351
|
Alhouayek M, Rankin L, Gouveia-Figueira S, Fowler CJ. Interferon γ treatment increases endocannabinoid and related N-acylethanolamine levels in T84 human colon carcinoma cells. Br J Pharmacol 2018; 176:1470-1480. [PMID: 29313885 DOI: 10.1111/bph.14135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/17/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids and related N-acylethanolamines (NAEs) are involved in regulation of gut function, but relatively little is known as to whether inflammatory cytokines such as IFNγ affect their levels. We have investigated this in vitro using cultures of T84 colon cancer cells. EXPERIMENTAL APPROACH T84 cells, when cultured in monolayers, differentiate to form adult colonic crypt-like cells with excellent permeability barrier properties. The integrity of the permeability barrier in these monolayers was measured using transepithelial electrical resistance (TEER). NAE levels were determined by ultra-performance liquid chromatography-tandem mass spectrometric analysis. Expression of the enzymes involved in NAE and 2-arachidonoylglycerol (2-AG) turnover were assessed with qPCR. KEY RESULTS IFNγ treatment for 8 or 24 h increased levels of both endocannabinoids (anandamide and 2-AG) and the related NAEs. The treatment did not affect the rate of hydrolysis of either anandamide or palmitoylethanolamide by intact cells, and in both cases, fatty acid amide hydrolase (FAAH) rather than NAE-hydrolysing acid amidase (NAAA) was mainly responsible for the hydrolysis of these NAEs. IFNγ treatment reduced the TEER of the cells in a manner that was not prevented by inhibition of either FAAH or NAAA but was partially reversed by apical administration of the NAE palmitoylethanolamide. CONCLUSION AND IMPLICATIONS IFNγ treatment mobilized endocannabinoid and related NAE levels in T84 cells. However, blockade of anandamide or NAE hydrolysis was insufficient to negate the deleterious effects of this cytokine upon the permeability barrier of the cell monolayers. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| | - Linda Rankin
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| | | | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
352
|
Optimization of the metabolic stability of a fluorinated cannabinoid receptor subtype 2 (CB2) ligand designed for PET studies. Eur J Med Chem 2018; 146:409-422. [DOI: 10.1016/j.ejmech.2018.01.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 01/16/2023]
|
353
|
Heimann D, Börgel F, de Vries H, Bachmann K, Rose VE, Frehland B, Schepmann D, Heitman LH, Wünsch B. Optimization of pharmacokinetic properties by modification of a carbazole-based cannabinoid receptor subtype 2 (CB2) ligand. Eur J Med Chem 2018; 143:1436-1447. [DOI: 10.1016/j.ejmech.2017.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/16/2022]
|
354
|
Maternal high-fat diet induces sex-specific endocannabinoid system changes in newborn rats and programs adiposity, energy expenditure and food preference in adulthood. J Nutr Biochem 2018; 51:56-68. [DOI: 10.1016/j.jnutbio.2017.09.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022]
|
355
|
Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder. Neuropsychopharmacology 2018; 43:80-102. [PMID: 28745306 PMCID: PMC5719095 DOI: 10.1038/npp.2017.162] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
Abstract
Exposure to stress is an undeniable, but in most cases surmountable, part of life. However, in certain individuals, exposure to severe or cumulative stressors can lead to an array of pathological conditions including posttraumatic stress disorder (PTSD), characterized by debilitating trauma-related intrusive thoughts, avoidance behaviors, hyperarousal, as well as depressed mood and anxiety. In the context of the rapidly changing political and legal landscape surrounding use of cannabis products in the USA, there has been a surge of public and research interest in the role of cannabinoids in the regulation of stress-related biological processes and in their potential therapeutic application for stress-related psychopathology. Here we review the current state of knowledge regarding the effects of cannabis and cannabinoids in PTSD and the preclinical and clinical literature on the effects of cannabinoids and endogenous cannabinoid signaling systems in the regulation of biological processes related to the pathogenesis of PTSD. Potential therapeutic implications of the reviewed literature are also discussed. Finally, we propose that a state of endocannabinoid deficiency could represent a stress susceptibility endophenotype predisposing to the development of trauma-related psychopathology and provide biologically plausible support for the self-medication hypotheses used to explain high rates of cannabis use in patients with trauma-related disorders.
Collapse
|
356
|
Ward SJ, Castelli F, Reichenbach ZW, Tuma RF. Surprising outcomes in cannabinoid CB1/CB2 receptor double knockout mice in two models of ischemia. Life Sci 2017; 195:1-5. [PMID: 29288767 DOI: 10.1016/j.lfs.2017.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022]
Abstract
AIMS We tested the hypothesis that CB1/CB2 receptor double knockout would produce significant increases in infarct size and volume and significant worsening in clinical score, using two mouse models, one of permanent ischemia and one of ischemia/reperfusion. MAIN METHODS Focal cerebral infarcts were created using either photo induced permanent injury or transient middle cerebral artery occlusion. Infarct volume and motor function were evaluated in cannabinoid receptor 1/cannabinoid receptor 2 double knockout mice. KEY FINDINGS The results surprisingly revealed that CB1/CB2 double knockout mice showed improved outcomes, with the most improvements in the mouse model of permanent ischemia. SIGNIFICANCE Although the number of individuals suffering from stroke in the United States and worldwide will continue to grow, therapeutic intervention for treatment following stroke remains frustratingly limited. Both the cannabinoid 1 receptor (CB1R) and the cannabinoid 2 receptor (CB2R) have been studied in relationship to stroke. Deletion of the CB2R has been shown to worsen outcome, while selective CB2R agonists have been demonstrated to be neuroprotective following stroke. Although initial studies of CB1R knockout mice demonstrated increased injury following stroke, indicating that activation of the CB1R was neuroprotective, later studies of selective antagonists of the CB1R also demonstrated a protective effect. Surprisingly the double knockout animals had improved outcome. Since the phenotype of the double knockout is not dramatically changed, significant changes in the contribution of other homeostatic pathways in compensation for the loss of these two important receptors may explain these apparently contradictory results.
Collapse
Affiliation(s)
- Sara Jane Ward
- Lewis Katz School of Medicine at Temple University, United States.
| | | | | | - Ronald F Tuma
- Lewis Katz School of Medicine at Temple University, United States
| |
Collapse
|
357
|
Hytti M, Andjelic S, Josifovska N, Piippo N, Korhonen E, Hawlina M, Kaarniranta K, Nevalainen TJ, Petrovski G, Parkkari T, Kauppinen A. CB 2 receptor activation causes an ERK1/2-dependent inflammatory response in human RPE cells. Sci Rep 2017; 7:16169. [PMID: 29170454 PMCID: PMC5701010 DOI: 10.1038/s41598-017-16524-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
A chronic low-level inflammation contributes to the pathogenesis of age-related macular degeneration (AMD), the most common cause of blindness in the elderly in Western countries. The loss of central vision results from attenuated maintenance of photoreceptors due to the degeneration of retinal pigment epithelium (RPE) cells beneath the photoreceptor layer. It has been proposed that pathologic inflammation initiated in RPE cells could be regulated by the activation of type 2 cannabinoid receptors (CB2). Here, we have analysed the effect of CB2 activation on cellular survival and inflammation in human RPE cells. RPE cells were treated with the selective CB2 agonist JWH-133 in the presence or absence of the oxidative stressor 4-hydroxynonenal. Thereafter, cellular viability as well as the release of pro-inflammatory cytokines and potential underlying signalling pathways were analysed. Our results show that JWH-133 led to increased intracellular Ca2+ levels, suggesting that RPE cells are capable of responding to a CB2 agonist. JWH-133 could not prevent oxidative stress-induced cell death. Instead, 10 µM JWH-133 increased cell death and the release of proinflammatory cytokines in an ERK1/2-dependent manner. In contrast to previous findings, CB2 activation increased, rather than reduced inflammation in RPE cells.
Collapse
Affiliation(s)
- M Hytti
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland. .,Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| | - S Andjelic
- Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | - N Josifovska
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - N Piippo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - E Korhonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - M Hawlina
- Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | - K Kaarniranta
- Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - T J Nevalainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - G Petrovski
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Centre of Eye Research, Department of Ophthalmology and the Norwegian Center for Stem Cell Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - T Parkkari
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - A Kauppinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
358
|
Smith DR, Stanley CM, Foss T, Boles RG, McKernan K. Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans. PLoS One 2017; 12:e0187926. [PMID: 29145497 PMCID: PMC5690672 DOI: 10.1371/journal.pone.0187926] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022] Open
Abstract
Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1), were found to be significantly associated with pain sensitivity (especially migraine), sleep and memory disorders—alone or in combination with anxiety—compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.
Collapse
Affiliation(s)
- Douglas R. Smith
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
- * E-mail:
| | | | - Theodore Foss
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
| | - Richard G. Boles
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
| | - Kevin McKernan
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
| |
Collapse
|
359
|
The Endocannabinoid System and Autism Spectrum Disorders: Insights from Animal Models. Int J Mol Sci 2017; 18:ijms18091916. [PMID: 28880200 PMCID: PMC5618565 DOI: 10.3390/ijms18091916] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) defines a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction with restricted or repetitive motor movements, frequently associated with general cognitive deficits. Although it is among the most severe chronic childhood disorders in terms of prevalence, morbidity, and impact to the society, no effective treatment for ASD is yet available, possibly because its neurobiological basis is not clearly understood hence specific drugs have not yet been developed. The endocannabinoid (EC) system represents a major neuromodulatory system involved in the regulation of emotional responses, behavioral reactivity to context, and social interaction. Furthermore, the EC system is also affected in conditions often present in subsets of patients diagnosed with ASD, such as seizures, anxiety, intellectual disabilities, and sleep pattern disturbances. Despite the indirect evidence suggestive of an involvement of the EC system in ASD, only a few studies have specifically addressed the role of the EC system in the context of ASD. This review describes the available data on the investigation of the presence of alterations of the EC system as well as the effects of its pharmacological manipulations in animal models of ASD-like behaviors.
Collapse
|
360
|
Pepcan-12 (RVD-hemopressin) is a CB2 receptor positive allosteric modulator constitutively secreted by adrenals and in liver upon tissue damage. Sci Rep 2017; 7:9560. [PMID: 28842619 PMCID: PMC5573408 DOI: 10.1038/s41598-017-09808-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022] Open
Abstract
Pepcan-12 (RVD-hemopressin; RVDPVNFKLLSH) is the major peptide of a family of endogenous peptide endocannabinoids (pepcans) shown to act as negative allosteric modulators (NAM) of cannabinoid CB1 receptors. Noradrenergic neurons have been identified to be a specific site of pepcan production. However, it remains unknown whether pepcans occur in the periphery and interact with peripheral CB2 cannabinoid receptors. Here, it is shown that pepcan-12 acts as a potent (Ki value ~50 nM) hCB2 receptor positive allosteric modulator (PAM). It significantly potentiated the effects of CB2 receptor agonists, including the endocannabinoid 2-arachidonoyl glycerol (2-AG), for [35S]GTPγS binding and cAMP inhibition (5–10 fold). In mice, the putative precursor pepcan-23 (SALSDLHAHKLRVDPVNFKLLSH) was identified with pepcan-12 in brain, liver and kidney. Pepcan-12 was increased upon endotoxemia and ischemia reperfusion damage where CB2 receptors play a protective role. The adrenals are a major endocrine site of production/secretion of constitutive pepcan-12, as shown by its marked loss after adrenalectomy. However, upon I/R damage pepcan-12 was strongly increased in the liver (from ~100 pmol/g to ~500 pmol/g) independent of adrenals. The wide occurrence of this endogenous hormone-like CB2 receptor PAM, with unforeseen opposite allosteric effects on cannabinoid receptors, suggests its potential role in peripheral pathophysiological processes.
Collapse
|
361
|
Cannabinoid Receptor 2 Modulates Neutrophil Recruitment in a Murine Model of Endotoxemia. Mediators Inflamm 2017; 2017:4315412. [PMID: 28852269 PMCID: PMC5567445 DOI: 10.1155/2017/4315412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 12/25/2022] Open
Abstract
The endocannabinoid system consists of endogenous lipid mediators and cannabinoid receptors (CB) 1 and 2. It has previously been demonstrated that activation of the leukocyte-expressed CB2 has anti-inflammatory effects in vivo. Here, we report its role under baseline conditions and in a model of low-dose endotoxemia by comparing CB2 knockout to littermate control mice. CB2-deficient mice displayed significantly more neutrophils and fewer monocytes in the bone marrow under steady state. In initial validation experiments, administration of 1 mg/kg LPS to male C57BL/6J mice was shown to transiently upregulate systemic proinflammatory mediators (peaked at 2 hours) and mobilise bone marrow neutrophils and monocytes into circulation. In CB2 knockout mice, the level of the metalloproteinase MMP-9 was significantly elevated by 2 hours and we also observed augmented recruitment of neutrophils to the spleen in addition to increased levels of Ccl2, Ccl3, Cxcl10, and Il6. Collectively, our data show that the absence of CB2 receptor increases the levels of innate immune cell populations in the bone marrow under steady state. Furthermore, during an acute systemic inflammatory insult, we observe a highly reproducible and site-specific increase in neutrophil recruitment and proinflammatory chemokine expression in the spleen of CB2 knockout mice.
Collapse
|
362
|
Martella A, Sijben H, Rufer AC, Grether U, Fingerle J, Ullmer C, Hartung T, IJzerman AP, van der Stelt M, Heitman LH. A Novel Selective Inverse Agonist of the CB2 Receptor as a Radiolabeled Tool Compound for Kinetic Binding Studies. Mol Pharmacol 2017; 92:389-400. [DOI: 10.1124/mol.117.108605] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/21/2017] [Indexed: 01/14/2023] Open
|
363
|
Abstract
The CB1 and CB2 cannabinoid receptors (CB1R, CB2R) are members of the G protein-coupled receptor (GPCR) family that were identified over 20 years ago. CB1Rs and CB2Rs mediate the effects of Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive constituent of marijuana, and subsequently identified endogenous cannabinoids (endocannabinoids) anandamide and 2-arachidonoyl glycerol. CB1Rs and CB2Rs have both similarities and differences in their pharmacology. Both receptors recognize multiple classes of agonist and antagonist compounds and produce an array of distinct downstream effects. Natural polymorphisms and alternative splice variants may also contribute to their pharmacological diversity. As our knowledge of the distinct differences grows, we may be able to target select receptor conformations and their corresponding pharmacological responses. This chapter will discuss their pharmacological characterization, distribution, phylogeny, and signaling pathways. In addition, the effects of extended agonist exposure and how that affects signaling and expression patterns of the receptors are considered.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Animals
- Humans
- Phylogeny
- Polymorphism, Genetic
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Allyn C Howlett
- Center for Research on Substance Use and Addiction, Wake Forest University Health Sciences, Winston-Salem, NC, United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
364
|
Boligan KF, von Gunten S. Innate lymphoid cells in asthma: cannabinoids on the balance. Allergy 2017; 72:839-841. [PMID: 28226397 DOI: 10.1111/all.13145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- K. F. Boligan
- Institute of Pharmacology; University of Bern; Bern Switzerland
| | - S. von Gunten
- Institute of Pharmacology; University of Bern; Bern Switzerland
| |
Collapse
|
365
|
Han D, Li X, Fan WS, Chen JW, Gou TT, Su T, Fan MM, Xu MQ, Wang YB, Ma S, Qiu Y, Cao F. Activation of cannabinoid receptor type II by AM1241 protects adipose-derived mesenchymal stem cells from oxidative damage and enhances their therapeutic efficacy in myocardial infarction mice via Stat3 activation. Oncotarget 2017; 8:64853-64866. [PMID: 29029396 PMCID: PMC5630296 DOI: 10.18632/oncotarget.17614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/21/2017] [Indexed: 12/16/2022] Open
Abstract
The poor survival of cells in ischemic sites diminishes the therapeutic efficacy of stem cell therapy. Previously we and others have reported that Cannabinoid receptor type II (CB2) is protective during heart ischemic injury for its anti-oxidative activity. However, whether CB2 activation could improve the survival and therapeutic efficacy of stem cells in ischemic myocardium and the underlying mechanisms remain elusive. Here, we showed evidence that CB2 agonist AM1241 treatment could improve the functional survival of adipose-derived mesenchymal stem cells (AD-MSCs) in vitro as well as in vivo. Moreover, AD-MSCs adjuvant with AM1241 improved cardiac function, and inhibited cardiac oxidative stress, apoptosis and fibrosis. To unveil possible mechanisms, AD-MSCs were exposed to hydrogen peroxide/serum deprivation to simulate the ischemic environment in myocardium. Results delineated that AM1241 blocked the apoptosis, oxidative damage and promoted the paracrine effects of AD-MSCs. Mechanistically, AM1241 activated signal transducers and activators of transcription 3 (Stat3) through the phosphorylation of Akt and ERK1/2. Moreover, the administration of AM630, LY294002, U0126 and AG490 (inhibitors for CB2, Akt, ERK1/2 and Stat3, respectively) could abolish the beneficial actions of AM1241. Our result support the promise of CB2 activation as an effective strategy to optimize stem cell-based therapy possibly through Stat3 activation.
Collapse
Affiliation(s)
- Dong Han
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wen-Si Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiang-Wei Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tian-Tian Gou
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Su
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Miao-Miao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Meng-Qi Xu
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ya-Bin Wang
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Sai Ma
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ya Qiu
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
366
|
Anti-Inflammatory, Antioxidant and Crystallographic Studies of N-Palmitoyl-ethanol Amine (PEA) Derivatives. Molecules 2017; 22:molecules22040616. [PMID: 28398240 PMCID: PMC6154659 DOI: 10.3390/molecules22040616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
N-Palmitoyl-ethanolamine (PEA) is an anti-inflammatory component of egg yolk that is usually employed for the prevention of respiratory apparatus virus infection and then frequently used for its efficient anti-inflammatory and analgesic effects in experimental models of visceral, neuropathic, and inflammatory diseases. Nevertheless, data of its use in animal or human therapy are still scarce and further studies are needed. Herein, we report the biological evaluation of a small library of N-palmitoyl-ethanolamine analogues or derivatives, characterized by a protected acid function (either as palmitoyl amides or hexadecyl esters), useful to decrease their hydrolysis rate in vitro and prolong their biological activity. Two of these compounds—namely phenyl-carbamic acid hexadecyl ester (4) and 2-methyl-pentadecanoic acid (4-nitro-phenyl)-amide (5)—have shown good anti-inflammatory and antioxidant properties, without affecting the viability of J774A.1 macrophages. Finally, crystals suitable for X-ray analysis of compound 4 have been obtained, and its solved crystal structure is here reported. Our outcomes may be helpful for a rational drug design based on new PEA analogues/derivatives with improved biological properties.
Collapse
|
367
|
Kelly MEM, Lehmann C, Zhou J. The Endocannabinoid System in Local and Systemic Inflammation. ACTA ACUST UNITED AC 2017. [DOI: 10.4199/c00151ed1v01y201702isp074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
368
|
Turcotte C, Zarini S, Jean S, Martin C, Murphy RC, Marsolais D, Laviolette M, Blanchet MR, Flamand N. The Endocannabinoid Metabolite Prostaglandin E 2 (PGE 2)-Glycerol Inhibits Human Neutrophil Functions: Involvement of Its Hydrolysis into PGE 2 and EP Receptors. THE JOURNAL OF IMMUNOLOGY 2017; 198:3255-3263. [PMID: 28258202 DOI: 10.4049/jimmunol.1601767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/01/2017] [Indexed: 01/05/2023]
Abstract
The endocannabinoids 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine mediate an array of pro- and anti-inflammatory effects. These effects are related, in part, to their metabolism by eicosanoid biosynthetic enzymes. For example, N-arachidonoyl-ethanolamine and 2-arachidonoyl-glycerol can be metabolized by cyclooxygenase-2 into PG-ethanolamide (PG-EA) and PG-glycerol (PG-G), respectively. Although PGE2 is a recognized suppressor of neutrophil functions, the impact of cyclooxygenase-derived endocannabinoids such as PGE2-EA or PGE2-G on neutrophils is unknown. This study's aim was to define the effects of these mediators on neutrophil functions and the underlying cellular mechanisms involved. We show that PGE2-G, but not PGE2-EA, inhibits leukotriene B4 biosynthesis, superoxide production, migration, and antimicrobial peptide release. The effects of PGE2-G were prevented by EP1/EP2 receptor antagonist AH-6809 but not the EP4 antagonist ONO-AE2-227. The effects of PGE2-G required its hydrolysis into PGE2, were not observed with the non-hydrolyzable PGE2-serinol amide, and were completely prevented by methyl-arachidonoyl-fluorophosphate and palmostatin B, and partially prevented by JZL184 and WWL113. Although we could detect six of the documented PG-G hydrolases in neutrophils by quantitative PCR, only ABHD12 and ABHD16A were detected by immunoblot. Our pharmacological data, combined with our protein expression data, did not allow us to pinpoint one PGE2-G lipase, and rather support the involvement of an uncharacterized lipase and/or of multiple hydrolases. In conclusion, we show that PGE2-G inhibits human neutrophil functions through its hydrolysis into PGE2, and by activating the EP2 receptor. This also indicates that neutrophils could regulate inflammation by altering the balance between PG-G and PG levels in vivo.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Simona Zarini
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - Stéphanie Jean
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Cyril Martin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - David Marsolais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Michel Laviolette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Marie-Renée Blanchet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| |
Collapse
|
369
|
Abstract
An agonist that acts through a single receptor can activate numerous signaling pathways. Recent studies have suggested that different ligands can differentially activate these pathways by stabilizing a limited range of receptor conformations, which in turn preferentially drive different downstream signaling cascades. This concept, termed "biased signaling" represents an exciting therapeutic opportunity to target specific pathways that elicit only desired effects, while avoiding undesired effects mediated by different signaling cascades. The cannabinoid receptors CB1 and CB2 each activate multiple pathways, and evidence is emerging for bias within these pathways. This review will summarize the current evidence for biased signaling through cannabinoid receptor subtypes CB1 and CB2.
Collapse
Affiliation(s)
- Mikkel Søes Ibsen
- Department of Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 2 Technology Place, Macquarie University, New South Wales, Australia
| | - Michelle Glass
- Department of Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
370
|
Vera G, López-Pérez AE, Uranga JA, Girón R, Martín-Fontelles MI, Abalo R. Involvement of Cannabinoid Signaling in Vincristine-Induced Gastrointestinal Dysmotility in the Rat. Front Pharmacol 2017; 8:37. [PMID: 28220074 PMCID: PMC5292571 DOI: 10.3389/fphar.2017.00037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/18/2017] [Indexed: 01/16/2023] Open
Abstract
Background: In different models of paralytic ileus, cannabinoid receptors are overexpressed and endogenous cannabinoids are massively released, contributing to gastrointestinal dysmotility. The antitumoral drug vincristine depresses gastrointestinal motility and a similar mechanism could participate in this effect. Therefore, our aim was to determine, using CB1 and CB2 antagonists, whether an increased endocannabinoid tone is involved in vincristine-induced gastrointestinal ileus. Methods: First, we confirmed the effects of vincristine on the gut mucosa, by conventional histological techniques, and characterized its effects on motility, by radiographic means. Conscious male Wistar rats received an intraperitoneal injection of vincristine (0.1–0.5 mg/kg), and barium sulfate (2.5 ml; 2 g/ml) was intragastrically administered 0, 24, or 48 h later. Serial X-rays were obtained at different time-points (0–8 h) after contrast. X-rays were used to build motility curves for each gastrointestinal region and determine the size of stomach and caecum. Tissue samples were taken for histology 48 h after saline or vincristine (0.5 mg/kg). Second, AM251 (a CB1 receptor antagonist) and AM630 (a CB2 receptor antagonist) were used to determine if CB1 and/or CB2 receptors are involved in vincristine-induced gastrointestinal dysmotility. Key results: Vincristine induced damage to the mucosa of ileum and colon and reduced gastrointestinal motor function at 0.5 mg/kg. The effect on motor function was particularly evident when the study started 24 h after administration. AM251, but not AM630, significantly prevented vincristine effect, particularly in the small intestine, when administered thrice. AM251 alone did not significantly alter gastrointestinal motility. Conclusions: The fact that AM251, but not AM630, is capable of reducing the effect of vincristine suggests that, like in other experimental models of paralytic ileus, an increased cannabinoid tone develops and is at least partially responsible for the alterations induced by the antitumoral drug on gastrointestinal motor function. Thus, CB1 antagonists might be useful to prevent/treat ileus induced by vincristine.
Collapse
Affiliation(s)
- Gema Vera
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain; Unidad Asociada I+D+i del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain
| | - Ana E López-Pérez
- Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain; Unidad del Dolor, Servicio de Anestesia, Hospital General Universitario Gregorio MarañónMadrid, Spain
| | - José A Uranga
- Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain; Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain
| | - Rocío Girón
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain; Unidad Asociada I+D+i del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain
| | - Ma Isabel Martín-Fontelles
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain; Unidad Asociada I+D+i del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain; Unidad Asociada I+D+i del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain
| |
Collapse
|
371
|
Cassano T, Calcagnini S, Pace L, De Marco F, Romano A, Gaetani S. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target. Front Neurosci 2017; 11:30. [PMID: 28210207 PMCID: PMC5288380 DOI: 10.3389/fnins.2017.00030] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/16/2017] [Indexed: 12/15/2022] Open
Abstract
As a consequence of an increasingly aging population, the number of people affected by neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, is rapidly increasing. Although the etiology of these diseases has not been completely defined, common molecular mechanisms including neuroinflammation, excitotoxicity and mitochondrial dysfunction have been confirmed and can be targeted therapeutically. Moreover, recent studies have shown that endogenous cannabinoid signaling plays a number of modulatory roles throughout the central nervous system (CNS), including the neuroinflammation and neurogenesis. In particular, the up-regulation of type-2 cannabinoid (CB2) receptors has been found in a number of neurodegenerative disorders. Thus, the modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neuronal degeneration. For these reasons this review will focus on the CB2 receptor as a promising pharmacological target in a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Lorenzo Pace
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Federico De Marco
- Laboratory of Virology, The Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| |
Collapse
|
372
|
Utomo WK, de Vries M, Braat H, Bruno MJ, Parikh K, Comalada M, Peppelenbosch MP, van Goor H, Fuhler GM. Modulation of Human Peripheral Blood Mononuclear Cell Signaling by Medicinal Cannabinoids. Front Mol Neurosci 2017; 10:14. [PMID: 28174520 PMCID: PMC5258717 DOI: 10.3389/fnmol.2017.00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/11/2017] [Indexed: 01/28/2023] Open
Abstract
Medical marijuana is increasingly prescribed as an analgesic for a growing number of indications, amongst which terminal cancer and multiple sclerosis. However, the mechanistic aspects and properties of cannabis remain remarkably poorly characterized. In this study we aimed to investigate the immune-cell modulatory properties of medical cannabis. Healthy volunteers were asked to ingest medical cannabis, and kinome profiling was used to generate comprehensive descriptions of the cannabis challenge on inflammatory signal transduction in the peripheral blood of these volunteers. Results were related to both short term and long term effects in patients experimentally treated with a medical marijuana preparation for suffering from abdominal pain as a result of chronic pancreatitis or other causes. The results reveal an immunosuppressive effect of cannabinoid preparations via deactivation of signaling through the pro-inflammatory p38 MAP kinase and mTOR pathways and a concomitant deactivation of the pro-mitogenic ERK pathway. However, long term cannabis exposure in two patients resulted in reversal of this effect. While these data provide a powerful mechanistic rationale for the clinical use of medical marijuana in inflammatory and oncological disease, caution may be advised with sustained use of such preparations.
Collapse
Affiliation(s)
- Wesley K Utomo
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University of Rotterdam Rotterdam, Netherlands
| | - Marjan de Vries
- Department of Surgery, Radboud University Medical Center Nijmegen, Netherlands
| | - Henri Braat
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University of Rotterdam Rotterdam, Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University of Rotterdam Rotterdam, Netherlands
| | - Kaushal Parikh
- Department of Cell Biology, University Medical Center Groningen Groningen, Netherlands
| | | | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University of Rotterdam Rotterdam, Netherlands
| | - Harry van Goor
- Department of Surgery, Radboud University Medical Center Nijmegen, Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University of Rotterdam Rotterdam, Netherlands
| |
Collapse
|
373
|
Moldovan RP, Deuther-Conrad W, Horti AG, Brust P. Synthesis and Preliminary Biological Evaluation of Indol-3-yl-oxoacetamides as Potent Cannabinoid Receptor Type 2 Ligands. Molecules 2017; 22:molecules22010077. [PMID: 28054997 PMCID: PMC6155603 DOI: 10.3390/molecules22010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/22/2022] Open
Abstract
A small series of indol-3-yl-oxoacetamides was synthesized starting from the literature known N-(adamantan-1-yl)-2-(5-(furan-2-yl)-1-pentyl-1H-indol-3-yl)-2-oxoacetamide (5) by substituting the 1-pentyl-1H-indole subunit. Our preliminary biological evaluation showed that the fluorinated derivative 8 is a potent and selective CB2 ligand with Ki = 6.2 nM.
Collapse
Affiliation(s)
- Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Andrew G Horti
- Johns Hopkins School of Medicine, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Baltimore, MD 21287, USA.
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|