351
|
DNA glycosylases: in DNA repair and beyond. Chromosoma 2011; 121:1-20. [PMID: 22048164 PMCID: PMC3260424 DOI: 10.1007/s00412-011-0347-4] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 12/20/2022]
Abstract
The base excision repair machinery protects DNA in cells from the damaging effects of oxidation, alkylation, and deamination; it is specialized to fix single-base damage in the form of small chemical modifications. Base modifications can be mutagenic and/or cytotoxic, depending on how they interfere with the template function of the DNA during replication and transcription. DNA glycosylases play a key role in the elimination of such DNA lesions; they recognize and excise damaged bases, thereby initiating a repair process that restores the regular DNA structure with high accuracy. All glycosylases share a common mode of action for damage recognition; they flip bases out of the DNA helix into a selective active site pocket, the architecture of which permits a sensitive detection of even minor base irregularities. Within the past few years, it has become clear that nature has exploited this ability to read the chemical structure of DNA bases for purposes other than canonical DNA repair. DNA glycosylases have been brought into context with molecular processes relating to innate and adaptive immunity as well as to the control of DNA methylation and epigenetic stability. Here, we summarize the key structural and mechanistic features of DNA glycosylases with a special focus on the mammalian enzymes, and then review the evidence for the newly emerging biological functions beyond the protection of genome integrity.
Collapse
|
352
|
Li Z, Guan W, Li MX, Zhong ZY, Qian CY, Yang XQ, Liao L, Li ZP, Wang D. Genetic polymorphism of DNA base-excision repair genes (APE1, OGG1 and XRCC1) and their correlation with risk of lung cancer in a Chinese population. Arch Med Res 2011; 42:226-34. [PMID: 21722819 DOI: 10.1016/j.arcmed.2011.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 03/11/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Reactive oxygen species (ROS) and numerous carcinogens may cause DNA damage including oxidative base lesions that contribute to the risk of lung cancer. The base excision repair (BER) pathway could effectively remove oxidative lesions in which 8-oxoguanine glycosylase-1 (OGG1), x-ray repair cross-complementing 1 (XRCC1), and apurinic/apyimidinic endonuclease 1 (APE1) play key roles. The aim of this study was to analyze the polymorphisms of DNA BER genes (OOG1, XRCC1 and APE1) and explore their associations, and the combined effects of these variants, with risk of lung cancer. METHODS In a hospital-based, case-control study of 455 lung cancer cases and 443 cancer-free hospital controls, the SNPs of OGG1 (Ser326Cys), XRCC1 (Arg399Gln), APE1 (Asp148Glu and -141T/G) were genotyped and analyzed for their correlation with the risk of lung cancer in multivariate logistic regression models. RESULTS Individuals homozygous for the variants APE1 -141GG showed a protective effect for lung cancer overall (OR=0.62; 95% CI: 0.42-0.91; p=0.02) and for lung adenocarcinoma (OR=0.65; 95% CI, 0.44-0.96; p=0.03). When analyzing the combined effects of variant alleles, 84 patients and controls were identified who were homozygous for two or three of the potential protective alleles (i.e., OGG1 326Cys, XRCC1 399Gln and APE1 -141G). ORs were significantly reduced when all patients were analyzed (OR=0.62; 95% CI: 0.38-0.99; p=0.05). CONCLUSIONS The combined effects of polymorphisms within BER genes may contribute to the tumorigenesis of lung cancer.
Collapse
Affiliation(s)
- Zheng Li
- Department of Pathology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Coppedè F. An overview of DNA repair in amyotrophic lateral sclerosis. ScientificWorldJournal 2011; 11:1679-91. [PMID: 22125427 PMCID: PMC3201689 DOI: 10.1100/2011/853474] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/02/2011] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is an adult onset neurodegenerative disorder characterised by the degeneration of cortical and spinal cord motor neurons, resulting in progressive muscular weakness and death. Increasing evidence supports mitochondrial dysfunction and oxidative DNA damage in ALS motor neurons. Several DNA repair enzymes are activated following DNA damage to restore genome integrity, and impairments in DNA repair capabilities could contribute to motor neuron degeneration. After a brief description of the evidence of DNA damage in ALS, this paper focuses on the available data on DNA repair activity in ALS neuronal tissue and disease animal models. Moreover, biochemical and genetic data on DNA repair in ALS are discussed in light of similar findings in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabio Coppedè
- Section of Medical Genetics, Faculty of Medicine, University of Pisa, Via S. Giuseppe 22, 56126 Pisa, Italy.
| |
Collapse
|
354
|
Barrantes-Reynolds R, Wallace SS, Bond JP. Using shifts in amino acid frequency and substitution rate to identify latent structural characters in base-excision repair enzymes. PLoS One 2011; 6:e25246. [PMID: 21998646 PMCID: PMC3188539 DOI: 10.1371/journal.pone.0025246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 08/30/2011] [Indexed: 12/30/2022] Open
Abstract
Protein evolution includes the birth and death of structural motifs. For example, a zinc finger or a salt bridge may be present in some, but not all, members of a protein family. We propose that such transitions are manifest in sequence phylogenies as concerted shifts in substitution rates of amino acids that are neighbors in a representative structure. First, we identified rate shifts in a quartet from the Fpg/Nei family of base excision repair enzymes using a method developed by Xun Gu and coworkers. We found the shifts to be spatially correlated, more precisely, associated with a flexible loop involved in bacterial Fpg substrate specificity. Consistent with our result, sequences and structures provide convincing evidence that this loop plays a very different role in other family members. Second, then, we developed a method for identifying latent protein structural characters (LSC) given a set of homologous sequences based on Gu's method and proximity in a high-resolution structure. Third, we identified LSC and assigned states of LSC to clades within the Fpg/Nei family of base excision repair enzymes. We describe seven LSC; an accompanying Proteopedia page (http://proteopedia.org/wiki/index.php/Fpg_Nei_Protein_Family) describes these in greater detail and facilitates 3D viewing. The LSC we found provided a surprisingly complete picture of the interaction of the protein with the DNA capturing familiar examples, such as a Zn finger, as well as more subtle interactions. Their preponderance is consistent with an important role as phylogenetic characters. Phylogenetic inference based on LSC provided convincing evidence of independent losses of Zn fingers. Structural motifs may serve as important phylogenetic characters and modeling transitions involving structural motifs may provide a much deeper understanding of protein evolution.
Collapse
Affiliation(s)
- Ramiro Barrantes-Reynolds
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Susan S. Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Jeffrey P. Bond
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
355
|
Ebert F, Weiss A, Bültemeyer M, Hamann I, Hartwig A, Schwerdtle T. Arsenicals affect base excision repair by several mechanisms. Mutat Res 2011; 715:32-41. [PMID: 21782832 DOI: 10.1016/j.mrfmmm.2011.07.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/04/2011] [Accepted: 07/08/2011] [Indexed: 05/31/2023]
Abstract
Inorganic arsenic is a strong, widespread human carcinogen. How exactly inorganic arsenic exerts carcinogenicity in humans is as yet unclear, but it is thought to be closely related to its metabolism. At exposure-relevant concentrations arsenic is neither directly DNA reactive nor mutagenic. Thus, more likely epigenetic and indirect genotoxic effects, among others a modulation of the cellular DNA damage response and DNA repair, are important molecular mechanisms contributing to its carcinogenicity. In the present study, we investigated the impact of arsenic on several base excision repair (BER) key players in cultured human lung cells. For the first time gene expression, protein level and in case of human 8-oxoguanine DNA glycosylase 1 (hOGG1) protein function was examined in one study, comparing inorganic arsenite and its trivalent and pentavalent mono- and dimethylated metabolites, also taking into account their cellular bioavailability. Our data clearly show that arsenite and its metabolites can affect several cellular endpoints related to DNA repair. Thus, cellular OGG activity was most sensitively affected by dimethylarsinic acid (DMA(V)), DNA ligase IIIα (LIGIIIα) protein level by arsenite and X-ray cross complementing protein 1 (XRCC1 protein) content by monomethylarsonic acid (MMA(V)), with significant effects starting at ≥3.2μM cellular arsenic. With respect to MMA(V), to our knowledge these effects are the most sensitive endpoints, related to DNA damage response, that have been identified so far. In contrast to earlier nucleotide excision repair related studies, the trivalent methylated metabolites exerted strong effects on the investigated BER key players only at cytotoxic concentrations. In summary, our data point out that after mixed arsenic species exposure, a realistic scenario after oral inorganic arsenic intake in humans, DNA repair might be affected by different mechanisms and therefore very effectively, which might facilitate the carcinogenic process of inorganic arsenic.
Collapse
Affiliation(s)
- Franziska Ebert
- Institute of Food Chemistry, University of Münster, Corrensstrasse 45, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
356
|
Abstract
The mitochondrial DNA (mtDNA) of neural stem cells (NSCs) is vulnerable to oxidation damage. Subtle manipulations of the cellular redox state affect mtDNA integrity in addition to regulating the NSC differentiation lineage, suggesting a molecular link between mtDNA integrity and regulation of differentiation. Here we show that 8-oxoguanine DNA glycosylase (OGG1) is essential for repair of mtDNA damage and NSC viability during mitochondrial oxidative stress. Differentiating neural cells from ogg1(-/-) knock-out mice spontaneously accumulate mtDNA damage and concomitantly shift their differentiation direction toward an astrocytic lineage, similar to wt NSCs subjected to mtDNA damaging insults. Antioxidant treatments reversed mtDNA damage accumulation and separately increased neurogenesis in ogg1(-/-) cells. NSCs from a transgenic ogg1(-/-) mouse expressing mitochondrially targeted human OGG1 were protected from mtDNA damage during differentiation, and displayed elevated neurogenesis. The underlying mechanisms for this shift in differentiation direction involve the astrogenesis promoting Sirt1 via an increased NAD/NADH ratio in ogg1(-/-) cells. Redox manipulations to alter mtDNA damage level correspondingly activated Sirt1 in both cell types. Our results demonstrate for the first time the interdependence between mtDNA integrity and NSC differentiation fate, suggesting that mtDNA damage is the primary signal for the elevated astrogliosis and lack of neurogenesis seen during repair of neuronal injury.
Collapse
|
357
|
Leavens FMV, Churchill CDM, Wang S, Wetmore SD. Evaluating how discrete water molecules affect protein-DNA π-π and π(+)-π stacking and T-shaped interactions: the case of histidine-adenine dimers. J Phys Chem B 2011; 115:10990-1003. [PMID: 21809837 DOI: 10.1021/jp205424z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Changes in the magnitude of (M06-2X/6-31+G(d,p)) π-π stacking and T-shaped (nucleobase-edge and amino acid-edge) interactions between (neutral or protonated) histidine (His) and adenine (A) dimers upon microsolvation with up to four discrete water molecules were determined. A variety of histidine-water interactions were considered including conventional (N-H···O, N···H-O, C-H···O) hydrogen bonding and nonconventional (X-H···π (neutral His) or lone-pair···π (protonated His)) contacts. Overall, the effects of discrete His-H(2)O interactions on the neutral histidine-adenine π-π contacts are negligible (<3 kJ mol(-1) or 15%) regardless of the type of water binding, the number of water molecules bound, or the His-A dimer (stacked or (amino acid- or nucleobase-edge) T-shaped) configuration. This suggests that previously reported gas-phase binding strengths for a variety of neutral amino acid-nucleobase dimers are likely relevant for a wide variety of (microsolvated) environments. In contrast, the presence of water decreases the histidine-adenine π(+)-π interaction by up to 15 kJ mol(-1) (or 30%) for all water binding modes and orientations, as well as different stacked and T-shaped His(+)-A dimers. Regardless of the larger effect of discrete histidine-water interactions on the magnitude of the π(+)-π compared with π-π interactions, the π(+)-π binding strengths remain substantially larger than the corresponding π-π contacts. These findings emphasize the distinct nature of π(+)-π and π-π interactions and suggest that π(+)-π contacts can provide significant stabilization in biological systems relative to π-π contacts under many different environmental conditions.
Collapse
Affiliation(s)
- Fern M V Leavens
- Department of Chemistry & Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4
| | | | | | | |
Collapse
|
358
|
Resende B, Rebelato A, D'Afonseca V, Santos A, Stutzman T, Azevedo V, Santos L, Miyoshi A, Lopes D. DNA repair in Corynebacterium model. Gene 2011; 482:1-7. [DOI: 10.1016/j.gene.2011.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/28/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
|
359
|
Tichy ED. Mechanisms maintaining genomic integrity in embryonic stem cells and induced pluripotent stem cells. Exp Biol Med (Maywood) 2011; 236:987-96. [PMID: 21768163 DOI: 10.1258/ebm.2011.011107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Embryonic stem cells (ESCs) are pluripotent, self-renewing cells that are isolated during the blastocyst stage of embryonic development. Whether these cells are derived from humans, mice or other organisms, all ESCs must employ mechanisms that prevent the propagation of mutations, generated as a consequence of DNA damage, to somatic cells produced by normal programmed differentiation. Thus, the prevention of mutations in ESCs is important not only for the health of the individual organism derived from these cells but also, in addition, for the continued survival and genetic viability of the species by preventing the accumulation of mutations in the germline. Induced pluripotent stem cells (IPSCs) are reprogrammed somatic cells that share several characteristics with ESCs, including a similar morphology in culture, the re-expression of pluripotency markers and the ability to differentiate into defined cell lineages. This review focuses on the mechanisms employed by murine ESCs, human ESCs and, where data are available, IPSCs to preserve genetic integrity.
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Molecular Genetics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA.
| |
Collapse
|
360
|
Huehls AM, Wagner JM, Huntoon CJ, Geng L, Erlichman C, Patel AG, Kaufmann SH, Karnitz LM. Poly(ADP-Ribose) polymerase inhibition synergizes with 5-fluorodeoxyuridine but not 5-fluorouracil in ovarian cancer cells. Cancer Res 2011; 71:4944-54. [PMID: 21613406 PMCID: PMC3138894 DOI: 10.1158/0008-5472.can-11-0814] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
5-Fluorouracil (5-FU) and 5-fluorodeoxyuridine (FdUrd, floxuridine) have activity in multiple tumors, and both agents undergo intracellular processing to active metabolites that disrupt RNA and DNA metabolism. These agents cause imbalances in deoxynucleotide triphosphate levels and the accumulation of uracil and 5-FU in the genome, events that activate the ATR- and ATM-dependent checkpoint signaling pathways and the base excision repair (BER) pathway. Here, we assessed which DNA damage response and repair processes influence 5-FU and FdUrd toxicity in ovarian cancer cells. These studies revealed that disabling the ATM, ATR, or BER pathways using small inhibitory RNAs did not affect 5-FU cytotoxicity. In stark contrast, ATR and a functional BER pathway protected FdUrd-treated cells. Consistent with a role for the BER pathway, the poly(ADP-ribose) polymerase (PARP) inhibitors ABT-888 (veliparib) and AZD2281 (olaparib) markedly synergized with FdUrd but not with 5-FU in ovarian cancer cell lines. Furthermore, ABT-888 synergized with FdUrd far more effectively than other agents commonly used to treat ovarian cancer. These findings underscore differences in the cytotoxic mechanisms of 5-FU and FdUrd and suggest that combining FdUrd and PARP inhibitors may be an innovative therapeutic strategy for ovarian tumors.
Collapse
Affiliation(s)
- Amelia M. Huehls
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Jill M. Wagner
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Catherine J. Huntoon
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Liyi Geng
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Charles Erlichman
- Division of Medical Oncology, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Anand G. Patel
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Scott H. Kaufmann
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Larry M. Karnitz
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
- Department of Radiation Oncology, Mayo Clinic, College of Medicine, Rochester, Minnesota
| |
Collapse
|
361
|
Earley JN, Turchi JJ. Interrogation of nucleotide excision repair capacity: impact on platinum-based cancer therapy. Antioxid Redox Signal 2011; 14:2465-77. [PMID: 20812782 PMCID: PMC3096502 DOI: 10.1089/ars.2010.3369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA repair is essential for routine monitoring and repair of damage imparted to our genetic material by exposure to endogenous and exogenous carcinogens, including reactive oxygen species, UV light, and chemicals such as those found in cigarette smoke. Without DNA repair pathways, the continual assault on our DNA would be highly mutagenic and the risk of cancer increased. Paradoxically, the same pathways that help prevent cancer development are detrimental to the efficacy of DNA-damaging cancer therapeutics such as cisplatin. Recent studies demonstrate the inverse relationship between DNA repair capacity and efficacy of platinum-based chemotherapeutics: increased DNA repair capacity leads to resistance, while decreased capacity leads to increased sensitivities. Cisplatin's cytotoxic effects are mediated by formation of intrastrand DNA crosslinks, which are predominantly repaired via the nucleotide excision repair (NER) pathway. In an effort to personalize the treatment of cancers based on DNA repair capacity, we developed an ELISA-based assay to measure NER activity accurately and reproducibly as a prognostic for platinum-based treatments. Here we present an overview of DNA repair and its link to cancer and therapeutics. We also present data demonstrating the ability to detect the proteins of the pre-incision complex within the NER pathway from cell and tissue extracts.
Collapse
Affiliation(s)
- Jennifer N Earley
- Department of Medicine/Hematology and Oncology, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN 46202, USA
| | | |
Collapse
|
362
|
Topoisomerase 1 and single-strand break repair modulate transcription-induced CAG repeat contraction in human cells. Mol Cell Biol 2011; 31:3105-12. [PMID: 21628532 DOI: 10.1128/mcb.05158-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Expanded trinucleotide repeats are responsible for a number of neurodegenerative diseases, such as Huntington disease and myotonic dystrophy type 1. The mechanisms that underlie repeat instability in the germ line and in the somatic tissues of human patients are undefined. Using a selection assay based on contraction of CAG repeat tracts in human cells, we screened the Prestwick chemical library in a moderately high-throughput assay and identified 18 novel inducers of repeat contraction. A subset of these compounds targeted pathways involved in the management of DNA supercoiling associated with transcription. Further analyses using both small molecule inhibitors and small interfering RNA (siRNA)-mediated knockdowns demonstrated the involvement of topoisomerase 1 (TOP1), tyrosyl-DNA phosphodiesterase 1 (TDP1), and single-strand break repair (SSBR) in modulating transcription-dependent CAG repeat contractions. The TOP1-TDP1-SSBR pathway normally functions to suppress repeat instability, since interfering with it stimulated repeat contractions. We further showed that the increase in repeat contractions when the TOP1-TDP1-SSBR pathway is compromised arises via transcription-coupled nucleotide excision repair, a previously identified contributor to transcription-induced repeat instability. These studies broaden the scope of pathways involved in transcription-induced CAG repeat instability and begin to define their interrelationships.
Collapse
|
363
|
Lauritzen KH, Cheng C, Wiksen H, Bergersen LH, Klungland A. Mitochondrial DNA toxicity compromises mitochondrial dynamics and induces hippocampal antioxidant defenses. DNA Repair (Amst) 2011; 10:639-53. [PMID: 21550321 DOI: 10.1016/j.dnarep.2011.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/18/2011] [Accepted: 04/06/2011] [Indexed: 11/20/2022]
Abstract
Mitochondria are highly dynamic organelles that can be actively transported within the cell to satisfy local requirements. They are vital for providing cellular energy, but are also an important endogenous source of reactive oxygen species. The distribution of mitochondria is particularly important for neurons because of the morphological complexity of these cells, and because neural processing is metabolically expensive. Defects in mitochondrial distribution, observed in several neurodegenerative diseases, can result in synaptic dysfunction. We have generated transgenic mice expressing an enzyme in forebrain neurons that causes mitochondrial DNA (mtDNA) damage in the form of abasic-sites, creating mtDNA toxicity. Here, we report that mitochondrial distribution is disturbed in hippocampal neurons of these mice. Moreover, mtDNA copy number and mitochondrial transcription are reduced, and oxidative stress is increased. There is also a loss of receptors at excitatory glutamatergic synapses in the dentate gyrus, and the size of the postsynaptic density in this region is abnormal. We speculate that the loss of synaptic mitochondria caused by accumulation in the neuronal cell body contributes to the observed synaptic abnormalities, as well as the overall loss of mtDNA and diminished mitochondrial transcription. Collectively, these changes lead to mitochondria with reduced function and increased oxidative stress.
Collapse
Affiliation(s)
- Knut H Lauritzen
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, NO-0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
364
|
Ruchko MV, Gorodnya OM, Zuleta A, Pastukh VM, Gillespie MN. The DNA glycosylase Ogg1 defends against oxidant-induced mtDNA damage and apoptosis in pulmonary artery endothelial cells. Free Radic Biol Med 2011; 50:1107-13. [PMID: 20969951 PMCID: PMC3033972 DOI: 10.1016/j.freeradbiomed.2010.10.692] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/17/2010] [Accepted: 10/09/2010] [Indexed: 10/18/2022]
Abstract
Emerging evidence suggests that mitochondrial (mt) DNA damage may be a trigger for apoptosis in oxidant-challenged pulmonary artery endothelial cells (PAECs). Understanding the rate-limiting determinants of mtDNA repair may point to new targets for intervention in acute lung injury. The base excision repair (BER) pathway is the only pathway for oxidative damage repair in mtDNA. One of the key BER enzymes is Ogg1, which excises the base oxidation product 8-oxoguanine. Previously we demonstrated that overexpression of mitochondrially targeted Ogg1 in PAECs attenuated apoptosis induced by xanthine oxidase (XO) treatment. To test the idea that Ogg1 is a potentially rate-limiting BER determinant protecting cells from oxidant-mediated death, PAECs transfected with siRNA to Ogg1 were challenged with XO and the extent of mitochondrial and nuclear DNA damage was determined along with indices of apoptosis. Transfected cells demonstrated significantly reduced Ogg1 activity, which was accompanied by delayed repair of XO-induced mtDNA damage and linked to increased XO-mediated apoptosis. The nuclear genome was undamaged by XO in either control PAECs or cells depleted of Ogg1. These observations suggest that Ogg1 plays a critical and possibly rate-limiting role in defending PAECs from oxidant-induced apoptosis by limiting the persistence of oxidative damage in the mitochondrial genome.
Collapse
Affiliation(s)
| | | | | | | | - Mark N. Gillespie
- Correspondence: Mark N. Gillespie, Ph.D., Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, Telephone: (251) 460-6497, Fax: (251) 460-6798,
| |
Collapse
|
365
|
Schultz-Norton JR, Ziegler YS, Nardulli AM. ERα-associated protein networks. Trends Endocrinol Metab 2011; 22:124-9. [PMID: 21371903 DOI: 10.1016/j.tem.2010.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 11/21/2022]
Abstract
Estrogen receptor α (ERα) is a ligand-activated transcription factor that, upon binding hormone, interacts with specific recognition sequences in DNA. An extensive body of literature has documented the association of individual regulatory proteins with ERα. It has recently become apparent that, instead of simply recruiting individual proteins, ERα recruits interconnected networks of proteins with discrete activities that play crucial roles in maintaining the structure and function of the receptor, stabilizing the receptor-DNA interaction, influencing estrogen-responsive gene expression, and repairing misfolded proteins and damaged DNA. Together these studies suggest that the DNA-bound ERα serves as a nucleating factor for the recruitment of protein complexes involved in key processes including the oxidative stress response, DNA repair, and transcription regulation.
Collapse
Affiliation(s)
- Jennifer R Schultz-Norton
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
366
|
Abstract
Because cancer at its origin must acquire permanent genomic mutations, it is by definition a disease of DNA repair. Yet for cancer cells to replicate their DNA and divide, which is the fundamental phenotype of cancer, multiple DNA repair pathways are required. This produces a paradox for the cancer cell, where its origin is at the same time its weakness. To overcome this difficulty, a cancer cell often becomes addicted to DNA repair pathways other than the one that led to its initial mutability. The best example of this is in breast or ovarian cancers with mutated BRCA1 or 2, essential components of a repair pathway for repairing DNA double-strand breaks. Because replicating DNA requires repair of DNA double-strand breaks, these cancers have become reliant on another DNA repair component, PARP1, for replication fork progression. The inhibition of PARP1 in these cells results in catastrophic double-strand breaks during replication, and ultimately cell death. The exploitation of the addiction of cancer cells to a DNA repair pathway is based on synthetic lethality and has wide applicability to the treatment of many types of malignancies, including those of hematologic origin. There is a large number of novel compounds in clinical trials that use this mechanism for their antineoplastic activity, making synthetic lethality one of the most important new concepts in recent drug development.
Collapse
|
367
|
Espeseth AS, Fishel R, Hazuda D, Huang Q, Xu M, Yoder K, Zhou H. siRNA screening of a targeted library of DNA repair factors in HIV infection reveals a role for base excision repair in HIV integration. PLoS One 2011; 6:e17612. [PMID: 21448273 PMCID: PMC3063162 DOI: 10.1371/journal.pone.0017612] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/31/2011] [Indexed: 12/19/2022] Open
Abstract
Host DNA repair enzymes have long been assumed to play a role in HIV replication,
and many different DNA repair factors have been associated with HIV. In order to
identify DNA repair pathways required for HIV infection, we conducted a targeted
siRNA screen using 232 siRNA pools for genes associated with DNA repair. Mapping
the genes targeted by effective siRNA pools to well-defined DNA repair pathways
revealed that many of the siRNAs targeting enzymes associated with the short
patch base excision repair (BER) pathway reduced HIV infection. For six siRNA
pools targeting BER enzymes, the negative effect of mRNA knockdown was rescued
by expression of the corresponding cDNA, validating the importance of the gene
in HIV replication. Additionally, mouse embryo fibroblasts (MEFs) lacking
expression of specific BER enzymes had decreased transduction by HIV-based
retroviral vectors. Examining the role BER enzymes play in HIV infection
suggests a role for the BER pathway in HIV integration.
Collapse
Affiliation(s)
- Amy S. Espeseth
- Department of Antiviral Research, Merck
Research Laboratories, West Point, Pennsylvania, United States of
America
- * E-mail: (ASE); (DH)
| | - Rick Fishel
- Department of Molecular Virology, Immunology,
and Medical Genetics, The Ohio State University Medical Center, Columbus, Ohio,
United States of America
| | - Daria Hazuda
- Department of Antiviral Research, Merck
Research Laboratories, West Point, Pennsylvania, United States of
America
- * E-mail: (ASE); (DH)
| | - Qian Huang
- Department of Antiviral Research, Merck
Research Laboratories, West Point, Pennsylvania, United States of
America
| | - Min Xu
- Department of Antiviral Research, Merck
Research Laboratories, West Point, Pennsylvania, United States of
America
| | - Kristine Yoder
- Department of Molecular Virology, Immunology,
and Medical Genetics, The Ohio State University Medical Center, Columbus, Ohio,
United States of America
| | - Honglin Zhou
- Department of Antiviral Research, Merck
Research Laboratories, West Point, Pennsylvania, United States of
America
| |
Collapse
|
368
|
|
369
|
Tichy ED, Liang L, Deng L, Tischfield J, Schwemberger S, Babcock G, Stambrook PJ. Mismatch and base excision repair proficiency in murine embryonic stem cells. DNA Repair (Amst) 2011; 10:445-51. [PMID: 21315663 DOI: 10.1016/j.dnarep.2011.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/20/2010] [Accepted: 01/12/2011] [Indexed: 02/02/2023]
Abstract
Accumulation of mutations in embryonic stem (ES) cells would be detrimental to an embryo derived from these cells, and would adversely affect multiple organ systems and tissue types. ES cells have evolved multiple mechanisms to preserve genomic integrity that extend beyond those found in differentiated cell types. The present study queried whether mismatch repair (MMR) and base-excision repair (BER) may play a role in the maintenance of murine ES cell genomes. The MMR proteins Msh2 and Msh6 are highly elevated in mouse ES cells compared with mouse embryo fibroblasts (MEFs), as are Pms2 and Mlh1, albeit to a lesser extent. Cells transfected with an MMR reporter plasmid showed that MMR repair capacity is low in MEFs, but highly active in wildtype ES cells. As expected, an ES cell line defective in MMR was several-fold less effective in repair level than wildtype ES cells. Like proteins that participate in MMR, the level of proteins involved in BER was elevated in ES cells compared with MEFs. When BER activity was examined biochemically using a uracil-containing oligonucleotide template, repair activity was higher in ES cells compared with MEFs. The data are consistent with the suggestion that ES cells have multiple mechanisms, including highly active MMR and BER that preserve genetic integrity and minimize the accumulation of mutations.
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | | | | | | | | | |
Collapse
|
370
|
Souza LR, Fonseca-Silva T, Pereira CS, Santos EP, Lima LC, Carvalho HA, Gomez RS, Guimarães ALS, De Paula AMB. Immunohistochemical analysis of p53, APE1, hMSH2 and ERCC1 proteins in actinic cheilitis and lip squamous cell carcinoma. Histopathology 2011; 58:352-60. [PMID: 21323960 DOI: 10.1111/j.1365-2559.2011.03756.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS This study has compared the tissue expression of the p53 tumour suppressor protein and DNA repair proteins APE1, hMSH2 and ERCC1 in normal, dysplastic and malignant lip epithelium. METHODS AND RESULTS Morphological analysis and immunohistochemistry were performed on archived specimens of normal lip mucosa (n=15), actinic cheilitis (AC) (n=30), and lip squamous cell carcinoma (LSCC) (n=27). AC samples were classified morphologically according to the severity of epithelial dysplasia and risk of malignant transformation. LSCC samples were morphologically staged according to WHO and invasive front grading (IFG) criteria. Differences between groups and morphological stages were determined by bivariate statistical analysis. Progressive increases in the percentage of epithelial cells expressing p53 and APE1 were associated with increases in morphological malignancy from normal lip mucosa to LSCC. There was also a significant reduction in epithelial cells expressing hMSH2 and ERCC1 proteins in the AC and LSCC groups. A higher percentage of malignant cells expressing APE1 was found in samples with an aggressive morphological IFG grade. CONCLUSIONS Our data showed that epithelial cells from premalignant to malignant lip disease exhibited changes in the expression of p53, APE1, hMSH2 and ERCC1 proteins; these molecular change might contribute to lip carcinogenesis.
Collapse
Affiliation(s)
- Ludmilla R Souza
- Health Science Programme, State University of Montes Claros, Montes Claros, MG, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Leloup C, Hopkins KM, Wang X, Zhu A, Wolgemuth DJ, Lieberman HB. Mouse Rad9b is essential for embryonic development and promotes resistance to DNA damage. Dev Dyn 2011; 239:2837-50. [PMID: 20842695 DOI: 10.1002/dvdy.22415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
RAD9 participates in promoting resistance to DNA damage, cell cycle checkpoint control, DNA repair, apoptosis, embryogenesis, and regulation of transcription. A paralogue of RAD9 (named RAD9B) has been identified. To define the function of mouse Rad9b (Mrad9b), embryonic stem (ES) cells with a targeted gene deletion were constructed and used to generate Mrad9b mutant mice. Mrad9b(-/-) embryos are resorbed after E7.5 while some of the heterozygotes die between E12.5 and a few days after birth. Mrad9b is expressed in embryonic brain and Mrad9b(+/-) embryos exhibit abnormal neural tube closure. Mrad9b(-/-) mouse embryonic fibroblasts are not viable. Mrad9b(-/-) ES cells are more sensitive to gamma rays and mitomycin C than Mrad9b(+/+) controls, but show normal gamma-ray-induced G2/M checkpoint control. There is no evidence of spontaneous genomic instability in Mrad9b(-/-) cells. Our findings thus indicate that Mrad9b is essential for embryonic development and mediates resistance to certain DNA damaging agents.
Collapse
Affiliation(s)
- Corinne Leloup
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
372
|
Jensen NM, Dalsgaard T, Jakobsen M, Nielsen RR, Sørensen CB, Bolund L, Jensen TG. An update on targeted gene repair in mammalian cells: methods and mechanisms. J Biomed Sci 2011; 18:10. [PMID: 21284895 PMCID: PMC3042377 DOI: 10.1186/1423-0127-18-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/02/2011] [Indexed: 11/10/2022] Open
Abstract
Transfer of full-length genes including regulatory elements has been the preferred gene therapy strategy for clinical applications. However, with significant drawbacks emerging, targeted gene alteration (TGA) has recently become a promising alternative to this method. By means of TGA, endogenous DNA repair pathways of the cell are activated leading to specific genetic correction of single-base mutations in the genome. This strategy can be implemented using single-stranded oligodeoxyribonucleotides (ssODNs), small DNA fragments (SDFs), triplex-forming oligonucleotides (TFOs), adeno-associated virus vectors (AAVs) and zinc-finger nucleases (ZFNs). Despite difficulties in the use of TGA, including lack of knowledge on the repair mechanisms stimulated by the individual methods, the field holds great promise for the future. The objective of this review is to summarize and evaluate the different methods that exist within this particular area of human gene therapy research.
Collapse
Affiliation(s)
- Nanna M Jensen
- Institute of Human Genetics, The Bartholin Building, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
373
|
Cortázar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E, Wirz A, Schuermann D, Jacobs AL, Siegrist F, Steinacher R, Jiricny J, Bird A, Schär P. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 2011; 470:419-23. [PMID: 21278727 DOI: 10.1038/nature09672] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 11/17/2010] [Indexed: 12/18/2022]
Abstract
Thymine DNA glycosylase (TDG) is a member of the uracil DNA glycosylase (UDG) superfamily of DNA repair enzymes. Owing to its ability to excise thymine when mispaired with guanine, it was proposed to act against the mutability of 5-methylcytosine (5-mC) deamination in mammalian DNA. However, TDG was also found to interact with transcription factors, histone acetyltransferases and de novo DNA methyltransferases, and it has been associated with DNA demethylation in gene promoters following activation of transcription, altogether implicating an engagement in gene regulation rather than DNA repair. Here we use a mouse genetic approach to determine the biological function of this multifaceted DNA repair enzyme. We find that, unlike other DNA glycosylases, TDG is essential for embryonic development, and that this phenotype is associated with epigenetic aberrations affecting the expression of developmental genes. Fibroblasts derived from Tdg null embryos (mouse embryonic fibroblasts, MEFs) show impaired gene regulation, coincident with imbalanced histone modification and CpG methylation at promoters of affected genes. TDG associates with the promoters of such genes both in fibroblasts and in embryonic stem cells (ESCs), but epigenetic aberrations only appear upon cell lineage commitment. We show that TDG contributes to the maintenance of active and bivalent chromatin throughout cell differentiation, facilitating a proper assembly of chromatin-modifying complexes and initiating base excision repair to counter aberrant de novo methylation. We thus conclude that TDG-dependent DNA repair has evolved to provide epigenetic stability in lineage committed cells.
Collapse
Affiliation(s)
- Daniel Cortázar
- Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, 4048 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Chen H, Sun C, Guo W, Meng R, Du H, Qi Q, Gu X, Li L, Zhang K, Zhu D, Wang Y. AluYb8 insertion in the MUTYH gene is related to increased 8-OHdG in genomic DNA and could be a risk factor for type 2 diabetes in a Chinese population. Mol Cell Endocrinol 2011; 332:301-5. [PMID: 21112374 DOI: 10.1016/j.mce.2010.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/04/2010] [Accepted: 11/19/2010] [Indexed: 02/08/2023]
Abstract
The Mutyh DNA glycosylase is involved in the repair of oxidized DNA bases. Because oxidative stress may contribute to increased diabetes risk, the common variant of the MUTYH gene (AluYb8MUTYH) was investigated for its possible role in type 2 diabetes mellitus (T2DM). A total of 565 T2DM patients and 565 healthy subjects from China were enrolled in a case-control study. The distribution of AluYb8MUTYH differed in diabetic patients from controls, with a moderately increased percentage of the mutant allele (P) (44.7% versus 40.3%, P = 0.033, OR = 1.199). However, this distribution was similar between the diabetic early-onset and late-onset subgroups. Another 66 T2DM patients were further evaluated for 8-hydroxy-2'deoxyguanosine (8-OHdG) levels in leukocytic DNA. The average value of 8-OHdG/10(6) dG was 10.4 in patients with the wild-type genotype, 15.9 in heterozygotes, and 22.3 in homozygotes with the variation (P < 0.001, compared with the wild-type). Therefore, the AluYb8MUTYH polymorphism could be a novel genetic risk factor for T2DM, and accumulated 8-OHdG could contribute to this disease.
Collapse
Affiliation(s)
- Huimei Chen
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China; Jiangsu Key Lab of Molecular Medicine, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Schär P, Fritsch O. DNA repair and the control of DNA methylation. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2011; 67:51-68. [PMID: 21141724 DOI: 10.1007/978-3-7643-8989-5_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The successful establishment and stable maintenance of cell identity are critical for organismal development and tissue homeostasis. Cell identity is provided by epigenetic mechanisms that facilitate a selective readout of the genome. Operating at the level of chromatin, they establish defined gene expression programs during cell differentiation. Among the epigenetic modifications in mammalian chromatin, the 5'-methylation of cytosine in CpG dinucleotides is unique in that it affects the DNA rather than histones and the biochemistry of the DNA methylating enzymes offers a mechanistic explanation for stable inheritance. Yet, DNA methylation states appear to be more dynamic and their maintenance more complex than existing models predict. Also, methylation patterns are by far not always faithfully inherited, as best exemplified by human cancers. Often, these show widespread hypo- or hypermethylation across their genomes, reflecting an underlying epigenetic instability that may have contributed to carcinogenesis. The phenotype of unstable methylation in cancer illustrates the importance of quality control in the DNA methylation system and implies the existence of proof-reading mechanisms that enforce fidelity to DNA methylation in healthy tissue. Fidelity seems particularly important in islands of unmethylated CpG-rich sequences where an accurate maintenance of un- or differentially methylated states is critical for stable expression of nearby genes. Methylation proof-reading in such sequences requires a system capable of recognition and active demethylation of erroneously methylated CpGs. Active demethylation of 5-methylcytosine has been known to occur for long, but the underlying mechanisms have remained enigmatic and controversial. However, recent progress in this direction substantiates a role of DNA repair in such processes. This review will address general aspects of cytosine methylation stability in mammalian DNA and explore a putative role of DNA repair in methylation control.
Collapse
Affiliation(s)
- Primo Schär
- Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
376
|
Gredilla R. DNA damage and base excision repair in mitochondria and their role in aging. J Aging Res 2010; 2011:257093. [PMID: 21234332 PMCID: PMC3018712 DOI: 10.4061/2011/257093] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/14/2010] [Indexed: 12/28/2022] Open
Abstract
During the last decades, our knowledge about the processes involved in the aging process has exponentially increased. However, further investigation will be still required to globally understand the complexity of aging. Aging is a multifactorial phenomenon characterized by increased susceptibility to cellular loss and functional decline, where mitochondrial DNA mutations and mitochondrial DNA damage response are thought to play important roles. Due to the proximity of mitochondrial DNA to the main sites of mitochondrial-free radical generation, oxidative stress is a major source of mitochondrial DNA mutations. Mitochondrial DNA repair mechanisms, in particular the base excision repair pathway, constitute an important mechanism for maintenance of mitochondrial DNA integrity. The results reviewed here support that mitochondrial DNA damage plays an important role in aging.
Collapse
Affiliation(s)
- Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Plaza Ramón y Cajal s/n. 28040 Madrid, Spain
| |
Collapse
|
377
|
Abstract
Genomic DNA displays a non canonical structure prone to be damaged and modified by genotoxic stresses, which are induced either by the endogenous metabolism or attacks from environment or therapeutic pressure. Several molecular pathways allow cells to repair such DNA lesions. Additional mechanisms have been selected to bypass such damage at the price of mutations. The maintenance of the genome is thus mediated by the respect of a balance between accurate and inaccurate DNA transactions. This review deals with the tumor suppressor role of such equilibrium, as well as the impact of an unbalance on carcinogenesis.
Collapse
|
378
|
Hang B. Formation and repair of tobacco carcinogen-derived bulky DNA adducts. J Nucleic Acids 2010; 2010:709521. [PMID: 21234336 PMCID: PMC3017938 DOI: 10.4061/2010/709521] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/16/2010] [Accepted: 09/17/2010] [Indexed: 01/08/2023] Open
Abstract
DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N-nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O6-alkylguanine DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.
Collapse
Affiliation(s)
- Bo Hang
- Life Sciences Division, Department of Cancer and DNA Damage Responses, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
379
|
Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010; 2010:592980. [PMID: 21209706 PMCID: PMC3010660 DOI: 10.4061/2010/592980] [Citation(s) in RCA: 603] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/15/2010] [Accepted: 09/28/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280-315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining), SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms.
Collapse
Affiliation(s)
- Rajesh P Rastogi
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | |
Collapse
|
380
|
Wilson DM, Kim D, Berquist BR, Sigurdson AJ. Variation in base excision repair capacity. Mutat Res 2010; 711:100-12. [PMID: 21167187 DOI: 10.1016/j.mrfmmm.2010.12.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/29/2010] [Accepted: 12/07/2010] [Indexed: 01/20/2023]
Abstract
The major DNA repair pathway for coping with spontaneous forms of DNA damage, such as natural hydrolytic products or oxidative lesions, is base excision repair (BER). In particular, BER processes mutagenic and cytotoxic DNA lesions such as non-bulky base modifications, abasic sites, and a range of chemically distinct single-strand breaks. Defects in BER have been linked to cancer predisposition, neurodegenerative disorders, and immunodeficiency. Recent data indicate a large degree of sequence variability in DNA repair genes and several studies have associated BER gene polymorphisms with disease risk, including cancer of several sites. The intent of this review is to describe the range of BER capacity among individuals and the functional consequences of BER genetic variants. We also discuss studies that associate BER deficiency with disease risk and the current state of BER capacity measurement assays.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.
| | | | | | | |
Collapse
|
381
|
Zhu Y, Stroud J, Song L, Parris DS. Kinetic approaches to understanding the mechanisms of fidelity of the herpes simplex virus type 1 DNA polymerase. J Nucleic Acids 2010; 2010:631595. [PMID: 21197400 PMCID: PMC3010682 DOI: 10.4061/2010/631595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/13/2010] [Accepted: 09/30/2010] [Indexed: 12/25/2022] Open
Abstract
We discuss how the results of presteady-state and steady-state kinetic analysis of the polymerizing and excision activities of herpes simplex virus type 1 (HSV-1) DNA polymerase have led to a better understanding of the mechanisms controlling fidelity of this important model replication polymerase. Despite a poorer misincorporation frequency compared to other replicative polymerases with intrinsic 3′ to 5′ exonuclease (exo) activity, HSV-1 DNA replication fidelity is enhanced by a high kinetic barrier to extending a primer/template containing a mismatch or abasic lesion and by the dynamic ability of the polymerase to switch the primer terminus between the exo and polymerizing active sites. The HSV-1 polymerase with a catalytically inactivated exo activity possesses reduced rates of primer switching and fails to support productive replication, suggesting a novel means to target polymerase for replication inhibition.
Collapse
Affiliation(s)
- Yali Zhu
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, 2198 Graves Hall, 333 West Tenth Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
382
|
Germann MW, Johnson CN, Spring AM. Recognition of Damaged DNA: Structure and Dynamic Markers. Med Res Rev 2010; 32:659-83. [DOI: 10.1002/med.20226] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Markus W. Germann
- Department of Chemistry; Georgia State University; Atlanta Georgia 30302
- Department of Biology and the Neuroscience Institute; Georgia State University; Atlanta Georgia 30302
| | | | | |
Collapse
|
383
|
Milanowska K, Krwawicz J, Papaj G, Kosinski J, Poleszak K, Lesiak J, Osinska E, Rother K, Bujnicki JM. REPAIRtoire--a database of DNA repair pathways. Nucleic Acids Res 2010; 39:D788-92. [PMID: 21051355 PMCID: PMC3013684 DOI: 10.1093/nar/gkq1087] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
REPAIRtoire is the first comprehensive database resource for systems biology of DNA damage and repair. The database collects and organizes the following types of information: (i) DNA damage linked to environmental mutagenic and cytotoxic agents, (ii) pathways comprising individual processes and enzymatic reactions involved in the removal of damage, (iii) proteins participating in DNA repair and (iv) diseases correlated with mutations in genes encoding DNA repair proteins. REPAIRtoire provides also links to publications and external databases. REPAIRtoire contains information about eight main DNA damage checkpoint, repair and tolerance pathways: DNA damage signaling, direct reversal repair, base excision repair, nucleotide excision repair, mismatch repair, homologous recombination repair, nonhomologous end-joining and translesion synthesis. The pathway/protein dataset is currently limited to three model organisms: Escherichia coli, Saccharomyces cerevisiae and Homo sapiens. The DNA repair and tolerance pathways are represented as graphs and in tabular form with descriptions of each repair step and corresponding proteins, and individual entries are cross-referenced to supporting literature and primary databases. REPAIRtoire can be queried by the name of pathway, protein, enzymatic complex, damage and disease. In addition, a tool for drawing custom DNA-protein complexes is available online. REPAIRtoire is freely available and can be accessed at http://repairtoire.genesilico.pl/.
Collapse
Affiliation(s)
- Kaja Milanowska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul Ks Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
384
|
Wilson DM, Simeonov A. Small molecule inhibitors of DNA repair nuclease activities of APE1. Cell Mol Life Sci 2010; 67:3621-31. [PMID: 20809131 PMCID: PMC2956791 DOI: 10.1007/s00018-010-0488-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
APE1 is a multifunctional protein that possesses several nuclease activities, including the ability to incise at apurinic/apyrimidinic (AP) sites in DNA or RNA, to excise 3'-blocking termini from DNA ends, and to cleave at certain oxidized base lesions in DNA. Pre-clinical and clinical data indicate a role for APE1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs, particularly monofunctional alkylators and antimetabolites. In an effort to improve the efficacy of therapeutic compounds, such as temozolomide, groups have begun to develop high-throughput screening assays and to identify small molecule inhibitors against APE1 repair nuclease activities. It is envisioned that such inhibitors will be used in combinatorial treatment paradigms to enhance the efficacy of DNA-interactive drugs that introduce relevant cytotoxic DNA lesions. In this review, we summarize the current state of the efforts to design potent and selective inhibitors against APE1 AP site incision activity.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, IRP, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | |
Collapse
|
385
|
Rhee DB, Ghosh A, Lu J, Bohr VA, Liu Y. Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1. DNA Repair (Amst) 2010; 10:34-44. [PMID: 20951653 DOI: 10.1016/j.dnarep.2010.09.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/08/2010] [Accepted: 09/17/2010] [Indexed: 12/15/2022]
Abstract
Telomeres are nucleoprotein complexes at the ends of linear chromosomes in eukaryotes, and are essential in preventing chromosome termini from being recognized as broken DNA ends. Telomere shortening has been linked to cellular senescence and human aging, with oxidative stress as a major contributing factor. 7,8-Dihydro-8-oxogaunine (8-oxodG) is one of the most abundant oxidative guanine lesions, and 8-oxoguanine DNA glycosylase (OGG1) is involved in its removal. In this study, we examined if telomeric DNA is particularly susceptible to oxidative base damage and if telomere-specific factors affect the incision of oxidized guanines by OGG1. We demonstrated that telomeric TTAGGG repeats were more prone to oxidative base damage and repaired less efficiently than non-telomeric TG repeats in vivo. We also showed that the 8-oxodG-incision activity of OGG1 is similar in telomeric and non-telomeric double-stranded substrates. In addition, telomere repeat binding factors TRF1 and TRF2 do not impair OGG1 incision activity. Yet, 8-oxodG in some telomere structures (e.g., fork-opening, 3'-overhang, and D-loop) were less effectively excised by OGG1, depending upon its position in these substrates. Collectively, our data indicate that the sequence context of telomere repeats and certain telomere configurations may contribute to telomere vulnerability to oxidative DNA damage processing.
Collapse
Affiliation(s)
- David B Rhee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | | | | | | | | |
Collapse
|
386
|
Morita R, Nakane S, Shimada A, Inoue M, Iino H, Wakamatsu T, Fukui K, Nakagawa N, Masui R, Kuramitsu S. Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems. J Nucleic Acids 2010; 2010:179594. [PMID: 20981145 PMCID: PMC2957137 DOI: 10.4061/2010/179594] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/27/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly in Thermus thermophilus HB8.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Passos-Silva DG, Rajão MA, Nascimento de Aguiar PH, Vieira-da-Rocha JP, Machado CR, Furtado C. Overview of DNA Repair in Trypanosoma cruzi, Trypanosoma brucei, and Leishmania major. J Nucleic Acids 2010; 2010:840768. [PMID: 20976268 PMCID: PMC2952945 DOI: 10.4061/2010/840768] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/29/2010] [Accepted: 08/25/2010] [Indexed: 12/18/2022] Open
Abstract
A wide variety of DNA lesions arise due to environmental agents, normal cellular metabolism, or intrinsic weaknesses in the chemical bonds of DNA. Diverse cellular mechanisms have evolved to maintain genome stability, including mechanisms to repair damaged DNA, to avoid the incorporation of modified nucleotides, and to tolerate lesions (translesion synthesis). Studies of the mechanisms related to DNA metabolism in trypanosomatids have been very limited. Together with recent experimental studies, the genome sequencing of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major, three related pathogens with different life cycles and disease pathology, has revealed interesting features of the DNA repair mechanism in these protozoan parasites, which will be reviewed here.
Collapse
Affiliation(s)
- Danielle Gomes Passos-Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
388
|
Decordier I, Loock KV, Kirsch-Volders M. Phenotyping for DNA repair capacity. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2010; 705:107-129. [PMID: 20478396 DOI: 10.1016/j.mrrev.2010.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 12/21/2022]
Affiliation(s)
- Ilse Decordier
- Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel, Belgium.
| | - Kim Vande Loock
- Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel, Belgium
| | | |
Collapse
|
389
|
Shaheen M, Shanmugam I, Hromas R. The Role of PCNA Posttranslational Modifications in Translesion Synthesis. J Nucleic Acids 2010; 2010. [PMID: 20847899 PMCID: PMC2935186 DOI: 10.4061/2010/761217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/17/2010] [Accepted: 07/01/2010] [Indexed: 01/19/2023] Open
Abstract
Organisms are predisposed to different types in DNA damage. Multiple mechanisms have evolved to deal with the individual DNA lesions. Translesion synthesis is a special pathway that enables the replication fork to bypass blocking lesions. Proliferative Cell Nuclear Antigen (PCNA), which is an essential component of the fork, undergoes posttranslational modifications, particularly ubiquitylation and sumoylation that are critical for lesion bypass and for filling of DNA gaps which result from this bypass. A special ubiquitylation system, represented by the Rad6 group of ubiquitin conjugating and ligating enzymes, mediates PCNA mono- and polyubiquitylation in response to fork stalling. The E2 SUMO conjugating enzyme Ubc9 and the E3 SUMO ligase Siz1 are responsible for PCNA sumoylation during undisturbed S phase and in response to fork stalling as well. PCNA monoubiquitylation mediated by Rad6/Rad18 recruits special polymerases to bypass the lesion and fill in the DNA gaps. PCNA polyubiquitylation achieved by ubc13-mms2/Rad 5 in yeast mediates an error-free pathway of lesion bypass likely through template switch. PCNA sumoylation appears required for this error-free pathway, and it plays an antirecombinational role during normal replication by recruiting the helicase Srs2 to prevent sister chromatid exchange and hyper-recombination.
Collapse
Affiliation(s)
- Montaser Shaheen
- Department of Internal Medicine and the University of New Mexico Cancer Center, University of New Mexico Health Science Center, MSC08 4630, 900 Camino de Salud, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
390
|
Maynard S, de Souza-Pinto NC, Scheibye-Knudsen M, Bohr VA. Mitochondrial base excision repair assays. Methods 2010; 51:416-25. [PMID: 20188838 PMCID: PMC2916069 DOI: 10.1016/j.ymeth.2010.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 12/12/2022] Open
Abstract
The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur. Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA glycosylases, AP endonuclease, DNA polymerase (POLgamma in mitochondria) and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene-specific repair assays, chromatographic techniques as well as current optimizations for detecting 8-oxoG lesions in cells by immunofluorescence. Throughout the assay descriptions we will include methodological considerations that may help optimize the assays in terms of resolution and repeatability.
Collapse
Affiliation(s)
- Scott Maynard
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21236, USA
| | | | | | | |
Collapse
|
391
|
Jowsey PA, Williams FM, Blain PG. The role of homologous recombination in the cellular response to sulphur mustard. Toxicol Lett 2010; 197:12-8. [DOI: 10.1016/j.toxlet.2010.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/21/2010] [Accepted: 04/23/2010] [Indexed: 01/19/2023]
|
392
|
Sterpone S, Cozzi R. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair. J Nucleic Acids 2010; 2010:780369. [PMID: 20798883 PMCID: PMC2925273 DOI: 10.4061/2010/780369] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/19/2010] [Indexed: 12/19/2022] Open
Abstract
It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.
Collapse
Affiliation(s)
- Silvia Sterpone
- Department of Biology, University of “Roma TRE”, Viale Guglielmo Marconi 446, 00146 Rome, Italy
| | - Renata Cozzi
- Department of Biology, University of “Roma TRE”, Viale Guglielmo Marconi 446, 00146 Rome, Italy
| |
Collapse
|
393
|
Osiewacz HD, Brust D, Hamann A, Kunstmann B, Luce K, Müller-Ohldach M, Scheckhuber CQ, Servos J, Strobel I. Mitochondrial pathways governing stress resistance, life, and death in the fungal aging model Podospora anserina. Ann N Y Acad Sci 2010; 1197:54-66. [PMID: 20536834 DOI: 10.1111/j.1749-6632.2010.05190.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Work from more than 50 years of research has unraveled a number of molecular pathways that are involved in controlling aging of the fungal model system Podospora anserina. Early research revealed that wild-type strain aging is linked to gross reorganization of the mitochondrial DNA. Later it was shown that aging of P. anserina does also take place, although at a slower pace, when the wild-type specific mitochondrial DNA rearrangements do not occur. Now it is clear that a network of different pathways is involved in the control of aging. Branches of these pathways appear to be connected and constitute a hierarchical system of responses. Although cross talk between the individual pathways seems to be fundamental in the coordination of the overall system, the precise underlying interactions remain to be unraveled. Such a systematic approach aims at a holistic understanding of the process of biological aging, the ultimate goal of modern systems biology.
Collapse
Affiliation(s)
- Heinz D Osiewacz
- Institute of Molecular Biosciences, Faculty for Biosciences and Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
394
|
Ramos AA, Azqueta A, Pereira-Wilson C, Collins AR. Polyphenolic compounds from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in cultured human cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7465-7471. [PMID: 20486687 DOI: 10.1021/jf100082p] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA damage can lead to carcinogenesis if replication proceeds without proper repair. This study evaluated the effects of the water extracts of three Salvia sp., Salvia officinalis (SO), Salvia fruticosa (SF), and Salvia lavandulifolia (SL), and of the major phenolic constituents, rosmarinic acid (RA) and luteolin-7-glucoside (L-7-G), on DNA protection in Caco-2 and HeLa cells exposed to oxidative agents and on DNA repair in Caco-2 cells. The comet assay was used to measure DNA damage and repair capacity. The final concentration of each sage extract was 50 microg/mL, and concentrations of RA and L-7-G were 50 and 20 microM, respectively. After a short incubation (2 h), L-7-G protected DNA in Caco-2 cells from damage induced by H(2)O(2) (75 microM); also, after a long incubation (24 h), SF, RA, and L-7-G had protective effects in Caco-2 cells. In HeLa cells, SO, SF, and RA protected against damage induced by H(2)O(2) after 24 h of incubation. Assays of DNA repair show that SO, SF, and L-7-G increased the rate of DNA repair (rejoining of strand breaks) in Caco-2 cells treated with H(2)O(2). The incision activity of a Caco-2 cell extract on a DNA substrate containing specific damage (8-oxoGua) was also measured to evaluate effects on base excision repair (BER) activity. Preincubation for 24 h with SO and L-7-G had a BER inductive effect, increasing incision activity in Caco-2 cells. In conclusion, SO, SF, and the isolated compounds (RA and L-7-G) demonstrated chemopreventive activity by protecting cells against oxidative DNA damage and stimulating DNA repair (SO, SF, and L-7-G).
Collapse
Affiliation(s)
- Alice A Ramos
- Department of Nutrition, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
395
|
Luo M, He H, Kelley MR, Georgiadis MM. Redox regulation of DNA repair: implications for human health and cancer therapeutic development. Antioxid Redox Signal 2010; 12:1247-69. [PMID: 19764832 PMCID: PMC2864659 DOI: 10.1089/ars.2009.2698] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Redox reactions are known to regulate many important cellular processes. In this review, we focus on the role of redox regulation in DNA repair both in direct regulation of specific DNA repair proteins as well as indirect transcriptional regulation. A key player in the redox regulation of DNA repair is the base excision repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1) in its role as a redox factor. APE1 is reduced by the general redox factor thioredoxin, and in turn reduces several important transcription factors that regulate expression of DNA repair proteins. Finally, we consider the potential for chemotherapeutic development through the modulation of APE1's redox activity and its impact on DNA repair.
Collapse
Affiliation(s)
- Meihua Luo
- Department of Pediatrics (Section of Hematology/Oncology), Herman B. Wells Center for Pediatric Research, Indiana University, Indiana
| | - Hongzhen He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
| | - Mark R. Kelley
- Department of Pediatrics (Section of Hematology/Oncology), Herman B. Wells Center for Pediatric Research, Indiana University, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indiana
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| |
Collapse
|
396
|
Bapat A, Glass LS, Luo M, Fishel ML, Long EC, Georgiadis MM, Kelley MR. Novel small-molecule inhibitor of apurinic/apyrimidinic endonuclease 1 blocks proliferation and reduces viability of glioblastoma cells. J Pharmacol Exp Ther 2010; 334:988-98. [PMID: 20504914 DOI: 10.1124/jpet.110.169128] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apurinic/apyrimidinic (AP) endonuclease 1 (Ape1) is an essential DNA repair protein that plays a critical role in repair of AP sites via base excision repair. Ape1 has received attention as a druggable oncotherapeutic target, especially for treating intractable cancers such as glioblastoma. The goal of this study was to identify small-molecule inhibitors of Ape1 AP endonuclease. For this purpose, a fluorescence-based high-throughput assay was used to screen a library of 60,000 small-molecule compounds for ability to inhibit Ape1 AP endonuclease activity. Four compounds with IC(50) values less than 10 microM were identified, validated, and characterized. One of the most promising compounds, designated Ape1 repair inhibitor 03 [2,4,9-trimethylbenzo[b][1,8]-naphthyridin-5-amine; AR03), inhibited cleavage of AP sites in vivo in SF767 glioblastoma cells and in vitro in whole cell extracts and inhibited purified human Ape1 in vitro. AR03 has low affinity for double-stranded DNA and weakly inhibits the Escherichia coli endonuclease IV, requiring a 20-fold higher concentration than for inhibition of Ape1. AR03 also potentiates the cytotoxicity of methyl methanesulfonate and temozolomide in SF767 cells. AR03 is chemically distinct from the previously reported small-molecule inhibitors of Ape1. AR03 is a novel small-molecule inhibitor of Ape1, which may have potential as an oncotherapeutic drug for treating glioblastoma and other cancers.
Collapse
Affiliation(s)
- Aditi Bapat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
397
|
Rowe BP, Glazer PM. Emergence of rationally designed therapeutic strategies for breast cancer targeting DNA repair mechanisms. Breast Cancer Res 2010; 12:203. [PMID: 20459590 PMCID: PMC2879573 DOI: 10.1186/bcr2566] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Accumulating evidence suggests that many cancers, including BRCA1- and BRCA2-associated breast cancers, are deficient in DNA repair processes. Both hereditary and sporadic breast cancers have been found to have significant downregulation of repair factors. This has provided opportunities to exploit DNA repair deficiencies, whether acquired or inherited. Here, we review efforts to exploit DNA repair deficiencies in tumors, with a focus on breast cancer. A variety of agents, including PARP (poly [ADP-ribose] polymerase) inhibitors, are currently under investigation in clinical trials and available results will be reviewed.
Collapse
Affiliation(s)
- Bryan P Rowe
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA.
| | | |
Collapse
|
398
|
Abstract
The repair of lesions and gaps in DNA follows different pathways, each mediated by specific proteins and complexes. Post-translational modifications in many of these proteins govern their activities and interactions, ultimately determining whether a particular pathway is followed. Prominent among these modifications are the addition of phosphate or ubiquitin (and ubiquitin-like) moieties that confer new binding surfaces and conformational states on the modified proteins. The present review summarizes some of consequences of ubiquitin and ubiquitin-like modifications and interactions that regulate nucleotide excision repair, translesion synthesis, double-strand break repair and interstrand cross-link repair, with the discussion of relevant examples in each pathway.
Collapse
|
399
|
Thyagarajan B, Lindgren B, Basu S, Nagaraj S, Gross MD, Weisdorf DJ, Arora M. Association between genetic variants in the base excision repair pathway and outcomes after hematopoietic cell transplantations. Biol Blood Marrow Transplant 2010; 16:1084-9. [PMID: 20226869 DOI: 10.1016/j.bbmt.2010.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 03/01/2010] [Indexed: 11/24/2022]
Abstract
Alkylating agents with or without ionizing radiation are frequently used in pretransplant conditioning regimens. Damage induced by these agents is commonly repaired by the base excision repair (BER) pathway. Hence, we hypothesized that genetic polymorphisms in the BER pathway will be associated with posthematopoietic cell transplant (HCT) outcomes. We evaluated the association between single nucleotide polymorphisms (SNPs) (n = 179) in the BER pathway with treatment-related mortality (TRM) at 1 year and disease relapse in a cohort of 470 recipients who underwent allogeneic HCT for treatment of hematologic malignancies at the University of Minnesota. After adjustment for age at transplant, donor type, race, and conditioning regimen, 4 SNPs in OGGI, LIG3, and MUTYH genes (rs159153, rs3135974, rs3219463, and rs3219476) were associated with increased risk of TRM, whereas 2 SNPs in the TDG gene (rs167715 and rs2374327) were associated with decreased risk of TRM at 1 year (P <or= .01). Patients with increasing numbers of deleterious alleles in the BER pathway showed a higher cumulative incidence of TRM at 1 year (51% for >or=4 deleterious alleles versus 14% for <or=1 deleterious allele; P < .001). One SNP, rs3135974, in the LIG3 gene, was associated with decreased risk of disease relapse (P < .001) post-HCT. These findings suggest that SNPs in the BER pathway can be used as genetic biomarkers to predict individuals at high risk for TRM and disease relapse. Modulation of pretransplant conditioning may alter risk in these patients.
Collapse
Affiliation(s)
- Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
400
|
Wilson DM, Seidman MM. A novel link to base excision repair? Trends Biochem Sci 2010; 35:247-52. [PMID: 20172733 DOI: 10.1016/j.tibs.2010.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/07/2010] [Accepted: 01/15/2010] [Indexed: 01/04/2023]
Abstract
DNA interstrand crosslinks (ICLs) can arise from reactions with endogenous chemicals, such as malondialdehyde - a lipid peroxidation product - or from exposure to various clinical anti-cancer drugs, most notably bifunctional alkylators and platinum compounds. Because they covalently link the two strands of DNA, ICLs completely block transcription and replication, and, as a result, are lethal to the cell. It is well established that proteins that function in nucleotide excision repair and homologous recombination are involved in ICL resolution. Recent work, coupled with a much earlier report, now suggest an emerging link between proteins of the base excision repair pathway and crosslink processing.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | |
Collapse
|