351
|
Zhao H, Meng X, Yuan H, Lan M. Novel melphalan and chlorambucil derivatives of 2,2,6,6-tetramethyl-1-piperidinyloxy radicals: synthesis, characterization, and biological evaluation in vitro. Chem Pharm Bull (Tokyo) 2010; 58:332-5. [PMID: 20190437 DOI: 10.1248/cpb.58.332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of spin-labeled melphalan and chlorambucil derivatives, coupling the alkylating agents with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radicals, were synthesized, characterized, and their biological properties in vitro were evaluated. These compounds showed much higher cytotoxic activity against human leukemia cell line K562 in vitro than their parent compounds.
Collapse
Affiliation(s)
- Hongli Zhao
- Key Laboratory for Advanced Materials, and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, P. R.China
| | | | | | | |
Collapse
|
352
|
Wilson DM, Seidman MM. A novel link to base excision repair? Trends Biochem Sci 2010; 35:247-52. [PMID: 20172733 PMCID: PMC2866823 DOI: 10.1016/j.tibs.2010.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/07/2010] [Accepted: 01/15/2010] [Indexed: 01/04/2023]
Abstract
DNA interstrand crosslinks (ICLs) can arise from reactions with endogenous chemicals, such as malondialdehyde - a lipid peroxidation product - or from exposure to various clinical anti-cancer drugs, most notably bifunctional alkylators and platinum compounds. Because they covalently link the two strands of DNA, ICLs completely block transcription and replication, and, as a result, are lethal to the cell. It is well established that proteins that function in nucleotide excision repair and homologous recombination are involved in ICL resolution. Recent work, coupled with a much earlier report, now suggest an emerging link between proteins of the base excision repair pathway and crosslink processing.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | |
Collapse
|
353
|
Abstract
Therapy-related leukaemias are becoming an increasing healthcare problem as more patients survive their primary cancers. The nature of the causative agent has an important bearing upon the characteristics, biology, time to onset and prognosis of the resultant leukaemia. Agents targeting topoisomerase II induce acute leukaemias with balanced translocations that generally arise within 3 years, often involving the MLL, RUNX1 and RARA loci at 11q23, 21q22 and 17q21 respectively. Chromosomal breakpoints have been found to be preferential sites of topoisomerase II cleavage, which are believed to be repaired by the nonhomologous end-joining DNA repair pathway to generate chimaeric oncoproteins that underlie the resultant leukaemias. Therapy-related acute myeloid leukaemias occurring after exposure to antimetabolites and/or alkylating agents are biologically distinct with a longer latency period, being characterised by more complex karyotypes and loss of p53. Although treatment of therapy-related leukaemias represents a considerable challenge due to prior therapy and comorbidities, curative therapy is possible, particularly in those with favourable karyotypic features.
Collapse
Affiliation(s)
- Melanie Joannides
- Department of Medical & Molecular Genetics, King's College London School of Medicine, Guy's Hospital, London, UK
| | | |
Collapse
|
354
|
Millen AL, Manderville RA, Wetmore SD. Conformational Flexibility of C8-Phenoxyl-2′-deoxyguanosine Nucleotide Adducts. J Phys Chem B 2010; 114:4373-82. [DOI: 10.1021/jp911993f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Andrea L. Millen
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Richard A. Manderville
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Stacey D. Wetmore
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
355
|
Antineoplastic Drugs as a Potential Risk Factor in Occupational Settings: Mechanisms of Action at the Cell Level, Genotoxic Effects, and Their Detection Using Different Biomarkers. Arh Hig Rada Toksikol 2010; 61:121-46. [DOI: 10.2478/10004-1254-61-2010-2025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antineoplastični Lijekovi Kao Čimbenik Rizika u Radnom Okolišu: Mehanizmi Djelovanja na Razini Stanice i Pregled Metoda za Otkrivanje Njihovih Genotoksičnih UčinakaU članku je prikazana osnovna podjela antineoplastičnih lijekova prema mehanizmima djelovanja na razini stanice. Objašnjeni su mehanizmi genotoksičnosti najvažnijih vrsta lijekova koji se primjenjuju u okviru uobičajenih protokola za liječenje zloćudnih novotvorina. Navedena je važeća klasifikacija antineoplastika prema kancerogenom potencijalu, podaci o mutagenom potencijalu te je prikazana njihova podjela u skladu s anatomsko-terapijsko-kemijskim sustavom klasifikacije. Sustavno su prikazani najvažniji rezultati svjetskih i hrvatskih istraživanja na populacijama radnika izloženih antineoplasticima, provedenih u razdoblju 1980.-2009. s pomoću četiri najčešće primjenjivane metode: analize izmjena sestrinskih kromatida, analize kromosomskih aberacija, mikronukleus-testa i komet-testa. Objašnjena su osnovna načela navedenih metoda te raspravljene njihove prednosti i nedostaci. Biološki pokazatelji daju važne podatke o individualnoj osjetljivosti profesionalno izloženih ispitanika koji mogu poslužiti unaprjeđenju postojećih uvjeta rada i upravljanju rizicima pri izloženosti genotoksičnim agensima. Na osnovi prednosti i nedostataka citogenetičkih metoda zaključeno je da je mikronukleus-test, koji podjednako uspješno dokazuje klastogene i aneugene učinke, jedna od najboljih metoda dostupnih za otkrivanje štetnih djelovanja antineoplastičnih lijekova koji su u aktivnoj primjeni.
Collapse
|
356
|
Arung ET, Yoshikawa K, Shimizu K, Kondo R. Isoprenoid-substituted flavonoids from wood of Artocarpus heterophyllus on B16 melanoma cells: Cytotoxicity and structural criteria. Fitoterapia 2010; 81:120-3. [DOI: 10.1016/j.fitote.2009.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/07/2009] [Accepted: 08/08/2009] [Indexed: 10/20/2022]
|
357
|
van den Born E, Bekkelund A, Moen MN, Omelchenko MV, Klungland A, Falnes PØ. Bioinformatics and functional analysis define four distinct groups of AlkB DNA-dioxygenases in bacteria. Nucleic Acids Res 2010; 37:7124-36. [PMID: 19786499 PMCID: PMC2790896 DOI: 10.1093/nar/gkp774] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The iron(II)- and 2-oxoglutarate (2OG)-dependent dioxygenase AlkB from Escherichia coli (EcAlkB) repairs alkylation damage in DNA by direct reversal. EcAlkB substrates include methylated bases, such as 1-methyladenine (m1A) and 3-methylcytosine (m3C), as well as certain bulkier lesions, for example the exocyclic adduct 1,N6-ethenoadenine (εA). EcAlkB is the only bacterial AlkB protein characterized to date, and we here present an extensive bioinformatics and functional analysis of bacterial AlkB proteins. Based on sequence phylogeny, we show that these proteins can be subdivided into four groups: denoted 1A, 1B, 2A and 2B; each characterized by the presence of specific conserved amino acid residues in the putative nucleotide-recognizing domain. A scattered distribution of AlkB proteins from the four different groups across the bacterial kingdom indicates a substantial degree of horizontal transfer of AlkB genes. DNA repair activity was associated with all tested recombinant AlkB proteins. Notably, both a group 2B protein from Xanthomonas campestris and a group 2A protein from Rhizobium etli repaired etheno adducts, but had negligible activity on methylated bases. Our data indicate that the majority, if not all, of the bacterial AlkB proteins are DNA repair enzymes, and that some of these proteins do not primarily target methylated bases.
Collapse
Affiliation(s)
- Erwin van den Born
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, 0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
358
|
Gupta A, Saha P, Descôteaux C, Leblanc V, Asselin E, Bérubé G. Design, synthesis and biological evaluation of estradiol-chlorambucil hybrids as anticancer agents. Bioorg Med Chem Lett 2010; 20:1614-8. [PMID: 20137939 DOI: 10.1016/j.bmcl.2010.01.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
A series of estradiol-chlorambucil hybrids was synthesized as anticancer drugs for site-directed chemotherapy of breast cancer. The novel compounds were synthesized in good yields through efficient modifications of estrone at position 16alpha of the steroid nucleus. The newly synthesized compounds were evaluated for their anticancer efficacy in different hormone-dependent and hormone-independent breast cancer cell lines. The novel hybrids showed significant in vitro anticancer activity when compared to chlorambucil. Structure-activity relationship (SAR) reveals the influence of the length of the spacer chain between carrier and drug molecule.
Collapse
Affiliation(s)
- Atul Gupta
- Département de Chimie-Biologie, Groupe de Recherche en Oncologie et Endocrinologie Moléculaires, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec, Canada G9A 5H7
| | | | | | | | | | | |
Collapse
|
359
|
Holland PJ, Hollis T. Structural and mutational analysis of Escherichia coli AlkB provides insight into substrate specificity and DNA damage searching. PLoS One 2010; 5:e8680. [PMID: 20084272 PMCID: PMC2800194 DOI: 10.1371/journal.pone.0008680] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 12/07/2009] [Indexed: 12/04/2022] Open
Abstract
Background In Escherichia coli, cytotoxic DNA methyl lesions on the N1 position of purines and N3 position of pyrimidines are primarily repaired by the 2-oxoglutarate (2-OG) iron(II) dependent dioxygenase, AlkB. AlkB repairs 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) lesions, but it also repairs 1-methylguanine (1-meG) and 3-methylthymine (3-meT) at a much less efficient rate. How the AlkB enzyme is able to locate and identify methylated bases in ssDNA has remained an open question. Methodology/Principal Findings We determined the crystal structures of the E. coli AlkB protein holoenzyme and the AlkB-ssDNA complex containing a 1-meG lesion. We coupled this to site-directed mutagenesis of amino acids in and around the active site, and tested the effects of these mutations on the ability of the protein to bind both damaged and undamaged DNA, as well as catalyze repair of a methylated substrate. Conclusions/Significance A comparison of our substrate-bound AlkB-ssDNA complex with our unliganded holoenzyme reveals conformational changes of residues within the active site that are important for binding damaged bases. Site-directed mutagenesis of these residues reveals novel insight into their roles in DNA damage recognition and repair. Our data support a model that the AlkB protein utilizes at least two distinct conformations in searching and binding methylated bases within DNA: a “searching” mode and “repair” mode. Moreover, we are able to functionally separate these modes through mutagenesis of residues that affect one or the other binding state. Finally, our mutagenesis experiments show that amino acid D135 of AlkB participates in both substrate specificity and catalysis.
Collapse
Affiliation(s)
- Paul J Holland
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | |
Collapse
|
360
|
Wu CC, Liu MT, Chang YT, Fang CY, Chou SP, Liao HW, Kuo KL, Hsu SL, Chen YR, Wang PW, Chen YL, Chuang HY, Lee CH, Chen M, Wayne Chang WS, Chen JY. Epstein-Barr virus DNase (BGLF5) induces genomic instability in human epithelial cells. Nucleic Acids Res 2009; 38:1932-49. [PMID: 20034954 PMCID: PMC2847232 DOI: 10.1093/nar/gkp1169] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epstein–Barr Virus (EBV) DNase (BGLF5) is an alkaline nuclease and has been suggested to be important in the viral life cycle. However, its effect on host cells remains unknown. Serological and histopathological studies implied that EBV DNase seems to be correlated with carcinogenesis. Therefore, we investigate the effect of EBV DNase on epithelial cells. Here, we report that expression of EBV DNase induces increased formation of micronucleus, an indicator of genomic instability, in human epithelial cells. We also demonstrate, using γH2AX formation and comet assay, that EBV DNase induces DNA damage. Furthermore, using host cell reactivation assay, we find that EBV DNase expression repressed damaged DNA repair in various epithelial cells. Western blot and quantitative PCR analyses reveal that expression of repair-related genes is reduced significantly in cells expressing EBV DNase. Host shut-off mutants eliminate shut-off expression of repair genes and repress damaged DNA repair, suggesting that shut-off function of BGLF5 contributes to repression of DNA repair. In addition, EBV DNase caused chromosomal aberrations and increased the microsatellite instability (MSI) and frequency of genetic mutation in human epithelial cells. Together, we propose that EBV DNase induces genomic instability in epithelial cells, which may be through induction of DNA damage and also repression of DNA repair, subsequently increases MSI and genetic mutations, and may contribute consequently to the carcinogenesis of human epithelial cells.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Nieminuszczy J, Mielecki D, Sikora A, Wrzesiński M, Chojnacka A, Krwawicz J, Janion C, Grzesiuk E. Mutagenic potency of MMS-induced 1meA/3meC lesions in E. coli. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:791-799. [PMID: 19449394 DOI: 10.1002/em.20497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The mutagenic activity of MMS in E. coli depends on the susceptibility of DNA bases to methylation and their repair by cellular defense systems. Among the lesions in methylated DNA is 1meA/3meC, which is recently recognized as being mutagenic. In this report, special attention is focused on the mutagenic properties of 1meA/3meC which, by the activity of AlkB-dioxygenase, are quickly and efficiently converted to natural A/C bases in the DNA of E. coli alkB(+) strains, preventing 1meA/3meC-induced mutations. We have found that in the absence of AlkB-mediated repair, MMS treatment results in an increased frequency of four types of base substitutions: GC-->CG, GC-->TA, AT-->CG, and AT-->TA, whereas overproduction of PolV in CC101-106 alkB(-)/pRW134 strains leads to a markedly elevated level of GC-->TA, GC-->CG, and AT-->TA transversions. It has been observed that in the case of AB1157 alkB(-) strains, the MMS-induced and 1meA/3meC-dependent argE3-->Arg(+) reversion occurs efficiently, whereas lacZ(-)--> Lac(+) reversion in a set of CC101-106 alkB(-) strains occurs with much lower frequency. We considered several reasons for this discrepancy, namely, the possible variance in the level of the PolV activity, the effect of the PolIV contents that is higher in CC101-106 than in AB1157 strains and the different genetic cell backgrounds in CC101-106 alkB(-) and AB1157 alkB(-) strains, respectively. We postulate that the difference in the number of targets undergoing mutation and different reactivity of MMS with ssDNA and dsDNA are responsible for the high (argE3-->Arg(+)) and low (lacZ(-) --> Lac(+)) frequency of MMS-induced mutations.
Collapse
Affiliation(s)
- Jadwiga Nieminuszczy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | | | | | | | | | | | | | | |
Collapse
|
362
|
Gilljam KM, Feyzi E, Aas PA, Sousa MML, Müller R, Vågbø CB, Catterall TC, Liabakk NB, Slupphaug G, Drabløs F, Krokan HE, Otterlei M. Identification of a novel, widespread, and functionally important PCNA-binding motif. ACTA ACUST UNITED AC 2009; 186:645-54. [PMID: 19736315 PMCID: PMC2742182 DOI: 10.1083/jcb.200903138] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AlkB PCNA-interacting motif (APIM) is present in >200 proteins and may mediate PCNA binding during genotoxic stress. Numerous proteins, many essential for the DNA replication machinery, interact with proliferating cell nuclear antigen (PCNA) through the PCNA-interacting peptide (PIP) sequence called the PIP box. We have previously shown that the oxidative demethylase human AlkB homologue 2 (hABH2) colocalizes with PCNA in replication foci. In this study, we show that hABH2 interacts with a posttranslationally modified PCNA via a novel PCNA-interacting motif, which we term AlkB homologue 2 PCNA-interacting motif (APIM). We identify APIM in >200 other proteins involved in DNA maintenance, transcription, and cell cycle regulation, and verify a functional APIM in five of these. Expression of an APIM peptide increases the cellular sensitivity to several cytostatic agents not accounted for by perturbing only the hABH2–PCNA interaction. Thus, APIM is likely to mediate PCNA binding in many proteins involved in DNA repair and cell cycle control during genotoxic stress.
Collapse
Affiliation(s)
- Karin M Gilljam
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Sikora A, Mielecki D, Chojnacka A, Nieminuszczy J, Wrzesinski M, Grzesiuk E. Lethal and mutagenic properties of MMS-generated DNA lesions in Escherichia coli cells deficient in BER and AlkB-directed DNA repair. Mutagenesis 2009; 25:139-47. [PMID: 19892776 DOI: 10.1093/mutage/gep052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Methylmethane sulphonate (MMS), an S(N)2-type alkylating agent, generates DNA methylated bases exhibiting cytotoxic and mutagenic properties. Such damaged bases can be removed by a system of base excision repair (BER) and by oxidative DNA demethylation catalysed by AlkB protein. Here, we have shown that the lack of the BER system and functional AlkB dioxygenase results in (i) increased sensitivity to MMS, (ii) elevated level of spontaneous and MMS-induced mutations (measured by argE3 --> Arg(+) reversion) and (iii) induction of the SOS response shown by visualization of filamentous growth of bacteria. In the xth nth nfo strain additionally mutated in alkB gene, all these effects were extreme and led to 'error catastrophe', resulting from the presence of unrepaired apurinic/apyrimidinic (AP) sites and 1-methyladenine (1meA)/3-methylcytosine (3meC) lesions caused by deficiency in, respectively, BER and AlkB dioxygenase. The decreased level of MMS-induced Arg(+) revertants in the strains deficient in polymerase V (PolV) (bearing the deletion of the umuDC operon), and the increased frequency of these revertants in bacteria overproducing PolV (harbouring the pRW134 plasmid) indicate the involvement of PolV in the error-prone repair of 1meA/3meC and AP sites. Comparison of the sensitivity to MMS and the induction of Arg(+) revertants in the double nfo alkB and xth alkB, and the quadruple xth nth nfo alkB mutants showed that the more AP sites there are in DNA, the stronger the effect of the lack of AlkB protein. Since the sum of MMS-induced Arg(+) revertants in xth, nfo and nth xth nfo and alkB mutants is smaller than the frequency of these revertants in the BER(-) alkB(-) strain, we consider two possibilities: (i) the presence of AP sites in DNA results in relaxation of its structure that facilitates methylation and (ii) additional AP sites are formed in the BER(-) alkB(-) mutants.
Collapse
Affiliation(s)
- Anna Sikora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | | | | | | | | | | |
Collapse
|
364
|
Karayan-Tapon L, Quillien V, Guilhot J, Wager M, Fromont G, Saikali S, Etcheverry A, Hamlat A, Loussouarn D, Campion L, Campone M, Vallette FM, Gratas-Rabbia-Ré C. Prognostic value of O6-methylguanine-DNA methyltransferase status in glioblastoma patients, assessed by five different methods. J Neurooncol 2009; 97:311-22. [DOI: 10.1007/s11060-009-0031-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 09/30/2009] [Indexed: 11/30/2022]
|
365
|
Baek JH, Han MJ, Lee SY, Yoo JS. Transcriptome and proteome analyses of adaptive responses to methyl methanesulfonate in Escherichia coli K-12 and ada mutant strains. BMC Microbiol 2009; 9:186. [PMID: 19728878 PMCID: PMC2753364 DOI: 10.1186/1471-2180-9-186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 09/03/2009] [Indexed: 12/03/2022] Open
Abstract
Background The Ada-dependent adaptive response system in Escherichia coli is important for increasing resistance to alkylation damage. However, the global transcriptional and translational changes during this response have not been reported. Here we present time-dependent global gene and protein expression profiles following treatment with methyl methanesulfonate (MMS) in E. coli W3110 and its ada mutant strains. Results Transcriptome profiling showed that 1138 and 2177 genes were differentially expressed in response to MMS treatment in the wild-type and mutant strains, respectively. A total of 81 protein spots representing 76 nonredundant proteins differentially expressed were identified using 2-DE and LC-MS/MS. In the wild-type strain, many genes were differentially expressed upon long-exposure to MMS, due to both adaptive responses and stationary phase responses. In the ada mutant strain, the genes involved in DNA replication, recombination, modification and repair were up-regulated 0.5 h after MMS treatment, indicating its connection to the SOS and other DNA repair systems. Interestingly, expression of the genes involved in flagellar biosynthesis, chemotaxis, and two-component regulatory systems related to drug or antibiotic resistance, was found to be controlled by Ada. Conclusion These results show in detail the regulatory components and pathways controlling adaptive response and how the related genes including the Ada regulon are expressed with this response.
Collapse
Affiliation(s)
- Jong Hwan Baek
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering (BK21 Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea.
| | | | | | | |
Collapse
|
366
|
Schroering AG, Kothandapani A, Patrick SM, Kaliyaperumal S, Sharma VP, Williams KJ. Prolonged cell cycle response of HeLa cells to low-level alkylation exposure. Cancer Res 2009; 69:6307-14. [PMID: 19638578 PMCID: PMC2737279 DOI: 10.1158/0008-5472.can-09-0899] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alkylation chemotherapy has been a long-standing treatment protocol for human neoplasia. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is a direct-acting monofunctional alkylator. Temozolomide is a clinical chemotherapeutic equivalent requiring metabolic breakdown to the alkylating agent. Both chemicals have similar mechanistic efficacy against DNA mismatch repair-proficient tumor cells that lack expression of methylguanine methyltransferase. Clinically relevant concentrations of both agents affect replicating cells only after the first cell cycle. This phenomenon has been attributed to replication fork arrest at unrepaired O(6)-methyldeoxyguanine lesions mispaired with thymine during the first replication cycle. Here, we show, by several different approaches, that MNNG-treated tumor cells do not arrest within the second cell cycle. Instead, the population slowly traverses through mitosis without cytokinesis into a third cell cycle. The peak of both ssDNA and dsDNA breaks occurs at the height of the long mitotic phase. The majority of the population emerges from mitosis as multinucleated cells that subsequently undergo cell death. However, a very small proportion of cells, <1:45,000, survive to form new colonies. Taken together, these results indicate that multinucleation within the third cell cycle, rather than replication fork arrest within the second cell cycle, is the primary trigger for cell death. Importantly, multinucleation and cell death are consistently avoided by a small percentage of the population that continues to divide. This information should prove clinically relevant for the future design of enhanced cancer chemotherapeutics.
Collapse
Affiliation(s)
- Allen G. Schroering
- Department of Biochemistry & Cancer Biology, University of Toledo College of Medicine, Toledo OH 43614
| | - Anbarasi Kothandapani
- Department of Biochemistry & Cancer Biology, University of Toledo College of Medicine, Toledo OH 43614
| | - Steve M. Patrick
- Department of Biochemistry & Cancer Biology, University of Toledo College of Medicine, Toledo OH 43614
| | - Saravanan Kaliyaperumal
- Department of Biochemistry & Cancer Biology, University of Toledo College of Medicine, Toledo OH 43614
| | - Vishal P. Sharma
- Department of Biochemistry & Cancer Biology, University of Toledo College of Medicine, Toledo OH 43614
| | - Kandace J. Williams
- Department of Biochemistry & Cancer Biology, University of Toledo College of Medicine, Toledo OH 43614
| |
Collapse
|
367
|
Augustine CK, Yoo JS, Potti A, Yoshimoto Y, Zipfel PA, Friedman HS, Nevins JR, Ali-Osman F, Tyler DS. Genomic and molecular profiling predicts response to temozolomide in melanoma. Clin Cancer Res 2009; 15:502-10. [PMID: 19147755 DOI: 10.1158/1078-0432.ccr-08-1916] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite objective response rates of only approximately 13%, temozolomide remains one of the most effective single chemotherapy agents against metastatic melanoma, second only to dacarbazine, the current standard of care for systemic treatment of melanoma. The goal of this study was to identify molecular and/or genetic markers that correlate with, and could be used to predict, response to temozolomide-based treatment regimens and that reflect the intrinsic properties of a patient's tumor. EXPERIMENTAL DESIGN Using a panel of 26 human melanoma-derived cell lines, we determined in vitro temozolomide sensitivity, O(6)-methylguanine-DNA methyltransferase (MGMT) activity, MGMT protein expression and promoter methylation status, and mismatch repair proficiency, as well as the expression profile of 38,000 genes using an oligonucleotide-based microarray platform. RESULTS The results showed a broad spectrum of temozolomide sensitivity across the panel of cell lines, with IC(50) values ranging from 100 micromol/L to 1 mmol/L. There was a significant correlation between measured temozolomide sensitivity and a gene expression signature-derived prediction of temozolomide sensitivity (P < 0.005). Notably, MGMT alone showed a significant correlation with temozolomide sensitivity (MGMT activity, P < 0.0001; MGMT expression, P <or= 0.0001). The promoter methylation status of the MGMT gene, however, was not consistent with MGMT gene expression or temozolomide sensitivity. CONCLUSIONS These results show that melanoma resistance to temozolomide is conferred predominantly by MGMT activity and suggest that MGMT expression could potentially be a useful tool for predicting the response of melanoma patients to temozolomide therapy.
Collapse
Affiliation(s)
- Christina K Augustine
- Department of Surgery, and Duke Institute for Genome Sciences and Policy, Duke University Medical Center and Durham VA Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Dalhus B, Laerdahl JK, Backe PH, Bjørås M. DNA base repair--recognition and initiation of catalysis. FEMS Microbiol Rev 2009; 33:1044-78. [PMID: 19659577 DOI: 10.1111/j.1574-6976.2009.00188.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).
Collapse
Affiliation(s)
- Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience (CMBN), Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
369
|
Losito I, Angelico R, Ceglie A, Diomede S, Palmisano F. Alkylation of complementary ribonucleotides by 1,2-dodecyl-epoxide in a micellar environment: a liquid chromatography-electrospray ionization-sequential mass spectrometry investigation. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:1053-1065. [PMID: 19353627 DOI: 10.1002/jms.1582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Alkylation of a pair of complementary ribonucleotides, adenosine monophosphate (AMP) and uridine monophosphate (UMP), was accomplished by 1,2-dodecyl-epoxide (DE) in a oil-in-water microemulsion based on the cationic surfactant Cetyl-trimethyl-ammonium-bromide, providing a suitable catalytic interface for the reagents. Several, often isomeric, alkylation products, bearing one or two hydroxy-dodecyl moieties on their structures, were identified in the reaction mixtures by high-performance liquid chromatography coupled to electrospray ionization ion trap mass spectrometry. In particular, mass spectrometry (MS)/MS spectra, implemented by extracted ion chromatograms obtained for peculiar MS/MS product ions, indicated alkylation to occur on uracil and on uracil/phosphate OH groups in singly and doubly alkylated UMP, respectively. Adenine NH2 group and phosphate or ribose OH groups were found to be involved as such (single alkylation) or in combination, in the case of alkylated derivatives of AMP. The reaction of both endocyclic N and C=O groups (tautomerized to C-OH groups) of uracil and the predominance of nucleophilic attack to the more accessible carbon of the DE epoxydic bridge (the only exception being the reaction by the NH2 group of adenine) were inferred from MS3 spectra with the help of extracted ion chromatograms for specific fragment ions, after their structural characterization. Interestingly, alkylation on one of the uracil C=O groups and, partially, on the adenine NH2 group, both potentially involved in AMP/UMP base pairing in the micellar environment, were found to be hindered when both ribonucleotides were present in the reaction mixtures.
Collapse
Affiliation(s)
- I Losito
- Dipartimento di Chimica, Università degli Studi di Bari, Via E. Orabona 4, 70126 Bari, Italy.
| | | | | | | | | |
Collapse
|
370
|
Liu H, Llano J, Gauld JW. A DFT study of nucleobase dealkylation by the DNA repair enzyme AlkB. J Phys Chem B 2009; 113:4887-98. [PMID: 19338370 DOI: 10.1021/jp810715t] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative dealkylation is a unique mechanistic pathway found in the alpha-ketoglutarate-Fe(II)-dependent AlkB family of enzymes to remove the alkylation damage to DNA bases and regenerate nucleobases to their native state. The B3LYP density functional combined with a self-consistent reaction field was used to explore the triplet, quintet, and septet spin-state potential energy surfaces of the multistep catalytic mechanism of AlkB. The mechanism was found to consist of four stages. First, binding of dioxygen to iron in the active-site complex occurs concerted with electron transfer, thereby yielding a ferric-superoxido species. Second, competing initiation for the activation of oxygen to generate the high-valent iron-oxygen intermediates (ferryl-oxo Fe(IV)O and ferric-oxyl Fe(III)O(*) species) was found to occur on the quintet and septet surfaces. Then, conformational reorientation of the activated iron-oxygen ligand was found to be nearly thermoneutral with a barrier of ca. 50 kJ mol(-1). The final stage is the oxidative dealkylation of the damaged nucleobase with the rate-controlling step being the abstraction of a hydrogen atom from the damaging methyl group by the ferryl-oxo ligand. For this step, the calculated barrier of 87.4 kJ mol(-1) is in good agreement with the experimental activation energy of ca. 83 kJ mol(-1) for the enzyme-catalyzed reaction.
Collapse
Affiliation(s)
- Haining Liu
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | | | | |
Collapse
|
371
|
Modification of urinary N7-methylguanine excretion in smokers by glutathione-S-transferase M1 polymorphism. Toxicology 2009; 260:1-6. [DOI: 10.1016/j.tox.2009.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 11/21/2022]
|
372
|
McNeill DR, Lam W, DeWeese TL, Cheng YC, Wilson DM. Impairment of APE1 function enhances cellular sensitivity to clinically relevant alkylators and antimetabolites. Mol Cancer Res 2009; 7:897-906. [PMID: 19470598 PMCID: PMC2745049 DOI: 10.1158/1541-7786.mcr-08-0519] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Base excision repair (BER) is the major pathway for removing mutagenic and cytotoxic oxidative and alkylation DNA modifications. Using a catalytically inactive, dominant negative protein form of human APE1, termed ED, which binds with high affinity to substrate DNA and blocks subsequent repair steps, we assessed the role of BER in mediating cellular resistance to clinically relevant alkylating drugs and antimetabolites. Colony formation assays revealed that ED expression enhanced cellular sensitivity to melphalan not at all; to decarbazine, thiotepa, busulfan and carmustine moderately (1.2- to 2.4-fold); and to streptozotocin and temozolomide significantly (2.0- to 5.3-fold). The effectiveness of ED to promote enhanced cytotoxicity generally correlated with the agent's (a) monofunctional nature, (b) capacity to induce N(7)-guanine and N(3)-adenine modifications, and (c) inability to generate O(6)-guanine adducts or DNA cross-links. ED also enhanced the cell killing potency of the antimetabolite troxacitabine, apparently by blocking the processing of DNA strand breaks, yet had no effect on the cytotoxicity of gemcitabine, results that agree well with the known efficiency of APE1 to excise these nucleoside analogues from DNA. Most impressively, ED expression produced an approximately 5- and 25-fold augmentation of the cell killing effect of 5-fluorouracil and 5-fluorodeoxyuridine, respectively, implicating BER in the cellular response to such antimetabolites; the increased 5-fluorouracil sensitivity was associated with an accumulation of abasic sites and active caspase-positive staining. Our data suggest that APE1, and BER more broadly, is a potential target for inactivation in anticancer treatment paradigms that involve select alkylating agents or antimetabolites.
Collapse
Affiliation(s)
- Daniel R. McNeill
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, Baltimore, MD 21224
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| | - Theodore L. DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| | - David M. Wilson
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, Baltimore, MD 21224
| |
Collapse
|
373
|
Ravi D, Wiles AM, Bhavani S, Ruan J, Leder P, Bishop AJR. A network of conserved damage survival pathways revealed by a genomic RNAi screen. PLoS Genet 2009; 5:e1000527. [PMID: 19543366 PMCID: PMC2688755 DOI: 10.1371/journal.pgen.1000527] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 05/19/2009] [Indexed: 11/18/2022] Open
Abstract
Damage initiates a pleiotropic cellular response aimed at cellular survival when appropriate. To identify genes required for damage survival, we used a cell-based RNAi screen against the Drosophila genome and the alkylating agent methyl methanesulphonate (MMS). Similar studies performed in other model organisms report that damage response may involve pleiotropic cellular processes other than the central DNA repair components, yet an intuitive systems level view of the cellular components required for damage survival, their interrelationship, and contextual importance has been lacking. Further, by comparing data from different model organisms, identification of conserved and presumably core survival components should be forthcoming. We identified 307 genes, representing 13 signaling, metabolic, or enzymatic pathways, affecting cellular survival of MMS-induced damage. As expected, the majority of these pathways are involved in DNA repair; however, several pathways with more diverse biological functions were also identified, including the TOR pathway, transcription, translation, proteasome, glutathione synthesis, ATP synthesis, and Notch signaling, and these were equally important in damage survival. Comparison with genomic screen data from Saccharomyces cerevisiae revealed no overlap enrichment of individual genes between the species, but a conservation of the pathways. To demonstrate the functional conservation of pathways, five were tested in Drosophila and mouse cells, with each pathway responding to alkylation damage in both species. Using the protein interactome, a significant level of connectivity was observed between Drosophila MMS survival proteins, suggesting a higher order relationship. This connectivity was dramatically improved by incorporating the components of the 13 identified pathways within the network. Grouping proteins into "pathway nodes" qualitatively improved the interactome organization, revealing a highly organized "MMS survival network." We conclude that identification of pathways can facilitate comparative biology analysis when direct gene/orthologue comparisons fail. A biologically intuitive, highly interconnected MMS survival network was revealed after we incorporated pathway data in our interactome analysis.
Collapse
Affiliation(s)
- Dashnamoorthy Ravi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Amy M. Wiles
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Selvaraj Bhavani
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jianhua Ruan
- Department of Computer Science, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Philip Leder
- Harvard Medical School, Department of Genetics, Harvard University, Boston, Massachusetts, United States of America
| | - Alexander J. R. Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Harvard Medical School, Department of Genetics, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
374
|
Patrushev LI, Minkevich IG. The problem of the eukaryotic genome size. BIOCHEMISTRY (MOSCOW) 2009; 73:1519-52. [PMID: 19216716 DOI: 10.1134/s0006297908130117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current state of knowledge concerning the unsolved problem of the huge interspecific eukaryotic genome size variations not correlating with the species phenotypic complexity (C-value enigma also known as C-value paradox) is reviewed. Characteristic features of eukaryotic genome structure and molecular mechanisms that are the basis of genome size changes are examined in connection with the C-value enigma. It is emphasized that endogenous mutagens, including reactive oxygen species, create a constant nuclear environment where any genome evolves. An original quantitative model and general conception are proposed to explain the C-value enigma. In accordance with the theory, the noncoding sequences of the eukaryotic genome provide genes with global and differential protection against chemical mutagens and (in addition to the anti-mutagenesis and DNA repair systems) form a new, third system that protects eukaryotic genetic information. The joint action of these systems controls the spontaneous mutation rate in coding sequences of the eukaryotic genome. It is hypothesized that the genome size is inversely proportional to functional efficiency of the anti-mutagenesis and/or DNA repair systems in a particular biological species. In this connection, a model of eukaryotic genome evolution is proposed.
Collapse
Affiliation(s)
- L I Patrushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | |
Collapse
|
375
|
Deshpande GP, Hayles J, Hoe KL, Kim DU, Park HO, Hartsuiker E. Screening a genome-wide S. pombe deletion library identifies novel genes and pathways involved in genome stability maintenance. DNA Repair (Amst) 2009; 8:672-9. [PMID: 19264558 PMCID: PMC2675035 DOI: 10.1016/j.dnarep.2009.01.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 11/27/2022]
Abstract
The maintenance of genome stability is essential for an organism to avoid cell death and cancer. Based on screens for mutant sensitivity against DNA damaging agents a large number of DNA repair and DNA damage checkpoint genes have previously been identified in genetically amenable model organisms. These screens have however not been exhaustive and various genes have been, and remain to be, identified by other means. We therefore screened a genome-wide Schizosaccharomyces pombe deletion library for mutants sensitive against various DNA damaging agents. Screening the library on different concentrations of these genotoxins allowed us to assign a semi-quantitative score to each mutant expressing the degree of sensitivity. We isolated a total of 229 mutants which show sensitivity to one or more of the DNA damaging agents used. This set of mutants was significantly enriched for processes involved in DNA replication, DNA repair, DNA damage checkpoint, response to UV, mating type switching, telomere length maintenance and meiosis, and also for processes involved in the establishment and maintenance of chromatin architecture (notably members of the SAGA complex), transcription (members of the CCR4-Not complex) and microtubule related processes (members of the DASH complex). We also identified 23 sensitive mutants which had previously been classified as "sequence orphan" or as "conserved hypothetical". Among these, we identified genes showing extensive homology to CtIP, Stra13, Ybp1/Ybp2, Human Fragile X mental retardation interacting protein NUFIP1, and Aprataxin. The identification of these homologues will provide a basis for the further characterisation of the role of these conserved proteins in the genetically amenable model organism S. pombe.
Collapse
Affiliation(s)
| | - Jacqueline Hayles
- Cell Cycle Laboratory, Cancer Research UK, London Research Institute, London WC21 3PX, UK
| | - Kwang-Lae Hoe
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Republic of Korea
| | - Dong-Uk Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Republic of Korea
| | - Han-Oh Park
- Bioneer Corporation, Daedeok-gu, Daejeon 306-220, Republic of Korea
| | - Edgar Hartsuiker
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
376
|
Genotoxic, cytostatic, antineoplastic and apoptotic effects of newly synthesized antitumour steroidal esters. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 675:51-9. [DOI: 10.1016/j.mrgentox.2009.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/22/2009] [Accepted: 02/09/2009] [Indexed: 01/11/2023]
|
377
|
Abdul Majid AMS, Smythe G, Denny WA, Wakelin LPG. Mass spectrometry studies of the binding of the minor groove-directed alkylating agent alkamin to AT-tract oligonucleotides. Chem Res Toxicol 2009; 22:146-57. [PMID: 19113942 DOI: 10.1021/tx800276h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Minor groove binding alkylating agents, which have potential as cancer drugs, generate cytotoxic DNA adducts that are relatively resistant to repair as a consequence of locating covalent attachment at purine N3 nitrogen atoms. Recently, we used electrospray and matrix-assisted laser desorption ionization mass spectrometry to study the binding of the minor groove-directed polybenzamide bis-half-mustard alkamin, and its monofunctional analogue alkamini, to the oligonucleotide d(CGCGAATTCGCG)(2), identifying a number of inter- and intrastrand alkamin cross-links involving the GAATTC sequence [ Abdul Majid , A. M. S. , Smythe , G. , Denny , W. A. , and Wakelin , L. P. G. ( 2007 ) Mol. Pharmacol. 71 , 1165 - 1178 ]. Here, we extend these studies to d(CGCAAATTTGCG)(2), A3T3, and d(CGCAAAAAAGCG).d(CGCTTTTTTGCG), A6/T6, in which the opportunity for both inter- and intrastrand cross-linking is enhanced. We find that both ligands alkylate all adenines in the longer AT-tracts, as well as the abutting guanines, whether they are in the same strand as the adenines or not, in a manner consistent with covalent attack on purine N3 atoms from the minor groove. Alkamin forms intrastrand cross-links involving A4 and A6 and A6 and G10 in A3T3 and all of the purines in the A6/T6 purine tract, including G10. In addition, it forms interstrand cross-links between A4, A5, A6 and A4', A5', A6', between G10 and the latter adenines in A3T3, and between G22 and adenines A5 and A6 in A6/T6. The reactivity of the abutting guanines provides unexpected opportunities for both inter- and intrastrand cross-linking by alkamin, such as the interstrand cross-link in the CAAAAAAG sequence. We conclude that positioning monofunctional mustard groups on either end of a minor groove-directed polybenzamide has the capacity to enhance interstrand cross-links at all manner of AT-tracts, including most in which the adenines are all in one strand.
Collapse
Affiliation(s)
- Amin M S Abdul Majid
- School of Molecular Sciences, Department of Pharmacology, and Bioanalytical Mass Spectrometry Facility, University of New South Wales, NSW 2052, Australia.
| | | | | | | |
Collapse
|
378
|
Cetica V, Genitori L, Giunti L, Sanzo M, Bernini G, Massimino M, Sardi I. Pediatric brain tumors: mutations of two dioxygenases (hABH2 and hABH3) that directly repair alkylation damage. J Neurooncol 2009; 94:195-201. [PMID: 19290481 DOI: 10.1007/s11060-009-9837-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
Abstract
Alkylating agents, commonly used for brain tumor therapy, induce DNA and RNA lesions that, if not repaired, drive cells to apoptosis. Thus, cellular mechanisms that are responsible for nucleic acid repair are possibly involved in drug resistance. This work analyzes hABH2 and hABH3, two human Fe(II)-dependent dioxygenases in pediatric brain tumors that are treated with alkylating agents. We analyzed 25 brain tumor samples for hABH2 and hABH3 mutations; a subset of samples was tested for quantitative expression with Real-Time PCR. Sequencing analysis showed two new mutations in two glioma patients, one of hABH2 coding sequence (I141 V) and the other of hABH3 (D189 N). The mutation at codon 189 falls in a crucial region of the protein. All subjects analyzed by Real-Time PCR showed an enhanced expression of the two genes, particularly of hABH2. This is the first study of hABH2 and hABH3 in pediatric brain tumors; further molecular investigations of their mutations and expression may help determine their role in response to chemotherapy.
Collapse
Affiliation(s)
- Valentina Cetica
- Onco-Hematology Unit, Department of Pediatrics, Florence Medical School, A. Meyer Children's Hospital, viale Pieraccini 24, 50139, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
379
|
Bignold L. Mechanisms of clastogen-induced chromosomal aberrations: A critical review and description of a model based on failures of tethering of DNA strand ends to strand-breaking enzymes. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2009; 681:271-298. [DOI: 10.1016/j.mrrev.2008.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 01/15/2023]
|
380
|
Rooney JP, George AD, Patil A, Begley U, Bessette E, Zappala MR, Huang X, Conklin DA, Cunningham RP, Begley TJ. Systems based mapping demonstrates that recovery from alkylation damage requires DNA repair, RNA processing, and translation associated networks. Genomics 2009; 93:42-51. [PMID: 18824089 PMCID: PMC2633870 DOI: 10.1016/j.ygeno.2008.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 12/31/2022]
Abstract
The identification of cellular responses to damage can promote mechanistic insight into stress signalling. We have screened a library of 3968 Escherichia coli gene-deletion mutants to identify 99 gene products that modulate the toxicity of the alkylating agent methyl methanesulfonate (MMS). We have developed an ontology mapping approach to identify functional categories over-represented with MMS-toxicity modulating proteins and demonstrate that, in addition to DNA re-synthesis (replication, recombination, and repair), proteins involved in mRNA processing and translation influence viability after MMS damage. We have also mapped our MMS-toxicity modulating proteins onto an E. coli protein interactome and identified a sub-network consisting of 32 proteins functioning in DNA repair, mRNA processing, and translation. Clustering coefficient analysis identified seven highly connected MMS-toxicity modulating proteins associated with translation and mRNA processing, with the high connectivity suggestive of a coordinated response. Corresponding results from reporter assays support the idea that the SOS response is influenced by activities associated with the mRNA-translation interface.
Collapse
Affiliation(s)
- John P. Rooney
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Ajish D. George
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Ashish Patil
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Ulrike Begley
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Erin Bessette
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Maria R. Zappala
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Department of Biological Sciences, University at Albany, State University of New York, Albany NY 12222
| | - Xin Huang
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Department of Biological Sciences, University at Albany, State University of New York, Albany NY 12222
| | - Douglas A. Conklin
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Richard P. Cunningham
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Department of Biological Sciences, University at Albany, State University of New York, Albany NY 12222
| | - Thomas J. Begley
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| |
Collapse
|
381
|
Doak SH, Brüsehafer K, Dudley E, Quick E, Johnson G, Newton RP, Jenkins GJS. No-observed effect levels are associated with up-regulation of MGMT following MMS exposure. Mutat Res 2008; 648:9-14. [PMID: 18992265 DOI: 10.1016/j.mrfmmm.2008.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/31/2008] [Accepted: 09/04/2008] [Indexed: 05/27/2023]
Abstract
The alkylating agents methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS) have non-linear dose-response curves, with a no-observed effect level (NOEL) and a lowest observed effect level (LOEL) for both gross chromosomal damage and mutagenicity. However, the biological mechanism responsible for the NOEL has yet to be identified. A strong candidate is DNA repair as it may be able to efficiently remove alkyl adducts at low doses resulting in a NOEL, but at higher doses fails to fully remove all lesions due to saturation of enzymatic activity resulting in a LOEL and subsequent linear increases in mutagenicity. We therefore assessed the transcriptional status of N-methylpurine-DNA glycoslase (MPG) and O(6)-methylguanine DNA methyltransferase (MGMT), which represent the first line of defence following exposure to alkylating agents through the respective enzymatic removal of N7-alkylG and O(6)-alkylG. The relative MPG and MGMT gene expression profiles were assessed by real-time RT-PCR following exposure to 0-2 microg/ml MMS for 1-24h. MPG expression remained fairly steady, but in contrast significant up-regulation of MGMT was observed when cells were treated with 0.5 and 1.0 microg/ml MMS for 4h (2.5- and 6.5-fold increases respectively). These doses lie within the NOEL for MMS mutagenicity (LOEL is 1.25 microg/ml), thus this boost in MGMT expression at low doses may be responsible for efficiently repairing O(6)methylG lesions and creating the non-linear response for mutations. However, as the LOEL for MMS clastogenicity is 0.85 microg/ml, O(6)-alkylG is unlikely to be responsible for the clastogenicity observed at these concentrations. Consequently, at low doses N7-methylG is possibly the predominant cause of MMS clastogenicity, while O(6)-methylG is more likely to be responsible for MMS mutagenicity, with MGMT up-regulation playing a key role in removal of O(6)-alkylG lesions before they are fixed as permanent point mutations, resulting in non-linear dose-responses for direct acting genotoxins.
Collapse
Affiliation(s)
- Shareen H Doak
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, Wales, UK.
| | | | | | | | | | | | | |
Collapse
|
382
|
Bathaie SZ, Sedghgoo F, Jafarnejad A, Farzami B, Khayatian M. Spectroscopic studies of STZ-induced methylated-DNA in both in vivo and in vitro conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2008; 71:803-808. [PMID: 18353708 DOI: 10.1016/j.saa.2008.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 01/28/2008] [Accepted: 02/01/2008] [Indexed: 05/26/2023]
Abstract
Alkylating agents after formation of DNA adduct not only possess their harmful role on living cells but also can transfer this information to the next generation. Different techniques have been introduced to study the alkylated DNA, most of which are specific and designed for investigation of specific target DNA. But the exact differences between spectroscopic and functional properties of alkylated DNA are not seen in the literature. In the present study DNA was methylated using streptozotocin (STZ) by both in vitro and in vivo protocols, then methylated-DNA was investigated by various techniques. Our results show that (1) the binding of ethidium bromide as an intercalating dye decreases to methylated-DNA in comparison with normal DNA, (2) CD spectra of methylated-DNA show changes including a decrease in the positive band at 275 nm and a shift from 258 nm crossover to a longer wavelength, which is caused by reduction of water around it, due to the presence of additional hydrophobic methyl groups, (3) the stability of methylated-DNA against DTAB as a denaturant is decreased and (4) the enzyme-like activity of methylated-DNA in an electron transfer reaction is reduced. In conclusion, additional methyl groups not only protrude water around DNA, but also cause the loss of hydrogen bonding, loosening of conformation, preventing desired interactions and thus normal function of DNA.
Collapse
Affiliation(s)
- S Z Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
| | | | | | | | | |
Collapse
|
383
|
Kitange GJ, Carlson BL, Schroeder MA, Grogan PT, Lamont JD, Decker PA, Wu W, James CD, Sarkaria JN. Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro Oncol 2008; 11:281-91. [PMID: 18952979 DOI: 10.1215/15228517-2008-090] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Temozolomide (TMZ)-based therapy is the standard of care for patients with glioblastoma multiforme (GBM), and resistance to this drug in GBM is modulated by the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT). Expression of MGMT is silenced by promoter methylation in approximately half of GBM tumors, and clinical studies have shown that elevated MGMT protein levels or lack of MGMT promoter methylation is associated with TMZ resistance in some, but not all, GBM tumors. In this study, the relationship between MGMT protein expression and tumor response to TMZ was evaluated in four GBM xenograft lines that had been established from patient specimens and maintained by serial subcutaneous passaging in nude mice. Three MGMT unmethylated tumors displayed elevated basal MGMT protein expression, but only two of these were resistant to TMZ therapy (tumors GBM43 and GBM44), while the other (GBM14) displayed a level of TMZ sensitivity that was similar in extent to that seen in a single MGMT hypermethylated line (GBM12). In tissue culture and animal studies, TMZ treatment resulted in robust and prolonged induction of MGMT expression in the resistant GBM43 and GBM44 xenograft lines, while MGMT induction was blunted and abbreviated in GBM14. Consistent with a functional significance of MGMT induction, treatment of GBM43 with a protracted low-dose TMZ regimen was significantly less effective than a shorter high-dose regimen, while survival for GBM14 was improved with the protracted dosing regimen. In conclusion, MGMT expression is dynamically regulated in some MGMT nonmethylated tumors, and in these tumors, protracted dosing regimens may not be effective.
Collapse
Affiliation(s)
- Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
384
|
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455:1061-8. [PMID: 18772890 PMCID: PMC2671642 DOI: 10.1038/nature07385] [Citation(s) in RCA: 5972] [Impact Index Per Article: 351.3] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/01/2008] [Indexed: 11/21/2022]
Abstract
Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas (TCGA) pilot project aims to assess the value of large-scale multi-dimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas--the most common type of adult brain cancer--and nucleotide sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the phosphatidylinositol-3-OH kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.
Collapse
Collaborators
Roger McLendon, Allan Friedman, Darrell Bigner, Erwin G Van Meir, Daniel J Brat, Gena M Mastrogianakis, Jeffrey J Olson, Tom Mikkelsen, Norman Lehman, Ken Aldape, W K Alfred Yung, Oliver Bogler, John N Weinstein, Scott VandenBerg, Mitchel Berger, Michael Prados, Donna Muzny, Margaret Morgan, Steve Scherer, Aniko Sabo, Lynn Nazareth, Lora Lewis, Otis Hall, Yiming Zhu, Yanru Ren, Omar Alvi, Jiqiang Yao, Alicia Hawes, Shalini Jhangiani, Gerald Fowler, Anthony San Lucas, Christie Kovar, Andrew Cree, Huyen Dinh, Jireh Santibanez, Vandita Joshi, Manuel L Gonzalez-Garay, Christopher A Miller, Aleksandar Milosavljevic, Larry Donehower, David A Wheeler, Richard A Gibbs, Kristian Cibulskis, Carrie Sougnez, Tim Fennell, Scott Mahan, Jane Wilkinson, Liuda Ziaugra, Robert Onofrio, Toby Bloom, Rob Nicol, Kristin Ardlie, Jennifer Baldwin, Stacey Gabriel, Eric S Lander, Li Ding, Robert S Fulton, Michael D McLellan, John Wallis, David E Larson, Xiaoqi Shi, Rachel Abbott, Lucinda Fulton, Ken Chen, Daniel C Koboldt, Michael C Wendl, Rick Meyer, Yuzhu Tang, Ling Lin, John R Osborne, Brian H Dunford-Shore, Tracie L Miner, Kim Delehaunty, Chris Markovic, Gary Swift, William Courtney, Craig Pohl, Scott Abbott, Amy Hawkins, Shin Leong, Carrie Haipek, Heather Schmidt, Maddy Wiechert, Tammi Vickery, Sacha Scott, David J Dooling, Asif Chinwalla, George M Weinstock, Elaine R Mardis, Richard K Wilson, Gad Getz, Wendy Winckler, Roel G W Verhaak, Michael S Lawrence, Michael O'Kelly, Jim Robinson, Gabriele Alexe, Rameen Beroukhim, Scott Carter, Derek Chiang, Josh Gould, Supriya Gupta, Josh Korn, Craig Mermel, Jill Mesirov, Stefano Monti, Huy Nguyen, Melissa Parkin, Michael Reich, Nicolas Stransky, Barbara A Weir, Levi Garraway, Todd Golub, Matthew Meyerson, Lynda Chin, Alexei Protopopov, Jianhua Zhang, Ilana Perna, Sandy Aronson, Narayanan Sathiamoorthy, Georgia Ren, Jun Yao, W Ruprecht Wiedemeyer, Hyunsoo Kim, Sek Won Kong, Yonghong Xiao, Isaac S Kohane, Jon Seidman, Peter J Park, Raju Kucherlapati, Peter W Laird, Leslie Cope, James G Herman, Daniel J Weisenberger, Fei Pan, David Van den Berg, Leander Van Neste, Joo Mi Yi, Kornel E Schuebel, Stephen B Baylin, Devin M Absher, Jun Z Li, Audrey Southwick, Shannon Brady, Amita Aggarwal, Tisha Chung, Gavin Sherlock, James D Brooks, Richard M Myers, Paul T Spellman, Elizabeth Purdom, Lakshmi R Jakkula, Anna V Lapuk, Henry Marr, Shannon Dorton, Yoon Gi Choi, Ju Han, Amrita Ray, Victoria Wang, Steffen Durinck, Mark Robinson, Nicholas J Wang, Karen Vranizan, Vivian Peng, Eric Van Name, Gerald V Fontenay, John Ngai, John G Conboy, Bahram Parvin, Heidi S Feiler, Terence P Speed, Joe W Gray, Cameron Brennan, Nicholas D Socci, Adam Olshen, Barry S Taylor, Alex Lash, Nikolaus Schultz, Boris Reva, Yevgeniy Antipin, Alexey Stukalov, Benjamin Gross, Ethan Cerami, Wei Qing Wang, Li-Xuan Qin, Venkatraman E Seshan, Liliana Villafania, Magali Cavatore, Laetitia Borsu, Agnes Viale, William Gerald, Chris Sander, Marc Ladanyi, Charles M Perou, D Neil Hayes, Michael D Topal, Katherine A Hoadley, Yuan Qi, Sai Balu, Yan Shi, Junyuan Wu, Robert Penny, Michael Bittner, Troy Shelton, Elizabeth Lenkiewicz, Scott Morris, Debbie Beasley, Sheri Sanders, Ari Kahn, Robert Sfeir, Jessica Chen, David Nassau, Larry Feng, Erin Hickey, Anna Barker, Daniela S Gerhard, Joseph Vockley, Carolyn Compton, Jim Vaught, Peter Fielding, Martin L Ferguson, Carl Schaefer, Jinghui Zhang, Subhashree Madhavan, Kenneth H Buetow, Francis Collins, Peter Good, Mark Guyer, Brad Ozenberger, Jane Peterson, Elizabeth Thomson,
Collapse
|
385
|
Baute J, Depicker A. Base excision repair and its role in maintaining genome stability. Crit Rev Biochem Mol Biol 2008; 43:239-76. [PMID: 18756381 DOI: 10.1080/10409230802309905] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For all living organisms, genome stability is important, but is also under constant threat because various environmental and endogenous damaging agents can modify the structural properties of DNA bases. As a defense, organisms have developed different DNA repair pathways. Base excision repair (BER) is the predominant pathway for coping with a broad range of small lesions resulting from oxidation, alkylation, and deamination, which modify individual bases without large effect on the double helix structure. As, in mammalian cells, this damage is estimated to account daily for 10(4) events per cell, the need for BER pathways is unquestionable. The damage-specific removal is carried out by a considerable group of enzymes, designated as DNA glycosylases. Each DNA glycosylase has its unique specificity and many of them are ubiquitous in microorganisms, mammals, and plants. Here, we review the importance of the BER pathway and we focus on the different roles of DNA glycosylases in various organisms.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Gent, Belgium
| | | |
Collapse
|
386
|
Allen TC, Cagle PT, Popper HH. Basic Concepts of Molecular Pathology. Arch Pathol Lab Med 2008; 132:1551-6. [DOI: 10.5858/2008-132-1551-bcomp] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2008] [Indexed: 11/06/2022]
Affiliation(s)
- Timothy Craig Allen
- From the Department of Pathology, The University of Texas Health Science Center at Tyler (Dr Allen); the Department of Pulmonary Pathology, The Methodist Hospital, Houston, Tex (Dr Cagle); and the Institute of Pathology, Medical University of Graz, Graz, Austria (Dr Popper)
| | - Philip T. Cagle
- From the Department of Pathology, The University of Texas Health Science Center at Tyler (Dr Allen); the Department of Pulmonary Pathology, The Methodist Hospital, Houston, Tex (Dr Cagle); and the Institute of Pathology, Medical University of Graz, Graz, Austria (Dr Popper)
| | - Helmut H. Popper
- From the Department of Pathology, The University of Texas Health Science Center at Tyler (Dr Allen); the Department of Pulmonary Pathology, The Methodist Hospital, Houston, Tex (Dr Cagle); and the Institute of Pathology, Medical University of Graz, Graz, Austria (Dr Popper)
| |
Collapse
|
387
|
Evers B, Drost R, Schut E, de Bruin M, van der Burg E, Derksen PWB, Holstege H, Liu X, van Drunen E, Beverloo HB, Smith GCM, Martin NMB, Lau A, O'Connor MJ, Jonkers J. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res 2008; 14:3916-25. [PMID: 18559613 DOI: 10.1158/1078-0432.ccr-07-4953] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To assess efficacy of the novel, selective poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor AZD2281 against newly established BRCA2-deficient mouse mammary tumor cell lines and to determine potential synergy between AZD2281 and cisplatin. EXPERIMENTAL DESIGN We established and thoroughly characterized a panel of clonal cell lines from independent BRCA2-deficient mouse mammary tumors and BRCA2-proficient control tumors. Subsequently, we assessed sensitivity of these lines to conventional cytotoxic drugs and the novel PARP inhibitor AZD2281. Finally, in vitro combination studies were done to investigate interaction between AZD2281 and cisplatin. RESULTS Genetic, transcriptional, and functional analyses confirmed the successful isolation of BRCA2-deficient and BRCA2-proficient mouse mammary tumor cell lines. Treatment of these cell lines with 11 different anticancer drugs or with gamma-irradiation showed that AZD2281, a novel and specific PARP inhibitor, caused the strongest differential growth inhibition of BRCA2-deficient versus BRCA2-proficient mammary tumor cells. Finally, drug combination studies showed synergistic cytotoxicity of AZD2281 and cisplatin against BRCA2-deficient cells but not against BRCA2-proficient control cells. CONCLUSION We have successfully established the first set of BRCA2-deficient mammary tumor cell lines, which form an important addition to the existing preclinical models for BRCA-mutated breast cancer. The exquisite sensitivity of these cells to the PARP inhibitor AZD2281, alone or in combination with cisplatin, provides strong support for AZD2281 as a novel targeted therapeutic against BRCA-deficient cancers.
Collapse
Affiliation(s)
- Bastiaan Evers
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
388
|
Sundheim O, Talstad VA, Vågbø CB, Slupphaug G, Krokan HE. AlkB demethylases flip out in different ways. DNA Repair (Amst) 2008; 7:1916-23. [PMID: 18723127 DOI: 10.1016/j.dnarep.2008.07.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
Abstract
Aberrant methylations in DNA are repaired by base excision repair (BER) and direct repair by a methyltransferase or by an oxidative demethylase of the AlkB type. Yang et al. [Nature 452 (2008) 961-966] have now solved the crystal structure of AlkB and human AlkB homolog 2 (hABH2) in complex with DNA using an ingenious crosslinking strategy to stabilize the DNA-protein complex. AlkB proteins have similar catalytic domains, but different DNA recognition motifs. Whereas AlkB mainly makes contact with the damaged strand, hABH2 makes numerous contacts with both strands. hABH2 flips out the damaged base and fills the vacant space by a hydrophobic amino acid residue similar to DNA glycosylases, essentially without distorting the double helix structure. In contrast, AlkB squeezes together the bases flanking the flipped-out base to maintain the base stack. This unprecedented flipping mechanism and the differences between AlkB and hABH2 in contacting the DNA strands explain their preferences for single stranded- and double stranded DNA, respectively.
Collapse
Affiliation(s)
- Ottar Sundheim
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, Trondheim, Norway
| | | | | | | | | |
Collapse
|
389
|
Rutledge LR, Wetmore SD. Remarkably Strong T-Shaped Interactions between Aromatic Amino Acids and Adenine: Their Increase upon Nucleobase Methylation and a Comparison to Stacking. J Chem Theory Comput 2008; 4:1768-80. [DOI: 10.1021/ct8002332] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lesley R. Rutledge
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
390
|
Westbye MP, Feyzi E, Aas PA, Vågbø CB, Talstad VA, Kavli B, Hagen L, Sundheim O, Akbari M, Liabakk NB, Slupphaug G, Otterlei M, Krokan HE. Human AlkB homolog 1 is a mitochondrial protein that demethylates 3-methylcytosine in DNA and RNA. J Biol Chem 2008; 283:25046-56. [PMID: 18603530 DOI: 10.1074/jbc.m803776200] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli AlkB protein and human homologs hABH2 and hABH3 are 2-oxoglutarate (2OG)/Fe(II)-dependent DNA/RNA demethylases that repair 1-methyladenine and 3-methylcytosine residues. Surprisingly, hABH1, which displays the strongest homology to AlkB, failed to show repair activity in two independent studies. Here, we show that hABH1 is a mitochondrial protein, as demonstrated using fluorescent fusion protein expression, immunocytochemistry, and Western blot analysis. A fraction is apparently nuclear and this fraction increases strongly if the fluorescent tag is placed at the N-terminal end of the protein, thus interfering with mitochondrial targeting. Molecular modeling of hABH1 based upon the sequence and known structures of AlkB and hABH3 suggested an active site almost identical to these enzymes. hABH1 decarboxylates 2OG in the absence of a prime substrate, and the activity is stimulated by methylated nucleotides. Employing three different methods we demonstrate that hABH1 demethylates 3-methylcytosine in single-stranded DNA and RNA in vitro. Site-specific mutagenesis confirmed that the putative Fe(II) and 2OG binding residues are essential for activity. In conclusion, hABH1 is a functional mitochondrial AlkB homolog that repairs 3-methylcytosine in single-stranded DNA and RNA.
Collapse
Affiliation(s)
- Marianne Pedersen Westbye
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
391
|
Antunes AMM, Duarte MP, Santos PP, Gamboa da Costa G, Heinze TM, Beland FA, Marques MM. Synthesis and Characterization of DNA Adducts from the HIV Reverse Transcriptase Inhibitor Nevirapine. Chem Res Toxicol 2008; 21:1443-56. [DOI: 10.1021/tx8000972] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alexandra M. M. Antunes
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Mariana P. Duarte
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Pedro P. Santos
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Gonçalo Gamboa da Costa
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Thomas M. Heinze
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Frederick A. Beland
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - M. Matilde Marques
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| |
Collapse
|
392
|
Yamauchi T, Ogawa M, Ueda T. Carmustine-resistant cancer cells are sensitized to temozolomide as a result of enhanced mismatch repair during the development of carmustine resistance. Mol Pharmacol 2008; 74:82-91. [PMID: 18430789 DOI: 10.1124/mol.107.041988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The cytotoxicity of the monofunctional alkylator temozolomide (TMZ) is mediated by mismatch repair (MMR) triggered by O(6)-alkylguanine, whereas MMR protects cells against bifunctional alkylators, including carmustine (BCNU). Therefore, TMZ may be cytotoxic to BCNU-resistant cancer cells because MMR affects sensitivity to TMZ and BCNU in a converse way. We evaluated TMZ cytotoxicity on BCNU-resistant variant (CEM-R) compared with the parental CCRF-CEM cell line (CEM-S). The mechanisms of its BCNU-resistance involved DNA repairs including nucleotide excision repair, base excision repair, alkylguanine alkyltransferase, MMR, and apoptotic and survival pathways. In particular, transcript levels of MMR-related hMLH1 and hMSH2 were enhanced in CEM-R cells. CEM-R cells were 8-fold more BCNU-resistant but surprisingly 9-fold more TMZ-sensitive than were CEM-S cells. Although TMZ-induced adducts include N-alkylated purines and O(6)-alkylguaine, DNA excision repair was enhanced in CEM-R cells, suggesting the efficient repair of N-alkylation adducts. Cotreatment with methoxyamine, a base excision repair inhibitor, did not sensitize CEM-R cells to TMZ, suggesting little or no contribution of N-alkylation to TMZ-induced cytotoxicity. Cotreatment with O(6)-benzylguanine, an alkylguanine alkyltransferase inhibitor, further sensitized CEM-R cells to TMZ, confirming the cytotoxic impact of O(6)-alkylguanine. Cotreatment with cadmium chloride, an MMR inhibitor, disrupted the sensitivity of CEM-R cells to TMZ. The sensitivity to TMZ was reversed in the CEM-R variant clone that had been established by transfecting CEM-R cells with short hairpin hRNA against hMLH1, suggesting the critical role of MMR on sensitization to TMZ. In conclusion, BCNU-resistant CEM-R cells were sensitized to TMZ as a result of enhanced MMR during the development of BCNU resistance.
Collapse
Affiliation(s)
- Takahiro Yamauchi
- Department of Hematology and Oncology, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui 910-1193, Japan.
| | | | | |
Collapse
|
393
|
Schroering AG, Williams KJ. Rapid induction of chromatin-associated DNA mismatch repair proteins after MNNG treatment. DNA Repair (Amst) 2008; 7:951-69. [PMID: 18468964 PMCID: PMC2483959 DOI: 10.1016/j.dnarep.2008.03.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/07/2008] [Accepted: 03/23/2008] [Indexed: 12/18/2022]
Abstract
Treatment with low concentrations of monofunctional alkylating agents induces a G2 arrest only after the second round of DNA synthesis in mammalian cells and requires a proficient mismatch repair (MMR) pathway. Here, we have investigated rapid alkylation-induced recruitment of DNA repair proteins to chromosomal DNA within synchronized populations of MMR proficient cells (HeLa MR) after N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. Within the first hour, the concentrations of MutS alpha and PCNA increase well beyond their constitutive chromosomally bound levels and MutL alpha is newly recruited to the chromatin-bound MutS alpha. Remarkably, immunoprecipitation experiments demonstrate rapid association of these proteins on the alkylation-damaged chromatin, even when DNA replication is completely blocked. The extent of association of PCNA and MMR proteins on the chromatin is dependent upon the concentration of MNNG and on the specific type of replication block. A subpopulation of the MutS alpha-associated PCNA also becomes monoubiquitinated, a known requirement for PCNA to interact with translesion synthesis (TLS) polymerases. In addition, chromatin-bound SMC1 and NBS1 proteins, associated with DNA double-strand-breaks (DSBs), become phosphorylated within 1-2h of exposure to MNNG. However, these activated proteins are not co-localized on the chromatin with MutS alpha in response to MNNG exposure. PCNA, MutS alpha/MutL alpha and activated SMC1/NBS1 remain chromatin-bound for at least 6-8h after alkylation damage. Thus, cells that are exposed to low levels of alkylation treatment undergo rapid recruitment to and/or activation of key proteins already on the chromatin without the requirement for DNA replication, apparently via different DNA-damage signaling pathways.
Collapse
Affiliation(s)
- Allen G. Schroering
- University of Toledo College of Medicine, Health Science Campus, Department of Biochemistry & Cancer Biology, Toledo, OH 43614
| | - Kandace J. Williams
- University of Toledo College of Medicine, Health Science Campus, Department of Biochemistry & Cancer Biology, Toledo, OH 43614
| |
Collapse
|
394
|
Wu QQ, Wei YN, Zhang SZ, Shu Q. Relationship between differentially expressed genes and epigenetic modification during the early stage of esophageal carcinoma induced by nitrosamine. Shijie Huaren Xiaohua Zazhi 2008; 16:1487-1492. [DOI: 10.11569/wcjd.v16.i14.1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the differentially expressed genes in the process of esophageal carcinoma induced by nitrosamine, and analyze the property of gene expression at different stages, especially the relationship between differentially expressed genes and DNA methylation.
METHODS: One hundred and ten mice were randomly divided into group A (n = 40) and B (n = 70). The mice in group A were fed with distilled water, while those in group B were fed with carcinoma-inducing mixture containing 20 g/L sodium nitrite and 200 g/L N, N-dimethyl benzyl amine. At the 4, 8, and 20 wk of induction stages, the total RNA from esophageal tissues was isolated and reversely transcripted, and then hybridization with gene-chip was performed. The differentially expressed genes of the two groups were analyzed.
RESULTS: During the process of induction, the number of up-regulated oncogenes increased in a step-by-step fashion in group B as compared with that in group A, and the phase-specificity of oncogenes was observed. But most antioncogenes did not change remarkably. Most genes of DNA methylation did not change at 4 wk, but were up-regulated at 8 and 20 wk. The DNA demethylation gene Mdb2b was up-regulated from the 8 wk, but Gadd45a was up-regulated from the 4 wk and maintained a high level at 8 and 20 wk. Genes of histone acetylation, which were changed obviously, were not found.
CONCLUSION: During the process of nitrosamine-induced esophageal carcinoma, up-regulation of numerous genes may associate with the demethylation of genomic DNA at the early stage. Gadd45a may be involved in the demethylation during the early weeks.
Collapse
|
395
|
Takagi Y, Hidaka M, Sanada M, Yoshida H, Sekiguchi M. Different initial steps of apoptosis induced by two types of antineoplastic drugs. Biochem Pharmacol 2008; 76:303-11. [PMID: 18573489 DOI: 10.1016/j.bcp.2008.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 05/05/2008] [Indexed: 11/26/2022]
Abstract
O6-Methylguanine and O6-chloroethylguanine are primary DNA lesions produced by two types of antineoplastic drugs, 8-carbamoyl-3-methylimidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one (temozolomide, TMZ) and 1-(4-amino-2-methyl-5-pyrimidinyl) methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU), respectively. They can be repaired by O6-methylguanine-DNA methyltransferase, coded by the Mgmt gene. Otherwise, these two types of lesions induce apoptosis in different ways. O6-Chloroethylguanine blocks DNA replication thereby inducing apoptosis. On the other hand, O6-methylguanine does not block DNA replication and the resulting O6-methylguanine-thymine mispair is recognized by mismatch repair-related proteins, including MLH1, thereby inducing apoptosis. Reflecting this, mouse cells lacking both MGMT and MLH1 are resistant to TMZ, but not to ACNU. The translocation of phosphatidylserine in cell membrane as well as a change of mitochondrial transmembrane potentials occurred in an MLH1-dependent manner after treatment with TMZ, but no such MLH1 dependency was observed in the case of ACNU treatment. By using cell lines defective in both APAF-1 and MGMT, it was revealed that the APAF-1 function is required for execution of apoptosis induced by either TMZ or ACNU. There is almost 12h delay in occurrence of apoptosis-related mitochondrial depolarization in TMZ-treated cells in comparison to those of ACNU-treated cells, reflecting the fact that at least one cycle of DNA replication is required to trigger apoptosis in the former case, but not in the latter.
Collapse
Affiliation(s)
- Yasumitsu Takagi
- Frontier Research Center, Fukuoka Dental College, 2-15-1, Tamura, Sawara-ku, Fukuoka, 814-0193, Japan.
| | | | | | | | | |
Collapse
|
396
|
Moroni RF, Inverardi F, Regondi MC, Panzica F, Spreafico R, Frassoni C. Altered spatial distribution of PV-cortical cells and dysmorphic neurons in the somatosensory cortex of BCNU-treated rat model of cortical dysplasia. Epilepsia 2008; 49:872-87. [DOI: 10.1111/j.1528-1167.2007.01440.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
397
|
Abstract
Cancer therapeutics include an ever-increasing array of tools at the disposal of clinicians in their treatment of this disease. However, cancer is a tough opponent in this battle and current treatments which typically include radiotherapy, chemotherapy and surgery are not often enough to rid the patient of his or her cancer. Cancer cells can become resistant to the treatments directed at them and overcoming this drug resistance is an important research focus. Additionally, increasing discussion and research is centering on targeted and individualized therapy. While a number of approaches have undergone intensive and close scrutiny as potential approaches to treat and kill cancer (signaling pathways, multidrug resistance, cell cycle checkpoints, anti-angiogenesis, etc.), much less work has focused on blocking the ability of a cancer cell to recognize and repair the damaged DNA which primarily results from the front line cancer treatments; chemotherapy and radiation. More recent studies on a number of DNA repair targets have produced proof-of-concept results showing that selective targeting of these DNA repair enzymes has the potential to enhance and augment the currently used chemotherapeutic agents and radiation as well as overcoming drug resistance. Some of the targets identified result in the development of effective single-agent anti-tumor molecules. While it is inherently convoluted to think that inhibiting DNA repair processes would be a likely approach to kill cancer cells, careful identification of specific DNA repair proteins is increasingly appearing to be a viable approach in the cancer therapeutic cache.
Collapse
Affiliation(s)
- Mark R Kelley
- Department of Pediatrics, Section of Hematology/Oncology, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St. R4-W302C, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
398
|
Abstract
Promising research on DNA repair signaling pathways predicts a new age of anti-tumor drugs. This research was initiated through the discovery and characterization of proteins that functioned together in signaling pathways to sense, respond, and repair DNA damage. It was realized that tumor cells often lacked distinct DNA repair pathways, but simultaneously relied heavily on compensating pathways. More recently, researchers have begun to manipulate these compensating pathways to reign in and kill tumor cells. In a striking example it was shown that tumors derived from mutations in the DNA repair genes, of BRCA-FA pathway, were selectively sensitive to inhibition of the base excision repair pathway. These findings suggest that tumors derived from defects in DNA repair genes will be easier to treat clinically, providing a streamlined and targeted therapy that spares healthy cells. In the future, identifying patients with susceptible tumors and discovering additional DNA repair targets amenable to anti-tumor drugs will have a major impact on the course of cancer treatment.
Collapse
Affiliation(s)
- Rachel Litman
- Department of Cancer Biology, University of Massachusetts Medical School Women’s Cancers Program, UMASS Memorial Cancer Center, Worcester, MA 01605 USA
| | - Rigu Gupta
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Sharon B. Cantor
- Department of Cancer Biology, University of Massachusetts Medical School Women’s Cancers Program, UMASS Memorial Cancer Center, Worcester, MA 01605 USA
| |
Collapse
|
399
|
Wang LF, Gong X, Le GW, Shi YH. Dietary nucleotides protect thymocyte DNA from damage induced by cyclophosphamide in mice. J Anim Physiol Anim Nutr (Berl) 2008; 92:211-8. [PMID: 18336418 DOI: 10.1111/j.1439-0396.2007.00728.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of dietary nucleotides on thymocyte DNA damages induced by cyclophosphamide (CP) in mice were examined. First, phase I experiment was conducted to determine the optimal timing of detecting thymocyte DNA damages induced by CP (150 mg/kg body weight) in mice. Thymocyte DNA damages was determined at 6, 12, 18, 24 h by single-cell gel electrophosphoresis assay (comet assay) after intraperitoneal injection of CP. The levels of DNA damage at 6, 12, 18, 24 h were all significantly higher than that of the control group (p < 0.01). The highest level of DNA damage appeared at 18 h and then decreased at 24 h. Therefore, 18 h was selected to determine DNA damages induced by CP in subsequent experiments. In phase II experiment, 30 male KunMing mice were divided into three treatments: negative control (NC), positive control (PC) and nucleotides group (NG). Mice in NC and PC were fed nucleotide-free diet, and mice in NG were fed nucleotide-supplemented diet (supplemented with 0.25% nucleotides, a mixture containing equal amounts of AMP, CMP, GMP and UMP). Mice in PC and NG groups were injected with CP (150 mg/kg body weight) at 21 days. DNA damage in thymocytes was evaluated at 18 h after CP treatment. The results indicate that dietary nucleotides do not affect the weights of the thymus and the spleen, or their organ indices (p > 0.05), but significantly decrease the percentage of comet cells and comet tail sizes (p < 0.01). This study demonstrates that dietary nucleotides could reduce the level of thymocyte DNA damage induced by CP in mice.
Collapse
Affiliation(s)
- L-F Wang
- Department of Preventive Medicine, School of Medicine, Tongji University, Shanghai, China.
| | | | | | | |
Collapse
|
400
|
Guillem V, Tormo M. Influence of DNA damage and repair upon the risk of treatment related leukemia. Leuk Lymphoma 2008; 49:204-17. [PMID: 18231906 DOI: 10.1080/10428190701769657] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Therapy-related myelodysplasia and acute myeloid leukemia (t-MDS/AML) are malignancies occurring after exposure to chemotherapy and/or radiotherapy. Several studies have addressed cumulative dose, dose intensity and exposure to specific agents of preceding cytotoxic therapy in relation to the risk of developing such leukemia. Since only a small percentage of patients exposed to cytotoxic therapy develop t-MDS/AML, it has been suggested that some genetic predisposition may be involved, specifically associated to polymorphisms in certain genes involved in chemotherapy/radiotherapy response - fundamentally genes intervening in drug detoxification and DNA synthesis and repair. A review is made of the genetic studies related to t-MDS/AML predisposition, focusing on the mechanistic findings of how specific chemotherapeutic drug exposure produces DNA damage and induces the chromosomal abnormalities characteristic of t-MDS/AML, the molecular pathways involved in repairing such drug induced damage, and the way in which they influence t-MDS/AML genesis. Specific issues are (a) the interaction of topoisomerase II inhibitors, alkylators and antimetabolite drugs with DNA repair mechanisms and their impact on t-MDS/AML leukemogenicity and (b) the influence of DNA polymorphisms in genes involved in DNA repair, drug metabolization and nucleotide synthesis, paying special attention to the relevance of folate metabolism. Finally, we discuss some aspects relating to study design that are most suitable for characterizing associations between drug exposure and genotypes related to t-MDS/AML risk - stressing the importance of the inclusion of chemotherapy-exposed control groups.
Collapse
Affiliation(s)
- Vicent Guillem
- Servicio de Hematología y Oncología, Hospital Clínico Universitario de Valencia, Universidad de Valencia, Valencia, Spain
| | | |
Collapse
|