351
|
de Castro IF, Volonté L, Risco C. Virus factories: biogenesis and structural design. Cell Microbiol 2012; 15:24-34. [PMID: 22978691 PMCID: PMC7162364 DOI: 10.1111/cmi.12029] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 12/18/2022]
Abstract
Replication and assembly of many viruses occur in specific intracellular compartments known as ‘virus factories’. Our knowledge of the biogenesis and architecture of these unique structures has increased considerably in the last 10 years, due to technical advances in cellular, molecular and structural biology. We now know that viruses build replication organelles, which recruit cell and viral components in a macrostructure in which viruses assemble and mature. Cell membranes and cytoskeleton participate in the biogenesis of these scaffolds and mitochondria are present in many factories, where they might supply energy and other essential factors. New inter‐organelle contacts have been visualized within virus factories, whose structure is very dynamic, as it changes over time. There is increasing interest in identifying the factors involved in their biogenesis and functional architecture, and new microscopy techniques are helping us to understand how these complex entities are built and work. In this review, we summarize recent findings on the cell biology, biogenesis and structure of virus factories.
Collapse
Affiliation(s)
- Isabel Fernández de Castro
- Cell Structure Lab, Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
352
|
Abstract
The rapid mutation of RNA viruses allows for the acquisition of resistance to drugs directly targeting viral proteins. Therefore, a novel approach to the development of antivirals centers on targeting host factors critical to viral replication. A recent report has brought to light the potential for RNA viruses to also develop resistance against compounds targeting crucial host factors, suggesting that a combination of drugs with various targets may be necessary for preventing resistance.
Collapse
Affiliation(s)
- Autumn Ruiz
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
353
|
Belov GA, van Kuppeveld FJM. (+)RNA viruses rewire cellular pathways to build replication organelles. Curr Opin Virol 2012; 2:740-7. [PMID: 23036609 PMCID: PMC7102821 DOI: 10.1016/j.coviro.2012.09.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 12/24/2022]
Abstract
Positive-strand RNA [(+)RNA] viruses show a significant degree of conservation of their mechanisms of replication. The universal requirement of (+)RNA viruses for cellular membranes for genome replication, and the formation of membranous replication organelles with similar architecture, suggest that they target essential control mechanisms of membrane metabolism conserved among eukaryotes. Recently, significant progress has been made in understanding the role of key host factors and pathways that are hijacked for the development of replication organelles. In addition, electron tomography studies have shed new light on their ultrastructure. Collectively, these studies reveal an unexpected complexity of the spatial organization of the replication membranes and suggest that (+)RNA viruses actively change cellular membrane composition to build their replication organelles.
Collapse
Affiliation(s)
- George A Belov
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Frank JM van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
354
|
Ejaz A, Steinmann E, Bánki Z, Anggakusuma, Khalid S, Lengauer S, Wilhelm C, Zoller H, Schloegl A, Steinmann J, Grabski E, Kleines M, Pietschmann T, Stoiber H. Specific acquisition of functional CD59 but not CD46 or CD55 by hepatitis C virus. PLoS One 2012; 7:e45770. [PMID: 23049856 PMCID: PMC3458075 DOI: 10.1371/journal.pone.0045770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 08/22/2012] [Indexed: 01/07/2023] Open
Abstract
Viruses of different families encode for regulators of the complement system (RCAs) or acquire such RCAs from the host to get protection against complement-mediated lysis (CML). As hepatitis C virus (HCV) shares no genetic similarity to any known RCA and is detectable at high titers in sera of infected individuals, we investigated whether HCV has adapted host-derived RCAs to resist CML. Here we report that HCV selectively incorporates CD59 while neither CD55, nor CD46 are associated with the virus. The presence of CD59 was shown by capture assays using patient- and cell culture-derived HCV isolates. Association of CD59 with HCV was further confirmed by Western blot analysis using purified viral supernatants from infected Huh 7.5 cells. HCV captured by antibodies specific for CD59 remained infectious for Huh 7.5 cells. In addition, blocking of CD59 in the presence of active complement reduced the titer of HCV most likely due to CML. HCV produced in CD59 knock-down cells were more significantly susceptible to CML compared to wild type virus, but neither replication, assembly nor infectivity of the virus seemed to be impaired in the absence of CD59. In summary our data indicate that HCV incorporates selectively CD59 in its envelope to gain resistance to CML in serum of infected individuals.
Collapse
Affiliation(s)
- Asim Ejaz
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Vieyres G, Pietschmann T. Entry and replication of recombinant hepatitis C viruses in cell culture. Methods 2012; 59:233-48. [PMID: 23009812 DOI: 10.1016/j.ymeth.2012.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/05/2012] [Accepted: 09/13/2012] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive-strand enveloped RNA virus and belongs to the Flaviviridae family. The heavy health burden associated with the virus infection in humans and the intriguing peculiarities of the interaction between the HCV replication cycle and the hepatocyte host cell have stimulated a flourishing research field. The present review aims at recapitulating the different viral and cellular systems modelling HCV entry and replication, and in particular at gathering the tools available to dissect the HCV entry pathway.
Collapse
Affiliation(s)
- Gabrielle Vieyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; A Joint Venture Between The Medical School Hannover and The Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7-9, 30625 Hannover, Germany
| | | |
Collapse
|
356
|
Authentic in vitro replication of two tombusviruses in isolated mitochondrial and endoplasmic reticulum membranes. J Virol 2012; 86:12779-94. [PMID: 22973028 DOI: 10.1128/jvi.00973-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Replication of plus-stranded RNA viruses takes place on membranous structures derived from various organelles in infected cells. Previous works with Tomato bushy stunt tombusvirus (TBSV) revealed the recruitment of either peroxisomal or endoplasmic reticulum (ER) membranes for replication. In case of Carnation Italian ringspot tombusvirus (CIRV), the mitochondrial membranes supported CIRV replication. In this study, we developed ER and mitochondrion-based in vitro tombusvirus replication assays. Using purified recombinant TBSV and CIRV replication proteins, we showed that TBSV could use the purified yeast ER and mitochondrial preparations for complete viral RNA replication, while CIRV preferentially replicated in the mitochondrial membranes. The viral RNA became partly RNase resistant after ∼40 to 60 min of incubation in the purified ER and mitochondrial preparations, suggesting that assembly of TBSV and CIRV replicases could take place in the purified ER and mitochondrial membranes in vitro. Using chimeric and heterologous combinations of replication proteins, we showed that multiple domains within the replication proteins are involved in determining the efficiency of tombusvirus replication in the two subcellular membranes. Altogether, we demonstrated that TBSV is less limited while CIRV is more restricted in utilizing various intracellular membranes for replication. Overall, the current work provides evidence that tombusvirus replication could occur in vitro in isolated subcellular membranes, suggesting that tombusviruses have the ability to utilize alternative organellar membranes during infection that could increase the chance of mixed virus replication and rapid evolution during coinfection.
Collapse
|
357
|
Chatel-Chaix L, Germain MA, Götte M, Lamarre D. Direct-acting and host-targeting HCV inhibitors: current and future directions. Curr Opin Virol 2012; 2:588-98. [PMID: 22959589 DOI: 10.1016/j.coviro.2012.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/07/2012] [Indexed: 02/07/2023]
Abstract
The inclusion of NS3 protease inhibitors to the interferon-containing standard of care improved sustained viral response rates in hepatitis C virus (HCV) infected patients. However, there is still an unmet medical need as this drug regimen is poorly tolerated and lacks efficacy, especially in difficult-to-treat patients. Intense drug discovery and development efforts have focused on direct-acting antivirals (DAA) that target NS3 protease, NS5B polymerase and the NS5A protein. DAA combinations are currently assessed in clinical trials. Alternative antivirals have emerged that target host machineries co-opted by HCV. Finally, continuous and better understanding of HCV biology allows speculating on the value of novel classes of DAA required in future personalized all-oral interferon-free combination therapy and for supporting global disease eradication.
Collapse
Affiliation(s)
- Laurent Chatel-Chaix
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Montréal, Québec H3T 1J4, Canada
| | | | | | | |
Collapse
|
358
|
Coxsackievirus mutants that can bypass host factor PI4KIIIβ and the need for high levels of PI4P lipids for replication. Cell Res 2012; 22:1576-92. [PMID: 22945356 DOI: 10.1038/cr.2012.129] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA viruses can rapidly mutate and acquire resistance to drugs that directly target viral enzymes, which poses serious problems in a clinical context. Therefore, there is a growing interest in the development of antiviral drugs that target host factors critical for viral replication, since they are unlikely to mutate in response to therapy. We recently demonstrated that phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) and its product phosphatidylinositol-4-phosphate (PI4P) are essential for replication of enteroviruses, a group of medically important RNA viruses including poliovirus (PV), coxsackievirus, rhinovirus, and enterovirus 71. Here, we show that enviroxime and GW5074 decreased PI4P levels at the Golgi complex by directly inhibiting PI4KIIIβ. Coxsackievirus mutants resistant to these inhibitors harbor single point mutations in the non-structural protein 3A. These 3A mutations did not confer compound-resistance by restoring the activity of PI4KIIIβ in the presence of the compounds. Instead, replication of the mutant viruses no longer depended on PI4KIIIβ, since their replication was insensitive to siRNA-mediated depletion of PI4KIIIβ. The mutant viruses also did not rely on other isoforms of PI4K. Consistently, no high level of PI4P could be detected at the replication sites induced by the mutant viruses in the presence of the compounds. Collectively, these findings indicate that through specific single point mutations in 3A, CVB3 can bypass an essential host factor and lipid for its propagation, which is a new example of RNA viruses acquiring resistance against antiviral compounds, even when they directly target host factors.
Collapse
|
359
|
Pichlmair A, Kandasamy K, Alvisi G, Mulhern O, Sacco R, Habjan M, Binder M, Stefanovic A, Eberle CA, Goncalves A, Bürckstümmer T, Müller AC, Fauster A, Holze C, Lindsten K, Goodbourn S, Kochs G, Weber F, Bartenschlager R, Bowie AG, Bennett KL, Colinge J, Superti-Furga G. Viral immune modulators perturb the human molecular network by common and unique strategies. Nature 2012; 487:486-90. [PMID: 22810585 DOI: 10.1038/nature11289] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 06/07/2012] [Indexed: 12/24/2022]
Abstract
Viruses must enter host cells to replicate, assemble and propagate. Because of the restricted size of their genomes, viruses have had to evolve efficient ways of exploiting host cell processes to promote their own life cycles and also to escape host immune defence mechanisms. Many viral open reading frames (viORFs) with immune-modulating functions essential for productive viral growth have been identified across a range of viral classes. However, there has been no comprehensive study to identify the host factors with which these viORFs interact for a global perspective of viral perturbation strategies. Here we show that different viral perturbation patterns of the host molecular defence network can be deduced from a mass-spectrometry-based host-factor survey in a defined human cellular system by using 70 innate immune-modulating viORFs from 30 viral species. The 579 host proteins targeted by the viORFs mapped to an unexpectedly large number of signalling pathways and cellular processes, suggesting yet unknown mechanisms of antiviral immunity. We further experimentally verified the targets heterogeneous nuclear ribonucleoprotein U, phosphatidylinositol-3-OH kinase, the WNK (with-no-lysine) kinase family and USP19 (ubiquitin-specific peptidase 19) as vulnerable nodes in the host cellular defence system. Evaluation of the impact of viral immune modulators on the host molecular network revealed perturbation strategies used by individual viruses and by viral classes. Our data are also valuable for the design of broad and specific antiviral therapies.
Collapse
Affiliation(s)
- Andreas Pichlmair
- CeMMResearch Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Reconstitution of the entire hepatitis C virus life cycle in nonhepatic cells. J Virol 2012; 86:11919-25. [PMID: 22896615 DOI: 10.1128/jvi.01066-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) is a human hepatotropic virus, but the relevant host factors restricting HCV infection to hepatocytes are only partially understood. We demonstrate that exogenous expression of defined host factors reconstituted the entire HCV life cycle in human nonhepatic 293T cells. This study shows robust HCV entry, RNA replication, and production of infectious virus in human nonhepatic cells and highlights key host factors required for liver tropism of HCV.
Collapse
|
361
|
Evaluation of phosphatidylinositol-4-kinase IIIα as a hepatitis C virus drug target. J Virol 2012; 86:11595-607. [PMID: 22896614 DOI: 10.1128/jvi.01320-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol-4-kinase IIIα (PI4KIIIα) is an essential host cell factor for hepatitis C virus (HCV) replication. An N-terminally truncated 130-kDa form was used to reconstitute an in vitro biochemical lipid kinase assay that was optimized for small-molecule compound screening and identified potent and specific inhibitors. Cell culture studies with PI4KIIIα inhibitors demonstrated that the kinase activity was essential for HCV RNA replication. Two PI4KIIIα inhibitors were used to select cell lines harboring HCV replicon mutants with a 20-fold loss in sensitivity to the compounds. Reverse genetic mapping isolated an NS4B-NS5A segment that rescued HCV RNA replication in PIK4IIIα-deficient cells. HCV RNA replication occurs on specialized membranous webs, and this study with PIK4IIIα inhibitor-resistant mutants provides a genetic link between NS4B/NS5A functions and PI4-phosphate lipid metabolism. A comprehensive assessment of PI4KIIIα as a drug target included its evaluation for pharmacologic intervention in vivo through conditional transgenic murine lines that mimic target-specific inhibition in adult mice. Homozygotes that induce a knockout of the kinase domain or knock in a single amino acid substitution, kinase-defective PI4KIIIα, displayed a lethal phenotype with a fairly widespread mucosal epithelial degeneration of the gastrointestinal tract. This essential host physiologic role raises doubt about the pursuit of PI4KIIIα inhibitors for treatment of chronic HCV infection.
Collapse
|
362
|
Abstract
Arenaviruses are responsible for acute hemorrhagic fevers with high mortality and pose significant threats to public health and biodefense. These enveloped negative-sense RNA viruses replicate in the cell cytoplasm and express four proteins. To better understand how these proteins insinuate themselves into cellular processes to orchestrate productive viral replication, we have identified and characterized novel cytosolic structures involved in arenavirus replication and transcription. In cells infected with the nonpathogenic Tacaribe virus or the attenuated Candid#1 strain of Junín virus, we find that newly synthesized viral RNAs localize to cytosolic puncta containing the nucleoprotein (N) of the virus. Density gradient centrifugation studies reveal that these replication-transcription complexes (RTCs) are associated with cellular membranes and contain full-length genomic- and antigenomic-sense RNAs. Viral mRNAs segregate at a higher buoyant density and are likewise scant in immunopurified RTCs, consistent with their translation on bulk cellular ribosomes. In addition, confocal microscopy analysis reveals that RTCs contain the lipid phosphatidylinositol-4-phosphate and proteins involved in cellular mRNA metabolism, including the large and small ribosomal subunit proteins L10a and S6, the stress granule protein G3BP1, and a subset of translation initiation factors. Elucidating the structure and function of RTCs will enhance our understanding of virus-cell interactions that promote arenavirus replication and mitigate against host cell immunity. This knowledge may lead to novel intervention strategies to limit viral virulence and pathogenesis.
Collapse
|
363
|
Delang L, Paeshuyse J, Neyts J. The role of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate during viral replication. Biochem Pharmacol 2012; 84:1400-8. [PMID: 22885339 PMCID: PMC7111036 DOI: 10.1016/j.bcp.2012.07.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 12/20/2022]
Abstract
Phosphoinositides (PI) are phospholipids that mediate signaling cascades in the cell by binding to effector proteins. Reversible phosphorylation of the inositol ring at positions 3, 4 and 5 results in the synthesis of seven different phosphoinositides. Each phosphoinositide has a unique subcellular distribution with a predominant localization in subsets of membranes. These lipids play a major role in recruiting and regulating the function of proteins at membrane interfaces [1]. Several bacteria and viruses modulate and exploit the host PI metabolism to ensure efficient replication and survival. Here, we focus on the roles of cellular phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4-kinases (PI4Ks) during the replication cycle of various viruses. It has been well documented that phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ, EC 2.7.1.67) is indispensable for viral RNA replication of several picornaviruses. Two recruitment strategies were reported: (i) binding and modulation of GBF1/Arf1 to enhance recruitment of PI4KIIIβ and (ii) interaction with ACBD3 for recruitment of PI4KIIIβ. PI4KIII has also been demonstrated to be crucial for hepatitis C virus (HCV) replication. PI4KIII appears to be directly recruited and activated by HCV NS5A protein to the replication complexes. In contrast to picornaviruses, it is still debated whether the α or the β isoform is the most important. PI4KIII can be explored as a target for inhibition of viral replication. The challenge will be to develop highly selective inhibitors for PI4KIIIα and/or β and to avoid off-target toxicity.
Collapse
Affiliation(s)
- Leen Delang
- Rega Institute for Medical Research, KU Leuven, Belgium
| | | | | |
Collapse
|
364
|
Bauhofer O, Ruggieri A, Schmid B, Schirmacher P, Bartenschlager R. Persistence of HCV in quiescent hepatic cells under conditions of an interferon-induced antiviral response. Gastroenterology 2012; 143:429-38.e8. [PMID: 22522091 DOI: 10.1053/j.gastro.2012.04.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 02/29/2012] [Accepted: 04/12/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) is a common cause of chronic liver disease. Many patients do not clear the viral infection; little is known about the mechanisms of HCV persistence or the frequent failure of interferon (IFN) to eliminate it. Better culture systems are needed to study viral replication in quiescent liver cells. METHODS We used human hepatoma (Huh7.5) cells and those that had undergone proliferation arrest and differentiation (Huh7.5(dif)) to study the persistence of HCV infection following exposure of the cells to IFN-α and to compare the antiviral effects of IFN-α and IFN-λ. We validated these results with primary human hepatocytes and Huh7 cells that expressed an IFN-inducible fluorophore. RESULTS Following infection of Huh7.5(dif) cells, HCV replicated persistently and released infectious particles. Long-term exposure of the cells to IFN-α reduced HCV replication ∼1000-fold but did not eliminate the virus; viral replication rebounded after withdrawal of IFN, as it does in patients with chronic HCV infection. HCV replicated at higher levels, but not exclusively, in cells that had a low level of response to IFN-α. Following incubation of cells with equipotent concentrations of IFN-α or IFN-λ, Huh7.5(dif) cells expressed a wider pattern of IFN-stimulated genes than undifferentiated Huh7.5 cells or primary human hepatocytes, indicating that the antiviral response depends on the differentiation status of the cells. CONCLUSIONS We developed a cell culture system using hepatoma cells to study persistent HCV infection during the type I or type III IFN-induced antiviral response. The level and range of the antiviral responses were associated with the differentiation status of the cells. We propose that HCV exploits the stochastic nature of the response of hepatocytes to IFN to sustain persistence.
Collapse
Affiliation(s)
- Oliver Bauhofer
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
365
|
Anti-hepatitis C virus activity and toxicity of type III phosphatidylinositol-4-kinase beta inhibitors. Antimicrob Agents Chemother 2012; 56:5149-56. [PMID: 22825118 DOI: 10.1128/aac.00946-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Type III phosphatidylinositol-4-kinase beta (PI4KIIIβ) was previously implicated in hepatitis C virus (HCV) replication by small interfering RNA (siRNA) depletion and was therefore proposed as a novel cellular target for the treatment of hepatitis C. Medicinal chemistry efforts identified highly selective PI4KIIIβ inhibitors that potently inhibited the replication of genotype 1a and 1b HCV replicons and genotype 2a virus in vitro. Replicon cells required more than 5 weeks to reach low levels of 3- to 5-fold resistance, suggesting a high resistance barrier to these cellular targets. Extensive in vitro profiling of the compounds revealed a role of PI4KIIIβ in lymphocyte proliferation. Previously proposed functions of PI4KIIIβ in insulin secretion and the regulation of several ion channels were not perturbed with these inhibitors. Moreover, PI4KIIIβ inhibitors were not generally cytotoxic as demonstrated across hundreds of cell lines and primary cells. However, an unexpected antiproliferative effect in lymphocytes precluded their further development for the treatment of hepatitis C.
Collapse
|
366
|
Multiple mutations in hepatitis C virus NS5A domain II are required to confer a significant level of resistance to alisporivir. Antimicrob Agents Chemother 2012; 56:5113-21. [PMID: 22802259 DOI: 10.1128/aac.00919-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alisporivir is the most advanced host-targeting antiviral cyclophilin (Cyp) inhibitor in phase III studies and has demonstrated a great deal of promise in decreasing hepatitis C virus (HCV) viremia in infected patients. In an attempt to further elucidate the mechanism of action of alisporivir, HCV replicons resistant to the drug were selected. Interestingly, mutations constantly arose in domain II of NS5A. To demonstrate that these mutations are responsible for drug resistance, they were reintroduced into the parental HCV genome, and the resulting mutant viruses were tested for replication in the presence of alisporivir or in the absence of the alisporivir target, CypA. We also examined the effect of the mutations on NS5A binding to itself (oligomerization), CypA, RNA, and NS5B. Importantly, the mutations did not affect any of these interactions. Moreover, the mutations did not preserve NS5A-CypA interactions from alisporivir rupture. NS5A mutations alone render HCV only slightly resistant to alisporivir. In sharp contrast, when multiple NS5A mutations are combined, significant resistance was observed. The introduction of multiple mutations in NS5A significantly restored viral replication in CypA knockdown cells. Interestingly, the combination of NS5A mutations renders HCV resistant to all classes of Cyp inhibitors. This study suggests that a combination of multiple mutations in domain II of NS5A rather than a single mutation is required to render HCV significantly and universally resistant to Cyp inhibitors. This in accordance with in vivo data that suggest that alisporivir is associated with a low potential for development of viral resistance.
Collapse
|
367
|
Haid S, Novodomská A, Gentzsch J, Grethe C, Geuenich S, Bankwitz D, Chhatwal P, Jannack B, Hennebelle T, Bailleul F, Keppler OT, Poenisch M, Bartenschlager R, Hernandez C, Lemasson M, Rosenberg AR, Wong-Staal F, Davioud-Charvet E, Pietschmann T. A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes. Gastroenterology 2012; 143:213-22.e5. [PMID: 22465429 DOI: 10.1053/j.gastro.2012.03.036] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 03/12/2012] [Accepted: 03/20/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Interferon-based therapies for hepatitis C virus (HCV) infection are limited by side effects and incomplete response rates, particularly among transplant recipients. We screened a library of plant-derived small molecules to identify HCV inhibitors with novel mechanisms. METHODS We isolated phenolic compounds from Marrubium peregrinum L (Lamiaceae). Replication of HCV RNA, virus production, and cell entry were monitored using replicons and infectious HCV. Inhibition of HCV was measured in hepatoma cells and primary human hepatocytes using luciferase reporter gene assays, core enzyme-linked immunosorbent assays, or infectivity titration. We tested the bioavailability of the compound in mice. RESULTS We identified a flavonoid, ladanein (BJ486K), with unreported antiviral activity and established its oral bioavailability in mice. Natural and synthetic BJ486K inhibited a post-attachment entry step, but not RNA replication or assembly; its inhibitory concentration 50% was 2.5 μm. BJ486K was effective against all major HCV genotypes, including a variant that is resistant to an entry inhibitor; it prevented infection of primary human hepatocytes. Combined administration of BJ486K and cyclosporine A had a synergistic effect in inhibition of HCV infection. CONCLUSIONS BJ486K has oral bioavailability and interferes with entry of HCV into cultured human hepatocytes. It synergizes with cyclosporine A to inhibit HCV infection. Its inhibitory effects are independent of HCV genotype, including a variant that is resistant to an entry inhibitor against scavenger receptor class B type I. Flavonoid derivatives therefore might be developed as components of combination therapies because they are potent, broadly active inhibitors of HCV entry that could prevent graft reinfection after liver transplantation.
Collapse
Affiliation(s)
- Sibylle Haid
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Bishé B, Syed GH, Field SJ, Siddiqui A. Role of phosphatidylinositol 4-phosphate (PI4P) and its binding protein GOLPH3 in hepatitis C virus secretion. J Biol Chem 2012; 287:27637-47. [PMID: 22745132 DOI: 10.1074/jbc.m112.346569] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) RNA replicates within the ribonucleoprotein complex, assembled on the endoplasmic reticulum (ER)-derived membranous structures closely juxtaposed to the lipid droplets that facilitate the post-replicative events of virion assembly and maturation. It is widely believed that the assembled virions piggy-back onto the very low density lipoprotein particles for secretion. Lipid phosphoinositides are important modulators of intracellular trafficking. Golgi-localized phosphatidylinositol 4-phosphate (PI4P) recruits proteins involved in Golgi trafficking to the Golgi membrane and promotes anterograde transport of secretory proteins. Here, we sought to investigate the role of Golgi-localized PI4P in the HCV secretion process. Depletion of the Golgi-specific PI4P pool by Golgi-targeted PI4P phosphatase hSac1 K2A led to significant reduction in HCV secretion without any effect on replication. We then examined the functional role of a newly identified PI4P binding protein GOLPH3 in the viral secretion process. GOLPH3 is shown to maintain a tensile force on the Golgi, required for vesicle budding via its interaction with an unconventional myosin, MYO18A. Silencing GOLPH3 led to a dramatic reduction in HCV virion secretion, as did the silencing of MYO18A. The reduction in virion secretion was accompanied by a concomitant accumulation of intracellular virions, suggesting a stall in virion egress. HCV-infected cells displayed a fragmented and dispersed Golgi pattern, implicating involvement in virion morphogenesis. These studies establish the role of PI4P and its interacting protein GOLPH3 in HCV secretion and strengthen the significance of the Golgi secretory pathway in this process.
Collapse
Affiliation(s)
- Bryan Bishé
- Division of Infectious Diseases, Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
369
|
Doncheva NT, Kacprowski T, Albrecht M. Recent approaches to the prioritization of candidate disease genes. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:429-42. [PMID: 22689539 DOI: 10.1002/wsbm.1177] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many efforts are still devoted to the discovery of genes involved with specific phenotypes, in particular, diseases. High-throughput techniques are thus applied frequently to detect dozens or even hundreds of candidate genes. However, the experimental validation of many candidates is often an expensive and time-consuming task. Therefore, a great variety of computational approaches has been developed to support the identification of the most promising candidates for follow-up studies. The biomedical knowledge already available about the disease of interest and related genes is commonly exploited to find new gene-disease associations and to prioritize candidates. In this review, we highlight recent methodological advances in this research field of candidate gene prioritization. We focus on approaches that use network information and integrate heterogeneous data sources. Furthermore, we discuss current benchmarking procedures for evaluating and comparing different prioritization methods.
Collapse
|
370
|
Chukkapalli V, Heaton NS, Randall G. Lipids at the interface of virus-host interactions. Curr Opin Microbiol 2012; 15:512-8. [PMID: 22682978 DOI: 10.1016/j.mib.2012.05.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 01/26/2023]
Abstract
Viruses physically and metabolically remodel the host cell to establish an optimal environment for their replication. Many of these processes involve the manipulation of lipid signaling, synthesis, and metabolism. An emerging theme is that these lipid-modifying pathways are also linked to innate antiviral responses and can be modulated to inhibit viral replication.
Collapse
Affiliation(s)
- Vineela Chukkapalli
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, United States
| | | | | |
Collapse
|
371
|
Treating hepatitis C infection by targeting the host. Transl Res 2012; 159:421-9. [PMID: 22633094 PMCID: PMC3361678 DOI: 10.1016/j.trsl.2011.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Abstract
More than 130 million people worldwide are chronically infected with the hepatitis C virus (HCV), which can lead to cirrhosis, liver failure, and hepatocellular carcinoma. Although recently approved HCV NS3-4A protease inhibitors significantly improve treatment response rates, current HCV treatment is still frequently limited by side effects and by the low genetic barrier to viral resistance against direct-acting antiviral agents. A complementary strategy is to target the host cellular factors that support the HCV life cycle. Several studies, including RNA interference screens, demonstrated that HCV depends on dozens, if not hundreds, of cellular proteins to complete its life cycle. A better understanding of the interactions between HCV proteins and host factors may help to identify host targets for antiviral therapy. In this review, we highlight some of the host factors that are particularly attractive targets for the treatment of HCV.
Collapse
|
372
|
Phosphatidylinositol 4-kinases: hostages harnessed to build panviral replication platforms. Trends Biochem Sci 2012; 37:293-302. [PMID: 22633842 PMCID: PMC3389303 DOI: 10.1016/j.tibs.2012.03.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/27/2012] [Accepted: 03/30/2012] [Indexed: 12/20/2022]
Abstract
Several RNA viruses have recently been shown to hijack members of the host phosphatidylinositol (PtdIns) 4-kinase (PI4K) family of enzymes. They use PI4K to generate membranes enriched in phosphatidylinositide 4-phosphate (PtdIns4P or PI4P) lipids, which can be used as replication platforms. Viral replication machinery is assembled on these platforms as a supramolecular complex and PtdIns4P lipids regulate viral RNA synthesis. This article highlights these recent studies on the regulation of viral RNA synthesis by PtdIns4P lipids. It explores the potential mechanisms by which PtdIns4P lipids can contribute to viral replication and discusses the therapeutic potential of developing antiviral molecules that target host PI4Ks as a form of panviral therapy.
Collapse
|
373
|
Diaz A, Ahlquist P. Role of host reticulon proteins in rearranging membranes for positive-strand RNA virus replication. Curr Opin Microbiol 2012; 15:519-24. [PMID: 22621853 PMCID: PMC3670673 DOI: 10.1016/j.mib.2012.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 11/30/2022]
Abstract
Positive-strand RNA [(+)RNA] viruses are responsible for numerous human, animal, and plant diseases. Because of the limiting coding capacity of (+)RNA viruses, their replication requires a complex orchestration of interactions between the viral genome, viral proteins and exploited host factors. To replicate their genomic RNAs, (+)RNA viruses induce membrane rearrangements that create membrane-linked RNA replication compartments. Along with substantial advances on the ultrastructure of the membrane-bound RNA replication compartments, recent results have shed light into the role that host factors play in rearranging these membranes. This review focuses on recent insights that have driven a new understanding of the role that the membrane-shaping host reticulon homology domain proteins (RHPs) play in facilitating the replication of various (+)RNA viruses.
Collapse
Affiliation(s)
- Arturo Diaz
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | |
Collapse
|
374
|
Feuerstein S, Solyom Z, Aladag A, Favier A, Schwarten M, Hoffmann S, Willbold D, Brutscher B. Transient structure and SH3 interaction sites in an intrinsically disordered fragment of the hepatitis C virus protein NS5A. J Mol Biol 2012; 420:310-23. [PMID: 22543239 DOI: 10.1016/j.jmb.2012.04.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/21/2012] [Indexed: 12/01/2022]
Abstract
Understanding the molecular mechanisms involved in virus replication and particle assembly is of primary fundamental and biomedical importance. Intrinsic conformational disorder plays a prominent role in viral proteins and their interaction with other viral and host cell proteins via transiently populated structural elements. Here, we report on the results of an investigation of an intrinsically disordered 188-residue fragment of the hepatitis C virus non-structural protein 5A (NS5A), which contains a classical poly-proline Src homology 3 (SH3) binding motif, using sensitivity- and resolution-optimized multidimensional NMR methods, complemented by small-angle X-ray scattering data. Our study provides detailed atomic-resolution information on transient local and long-range structure, as well as fast time scale dynamics in this NS5A fragment. In addition, we could characterize two distinct interaction modes with the SH3 domain of Bin1 (bridging integrator protein 1), a pro-apoptotic tumor suppressor. Despite being largely disordered, the protein contains three regions that transiently adopt α-helical structures, partly stabilized by long-range tertiary interactions. Two of these transient α-helices form a noncanonical SH3-binding motif, which allows low-affinity SH3 binding. Our results contribute to a better understanding of the role of the NS5A protein during hepatitis C virus infection. The present work also highlights the power of NMR spectroscopy to characterize multiple binding events including short-lived transient interactions between globular and highly disordered proteins.
Collapse
Affiliation(s)
- Sophie Feuerstein
- Institut de Biologie Structurale, Université Grenoble 1, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
375
|
Bianco A, Reghellin V, Donnici L, Fenu S, Alvarez R, Baruffa C, Peri F, Pagani M, Abrignani S, Neddermann P, De Francesco R. Metabolism of phosphatidylinositol 4-kinase IIIα-dependent PI4P Is subverted by HCV and is targeted by a 4-anilino quinazoline with antiviral activity. PLoS Pathog 2012; 8:e1002576. [PMID: 22412376 PMCID: PMC3297592 DOI: 10.1371/journal.ppat.1002576] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 01/26/2012] [Indexed: 12/13/2022] Open
Abstract
4-anilino quinazolines have been identified as inhibitors of HCV replication. The target of this class of compounds was proposed to be the viral protein NS5A, although unequivocal proof has never been presented. A 4-anilino quinazoline moiety is often found in kinase inhibitors, leading us to formulate the hypothesis that the anti-HCV activity displayed by these compounds might be due to inhibition of a cellular kinase. Type III phosphatidylinositol 4-kinase α (PI4KIIIα) has recently been identified as a host factor for HCV replication. We therefore evaluated AL-9, a compound prototypical of the 4-anilino quinazoline class, on selected phosphatidylinositol kinases. AL-9 inhibited purified PI4KIIIα and, to a lesser extent, PI4KIIIβ. In Huh7.5 cells, PI4KIIIα is responsible for the phosphatidylinositol-4 phosphate (PI4P) pool present in the plasma membrane. Accordingly, we observed a gradual decrease of PI4P in the plasma membrane upon incubation with AL-9, indicating that this agent inhibits PI4KIIIα also in living cells. Conversely, AL-9 did not affect the level of PI4P in the Golgi membrane, suggesting that the PI4KIIIβ isoform was not significantly inhibited under our experimental conditions. Incubation of cells expressing HCV proteins with AL-9 induced abnormally large clusters of NS5A, a phenomenon previously observed upon silencing PI4KIIIα by RNA interference. In light of our findings, we propose that the antiviral effect of 4-anilino quinazoline compounds is mediated by the inhibition of PI4KIIIα and the consequent depletion of PI4P required for the HCV membranous web. In addition, we noted that HCV has a profound effect on cellular PI4P distribution, causing significant enrichment of PI4P in the HCV-membranous web and a concomitant depletion of PI4P in the plasma membrane. This observation implies that HCV – by recruiting PI4KIIIα in the RNA replication complex – hijacks PI4P metabolism, ultimately resulting in a markedly altered subcellular distribution of the PI4KIIIα product. It is estimated that 3% of the world's population are chronically infected by the hepatitis C virus (HCV). Most infections become chronic and eventually evolve into cirrhosis and hepatocellular carcinoma. Host factors are interesting targets for anti-HCV therapies due to their inherent high genetic barrier to resistance. Recently, phosphatidylinositol 4-kinase α (PI4KIIIα) has been identified as a crucial host factor for HCV replication. Many different pathogens, including HCV, subvert components of the phosphatidylinositol-4 phosphate (PI4P) pathway to function in favor of their own life cycle. In this paper, we show that HCV dramatically alters cellular PI4P metabolism and distribution, resulting in the enrichment of PI4P in the membranous web required for viral replication with a concomitant decrease of PI4P in the plasma-membrane. Moreover, we demonstrate that 4-anilino quinazolines, antiviral agents previously believed to target HCV NS5A, do in fact inhibit PI4P formation by inhibition of PI4KIIIα. This compound class is a promising lead for the development of a novel antiviral therapy based on PI4KIIIα inhibition. Specific PI4KIIIα inhibitors would also be important research tools required for a deeper understanding of the functions and regulation of PI4P.
Collapse
Affiliation(s)
- Annalisa Bianco
- Department of Genomics and Molecular Biology, Virology Program, Istituto Nazionale Genetica Molecolare (INGM), Milano, Italy
| | - Veronica Reghellin
- Department of Genomics and Molecular Biology, Virology Program, Istituto Nazionale Genetica Molecolare (INGM), Milano, Italy
| | - Lorena Donnici
- Department of Genomics and Molecular Biology, Virology Program, Istituto Nazionale Genetica Molecolare (INGM), Milano, Italy
| | - Simone Fenu
- Department of Genomics and Molecular Biology, Virology Program, Istituto Nazionale Genetica Molecolare (INGM), Milano, Italy
| | - Reinaldo Alvarez
- Department of Genomics and Molecular Biology, Virology Program, Istituto Nazionale Genetica Molecolare (INGM), Milano, Italy
| | - Chiara Baruffa
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy
| | - Massimiliano Pagani
- Department of Genomics and Molecular Biology, Virology Program, Istituto Nazionale Genetica Molecolare (INGM), Milano, Italy
| | - Sergio Abrignani
- Department of Genomics and Molecular Biology, Virology Program, Istituto Nazionale Genetica Molecolare (INGM), Milano, Italy
| | - Petra Neddermann
- Department of Genomics and Molecular Biology, Virology Program, Istituto Nazionale Genetica Molecolare (INGM), Milano, Italy
- * E-mail: (PN) (PN); (RDF) (RD)
| | - Raffaele De Francesco
- Department of Genomics and Molecular Biology, Virology Program, Istituto Nazionale Genetica Molecolare (INGM), Milano, Italy
- * E-mail: (PN) (PN); (RDF) (RD)
| |
Collapse
|
376
|
Zhang L, Hong Z, Lin W, Shao RX, Goto K, Hsu VW, Chung RT. ARF1 and GBF1 generate a PI4P-enriched environment supportive of hepatitis C virus replication. PLoS One 2012; 7:e32135. [PMID: 22359663 PMCID: PMC3281116 DOI: 10.1371/journal.pone.0032135] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/20/2012] [Indexed: 12/12/2022] Open
Abstract
Cellular levels of phosphatidylinositol 4-phosphate (PI4P) have been shown to be upregulated during RNA replication of several viruses, including the HCV replicon model. However, whether PI4P is required in an infectious HCV model remains unknown. Moreover, it is not established whether the host transport machinery is sequestered by the generation of PI4P during HCV infection. Here we found that PI4P was enriched in HCV replication complexes when Huh7.5.1 cells were infected with JFH1. HCV replication was inhibited upon overexpression of the PI4P phosphatase Sac1. The PI4P kinase PI4KIIIβ was also found to be required for HCV replication. Moreover, the vesicular transport proteins ARF1 and GBF1 colocalized with PI4KIIIβ and were both required for HCV replication. During authentic HCV infection, PI4P plays an integral role in virus replication.
Collapse
Affiliation(s)
- Leiliang Zhang
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhi Hong
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyu Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Run-Xuan Shao
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kaku Goto
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Victor W. Hsu
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Raymond T. Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
377
|
Host acyl coenzyme A binding protein regulates replication complex assembly and activity of a positive-strand RNA virus. J Virol 2012; 86:5110-21. [PMID: 22345450 DOI: 10.1128/jvi.06701-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All positive-strand RNA viruses reorganize host intracellular membranes to assemble their replication complexes. Similarly, brome mosaic virus (BMV) induces two alternate forms of membrane-bound RNA replication complexes: vesicular spherules and stacks of appressed double-membrane layers. The mechanisms by which these membrane rearrangements are induced, however, remain unclear. We report here that host ACB1-encoded acyl coenzyme A (acyl-CoA) binding protein (ACBP) is required for the assembly and activity of both BMV RNA replication complexes. ACBP is highly conserved among eukaryotes, specifically binds to long-chain fatty acyl-CoA, and promotes general lipid synthesis. Deleting ACB1 inhibited BMV RNA replication up to 30-fold and resulted in formation of spherules that were ∼50% smaller but ∼4-fold more abundant than those in wild-type (wt) cells, consistent with the idea that BMV 1a invaginates and maintains viral spherules by coating the inner spherule membrane. Furthermore, smaller and more frequent spherules were preferentially formed under conditions that induce layer formation in wt cells. Conversely, cellular karmella structures, which are arrays of endoplasmic reticulum (ER) membranes formed upon overexpression of certain cellular ER membrane proteins, were formed normally, indicating a selective inhibition of 1a-induced membrane rearrangements. Restoring altered lipid composition largely complemented the BMV RNA replication defect, suggesting that ACBP was required for maintaining lipid homeostasis. Smaller and more frequent spherules are also induced by 1a mutants with specific substitutions in a membrane-anchoring amphipathic α-helix, implying that the 1a-lipid interactions play critical roles in viral replication complex assembly.
Collapse
|
378
|
Moriishi K, Matsuura Y. Exploitation of lipid components by viral and host proteins for hepatitis C virus infection. Front Microbiol 2012; 3:54. [PMID: 22347882 PMCID: PMC3278987 DOI: 10.3389/fmicb.2012.00054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/31/2012] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV), which is a major causative agent of blood-borne hepatitis, has chronically infected about 170 million individuals worldwide and leads to chronic infection, resulting in development of steatosis, cirrhosis, and eventually hepatocellular carcinoma. Hepatocellular carcinoma associated with HCV infection is not only caused by chronic inflammation, but also by the biological activity of HCV proteins. HCV core protein is known as a main component of the viral nucleocapsid. It cooperates with host factors and possesses biological activity causing lipid alteration, oxidative stress, and progression of cell growth, while other viral proteins also interact with host proteins including molecular chaperones, membrane-anchoring proteins, and enzymes associated with lipid metabolism to maintain the efficiency of viral replication and production. HCV core protein is localized on the surface of lipid droplets in infected cells. However, the role of lipid droplets in HCV infection has not yet been elucidated. Several groups recently reported that other viral proteins also support viral infection by regulation of lipid droplets and core localization in infected cells. Furthermore, lipid components are required for modification of host factors and the intracellular membrane to maintain or up-regulate viral replication. In this review, we summarize the current status of knowledge regarding the exploitation of lipid components by viral and host proteins in HCV infection.
Collapse
Affiliation(s)
- Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, University of Yamanashi Chuo-shi, Yamanashi, Japan
| | | |
Collapse
|
379
|
Annexin A2 is involved in the formation of hepatitis C virus replication complex on the lipid raft. J Virol 2012; 86:4139-50. [PMID: 22301157 DOI: 10.1128/jvi.06327-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The hepatitis C virus (HCV) RNA replicates in hepatic cells by forming a replication complex on the lipid raft (detergent-resistant membrane [DRM]). Replication complex formation requires various viral nonstructural (NS) proteins as well as host cellular proteins. In our previous study (C. K. Lai, K. S. Jeng, K. Machida, and M. M. Lai, J. Virol. 82:8838-8848, 2008), we found that a cellular protein, annexin A2 (Anxa2), interacts with NS3/NS4A. Since NS3/NS4A is a membranous protein and Anxa2 is known as a lipid raft-associated scaffold protein, we postulate that Anxa2 helps in the formation of the HCV replication complex on the lipid raft. Further studies showed that Anxa2 was localized at the HCV-induced membranous web and interacted with NS4B, NS5A, and NS5B and colocalized with them in the perinuclear region. The silencing of Anxa2 decreased the formation of membranous web-like structures and viral RNA replication. Subcellular fractionation and bimolecular fluorescence complementation analysis revealed that Anxa2 was partially associated with HCV at the lipid raft enriched with phosphatidylinositol-4-phosphate (PI4P) and caveolin-2. Further, the overexpression of Anxa2 in HCV-nonsusceptible HEK293 cells caused the enrichment of HCV NS proteins in the DRM fraction and increased the colony-forming ability of the HCV replicon. Since Anxa2 is known to induce the formation of the lipid raft microdomain, we propose that Anxa2 recruits HCV NS proteins and enriches them on the lipid raft to form the HCV replication complex.
Collapse
|
380
|
Abstract
Until recently, chronic hepatitis C caused by persistent infection with the hepatitis C virus (HCV) has been treated with a combination of pegylated interferon-alpha (PEG-IFNα) and ribavirin (RBV). This situation has changed with the development of two drugs targeting the NS3/4A protease, approved for combination therapy with PEG-IFNα/RBV for patients infected with genotype 1 viruses. Moreover, two additional viral proteins, the RNA-dependent RNA polymerase (residing in NS5B) and the NS5A protein have emerged as promising drug targets and a large number of antivirals targeting these proteins are at different stages of clinical development. Although this progress is very promising, it is not clear whether these new compounds will suffice to eradicate the virus in an infected individual, ideally by using a PEG-IFNα/RBV-free regimen, or whether additional compounds targeting other factors that promote HCV replication are required. In this respect, host cell factors have emerged as a promising alternative. They reduce the risk of development of antiviral resistance and they increase the chance for broad-spectrum activity, ideally covering all HCV genotypes. Work in the last few years has identified several host cell factors used by HCV for productive replication. These include, amongst others, cyclophilins, especially cyclophilinA (cypA), microRNA-122 (miR-122) or phosphatidylinositol-4-kinase III alpha. For instance, cypA inhibitors have shown to be effective in combination therapy with PEG-IFN/RBV in increasing the sustained viral response (SVR) rate significantly compared to PEG-IFN/RBV. This review briefly summarizes recent advances in the development of novel antivirals against HCV.
Collapse
Affiliation(s)
- Sandra Bühler
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
381
|
HCV NS5A and NS5B enhance expression of human ceramide glucosyltransferase gene. Virol Sin 2012; 27:38-47. [PMID: 22270805 DOI: 10.1007/s12250-012-3226-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022] Open
Abstract
Host genes involved in lipid metabolism are differentially affected during the early stages of hepatitis C virus (HCV) infection. Here we demonstrate that artificial up-regulation of fatty acid biosynthesis has a positive effect on the replication of the HCV full-length replicon when cells were treated with nystatin. Conversely, the HCV RNA replication was decreased when fatty acid biosynthesis was inhibited with 25-hydroxycholesterol and PDMP(D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol). In agreement with these results, the expression level of GlcT-1(ceramide glucosyltransferase), a host glucosyltransferase in the first step of GSL (glycosphingolipid) biosynthesis, was found to be closely associated with the expression and replication of HCV RNA. On the other hand, the viral RNA can also activate GlcT-1 in the early stage of viral RNA transfection in vitro. To identify viral factors that are responsible for GlcT-1 activation, we constructed ten stable Vero cell lines that express individual HCV proteins. Based on the analyses of these cell lines and transient transfection assay of the GlcT-1 promoter regions, we conclude that HCV proteins, especially NS5A and NS5B, have positive effects on the expression of GlcT-1. It is possible that NS5A and NS5B stimulate transcription factor(s) to activate the expression of GlcT-1 by increasing its transcription level.
Collapse
|
382
|
Yang N, Ma P, Lang J, Zhang Y, Deng J, Ju X, Zhang G, Jiang C. Phosphatidylinositol 4-kinase IIIβ is required for severe acute respiratory syndrome coronavirus spike-mediated cell entry. J Biol Chem 2012; 287:8457-67. [PMID: 22253445 PMCID: PMC3318727 DOI: 10.1074/jbc.m111.312561] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Phosphatidylinositol kinases (PI kinases) play an important role in the life
cycle of several viruses after infection. Using gene knockdown technology, we
demonstrate that phosphatidylinositol 4-kinase IIIβ (PI4KB) is required
for cellular entry by pseudoviruses bearing the severe acute respiratory
syndrome-coronavirus (SARS-CoV) spike protein and that the cell entry mediated
by SARS-CoV spike protein is strongly inhibited by knockdown of PI4KB.
Consistent with this observation, pharmacological inhibitors of PI4KB blocked
entry of SARS pseudovirions. Further research suggested that PI4P plays an
essential role in SARS-CoV spike-mediated entry, which is regulated by the PI4P
lipid microenvironment. We further demonstrate that PI4KB does not affect virus
entry at the SARS-CoV S-ACE2 binding interface or at the stage of virus
internalization but rather at or before virus fusion. Taken together, these
results indicate a new function for PI4KB and suggest a new drug target for
preventing SARS-CoV infection.
Collapse
Affiliation(s)
- Ning Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Tsinghua University, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | | | | | | | |
Collapse
|
383
|
Hamatake R, Maynard A, Kazmierski WM. HCV Inhibition Mediated Through the Nonstructural Protein 5A (NS5A) Replication Complex. ANNUAL REPORTS IN MEDICINAL CHEMISTRY VOLUME 47 2012. [DOI: 10.1016/b978-0-12-396492-2.00022-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
384
|
Knapp B, Rebhan I, Kumar A, Matula P, Kiani NA, Binder M, Erfle H, Rohr K, Eils R, Bartenschlager R, Kaderali L. Normalizing for individual cell population context in the analysis of high-content cellular screens. BMC Bioinformatics 2011; 12:485. [PMID: 22185194 PMCID: PMC3259109 DOI: 10.1186/1471-2105-12-485] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/20/2011] [Indexed: 12/21/2022] Open
Abstract
Background High-content, high-throughput RNA interference (RNAi) offers unprecedented possibilities to elucidate gene function and involvement in biological processes. Microscopy based screening allows phenotypic observations at the level of individual cells. It was recently shown that a cell's population context significantly influences results. However, standard analysis methods for cellular screens do not currently take individual cell data into account unless this is important for the phenotype of interest, i.e. when studying cell morphology. Results We present a method that normalizes and statistically scores microscopy based RNAi screens, exploiting individual cell information of hundreds of cells per knockdown. Each cell's individual population context is employed in normalization. We present results on two infection screens for hepatitis C and dengue virus, both showing considerable effects on observed phenotypes due to population context. In addition, we show on a non-virus screen that these effects can be found also in RNAi data in the absence of any virus. Using our approach to normalize against these effects we achieve improved performance in comparison to an analysis without this normalization and hit scoring strategy. Furthermore, our approach results in the identification of considerably more significantly enriched pathways in hepatitis C virus replication than using a standard analysis approach. Conclusions Using a cell-based analysis and normalization for population context, we achieve improved sensitivity and specificity not only on a individual protein level, but especially also on a pathway level. This leads to the identification of new host dependency factors of the hepatitis C and dengue viruses and higher reproducibility of results.
Collapse
Affiliation(s)
- Bettina Knapp
- Heidelberg University, ViroQuant Research Group Modeling, BioQuant BQ26, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Nagy PD, Pogany J. The dependence of viral RNA replication on co-opted host factors. Nat Rev Microbiol 2011; 10:137-49. [PMID: 22183253 PMCID: PMC7097227 DOI: 10.1038/nrmicro2692] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Positive-sense RNA ((+)RNA) viruses such as hepatitis C virus exploit host cells by subverting host proteins, remodelling subcellular membranes, co-opting and modulating protein and ribonucleoprotein complexes, and altering cellular metabolic pathways during infection. To facilitate RNA replication, (+)RNA viruses interact with numerous host molecules through protein-protein, RNA-protein and protein-lipid interactions. These interactions lead to the formation of viral replication complexes, which produce new viral RNA progeny in host cells. This Review presents the recent progress that has been made in understanding the role of co-opted host proteins and membranes during (+)RNA virus replication, and discusses common themes employed by different viruses.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, Lexington, Kentucky 40546, USA.
| | | |
Collapse
|
386
|
Turek M, Lupberger J, Baumert TF, Zeisel MB. [Open Sesame: regulation of hepatitis C virus entry into hepatocytes]. Med Sci (Paris) 2011; 27:929-31. [PMID: 22130016 DOI: 10.1051/medsci/20112711005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
387
|
Nishikiori M, Mori M, Dohi K, Okamura H, Katoh E, Naito S, Meshi T, Ishikawa M. A host small GTP-binding protein ARL8 plays crucial roles in tobamovirus RNA replication. PLoS Pathog 2011; 7:e1002409. [PMID: 22174675 PMCID: PMC3234234 DOI: 10.1371/journal.ppat.1002409] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/14/2011] [Indexed: 12/16/2022] Open
Abstract
Tomato mosaic virus (ToMV), like other eukaryotic positive-strand RNA viruses, replicates its genomic RNA in replication complexes formed on intracellular membranes. Previous studies showed that a host seven-pass transmembrane protein TOM1 is necessary for efficient ToMV multiplication. Here, we show that a small GTP-binding protein ARL8, along with TOM1, is co-purified with a FLAG epitope-tagged ToMV 180K replication protein from solubilized membranes of ToMV-infected tobacco (Nicotiana tabacum) cells. When solubilized membranes of ToMV-infected tobacco cells that expressed FLAG-tagged ARL8 were subjected to immunopurification with anti-FLAG antibody, ToMV 130K and 180K replication proteins and TOM1 were co-purified and the purified fraction showed RNA-dependent RNA polymerase activity that transcribed ToMV RNA. From uninfected cells, TOM1 co-purified with FLAG-tagged ARL8 less efficiently, suggesting that a complex containing ToMV replication proteins, TOM1, and ARL8 are formed on membranes in infected cells. In Arabidopsis thaliana, ARL8 consists of four family members. Simultaneous mutations in two specific ARL8 genes completely inhibited tobamovirus multiplication. In an in vitro ToMV RNA translation-replication system, the lack of either TOM1 or ARL8 proteins inhibited the production of replicative-form RNA, indicating that TOM1 and ARL8 are required for efficient negative-strand RNA synthesis. When ToMV 130K protein was co-expressed with TOM1 and ARL8 in yeast, RNA 5'-capping activity was detected in the membrane fraction. This activity was undetectable or very weak when the 130K protein was expressed alone or with either TOM1 or ARL8. Taken together, these results suggest that TOM1 and ARL8 are components of ToMV RNA replication complexes and play crucial roles in a process toward activation of the replication proteins' RNA synthesizing and capping functions.
Collapse
Affiliation(s)
- Masaki Nishikiori
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Koji Dohi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Hideyasu Okamura
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Etsuko Katoh
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tetsuo Meshi
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Masayuki Ishikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
388
|
Virus factories, double membrane vesicles and viroplasm generated in animal cells. Curr Opin Virol 2011; 1:381-7. [PMID: 22440839 PMCID: PMC7102809 DOI: 10.1016/j.coviro.2011.09.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 12/16/2022]
Abstract
Many viruses reorganise cellular membrane compartments and the cytoskeleton to generate subcellular microenvironments called virus factories or 'viroplasm'. These create a platform to concentrate replicase proteins, virus genomes and host proteins required for replication and also protect against antiviral defences. There is growing interest in understanding how viruses induce such large changes in cellular organisation, and recent studies are beginning to reveal the relationship between virus factories and viroplasm and the cellular structures that house them. In this review, we discuss how three supergroups of (+)RNA viruses generate replication sites from membrane-bound organelles and highlight research on perinuclear factories induced by the nucleocytoplasmic large DNA viruses.
Collapse
|
389
|
The role of the phosphatidylinositol 4-kinase PI4KA in hepatitis C virus-induced host membrane rearrangement. PLoS One 2011; 6:e26300. [PMID: 22022594 PMCID: PMC3192179 DOI: 10.1371/journal.pone.0026300] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/23/2011] [Indexed: 01/17/2023] Open
Abstract
Background Hepatitis C virus (HCV), like other positive-sense RNA viruses, replicates on an altered host membrane compartment that has been called the “membranous web.” The mechanisms by which the membranous web are formed from cellular membranes are poorly understood. Several recent RNA interference screens have demonstrated a critical role for the host phosphatidylinositol 4-kinase PI4KA in HCV replication. We have sought to define the function of PI4KA in viral replication. Methodology/Principal Findings Using a nonreplicative model of membranous web formation, we show that PI4KA silencing leads to aberrant web morphology. Furthermore, we find that PI4KA and its product, phosphatidylinositol 4-phosphate, are enriched on membranous webs and that PI4KA is found in association with NS5A in HCV-infected cells. While the related lipid kinase PI4KB also appears to support HCV replication, it does not interact with NS5A. Silencing of PI4KB does not overtly impair membranous web morphology or phosphatidylinositol 4-phosphate enrichment at webs, suggesting that it acts at a different point in viral replication. Finally, we demonstrate that the aberrant webs induced by PI4KA silencing require the activity of the viral NS3-4A serine protease but not integrity of the host secretory pathway. Conclusions/Significance PI4KA is necessary for the local enrichment of PI 4-phosphate at the HCV membranous web and for the generation of morphologically normal webs. We also show that nonreplicative systems of web formation can be used to order molecular events that drive web assembly.
Collapse
|
390
|
Lorizate M, Kräusslich HG. Role of lipids in virus replication. Cold Spring Harb Perspect Biol 2011; 3:a004820. [PMID: 21628428 DOI: 10.1101/cshperspect.a004820] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses intricately interact with and modulate cellular membranes at several stages of their replication, but much less is known about the role of viral lipids compared to proteins and nucleic acids. All animal viruses have to cross membranes for cell entry and exit, which occurs by membrane fusion (in enveloped viruses), by transient local disruption of membrane integrity, or by cell lysis. Furthermore, many viruses interact with cellular membrane compartments during their replication and often induce cytoplasmic membrane structures, in which genome replication and assembly occurs. Recent studies revealed details of membrane interaction, membrane bending, fission, and fusion for a number of viruses and unraveled the lipid composition of raft-dependent and -independent viruses. Alterations of membrane lipid composition can block viral release and entry, and certain lipids act as fusion inhibitors, suggesting a potential as antiviral drugs. Here, we review viral interactions with cellular membranes important for virus entry, cytoplasmic genome replication, and virus egress.
Collapse
Affiliation(s)
- Maier Lorizate
- Department of Infectious Diseases, Virology, University Heidelberg, D-69120 Heidelberg, Germany
| | | |
Collapse
|
391
|
Martín-Acebes MA, Blázquez AB, Jiménez de Oya N, Escribano-Romero E, Saiz JC. West Nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids. PLoS One 2011; 6:e24970. [PMID: 21949814 PMCID: PMC3176790 DOI: 10.1371/journal.pone.0024970] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/19/2011] [Indexed: 12/19/2022] Open
Abstract
West Nile virus (WNV) is a neurovirulent mosquito-borne flavivirus, which main natural hosts are birds but it also infects equines and humans, among other mammals. As in the case of other plus-stranded RNA viruses, WNV replication is associated to intracellular membrane rearrangements. Based on results obtained with a variety of viruses, different cellular processes have been shown to play important roles on these membrane rearrangements for efficient viral replication. As these processes are related to lipid metabolism, fatty acid synthesis, as well as generation of a specific lipid microenvironment enriched in phosphatidylinositol-4-phosphate (PI4P), has been associated to it in other viral models. In this study, intracellular membrane rearrangements following infection with a highly neurovirulent strain of WNV were addressed by means of electron and confocal microscopy. Infection of WNV, and specifically viral RNA replication, were dependent on fatty acid synthesis, as revealed by the inhibitory effect of cerulenin and C75, two pharmacological inhibitors of fatty acid synthase, a key enzyme of this process. However, WNV infection did not induce redistribution of PI4P lipids, and PI4P did not localize at viral replication complex. Even more, WNV multiplication was not inhibited by the use of the phosphatidylinositol-4-kinase inhibitor PIK93, while infection by the enterovirus Coxsackievirus B5 was reduced. Similar features were found when infection by other flavivirus, the Usutu virus (USUV), was analyzed. These features of WNV replication could help to design specific antiviral approaches against WNV and other related flaviviruses.
Collapse
Affiliation(s)
- Miguel A Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| | | | | | | | | |
Collapse
|
392
|
Cordek DG, Bechtel JT, Maynard AT, Kazmierski WM, Cameron CE. TARGETING THE NS5A PROTEIN OF HCV: AN EMERGING OPTION. DRUG FUTURE 2011; 36:691-711. [PMID: 23378700 PMCID: PMC3558953 DOI: 10.1358/dof.2011.036.09.1641618] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Hepatitis C virus (HCV) infects more than 3% of the world's population, leading to an increased risk of cirrhosis and hepatocellular carcinoma. The current standard of care, a combination of pegylated interferon alfa and ribavirin, is poorly tolerated and often ineffective against the most prevalent genotype of the virus, genotype 1. The very recent approval of boceprevir and telaprevir, two HCV protease inhibitors, promises to significantly improve treatment options and outcomes. In addition to the viral protease NS3 and the viral polymerase NS5B, direct-acting antivirals are now in development against NS5A. A multifunctional phosphoprotein, NS5A is essential to HCV genome replication, but has no known enzymatic function. Here we report how the design of small-molecule inhibitors against NS5A has evolved from promising monomers to highly potent dimeric compounds effective against many HCV genotypes. We also highlight recent clinical data and how the inhibitors may bind to NS5A, itself capable of forming dimers.
Collapse
Affiliation(s)
- D G Cordek
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
393
|
Abstract
HCV represents a serious public health problem worldwide. The current therapy for this virus is only partially effective and new antiviral therapies are urgently needed. Therefore, HCV assembly emerges as a potential therapeutic target. The HCV morphogenesis process presents the peculiarity of the double role of the nonstructural proteins in both the replication and assembly processes. Recently, the cross-talk between structural and nonstructural proteins for virion morphogenesis has been under investigation. We aim to review genetic, cell biology and biochemical data in order to reach a working model for the collaboration of all HCV proteins in the assembly process.
Collapse
Affiliation(s)
- Costin-Ioan Popescu
- Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest 17, Romania
| | - Yves Rouillé
- Molecular & Cellular Virology of Hepatitis C, Center for Infection & Immunity, Inserm (U1019) & CNRS (UMR8204), University Lille Nord de France, Institut Pasteur de Lille, 1 rue Calmette, P447, 59021 Lille cedex, France
| | - Jean Dubuisson
- Molecular & Cellular Virology of Hepatitis C, Center for Infection & Immunity, Inserm (U1019) & CNRS (UMR8204), University Lille Nord de France, Institut Pasteur de Lille, 1 rue Calmette, P447, 59021 Lille cedex, France
| |
Collapse
|
394
|
Hepatitis C virus stimulates the phosphatidylinositol 4-kinase III alpha-dependent phosphatidylinositol 4-phosphate production that is essential for its replication. J Virol 2011; 85:8870-83. [PMID: 21697487 DOI: 10.1128/jvi.00059-11] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Phosphatidylinositol 4-kinase III alpha (PI4KA) is an essential cofactor of hepatitis C virus (HCV) replication. We initiated this study to determine whether HCV directly engages PI4KA to establish its replication. PI4KA kinase activity was found to be absolutely required for HCV replication using a small interfering RNA transcomplementation assay. Moreover, HCV infection or subgenomic HCV replicons produced a dramatic increase in phosphatidylinositol 4-phosphate (PI4P) accumulation throughout the cytoplasm, which partially colocalized with the endoplasmic reticulum. In contrast, the majority of PI4P accumulated at the Golgi bodies in uninfected cells. The increase in PI4P was not observed after infection with UV-inactivated HCV and did not reflect changes in PI4KA protein or RNA abundance. In an analysis of U2OS cell lines with inducible expression of the HCV polyprotein or individual viral proteins, viral polyprotein expression resulted in enhanced cytoplasmic PI4P production. Increased PI4P accumulation following HCV protein expression was precluded by silencing the expression of PI4KA, but not the related PI4KB. Silencing PI4KA also resulted in aberrant agglomeration of viral replicase proteins, including NS5A, NS5B, and NS3. NS5A alone, but not other viral proteins, stimulated PI4P production in vivo and enhanced PI4KA kinase activity in vitro. Lastly, PI4KA coimmunoprecipitated with NS5A from infected Huh-7.5 cells and from dually transfected 293T cells. In sum, these results suggest that HCV NS5A modulation of PI4KA-dependent PI4P production influences replication complex formation.
Collapse
|
395
|
Herker E, Ott M. Unique ties between hepatitis C virus replication and intracellular lipids. Trends Endocrinol Metab 2011; 22:241-8. [PMID: 21497514 PMCID: PMC3118981 DOI: 10.1016/j.tem.2011.03.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/09/2011] [Accepted: 03/15/2011] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infects approximately 3% of the world's population, establishing a lifelong infection in the majority of cases. The life cycle of HCV is closely tied to the lipid metabolism of liver cells, and lipid droplets have emerged as crucial intracellular organelles that support persistent propagation of viral infection. In this review, we examine recent advances in our understanding of how HCV usurps intracellular lipids to propagate, and highlight unique opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Eva Herker
- Gladstone Institute of Virology and Immunology; 1650 Owens Street, San Francisco, California 94158
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Liver Center, University of California, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology; 1650 Owens Street, San Francisco, California 94158
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Liver Center, University of California, San Francisco, CA 94143, USA
- To whom correspondence should be addressed: Melanie Ott, MD, PhD, Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158, Tel: (415) 734-4807, Fax: (415) 355-0855,
| |
Collapse
|
396
|
Multifaceted roles for lipids in viral infection. Trends Microbiol 2011; 19:368-75. [PMID: 21530270 PMCID: PMC3130080 DOI: 10.1016/j.tim.2011.03.007] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 02/07/2023]
Abstract
Viruses have evolved complex and dynamic interactions with their host cell. In recent years we have gained insight into the expanding roles for host lipids in the virus life cycle. In particular, viruses target lipid signaling, synthesis, and metabolism to remodel their host cells into an optimal environment for their replication. This review highlights examples from different viruses that illustrate the importance of these diverse virus–lipid interactions.
Collapse
|
397
|
Abstract
Hepatitis C virus genome replication occurs in endoplasmic reticulum-derived membrane compartments, but it is unknown how these structures arise. In this issue of Cell Host & Microbe, Reiss and colleagues (2011) show that the virus recruits a specific lipid kinase to replication sites, stimulates its kinase activity, and alters the phospholipid profile of replication compartments.
Collapse
Affiliation(s)
- Brett D Lindenbach
- Section of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, BCMM 354C, New Haven, CT 06536, USA.
| |
Collapse
|
398
|
Lim YS, Hwang SB. Hepatitis C virus NS5A protein interacts with phosphatidylinositol 4-kinase type IIIalpha and regulates viral propagation. J Biol Chem 2011; 286:11290-8. [PMID: 21297162 DOI: 10.1074/jbc.m110.194472] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) nonstructural 5A (NS5A) is a pleiotropic protein involved in viral RNA replication and modulation of the cellular physiology in HCV-infected cells. To elucidate the mechanisms of the HCV life cycle, we identified cellular factors interacting with the NS5A protein in HCV-infected cells. Huh7.5 cells were electroporated with HCV Jc1 RNA. Cellular factors associated with HCV NS5A were identified by immunoprecipitation with Dynabead-conjugated NS5A antibody and LC-MS/MS. Phosphatidylinositol 4-kinase type IIIα (PI4KIIIα) was identified as a binding partner for the NS5A protein. NS5A derived from both genotypes 1b and 2a interacted with PI4KIIIα. NS5A interacted with PI4KIIIα through amino acids 401-600 of PI4KIIIα and domain I of NS5A. Interference of the protein interaction between NS5A and PI4KIIIα decreased HCV propagation. Knockdown of PI4KIIIα significantly reduced HCV replication in Huh7 cells harboring the subgenomic replicon and in Huh7.5 cells infected with cell culture grown virus (HCVcc). Silencing of PI4KIIIα further inhibited HCV release into the tissue culture medium. NS5A may recruit PI4KIIIα to the HCV RNA replication complex. These data suggest that PI4KIIIα is an essential host factor that supports HCV proliferation and therefore PI4KIIIα may be a legitimate target for anti-HCV therapy.
Collapse
Affiliation(s)
- Yun-Sook Lim
- National Research Laboratory of Hepatitis C Virus, Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | | |
Collapse
|