC class II(hi) to MHC class II(low) mediates tumor progression in mice. BMC Immunol 2011; 12:43. [PMID: 21813021 PMCID: PMC3162940 DOI: 10.1186/1471-2172-12-43] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 08/04/2011] [Indexed: 12/22/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) are the most abundant immune cells within the tumor stroma and play a crucial role in tumor development. Although clinical investigations indicate that high levels of macrophage (MΦ) infiltration into tumors are associated with a poor prognosis, the exact role played by TAMs during tumor development remains unclear. The present study aimed to investigate dynamic changes in TAM major histocompatibility complex (MHC) class II expression levels and to assess the effects of these changes on tumor progression. Results Significant inhibition of tumor growth in the murine hepatocellular carcinoma Hepa1-6 model was closely associated with partial TAM depletion. Strikingly, two distinct TAM subsets were found to coexist within the tumor microenvironment during Hepa1-6 tumor development. An MHC class IIhi TAM population appeared during the early phase of tumor development and was associated with tumor suppression; however, an MHC class IIlow TAM population became increasingly predominant as the tumor progressed. Conclusions Tumor progression was positively correlated with increasing infiltration of the tumor tissues by MHC class IIlow TAMs. Thus, targeting the transition of MΦ may be a novel strategy for drug development and immunotherapy.
Collapse
Affiliation(s)
- Benfan Wang
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | | | | | | | | | |
Collapse
|