351
|
Weaver EA. Dose Effects of Recombinant Adenovirus Immunization in Rodents. Vaccines (Basel) 2019; 7:vaccines7040144. [PMID: 31658786 PMCID: PMC6963634 DOI: 10.3390/vaccines7040144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Recombinant adenovirus type 5 (rAd) has been used as a vaccine platform against many infectious diseases and has been shown to be an effective vaccine vector. The dose of the vaccine varies significantly from study to study, making it very difficult to compare immune responses and vaccine efficacy. This study determined the immune correlates induced by serial dilutions of rAd vaccines delivered intramuscularly (IM) and intranasally (IN) to mice and rats. When immunized IM, mice had substantially higher antibody responses at the higher vaccine doses, whereas, the IN immunized mice showed a lower response to the higher rAd vaccine doses. Rats did not show dose-dependent antibody responses to increasing vaccine doses. The IM immunized mice and rats also showed significant dose-dependent T cell responses to the rAd vaccine. However, the T cell immunity plateaued in both mice and rats at 109 and 1010 vp/animal, respectively. Additionally, the highest dose of vaccine in mice and rats did not improve the T cell responses. A final vaccine analysis using a lethal influenza virus challenge showed that despite the differences in the immune responses observed in the mice, the mice had very similar patterns of protection. This indicates that rAd vaccines induced dose-dependent immune responses, especially in IM immunized animals, and that immune correlates are not as predictive of protection as initially thought.
Collapse
Affiliation(s)
- Eric A Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|
352
|
Aspesi A, Borsotti C, Follenzi A. Emerging Therapeutic Approaches for Diamond Blackfan Anemia. Curr Gene Ther 2019; 18:327-335. [PMID: 30411682 PMCID: PMC6637096 DOI: 10.2174/1566523218666181109124538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 01/05/2023]
Abstract
Diamond Blackfan Anemia (DBA) is an inherited erythroid aplasia with onset in childhood. Patients carry heterozygous mutations in one of 19 Ribosomal Protein (RP) genes, that lead to defective ribosome biogenesis and function. Standard treatments include steroids or blood transfusions but the only definitive cure is allogeneic Hematopoietic Stem Cell Transplantation (HSCT). Although advances in HSCT have greatly improved the success rate over the last years, the risk of adverse events and mor-tality is still significant. Clinical trials employing gene therapy are now in progress for a variety of monogenic diseases and the development of innovative stem cell-based strategies may open new alternatives for DBA treatment as well. In this review, we summarize the most recent progress toward the implementation of new thera-peutic approaches for this disorder. We present different DNA- and RNA-based technologies as well as new candidate pharmacological treatments and discuss their relevance and potential applicability for the cure of DBA.
Collapse
Affiliation(s)
- Anna Aspesi
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| |
Collapse
|
353
|
Tashkandi M, Ali F, Alsaqer S, Alhousami T, Cano A, Martin A, Salvador F, Portillo F, C Gerstenfeld L, Goldring MB, Bais MV. Lysyl Oxidase-Like 2 Protects against Progressive and Aging Related Knee Joint Osteoarthritis in Mice. Int J Mol Sci 2019; 20:ijms20194798. [PMID: 31569601 PMCID: PMC6801581 DOI: 10.3390/ijms20194798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The goal of this study was to determine if adenovirus-delivered LOXL2 protects against progressive knee osteoarthritis (OA), assess its specific mechanism of action; and determine if the overexpression of LOXL2 in transgenic mice can protect against the development of OA-related cartilage damage and joint disability. Methods: Four-month-old Cho/+ male and female mice were intraperitoneally injected with either Adv-RFP-LOXL2 or an empty vector twice a month for four months. The proteoglycan levels and the expression of anabolic and catabolic genes were examined by immunostaining and qRT-PCR. The effect of LOXL2 expression on signaling was tested via the pro-inflammatory cytokine IL1β in the cartilage cell line ATDC5. Finally; the OA by monosodium iodoacetate (MIA) injection was also induced in transgenic mice with systemic overexpression of LOXL2 and examined gene expression and joint function by treadmill tests and assessment of allodynia. Results: The adenovirus treatment upregulated LOXL2; Sox9; Acan and Runx2 expression in both males and females. The Adv-RFP-LOXL2 injection; but not the empty vector injection increased proteoglycan staining and aggrecan expression but reduced MMP13 expression. LOXL2 attenuated IL-1β-induced phospho-NF-κB/p65 and rescued chondrogenic lineage-related genes in ATDC5 cells; demonstrating one potential protective mechanism. LOXL2 attenuated phospho-NF-κB independent of its enzymatic activity. Finally; LOXL2-overexpressing transgenic mice were protected from MIA-induced OA-related functional changes; including the time and distance traveled on the treadmill and allodynia. Conclusion: Our study demonstrates that systemic LOXL2 adenovirus or LOXL2 genetic overexpression in mice can protect against OA. These findings demonstrate the potential for LOXL2 gene therapy for knee-OA clinical treatment in the future.
Collapse
Affiliation(s)
- Mustafa Tashkandi
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
- Department of Periodontology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
| | - Faiza Ali
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
| | - Saqer Alsaqer
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
| | - Thabet Alhousami
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
| | - Amparo Cano
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, 28029 Madrid, Spain.
- Centro de Investigación Biomédica en Red Cáncer. Av Monforte de Lemos, 3-5, Pabellón 11, planta 0, 28029 Madrid, Spain.
| | - Alberto Martin
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, 28029 Madrid, Spain.
- Centro de Investigación Biomédica en Red Cáncer. Av Monforte de Lemos, 3-5, Pabellón 11, planta 0, 28029 Madrid, Spain.
| | - Fernando Salvador
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, 28029 Madrid, Spain.
- Centro de Investigación Biomédica en Red Cáncer. Av Monforte de Lemos, 3-5, Pabellón 11, planta 0, 28029 Madrid, Spain.
| | - Francisco Portillo
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, 28029 Madrid, Spain.
- Centro de Investigación Biomédica en Red Cáncer. Av Monforte de Lemos, 3-5, Pabellón 11, planta 0, 28029 Madrid, Spain.
| | - Louis C Gerstenfeld
- Department of Orthopedic Surgery, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Mary B Goldring
- Hospital for Special Surgery Research Institute, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10021, USA.
| | - Manish V Bais
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
| |
Collapse
|
354
|
Shahryari A, Saghaeian Jazi M, Mohammadi S, Razavi Nikoo H, Nazari Z, Hosseini ES, Burtscher I, Mowla SJ, Lickert H. Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Front Genet 2019; 10:868. [PMID: 31608113 PMCID: PMC6773888 DOI: 10.3389/fgene.2019.00868] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
The field of gene therapy is striving more than ever to define a path to the clinic and the market. Twenty gene therapy products have already been approved and over two thousand human gene therapy clinical trials have been reported worldwide. These advances raise great hope to treat devastating rare and inherited diseases as well as incurable illnesses. Understanding of the precise pathomechanisms of diseases as well as the development of efficient and specific gene targeting and delivery tools are revolutionizing the global market. Currently, human cancers and monogenic disorders are indications number one. The elevated prevalence of genetic disorders and cancers, clear gene manipulation guidelines and increasing financial support for gene therapy in clinical trials are major trends. Gene therapy is presently starting to become commercially profitable as a number of gene and cell-based gene therapy products have entered the market and the clinic. This article reviews the history and development of twenty approved human gene and cell-based gene therapy products that have been approved up-to-now in clinic and markets of mainly North America, Europe and Asia.
Collapse
Affiliation(s)
- Alireza Shahryari
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marie Saghaeian Jazi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Nazari
- Department of Biology, School of Basic Sciences, Golestan University, Gorgan, Iran
| | - Elaheh Sadat Hosseini
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
355
|
Wang X, Yuan C, Huang B, Fan J, Feng Y, Li AJ, Zhang B, Lei Y, Ye Z, Zhao L, Cao D, Yang L, Wu D, Chen X, Liu B, Wagstaff W, He F, Wu X, Luo H, Zhang J, Zhang M, Haydon RC, Luu HH, Lee MJ, Moriatis Wolf J, Huang A, He TC, Zeng Z. Developing a Versatile Shotgun Cloning Strategy for Single-Vector-Based Multiplex Expression of Short Interfering RNAs (siRNAs) in Mammalian Cells. ACS Synth Biol 2019; 8:2092-2105. [PMID: 31465214 PMCID: PMC6760290 DOI: 10.1021/acssynbio.9b00203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
As an important post-transcriptional
regulatory machinery mediated
by ∼21nt short-interfering double-stranded RNA (siRNA), RNA
interference (RNAi) is a powerful tool to delineate gene functions
and develop therapeutics. However, effective RNAi-mediated silencing
requires multiple siRNAs for given genes, a time-consuming process
to accomplish. Here, we developed a user-friendly system for single-vector-based
multiplex siRNA expression by exploiting the unique feature of restriction
endonuclease BstXI. Specifically, we engineered a BstXI-based shotgun
cloning (BSG) system, which consists of three entry vectors with siRNA
expression units (SiEUs) flanked with distinct BstXI sites, and a
retroviral destination vector for shotgun SiEU assembly. For proof-of-principle
studies, we constructed multiplex siRNA vectors silencing β-catenin
and/or Smad4 and assessed their functionalities in mesenchymal stem
cells (MSCs). Pooled siRNA cassettes were effectively
inserted into respective entry vectors in one-step, and shotgun seamless
assembly of pooled BstXI-digested SiEU fragments into a retroviral
destination vector followed. We found these multiplex siRNAs effectively
silenced β-catenin and/or Smad4, and inhibited Wnt3A- or BMP9-specific
reporters and downstream target expression in MSCs. Furthermore, multiplex
silencing of β-catenin and/or Smad4 diminished Wnt3A and/or
BMP9-induced osteogenic differentiation. Collectively, the BSG system
is a user-friendly technology for single-vector-based multiplex siRNA
expression to study gene functions and develop experimental therapeutics.
Collapse
Affiliation(s)
- Xi Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang, 443002, China
| | - Bo Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Clinical Laboratory Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Key Laboratory of Orthopaedic Surgery of Gansu Province, and the Departments of Orthopaedic Surgery and Obstetrics and Gynecology, the First and Second Hospitals of Lanzhou University, Lanzhou, 730030, China
| | - Yan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of General Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ling Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
- Department of Orthopaedic Surgery, Chongqing General Hospital, Chongqing, 400013, China
| | - Lijuan Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Key Laboratory of Orthopaedic Surgery of Gansu Province, and the Departments of Orthopaedic Surgery and Obstetrics and Gynecology, the First and Second Hospitals of Lanzhou University, Lanzhou, 730030, China
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266061, China
| | - Bin Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoxing Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Huaxiu Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Meng Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Zongyue Zeng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
356
|
Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S, Ngai SC. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol 2019; 143:81-94. [PMID: 31561055 DOI: 10.1016/j.critrevonc.2019.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. Resistance to apoptosis is a hallmark of virtually all malignancies. Despite being a cause of pathological conditions, apoptosis could be a promising target in cancer treatment. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of TNF cytokine superfamily. It is a potent anti-cancer agent owing to its specific targeting towards cancerous cells, while sparing normal cells, to induce apoptosis. However, resistance occurs either intrinsically or after multiple treatments which may explain why cancer therapy fails. This review summarizes the apoptotic mechanisms via extrinsic and intrinsic apoptotic pathways, as well as the apoptotic resistance mechanisms. It also reviews the current clinically tested recombinant human TRAIL (rhTRAIL) and TRAIL receptor agonists (TRAs) against TRAIL-Receptors, TRAIL-R1 and TRAIL-R2, in which the outcomes of the clinical trials have not been satisfactory. Finally, this review discusses the current strategies in overcoming resistance to TRAIL-induced apoptosis in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Sonia How Ming Wong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Wei Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
357
|
Abstract
Over 450 million people worldwide suffer from hearing loss, leading to an estimated economic burden of ∼$750 billion. The past decade has seen significant advances in the understanding of the molecular mechanisms that contribute to hearing, and the environmental and genetic factors that can go awry and lead to hearing loss. This in turn has sparked enormous interest in developing gene therapy approaches to treat this disorder. This review documents the most recent advances in cochlear gene therapy to restore hearing loss, and will cover viral vectors and construct designs, potential routes of delivery into the inner ear, and, lastly, the most promising genes of interest.
Collapse
Affiliation(s)
- Lawrence Lustig
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Omar Akil
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94117
| |
Collapse
|
358
|
Wu JQH, Barabé ND, Chau D. Effect of exogenous expression of IFN-γ on the new world alphavirus replication and infection. Future Virol 2019. [DOI: 10.2217/fvl-2019-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: IFN-γ plays an important role in control of the old world alphavirus infection. However, the role of IFN-γ in the infection by the new world alphaviruses is not well characterized. Materials & methods: Ad5-mIFN-γ, a recombinant, replication-deficient human adenovirus, was constructed to express mouse IFN-γ (mIFN-γ) and a mouse, lethal challenge model of the new world alphavirus western equine encephalitis virus (WEEV) was used. Results: A single-dose injection of Ad5-mIFN-γ produced a high level of mIFN-γ in mice. Cells inoculated with Ad5-mIFN-γ restricted the replication of WEEV. A single-dose injection of Ad5-mIFN-γ delayed the WEEV infection and extended the survival time in mice. Conclusion: IFN-γ restricts the WEEV infection.
Collapse
Affiliation(s)
- Josh QH Wu
- Bio Threat Defence Section, Defence Research & Development Canada; Suffield Research Centre; Box 4000, Station Main, Medicine Hat, Alberta T1A 8K6, Canada
| | - Nicole D Barabé
- Bio Threat Defence Section, Defence Research & Development Canada; Suffield Research Centre; Box 4000, Station Main, Medicine Hat, Alberta T1A 8K6, Canada
| | - Damon Chau
- Bio Threat Defence Section, Defence Research & Development Canada; Suffield Research Centre; Box 4000, Station Main, Medicine Hat, Alberta T1A 8K6, Canada
| |
Collapse
|
359
|
Crenshaw BJ, Jones LB, Bell CR, Kumar S, Matthews QL. Perspective on Adenoviruses: Epidemiology, Pathogenicity, and Gene Therapy. Biomedicines 2019; 7:E61. [PMID: 31430920 PMCID: PMC6784011 DOI: 10.3390/biomedicines7030061] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/03/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
Human adenoviruses are large (150 MDa) doubled-stranded DNA viruses that cause respiratory infections. These viruses are particularly pathogenic in healthy and immune-compromised individuals, and currently, no adenovirus vaccine is available for the general public. The purpose of this review is to describe (i) the epidemiology and pathogenicity of human adenoviruses, (ii) the biological role of adenovirus vectors in gene therapy applications, and (iii) the potential role of exosomes in adenoviral infections.
Collapse
Affiliation(s)
- Brennetta J Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Leandra B Jones
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Courtnee' R Bell
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Sanjay Kumar
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Qiana L Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| |
Collapse
|
360
|
Mills EM, Barlow VL, Luk LYP, Tsai YH. Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications. Cell Biol Toxicol 2019; 36:17-29. [PMID: 31418127 PMCID: PMC7051928 DOI: 10.1007/s10565-019-09488-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Progress in targeted gene editing by programmable endonucleases has paved the way for their use in gene therapy. Particularly, Cas9 is an endonuclease with high activity and flexibility, rendering it an attractive option for therapeutic applications in clinical settings. Many disease-causing mutations could potentially be corrected by this versatile new technology. In addition, recently developed switchable Cas9 variants, whose activity can be controlled by an external stimulus, provide an extra level of spatiotemporal control on gene editing and are particularly desirable for certain applications. Here, we discuss the considerations and difficulties for implementing Cas9 to in vivo gene therapy. We put particular emphasis on how switchable Cas9 variants may resolve some of these barriers and advance gene therapy in the clinical setting.
Collapse
Affiliation(s)
- Emily M Mills
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | | | - Louis Y P Luk
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
361
|
Genoveso MJ, Hisaoka M, Komatsu T, Wodrich H, Nagata K, Okuwaki M. Formation of adenovirus DNA replication compartments and viral DNA accumulation sites by host chromatin regulatory proteins including NPM1. FEBS J 2019; 287:205-217. [PMID: 31365788 DOI: 10.1111/febs.15027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/19/2019] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Abstract
The adenovirus (Ad) genome is believed to be packaged into the virion by forming a chromatin-like structure. The replicated viral genome is likely to be condensed through binding with viral core proteins before encapsidation. Replicated viral genomes accumulate in the central region of the nucleus, which we termed virus-induced postreplication (ViPR) body. However, the molecular mechanism by which the nuclear structure is reorganized and its functional significance in virus production are currently not understood. In this study, we found that viral packaging protein IVa2, but not capsid proteins, accumulated in the ViPR body. In addition, nucleolar chromatin regulatory proteins, nucleophosmin 1 (NPM1), upstream binding factor, and nucleolin accumulated in the ViPR body in late-stage Ad infection. NPM1 depletion increased the nuclease-resistant viral genome and delayed the ViPR body formation. These results suggested that structural changes in the infected cell nucleus depend on the formation of viral chromatin by host chromatin regulatory proteins. Because NPM1 depletion decreases production of the infectious virion, we propose that host factor-mediated viral chromatin remodeling and concomitant ViPR body formation are prerequisites for efficient encapsidation of Ad chromatin.
Collapse
Affiliation(s)
- Michelle Jane Genoveso
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Japan.,Faculty of Medicine, University of Tsukuba, Japan
| | | | - Tetsuro Komatsu
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, France.,Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Harald Wodrich
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, France
| | | | - Mitsuru Okuwaki
- Faculty of Medicine, University of Tsukuba, Japan.,School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
362
|
Carlin CR. New Insights to Adenovirus-Directed Innate Immunity in Respiratory Epithelial Cells. Microorganisms 2019; 7:microorganisms7080216. [PMID: 31349602 PMCID: PMC6723309 DOI: 10.3390/microorganisms7080216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) family of transcription factors is a key component of the host innate immune response to infectious adenoviruses and adenovirus vectors. In this review, we will discuss a regulatory adenoviral protein encoded by early region 3 (E3) called E3-RIDα, which targets NFκB through subversion of novel host cell pathways. E3-RIDα down-regulates an EGF receptor signaling pathway, which overrides NFκB negative feedback control in the nucleus, and is induced by cell stress associated with viral infection and exposure to the pro-inflammatory cytokine TNF-α. E3-RIDα also modulates NFκB signaling downstream of the lipopolysaccharide receptor, Toll-like receptor 4, through formation of membrane contact sites controlling cholesterol levels in endosomes. These innate immune evasion tactics have yielded unique perspectives regarding the potential physiological functions of host cell pathways with important roles in infectious disease.
Collapse
Affiliation(s)
- Cathleen R Carlin
- Department of Molecular Biology and Microbiology and the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
363
|
Çiçek YA, Luther DC, Kretzmann JA, Rotello VM. Advances in CRISPR/Cas9 Technology for in Vivo Translation. Biol Pharm Bull 2019; 42:304-311. [PMID: 30828060 DOI: 10.1248/bpb.b18-00811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has revolutionized therapeutic gene editing by providing researchers with a new method to study and cure diseases previously considered untreatable. While the full range and power of CRISPR technology for therapeutics is being elucidated through in vitro studies, translation to in vivo studies is slow. To date there is no totally effective delivery strategy to carry CRISPR components to the target site in vivo. The complexity of in vivo delivery is furthered by the number of potential delivery methods, the different forms in which CRISPR can be delivered as a therapeutic, and the disease target and tissue type in question. There are major challenges and limitations to delivery strategies, and it is imperative that future directions are guided by well-conducted studies that consider the full effect these variables have on the eventual outcome. In this review we will discuss the advances of the latest in vivo CRISPR/Cas9 delivery strategies and highlight the challenges yet to be overcome.
Collapse
Affiliation(s)
- Yağız Anıl Çiçek
- Department of Chemistry, Middle East Technical University (METU)
| | | | - Jessica A Kretzmann
- Department of Chemistry, University of Massachusetts.,School of Molecular Sciences, The University of Western Australia
| | | |
Collapse
|
364
|
Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene Therapy Tools for Brain Diseases. Front Pharmacol 2019; 10:724. [PMID: 31312139 PMCID: PMC6613496 DOI: 10.3389/fphar.2019.00724] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/05/2019] [Indexed: 01/20/2023] Open
Abstract
Neurological disorders affecting the central nervous system (CNS) are still incompletely understood. Many of these disorders lack a cure and are seeking more specific and effective treatments. In fact, in spite of advancements in knowledge of the CNS function, the treatment of neurological disorders with modern medical and surgical approaches remains difficult for many reasons, such as the complexity of the CNS, the limited regenerative capacity of the tissue, and the difficulty in conveying conventional drugs to the organ due to the blood-brain barrier. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. Gene therapy can result in a stable or inducible expression of transgene(s), and can allow a nearly specific expression in target cells. In this review, we will discuss the most commonly used tools for the delivery of genetic material in the CNS, including viral and non-viral vectors; their main applications; their advantages and disadvantages. We will discuss mechanisms of genetic regulation through cell-specific and inducible promoters, which allow to express gene products only in specific cells and to control their transcriptional activation. In addition, we will describe the applications to CNS diseases of post-transcriptional regulation systems (RNA interference); of systems allowing spatial or temporal control of expression [optogenetics and Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)]; and of gene editing technologies (CRISPR/Cas9, Zinc finger proteins). Particular attention will be reserved to viral vectors derived from herpes simplex type 1, a potential tool for the delivery and expression of multiple transgene cassettes simultaneously.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Gianluca Verlengia
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Marie Soukupova
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Silvia Zucchini
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Michele Simonato
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
365
|
Overcoming the limitations of locally administered oncolytic virotherapy. BMC Biomed Eng 2019; 1:17. [PMID: 32903299 PMCID: PMC7422506 DOI: 10.1186/s42490-019-0016-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Adenovirus (Ad) has been most extensively evaluated gene transfer vector in clinical trials due to facile production in high viral titer, highly efficient transduction, and proven safety record. Similarly, an oncolytic Ad, which replicates selectively in cancer cells through genetic modifications, is actively being evaluated in various phases of clinical trials as a promising next generation therapeutic against cancer. Most of these trials with oncolytic Ads to date have employed intratumoral injection as the standard administration route. Although these locally administered oncolytic Ads have shown promising outcomes, the therapeutic efficacy is not yet optimal due to poor intratumoral virion retention, nonspecific shedding of virion to normal organs, variable infection efficacy due to heterogeneity of tumor cells, adverse antiviral immune response, and short biological activity of oncolytic viruses in situ. These inherent problems associated with locally administered Ad also holds true for other oncolytic viral vectors. Thus, this review will aim to discuss various nanomaterial-based delivery strategies to improve the intratumoral administration efficacy of oncolytic Ad as well as other types of oncolytic viruses.
Collapse
|
366
|
Direct delivery of adenoviral CRISPR/Cas9 vector into the blastoderm for generation of targeted gene knockout in quail. Proc Natl Acad Sci U S A 2019; 116:13288-13292. [PMID: 31209054 DOI: 10.1073/pnas.1903230116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Zygotes at the 1-cell stage have been genetically modified by microinjecting the CRISPR/Cas9 components for the generation of targeted gene knockout in mammals. In the avian species, genetic modification of the zygote is difficult because its unique reproductive system limits the accessibility of the zygote at the 1-cell stage. To date, only a few CRISPR/Cas9-mediated gene knockouts have been reported using the chicken as a model among avian species, which requires 3 major processes: isolation and culture of primordial germ cells (PGCs), modification of the genome of PGCs in vitro, and injection of the PGCs into the extraembryonic blood vessel at the early embryonic stages when endogenous PGCs migrate through circulation to the genital ridge. In the present study, the adenoviral CRISPR/Cas9 vector was directly injected into the quail blastoderm in newly laid eggs. The resulting chimeras generated offspring with targeted mutations in the melanophilin (MLPH) gene, which is involved in melanosome transportation and feather pigmentation. MLPH homozygous mutant quail exhibited gray plumage, whereas MLPH heterozygous mutants and wild-type quail exhibited dark brown plumage. In addition, the adenoviral vector was not integrated into the genome of knockout quail, and no mutations were detected in potential off-target regions. This method of generating genome-edited poultry is expected to accelerate avian research and has potential applications for developing superior genetic lines for poultry production in the industry.
Collapse
|
367
|
Sugasawa T, Aoki K, Watanabe K, Yanazawa K, Natsume T, Takemasa T, Yamaguchi K, Takeuchi Y, Aita Y, Yahagi N, Yoshida Y, Tokinoya K, Sekine N, Takeuchi K, Ueda H, Kawakami Y, Shimizu S, Takekoshi K. Detection of Transgenes in Gene Delivery Model Mice by Adenoviral Vector Using ddPCR. Genes (Basel) 2019; 10:genes10060436. [PMID: 31181711 PMCID: PMC6627169 DOI: 10.3390/genes10060436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 01/19/2023] Open
Abstract
With the rapid progress of genetic engineering and gene therapy, the World Anti-Doping Agency has been alerted to gene doping and prohibited its use in sports. However, there is no standard method available yet for the detection of transgenes delivered by recombinant adenoviral (rAdV) vectors. Here, we aim to develop a detection method for transgenes delivered by rAdV vectors in a mouse model that mimics gene doping. These rAdV vectors containing the mCherry gene was delivered in mice through intravenous injection or local muscular injection. After five days, stool and whole blood samples were collected, and total DNA was extracted. As additional experiments, whole blood was also collected from the mouse tail tip until 15 days from injection of the rAdv vector. Transgene fragments from different DNA samples were analyzed using semi-quantitative PCR (sqPCR), quantitative PCR (qPCR), and droplet digital PCR (ddPCR). In the results, transgene fragments could be directly detected from blood cell fraction DNA, plasma cell-free DNA, and stool DNA by qPCR and ddPCR, depending on specimen type and injection methods. We observed that a combination of blood cell fraction DNA and ddPCR was more sensitive than other combinations used in this model. These results could accelerate the development of detection methods for gene doping.
Collapse
Affiliation(s)
- Takehito Sugasawa
- Laboratory of Laboratory/Sports medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan.
| | - Kai Aoki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Koichi Watanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Koki Yanazawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 100-8921, Japan.
| | - Tohru Takemasa
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Kaori Yamaguchi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Yoshinori Takeuchi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.
| | - Yuichi Aita
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.
| | - Naoya Yahagi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.
| | - Yasuko Yoshida
- Department of Medical Technology, Faculty of Health Sciences, Tsukuba International University, 6-20-1 Manabe, Tsuchiura, Ibaraki 300-0051, Japan.
| | - Katsuyuki Tokinoya
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
- Japan Society for the Promotion of Science; Kojimachi Business Center Building, Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.
| | - Nanami Sekine
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Kaoru Takeuchi
- Laboratory of Environmental Microbiology, Division of Basic Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| | - Haruna Ueda
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Yasushi Kawakami
- Laboratory of Laboratory/Sports medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan.
| | - Satoshi Shimizu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Kazuhiro Takekoshi
- Laboratory of Laboratory/Sports medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan.
| |
Collapse
|
368
|
Liu H, Lu Z, Zhang X, Guo X, Mei L, Zou X, Zhong Y, Wang M, Hung T. Single Plasmid-Based, Upgradable, and Backward-Compatible Adenoviral Vector Systems. Hum Gene Ther 2019; 30:777-791. [DOI: 10.1089/hum.2018.258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Hongyan Liu
- State Key Laboratory of Toxicology and Medical Counter Measures, Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China
| | - Zhuozhuang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Xin Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
- School of Public Health and Management, Weifang Medical University, Weifang, P.R. China
| | - Xiaojuan Guo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Lingling Mei
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
- School of Public Health and Management, Weifang Medical University, Weifang, P.R. China
| | - Xiaohui Zou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Counter Measures, Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China
| | - Min Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Tao Hung
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| |
Collapse
|
369
|
Zhang L, Luo Q, Shu Y, Zeng Z, Huang B, Feng Y, Zhang B, Wang X, Lei Y, Ye Z, Zhao L, Cao D, Yang L, Chen X, Liu B, Wagstaff W, Reid RR, Luu HH, Haydon RC, Lee MJ, Wolf JM, Fu Z, He TC, Kang Q. Transcriptomic landscape regulated by the 14 types of bone morphogenetic proteins (BMPs) in lineage commitment and differentiation of mesenchymal stem cells (MSCs). Genes Dis 2019; 6:258-275. [PMID: 32042865 PMCID: PMC6997588 DOI: 10.1016/j.gendis.2019.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are ubiquitously-existing multipotent progenitors that can self-renew and differentiate into multiple lineages including osteocytes, chondrocytes, adipocytes, tenocytes and myocytes. MSCs represent one of the most commonly-used adult progenitors and serve as excellent progenitor cell models for investigating lineage-specific differentiation regulated by various cellular signaling pathways, such as bone morphogenetic proteins (BMPs). As members of TGFβ superfamily, BMPs play diverse and important roles in development and adult tissues. At least 14 BMPs have been identified in mammals. Different BMPs exert distinct but overlapping biological functions. Through a comprehensive analysis of 14 BMPs in MSCs, we demonstrated that BMP9 is one of the most potent BMPs in inducing osteogenic differentiation of MSCs. Nonetheless, a global mechanistic view of BMP signaling in regulating the proliferation and differentiation of MSCs remains to be fully elucidated. Here, we conducted a comprehensive transcriptomic profiling in the MSCs stimulated by 14 types of BMPs. Hierarchical clustering analysis classifies 14 BMPs into three subclusters: an osteo/chondrogenic/adipogenic cluster, a tenogenic cluster, and BMP3 cluster. We also demonstrate that six BMPs (e.g., BMP2, BMP3, BMP4, BMP7, BMP8, and BMP9) can induce I-Smads effectively, while BMP2, BMP3, BMP4, BMP7, and BMP11 up-regulate Smad-independent MAP kinase pathway. Furthermore, we show that many BMPs can upregulate the expression of the signal mediators of Wnt, Notch and PI3K/AKT/mTOR pathways. While the reported transcriptomic changes need to be further validated, our expression profiling represents the first-of-its-kind to interrogate a comprehensive transcriptomic landscape regulated by the 14 types of BMPs in MSCs.
Collapse
Affiliation(s)
- Linghuan Zhang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qing Luo
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yi Shu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chicago, IL 60637, USA.,The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chicago, IL 60637, USA.,The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China.,Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chicago, IL 60637, USA.,The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Key Laboratory of Orthopaedic Surgery of Gansu Province, Departments of Orthopaedic Surgery and Obstetrics and Gynecology, The First and Second Hospitals of Lanzhou University, Lanzhou 730030, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chicago, IL 60637, USA.,The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chicago, IL 60637, USA.,The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ling Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chicago, IL 60637, USA.,The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chicago, IL 60637, USA.,The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Lijuan Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Key Laboratory of Orthopaedic Surgery of Gansu Province, Departments of Orthopaedic Surgery and Obstetrics and Gynecology, The First and Second Hospitals of Lanzhou University, Lanzhou 730030, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Clinical Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Bin Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Biology, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhou Fu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Quan Kang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
370
|
Hajighasemi S, Mahdavi Gorabi A, Bianconi V, Pirro M, Banach M, Ahmadi Tafti H, Reiner Ž, Sahebkar A. A review of gene- and cell-based therapies for familial hypercholesterolemia. Pharmacol Res 2019; 143:119-132. [DOI: 10.1016/j.phrs.2019.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/10/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
|
371
|
Beatty PH, Lewis JD. Cowpea mosaic virus nanoparticles for cancer imaging and therapy. Adv Drug Deliv Rev 2019; 145:130-144. [PMID: 31004625 DOI: 10.1016/j.addr.2019.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/07/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticle platforms are particularly attractive for theranostic applications due to their capacity for multifunctionality and multivalency. Some of the most promising nano-scale scaffold systems have been co-opted from nature including plant viruses such as cowpea mosaic virus (CPMV). The use of plant viruses like CPMV as viral nanoparticles is advantageous for many reasons; they are non-infectious and nontoxic to humans and safe for use in intravital imaging and drug delivery. The CPMV capsid icosahedral shape allows for enhanced multifunctional group display and the ability to carry specific cargoes. The native tropism of CPMV for cell-surface displayed vimentin and the enhanced permeability and retention effect allow them to preferentially extravasate from tumor neovasculature and efficiently penetrate tumors. Furthermore, CPMVs can be engineered via several straightforward chemistries to display targeting and imaging moieties on external, addressable residues and they can be loaded internally with therapeutic drug cargoes. These qualities make them highly effective as biocompatible platforms for tumor targeting, intravital imaging and cancer therapy.
Collapse
|
372
|
Turnbull J, Wright B, Green NK, Tarrant R, Roberts I, Hardick O, Bracewell DG. Adenovirus 5 recovery using nanofiber ion‐exchange adsorbents. Biotechnol Bioeng 2019; 116:1698-1709. [DOI: 10.1002/bit.26972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/29/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jordan Turnbull
- Department of Biochemical EngineeringUniversity College LondonLondon United Kingdom
| | - Bernice Wright
- Department of Biochemical EngineeringUniversity College LondonLondon United Kingdom
| | - Nicola K. Green
- Clinical BioManufacturing FacilityUniversity of OxfordOxford United Kingdom
| | - Richard Tarrant
- Clinical BioManufacturing FacilityUniversity of OxfordOxford United Kingdom
| | - Iwan Roberts
- Puridify, Stevenage Bioscience CatalystStevenage United Kingdom
| | - Oliver Hardick
- Puridify, Stevenage Bioscience CatalystStevenage United Kingdom
| | - Daniel G. Bracewell
- Department of Biochemical EngineeringUniversity College LondonLondon United Kingdom
| |
Collapse
|
373
|
Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019; 9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field. In addition to nucleases, we discuss CRISPR-derived base editors and epigenetic modifiers. We also delve into practical applications of these tools, including creating custom-edited cell and animal models as well as performing genetic screens. Finally, we discuss the potential for therapeutic applications and ethical considerations related to employing this technology in humans. © 2019 American Physiological Society. Compr Physiol 9:665-714, 2019.
Collapse
Affiliation(s)
- Shaina N Porter
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
374
|
Zhang WW, Li L, Li D, Liu J, Li X, Li W, Xu X, Zhang MJ, Chandler LA, Lin H, Hu A, Xu W, Lam DMK. The First Approved Gene Therapy Product for Cancer Ad-p53 (Gendicine): 12 Years in the Clinic. Hum Gene Ther 2019; 29:160-179. [PMID: 29338444 DOI: 10.1089/hum.2017.218] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gendicine (recombinant human p53 adenovirus), developed by Shenzhen SiBiono GeneTech Co. Ltd., was approved in 2003 by the China Food and Drug Administration (CFDA) as a first-in-class gene therapy product to treat head and neck cancer, and entered the commercial market in 2004. Gendicine is a biological therapy that is delivered via minimally invasive intratumoral injection, as well as by intracavity or intravascular infusion. The wild-type (wt) p53 protein expressed by Gendicine-transduced cells is a tumor suppressor that is activated by cellular stress, and mediates cell-cycle arrest and DNA repair, or induces apoptosis, senescence, and/or autophagy, depending upon cellular stress conditions. Based on 12 years of commercial use in >30,000 patients, and >30 published clinical studies, Gendicine has exhibited an exemplary safety record, and when combined with chemotherapy and radiotherapy has demonstrated significantly higher response rates than for standard therapies alone. In addition to head and neck cancer, Gendicine has been successfully applied to treat various other cancer types and different stages of disease. Thirteen published studies that include long-term survival data showed that Gendicine combination regimens yield progression-free survival times that are significantly longer than standard therapies alone. Although the p53 gene is mutated in >50% of all human cancers, p53 mutation status did not significantly influence efficacy outcomes and long-term survival rate for Ad-p53-treated patients. To date, Shenzhen SiBiono GeneTech has manufactured 41 batches of Gendicine in compliance with CFDA QC/QA requirements, and 169,571 vials (1.0 × 1012 vector particles per vial) have been used to treat patients. No serious adverse events have been reported, except for vector-associated transient fever, which occurred in 50-60% of patients and persisted for only a few hours. The manufacturing accomplishments and clinical experience with Gendicine, as well as the understanding of its cellular mechanisms of action and implications, could provide valuable insights for the international gene therapy community and add valuable data to promote further developments and advancements in the gene therapy field.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- 1 LifeTech Biosciences Group, Hong Kong .,2 Angionetics, Inc., San Diego, California
| | - Longjiang Li
- 3 State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dinggang Li
- 4 Beijing Haidian Hospital Center for Cancer Gene Therapy, Beijing, China
| | - Jiliang Liu
- 5 Shenzhen Hengsheng Hospital Cancer Center, Shenzhen, China
| | - Xiuqin Li
- 6 China Medical University Shengjing Hospital Department of Obstetrics and Gynecology, Shenyang, China
| | - Wei Li
- 7 Shenzhen SiBiono GeneTech Co. Ltd., Shenzhen, China
| | - Xiaolong Xu
- 7 Shenzhen SiBiono GeneTech Co. Ltd., Shenzhen, China
| | - Michael J Zhang
- 8 Department of Medicine University of Minnesota Medical School, Minneapolis, Minnesota
| | | | - Hong Lin
- 7 Shenzhen SiBiono GeneTech Co. Ltd., Shenzhen, China
| | - Aiguo Hu
- 7 Shenzhen SiBiono GeneTech Co. Ltd., Shenzhen, China
| | - Wei Xu
- 7 Shenzhen SiBiono GeneTech Co. Ltd., Shenzhen, China
| | | |
Collapse
|
375
|
Anderson HE, Weir RFF. On the development of optical peripheral nerve interfaces. Neural Regen Res 2019; 14:425-436. [PMID: 30539808 PMCID: PMC6334609 DOI: 10.4103/1673-5374.245461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/19/2018] [Indexed: 11/04/2022] Open
Abstract
Limb loss and spinal cord injury are two debilitating conditions that continue to grow in prevalence. Prosthetic limbs and limb reanimation present two ways of providing affected individuals with means to interact in the world. These techniques are both dependent on a robust interface with the peripheral nerve. Current methods for interfacing with the peripheral nerve tend to suffer from low specificity, high latency and insufficient robustness for a chronic implant. An optical peripheral nerve interface may solve some of these problems by decreasing invasiveness and providing single axon specificity. In order to implement such an interface three elements are required: (1) a transducer capable of translating light into a neural stimulus or translating neural activity into changes in fluorescence, (2) a means for delivering said transducer and (3) a microscope for providing the stimulus light and detecting the fluorescence change. There are continued improvements in both genetically encoded calcium and voltage indicators as well as new optogenetic actuators for stimulation. Similarly, improvements in specificity of viral vectors continue to improve expression in the axons of the peripheral nerve. Our work has recently shown that it is possible to virally transduce axons of the peripheral nerve for recording from small fibers. The improvements of these components make an optical peripheral nerve interface a rapidly approaching alternative to current methods.
Collapse
Affiliation(s)
- Hans E. Anderson
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Richard F. ff. Weir
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
376
|
Baker AT, Greenshields-Watson A, Coughlan L, Davies JA, Uusi-Kerttula H, Cole DK, Rizkallah PJ, Parker AL. Diversity within the adenovirus fiber knob hypervariable loops influences primary receptor interactions. Nat Commun 2019; 10:741. [PMID: 30765704 PMCID: PMC6376029 DOI: 10.1038/s41467-019-08599-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/21/2019] [Indexed: 01/14/2023] Open
Abstract
Adenovirus based vectors are of increasing importance for wide ranging therapeutic applications. As vaccines, vectors derived from human adenovirus species D serotypes 26 and 48 (HAdV-D26/48) are demonstrating promising efficacy as protective platforms against infectious diseases. Significant clinical progress has been made, yet definitive studies underpinning mechanisms of entry, infection, and receptor usage are currently lacking. Here, we perform structural and biological analysis of the receptor binding fiber-knob protein of HAdV-D26/48, reporting crystal structures, and modelling putative interactions with two previously suggested attachment receptors, CD46 and Coxsackie and Adenovirus Receptor (CAR). We provide evidence of a low affinity interaction with CAR, with modelling suggesting affinity is attenuated through extended, semi-flexible loop structures, providing steric hindrance. Conversely, in silico and in vitro experiments are unable to provide evidence of interaction between HAdV-D26/48 fiber-knob with CD46, or with Desmoglein 2. Our findings provide insight into the cell-virus interactions of HAdV-D26/48, with important implications for the design and engineering of optimised Ad-based therapeutics.
Collapse
Affiliation(s)
- Alexander T Baker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | | | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - James A Davies
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Hanni Uusi-Kerttula
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - David K Cole
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.,Immunocore Ltd., Abingdon, OX14 4RY, Oxon, UK
| | - Pierre J Rizkallah
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Alan L Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
377
|
Gao J, Guo Y, Chen Y, Zhou J, Liu Y, Su P. Adeno-associated virus 9-mediated RNA interference targeting SOCS3 alleviates diastolic heart failure in rats. Gene 2019; 697:11-18. [PMID: 30763670 DOI: 10.1016/j.gene.2019.01.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/02/2019] [Accepted: 01/22/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To explore the effect of adeno-associated virus 9-mediated RNA interference targeting SOCS3 (AAV9-SOCS3 siRNA) on the treatment of diastolic heart failure (DHF). METHOD A rat DHF model was established, and cardiac function and hemodynamic changes were measured. HE, Sirius red and TUNEL staining were applied to observe the pathological changes in the myocardium. Immunoblotting and immunohistochemical staining were utilized to detect SOCS3 expression. The expression levels of various factors, including fibrosis-related factors (collagen I, collagen II, α-SMA and TGF-β), inflammatory-related factors (IL-1β, IL-6, TNF-α, p-p65 and ICAM-1) and factors related to the JAK/STAT signal pathway were analyzed by immunoblotting and/or qPCR. The serum levels of IL-1β, IL-6, and TNF-α were measured using ELISA. RESULTS SOCS3 expression was significantly downregulated in the DHF rat model by SOCS3 siRNA delivery. In the successfully established DHF rat model, cardiac function was clearly decreased, and cardiomyocyte apoptosis and myocardial fibrosis were significantly increased. These changes were ameliorated by treatment with AAV9-SOCS3 siRNA. The expression levels of p-JAK2 and p-STAT3 were significantly upregulated in the AAV9-SOCS3 siRNA group compared with the sham and AAV9-siRNA control groups, indicating that SOCS3 is a negative regulator of this signaling pathway. The expression levels of collagen I/III, α-SMA and TGF-β were also decreased at both the mRNA and protein levels. In addition, the serum and myocardial tissue expression levels of inflammatory-related factors, such as IL-6, IL-1β, and TNF-α, were also reduced by the administration of AAV9-SOCS3 siRNA compared with the AAV9-siRNA control. CONCLUSIONS SOCS3 gene silencing by AAV9-SOCS3 siRNA administration in a DHF rat model significantly reduced myocardial fibrosis and the inflammatory response and improved heart function. Therefore, this treatment is a potential therapeutic method for treating DHF.
Collapse
Affiliation(s)
- Jie Gao
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yulin Guo
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yingqi Chen
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yan Liu
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pixiong Su
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
378
|
Huang J, Snook AE, Uitto J, Li Q. Adenovirus-Mediated ABCC6 Gene Therapy for Heritable Ectopic Mineralization Disorders. J Invest Dermatol 2019; 139:1254-1263. [PMID: 30639429 DOI: 10.1016/j.jid.2018.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 01/27/2023]
Abstract
Loss-of-function mutations in the ABCC6 gene cause pseudoxanthoma elasticum and type 2 generalized arterial calcification of infancy, heritable ectopic mineralization disorders without effective treatment. ABCC6 encodes the putative efflux transporter ABCC6, which is predominantly expressed in the liver. Although the substrate of ABCC6 remains unknown, recent studies showed that pseudoxanthoma elasticum is a metabolic disorder caused by reduced circulating levels of pyrophosphate, a potent mineralization inhibitor. We hypothesized that reconstitution of ABCC6 might counteract ectopic mineralization in an Abcc6-/- mouse model of pseudoxanthoma elasticum. Intravenous administration of a recombinant adenovirus expressing wild-type human ABCC6 in Abcc6-/- mice showed sustained high-level expression of human ABCC6 in the liver for up to 4 weeks, increasing pyrophosphate levels in plasma. In addition, adenovirus injection every 4 weeks restored plasma pyrophosphate levels and, consequently, significantly reduced ectopic mineralization in the skin of young mice. By contrast, the same treatment in old mice with already established mineral deposits failed to reduce mineralization. These results suggest that adenovirus-mediated ABCC6 gene delivery, when initiated early, is a promising prevention therapy for pseudoxanthoma elasticum and generalized arterial calcification of infancy, diseases that currently lack preventive or therapeutic options.
Collapse
Affiliation(s)
- Jianhe Huang
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
379
|
Mio C, Bulotta S, Russo D, Damante G. Reading Cancer: Chromatin Readers as Druggable Targets for Cancer Treatment. Cancers (Basel) 2019; 11:cancers11010061. [PMID: 30634442 PMCID: PMC6356452 DOI: 10.3390/cancers11010061] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023] Open
Abstract
The epigenetic machinery deputed to control histone post-translational modifications is frequently dysregulated in cancer cells. With epigenetics being naturally reversible, it represents a good target for therapies directed to restore normal gene expression. Since the discovery of Bromodomain and Extra Terminal (BET) inhibitors, a great effort has been spent investigating the effects of chromatin readers’ inhibition, specifically the class of proteins assigned to bind acetylated and methylated residues. So far, focused studies have been produced on epigenetic regulation, dissecting a specific class of epigenetic-related proteins or investigating epigenetic therapy in a specific tumor type. In this review, recent steps toward drug discovery on the different classes of chromatin readers have been outlined, highlighting the pros and cons of current therapeutic approaches.
Collapse
Affiliation(s)
- Catia Mio
- Department of Medical Area, University of Udine, 33100 Udine, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy.
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy.
| | - Giuseppe Damante
- Department of Medical Area, University of Udine, 33100 Udine, Italy.
- Medical Genetics Institute, University Hospital of Udine, 33100 Udine, Italy.
| |
Collapse
|
380
|
Hernandez Y, González-Pastor R, Belmar-Lopez C, Mendoza G, de la Fuente JM, Martin-Duque P. Gold nanoparticle coatings as efficient adenovirus carriers to non-infectable stem cells. RSC Adv 2019; 9:1327-1334. [PMID: 35517997 PMCID: PMC9059632 DOI: 10.1039/c8ra09088b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/07/2019] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult pluripotent cells with the plasticity to be converted into different cell types. Their self-renewal capacity, relative ease of isolation, expansion and inherent migration to tumors, make them perfect candidates for cell therapy against cancer. However, MSCs are notoriously refractory to adenoviral infection, mainly because CAR (Coxsackie-Adenovirus Receptor) expression is absent or downregulated. Over the last years, nanoparticles have attracted a great deal of attention as potential vehicle candidates for gene delivery, but with limited effects on their own. Our data showed that the use of positively charged 14 nm gold nanoparticles either functionalized with arginine-glycine-aspartate (RGD) motif or not, increases the efficiency of adenovirus infection in comparison to commercial reagents without altering cell viability or cell phenotype. This system represents a simple, efficient and safe method for the transduction of MSCs, being attractive for cancer gene and cell therapies.
Collapse
Affiliation(s)
- Yulan Hernandez
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza 50018 Spain
| | - Rebeca González-Pastor
- Instituto Aragonés de Ciencias de la Salud 50009 Zaragoza Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón) 50009 Zaragoza Spain
| | - Carolina Belmar-Lopez
- Instituto Aragonés de Ciencias de la Salud 50009 Zaragoza Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón) 50009 Zaragoza Spain
| | - Gracia Mendoza
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza 50018 Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón) 50009 Zaragoza Spain
| | - Jesus M de la Fuente
- Instituto de Ciencias de Materiales (ICMA), CSIC 50009 Zaragoza Spain
- CIBER-BBN 28029 Madrid Spain
| | - Pilar Martin-Duque
- Instituto Aragonés de Ciencias de la Salud 50009 Zaragoza Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón) 50009 Zaragoza Spain
- Fundación Araid 50001 Zaragoza Spain
| |
Collapse
|
381
|
Del Pozo-Rodríguez A, Rodríguez-Gascón A, Rodríguez-Castejón J, Vicente-Pascual M, Gómez-Aguado I, Battaglia LS, Solinís MÁ. Gene Therapy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:321-368. [PMID: 31492963 DOI: 10.1007/10_2019_109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene therapy medicinal products (GTMPs) are one of the most promising biopharmaceuticals, which are beginning to show encouraging results. The broad clinical research activity has been addressed mainly to cancer, primarily to those cancers that do not respond well to conventional treatment. GTMPs to treat rare disorders caused by single-gene mutations have also made important advancements toward market availability, with eye and hematopoietic system diseases as the main applications.Nucleic acid-marketed products are based on both in vivo and ex vivo strategies. Apart from DNA-based therapies, antisense oligonucleotides, small interfering RNA, and, recently, T-cell-based therapies have been also marketed. Moreover, the gene-editing tool CRISPR is boosting the development of new gene therapy-based medicines, and it is expected to have a substantial impact on the gene therapy biopharmaceutical market in the near future.However, despite the important advancements of gene therapy, many challenges have still to be overcome, which are discussed in this book chapter. Issues such as efficacy and safety of the gene delivery systems and manufacturing capacity of biotechnological companies to produce viral vectors are usually considered, but problems related to cost and patient affordability must be also faced to ensure the success of this emerging therapy. Graphical Abstract.
Collapse
Affiliation(s)
- Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Luigi S Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| |
Collapse
|
382
|
Arsenović-Ranin N. New vaccines on the horizon. ARHIV ZA FARMACIJU 2019. [DOI: 10.5937/arhfarm1906385a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
383
|
Werner JH, Rosenberg JH, Um JY, Moulton MJ, Agrawal DK. Molecular discoveries and treatment strategies by direct reprogramming in cardiac regeneration. Transl Res 2019; 203:73-87. [PMID: 30142308 PMCID: PMC6289806 DOI: 10.1016/j.trsl.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022]
Abstract
Cardiac tissue has minimal endogenous regenerative capacity in response to injury. Treatment options are limited following tissue damage after events such as myocardial infarction. Current strategies are aimed primarily at injury prevention, but attention has been increasingly targeted toward the development of regenerative therapies. This review focuses on recent developments in the field of cardiac fibroblast reprogramming into induced cardiomyocytes. Early efforts to produce cardiac regeneration centered around induced pluripotent stem cells, but clinical translation has proved elusive. Currently, techniques are being developed to directly transdifferentiate cardiac fibroblasts into induced cardiomyocytes. Viral vector-driven expression of a combination of transcription factors including Gata4, Mef2c, and Tbx5 induced cardiomyocyte development in mice. Subsequent combinational modifications have extended these results to human cell lines and increased efficacy. The miRNAs including combinations of miR-1, miR-133, miR-208, and miR-499 can improve or independently drive regeneration of cardiomyocytes. Similar results could be obtained by combinations of small molecules with or without transcription factor or miRNA expression. The local tissue environment greatly impacts favorability for reprogramming. Modulation of signaling pathways, especially those mediated by VEGF and TGF-β, enhance differentiation to cardiomyocytes. Current reprogramming strategies are not ready for clinical application, but recent breakthroughs promise regenerative cardiac therapies in the near future.
Collapse
Affiliation(s)
- John H Werner
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska
| | - John H Rosenberg
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska
| | - John Y Um
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michael J Moulton
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska.
| |
Collapse
|
384
|
Cui J, Zhang W, Huang E, Wang J, Liao J, Li R, Yu X, Zhao C, Zeng Z, Shu Y, Zhang R, Yan S, Lei J, Yang C, Wu K, Wu Y, Huang S, Ji X, Li A, Gong C, Yuan C, Zhang L, Liu W, Huang B, Feng Y, An L, Zhang B, Dai Z, Shen Y, Luo W, Wang X, Huang A, Luu HH, Reid RR, Wolf JM, Thinakaran G, Lee MJ, He TC. BMP9-induced osteoblastic differentiation requires functional Notch signaling in mesenchymal stem cells. J Transl Med 2019; 99:58-71. [PMID: 30353129 PMCID: PMC6300564 DOI: 10.1038/s41374-018-0087-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/28/2018] [Accepted: 05/14/2018] [Indexed: 01/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitors that can differentiate into multiple lineages including osteoblastic lineage. Osteogenic differentiation of MSCs is a cascade that recapitulates most, if not all, of the molecular events occurring during embryonic skeletal development, which is regulated by numerous signaling pathways including bone morphogenetic proteins (BMPs). Through a comprehensive analysis of the osteogenic activity, we previously demonstrated that BMP9 is the most potent BMP for inducing bone formation from MSCs both in vitro and in vivo. However, as one of the least studied BMPs, the essential mediators of BMP9-induced osteogenic signaling remain elusive. Here we show that BMP9-induced osteogenic signaling in MSCs requires intact Notch signaling. While the expression of Notch receptors and ligands are readily detectable in MSCs, Notch inhibitor and dominant-negative Notch1 effectively inhibit BMP9-induced osteogenic differentiation in vitro and ectopic bone formation in vivo. Genetic disruption of Notch pathway severely impairs BMP9-induced osteogenic differentiation and ectopic bone formation from MSCs. Furthermore, while BMP9-induced expression of early-responsive genes is not affected by defective Notch signaling, BMP9 upregulates the expression of Notch receptors and ligands at the intermediate stage of osteogenic differentiation. Taken together, these results demonstrate that Notch signaling may play an essential role in coordinating BMP9-induced osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Jing Cui
- grid.412461.4Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA. .,Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, the Affiliated University-Town Hospital, Chongqing Medical University, 401331, Chongqing, China.
| | - Enyi Huang
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Jia Wang
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, the Affiliated University-Town Hospital, Chongqing Medical University, 401331 Chongqing, China
| | - Junyi Liao
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Ruidong Li
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Xinyi Yu
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Chen Zhao
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Zongyue Zeng
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Yi Shu
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Ruyi Zhang
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Shujuan Yan
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Jiayan Lei
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Chao Yang
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Ke Wu
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Ying Wu
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0001 1431 9176grid.24695.3cDepartment of Immunology and Microbiology, Beijing University of Chinese Medicine, 100029 Beijing, China
| | - Shifeng Huang
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Xiaojuan Ji
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Alexander Li
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Cheng Gong
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,grid.413247.7Department of Surgery, the Affiliated Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Chengfu Yuan
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0001 0033 6389grid.254148.eDepartment of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, 443002 Yichang, China
| | - Linghuan Zhang
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Wei Liu
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Bo Huang
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China ,grid.412455.3Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, China
| | - Yixiao Feng
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Liping An
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0004 1798 9345grid.411294.bKey Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, the Second Hospital of Lanzhou University, 730030 Lanzhou, China
| | - Bo Zhang
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0004 1798 9345grid.411294.bKey Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, the Second Hospital of Lanzhou University, 730030 Lanzhou, China
| | - Zhengyu Dai
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,Department of Orthopaedic Surgery, Chongqing Hospital of Traditional Chinese Medicine, 400021 Chongqing, China
| | - Yi Shen
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0004 1803 0208grid.452708.cDepartment of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, 410011 Changsha, China
| | - Wenping Luo
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Xi Wang
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8653 0555grid.203458.8Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016 Chongqing, China
| | - Ailong Huang
- grid.412461.4Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hue H. Luu
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Russell R. Reid
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA ,0000 0000 8736 9513grid.412578.dDepartment of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Jennifer Moriatis Wolf
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Gopal Thinakaran
- 0000 0000 8736 9513grid.412578.dDepartment of Neurobiology, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Michael J. Lee
- 0000 0000 8736 9513grid.412578.dMolecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA. .,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
385
|
Gomi R, Sharma A, Wu W, Worgall S. Neonatal Genetic Delivery of Anti-Respiratory Syncytial Virus (RSV) Antibody by Non-Human Primate-Based Adenoviral Vector to Provide Protection against RSV. Vaccines (Basel) 2018; 7:vaccines7010003. [PMID: 30597977 PMCID: PMC6466083 DOI: 10.3390/vaccines7010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/17/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of lower respiratory tract infection in infants. Immunoprophylaxis with the anti-RSV monoclonal antibody, palivizumab, reduces the risk for RSV-related hospitalizations, but its use is restricted to high-risk infants due to the high costs. In this study, we investigated if genetic delivery of anti-RSV antibody to neonatal mice by chimpanzee adenovirus type 7 expressing the murine form of palivizumab (AdC7αRSV) can provide protection against RSV. Intranasal and intramuscular administration of AdC7αRSV to adult mice resulted in similar levels of anti-RSV IgG in the serum. However, only intranasal administration resulted in detectable levels of anti-RSV IgG in the bronchoalveolar lavage fluid. Intranasal administration of AdC7αRSV provided protection against subsequent RSV challenge. Expression of the anti-RSV antibody was prolonged following intranasal administration of AdC7αRSV to neonatal mice. Protection against RSV was confirmed at 6 weeks of age. These data suggest that neonatal genetic delivery of anti-RSV antibody by AdC7αRSV can provide protection against RSV.
Collapse
Affiliation(s)
- Rika Gomi
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Anurag Sharma
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Wenzhu Wu
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA.
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
386
|
Sharma A, McCarron P, Matchett K, Hawthorne S, El-Tanani M. Anti-Invasive and Anti-Proliferative Effects of shRNA-Loaded Poly(Lactide-Co-Glycolide) Nanoparticles Following RAN Silencing in MDA-MB231 Breast Cancer Cells. Pharm Res 2018; 36:26. [PMID: 30560466 PMCID: PMC6297200 DOI: 10.1007/s11095-018-2555-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Background Overexpression of the RAN GTP (RAN) gene has been shown to be linked to metastatic activity of MDA-MB231 human breast cancer cells by increasing Ras/MEK/ERK and PI3K/Akt/mTORC1 signalling. The aim of this study was to investigate the potential of polymeric nanoparticles to deliver two novel shRNA sequences, targeted against the RAN gene, to MDA-MB231 cells grown in culture and to assess their effects in a range of biological assays. Methods Biodegradable PLGA nanoparticles, loaded with shRNA-1 and shRNA-4, were fabricated using a double emulsion solvent evaporation technique and characterised for size, zeta potential and polydispersity index before testing on the MDA-MB231 cell line in a range of assays including cell viability, migration, invasion and gene knock down. Results shRNA-loaded nanoparticles were successfully fabricated and delivered to MDA-MB231 cells in culture, where they effectively released their payload, causing a decrease in both cell invasion and cell migration by knocking down RAN gene expression. Conclusion Results indicate the anti-RAN shRNA-loaded nanoparticles deliver and release biological payload to MDA-MB231 cells in culture. This works paves the way for further investigations into the possible use of anti-RAN shRNA-loaded NP formulations for the treatment of breast cancer in vivo.
Collapse
Affiliation(s)
- Ankur Sharma
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Paul McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Kyle Matchett
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Susan Hawthorne
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK.
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, ICT building, University of Bradford, Richmond Road, Bradford, England, BD7 1DP, UK
| |
Collapse
|
387
|
Knopp Y, Geis FK, Heckl D, Horn S, Neumann T, Kuehle J, Meyer J, Fehse B, Baum C, Morgan M, Meyer J, Schambach A, Galla M. Transient Retrovirus-Based CRISPR/Cas9 All-in-One Particles for Efficient, Targeted Gene Knockout. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:256-274. [PMID: 30317165 PMCID: PMC6187057 DOI: 10.1016/j.omtn.2018.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
The recently discovered CRISPR/Cas9 system is widely used in basic research and is a useful tool for disease modeling and gene editing therapies. However, long-term expression of DNA-modifying enzymes can be associated with cytotoxicity and is particularly unwanted in clinical gene editing strategies. Because current transient expression methods may still suffer from cytotoxicity and/or low efficiency, we developed non-integrating retrovirus-based CRISPR/Cas9 all-in-one particles for targeted gene knockout. By redirecting the gammaretroviral packaging machinery, we transiently delivered Streptococcus pyogenes Cas9 (SpCas9) mRNA and single-guide RNA transcripts into various (including primary) cell types. Spatiotemporal co-delivery of CRISPR/Cas9 components resulted in efficient disruption of a surrogate reporter gene, as well as functional knockout of endogenous human genes CXCR4 and TP53. Although acting in a hit-and-run fashion, knockout efficiencies of our transient particles corresponded to 52%-80% of those obtained from constitutively active integrating vectors. Stable SpCas9 overexpression at high doses in murine NIH3T3 cells caused a substantial G0/G1 arrest accompanied by reduced cell growth and metabolic activity, which was prevented by transient SpCas9 transfer. In summary, the non-integrating retrovirus-based vector particles introduced here allow efficient and dose-controlled delivery of CRISPR/Cas9 components into target cells.
Collapse
Affiliation(s)
- Yvonne Knopp
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Franziska K Geis
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thomas Neumann
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johannes Kuehle
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Janine Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Christopher Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany; Presidential Office, Hannover Medical School, Hannover 30625, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
388
|
Lin CL, Huang HM, Hsieh CL, Fan CK, Lee YL. Jagged1-expressing adenovirus-infected dendritic cells induce expansion of Foxp3 + regulatory T cells and alleviate T helper type 2-mediated allergic asthma in mice. Immunology 2018; 156:199-212. [PMID: 30418664 DOI: 10.1111/imm.13021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in directing T-cell responses. Regulatory T (Treg) cells possess an immunosuppressive ability to inhibit effector T-cell responses, and Notch ligand Jagged1 (Jag1) is implicated in Treg cell differentiation. In this study, we evaluated whether bone marrow-derived DCs genetically engineered to express Jag1 (Jag1-DCs) would affect the maturation and function of DCs in vitro and further investigated the immunoregulatory ability of Jag1-DCs to manipulate T helper type 2 (Th2) -mediated allergic asthma in mice. We produced Jag1-DCs by adenoviral transduction. Overexpression of Jag1 by ovalbumin (OVA) -stimulated Jag1-DCs exhibited increased expression of programmed cell death ligand 1 (PD-L1) and OX40L molecules. Subsequently, co-culture of these OVA-pulsed Jag1-DCs with allogeneic or syngeneic CD4+ T cells promoted the generation of Foxp3+ Treg cells, and blocking PD-L1 using specific antibodies partially reduced Treg cell expansion. Furthermore, adoptive transfer of OVA-pulsed Jag1-DCs to mice with OVA-induced asthma reduced allergen-specific immunoglobulin E production, airway hyperresponsiveness, airway inflammation, and secretion of Th2-type cytokines (interleukin-4, interleukin-5, and interleukin-13). Notably, an increased number of Foxp3+ Treg cells associated with enhanced levels of transforming growth factor-β production was observed in Jag1-DC-treated mice. These data indicate that transgenic expression of Jag1 by DCs promotes induction of Foxp3+ Treg cells, which ameliorated Th2-mediated allergic asthma in mice. Our study supports an attractive strategy to artificially generate immunoregulatory DCs and provides a novel approach for manipulating Th2 cell-driven deleterious immune diseases.
Collapse
Affiliation(s)
- Chu-Lun Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Hsieh
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Kwung Fan
- Department of Molecular Parasitology and Tropical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
389
|
Haridhasapavalan KK, Borgohain MP, Dey C, Saha B, Narayan G, Kumar S, Thummer RP. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 2018; 686:146-159. [PMID: 30472380 DOI: 10.1016/j.gene.2018.11.069] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Over a decade ago, a landmark study that reported derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming fibroblasts has transformed stem cell research attracting the interest of the scientific community worldwide. These cells circumvent the ethical and immunological concerns associated with embryonic stem cells, and the limited self-renewal ability and restricted differentiation potential linked to adult stem cells. iPSCs hold great potential for understanding basic human biology, in vitro disease modeling, high-throughput drug testing and discovery, and personalized regenerative medicine. The conventional reprogramming methods involving retro- and lenti-viral vectors to deliver reprogramming factors in somatic cells to generate iPSCs nullify the clinical applicability of these cells. Although these gene delivery systems are efficient and robust, they carry an enormous risk of permanent genetic modifications and are potentially tumorigenic. To evade these safety concerns and derive iPSCs for human therapy, tremendous technological advancements have resulted in the development of non-integrating viral- and non-viral approaches. These gene delivery techniques curtail or eliminate the risk of any genomic alteration and enhance the prospects of iPSCs from bench-to-bedside. The present review provides a comprehensive overview of non-integrating viral (adenoviral vectors, adeno-associated viral vectors, and Sendai virus vectors) and DNA-based, non-viral (plasmid transfection, minicircle vectors, transposon vectors, episomal vectors, and liposomal magnetofection) approaches that have the potential to generate transgene-free iPSCs. The understanding of these techniques could pave the way for the use of iPSCs for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Bitan Saha
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
390
|
Graceffa V, Vinatier C, Guicheux J, Evans CH, Stoddart M, Alini M, Zeugolis DI. State of art and limitations in genetic engineering to induce stable chondrogenic phenotype. Biotechnol Adv 2018; 36:1855-1869. [DOI: 10.1016/j.biotechadv.2018.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/16/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
|
391
|
Chellappan DK, Sivam NS, Teoh KX, Leong WP, Fui TZ, Chooi K, Khoo N, Yi FJ, Chellian J, Cheng LL, Dahiya R, Gupta G, Singhvi G, Nammi S, Hansbro PM, Dua K. Gene therapy and type 1 diabetes mellitus. Biomed Pharmacother 2018; 108:1188-1200. [PMID: 30372820 DOI: 10.1016/j.biopha.2018.09.138] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is an autoimmune disorder characterized by T cell-mediated self-destruction of insulin-secreting islet β cells. Management of T1DM is challenging and complicated especially with conventional medications. Gene therapy has emerged as one of the potential therapeutic alternatives to treat T1DM. This review primarily focuses on the current status and the future perspectives of gene therapy in the management of T1DM. A vast number of the studies which are reported on gene therapy for the management of T1DM are done in animal models and in preclinical studies. In addition, the safety of such therapies is yet to be established in humans. Currently, there are several gene level interventions that are being investigated, notably, overexpression of genes and proteins needed against T1DM, transplantation of cells that express the genes against T1DM, stem-cells mediated gene therapy, genetic vaccination, immunological precursor cell-mediated gene therapy and vectors. METHODS We searched the current literature through searchable online databases, journals and other library sources using relevant keywords and search parameters. Only relevant publications in English, between the years 2000 and 2018, with evidences and proper citations, were considered. The publications were then analyzed and segregated into several subtopics based on common words and content. A total of 126 studies were found suitable for this review. FINDINGS Generally, the pros and cons of each of the gene-based therapies have been discussed based on the results collected from the literature. However, there are certain interventions that require further detailed studies to ensure their effectiveness. We have also highlighted the future direction and perspectives in gene therapy, which, researchers could benefit from.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Nandhini S Sivam
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kai Xiang Teoh
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Wai Pan Leong
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Tai Zhen Fui
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kien Chooi
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Nico Khoo
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Fam Jia Yi
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Lim Lay Cheng
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, India.
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, NSW, 2751, Australia; NICM Health Research Institute, Western Sydney University, NSW, 2751, Australia
| | - Philip Michael Hansbro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW, 2007, Australia; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia & Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW, 2007, Australia; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia & Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| |
Collapse
|
392
|
Masala A, Sanna S, Esposito S, Rassu M, Galioto M, Zinellu A, Carru C, Carrì MT, Iaccarino C, Crosio C. Epigenetic Changes Associated with the Expression of Amyotrophic Lateral Sclerosis (ALS) Causing Genes. Neuroscience 2018; 390:1-11. [DOI: 10.1016/j.neuroscience.2018.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/11/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
|
393
|
Hamilton AM, Foster PJ, Ronald JA. Evaluating Nonintegrating Lentiviruses as Safe Vectors for Noninvasive Reporter-Based Molecular Imaging of Multipotent Mesenchymal Stem Cells. Hum Gene Ther 2018; 29:1213-1225. [DOI: 10.1089/hum.2018.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Amanda M. Hamilton
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
| | - Paula J. Foster
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
- Medical Biophysics, University of Western Ontario, London, Canada
| | - John A. Ronald
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
- Medical Biophysics, University of Western Ontario, London, Canada
- Lawson Health Research Institute, London, Canada
| |
Collapse
|
394
|
Rauch S, Jasny E, Schmidt KE, Petsch B. New Vaccine Technologies to Combat Outbreak Situations. Front Immunol 2018; 9:1963. [PMID: 30283434 PMCID: PMC6156540 DOI: 10.3389/fimmu.2018.01963] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023] Open
Abstract
Ever since the development of the first vaccine more than 200 years ago, vaccinations have greatly decreased the burden of infectious diseases worldwide, famously leading to the eradication of small pox and allowing the restriction of diseases such as polio, tetanus, diphtheria, and measles. A multitude of research efforts focuses on the improvement of established and the discovery of new vaccines such as the HPV (human papilloma virus) vaccine in 2006. However, radical changes in the density, age distribution and traveling habits of the population worldwide as well as the changing climate favor the emergence of old and new pathogens that bear the risk of becoming pandemic threats. In recent years, the rapid spread of severe infections such as HIV, SARS, Ebola, and Zika have highlighted the dire need for global preparedness for pandemics, which necessitates the extremely rapid development and comprehensive distribution of vaccines against potentially previously unknown pathogens. What is more, the emergence of antibiotic resistant bacteria calls for new approaches to prevent infections. Given these changes, established methods for the identification of new vaccine candidates are no longer sufficient to ensure global protection. Hence, new vaccine technologies able to achieve rapid development as well as large scale production are of pivotal importance. This review will discuss viral vector and nucleic acid-based vaccines (DNA and mRNA vaccines) as new approaches that might be able to tackle these challenges to global health.
Collapse
|
395
|
Fan R, Cui J, Ren F, Wang Q, Huang Y, Zhao B, Wei L, Qian X, Xiong X. Overexpression of NRK1 ameliorates diet- and age-induced hepatic steatosis and insulin resistance. Biochem Biophys Res Commun 2018; 500:476-483. [PMID: 29678570 DOI: 10.1016/j.bbrc.2018.04.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/18/2023]
Abstract
NAD+ is a co-enzyme in redox reactions and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Dietary supplementation of NAD+ precursors nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR) protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we sought to identify the roles of nicotinamide riboside kinase 1 (NRK1) plays in regulating hepatic NAD+ biosynthesis and lipid metabolism. Using adenovirus mediated gene transduction to overexpress or knockdown NRK1 in mouse liver, we have demonstrated that NRK1 is critical for maintaining hepatic NAD+ levels and triglyceride content. We have further shown that the hepatic expression of Nmrk1 mRNA is significantly decreased either in mice treated with high-fat diet or in aged mice. However, adenoviral delivery of NRK1 in these diet- and age-induced mice elevates hepatic NAD+ levels, reduces hepatic steatosis, and improves glucose tolerance and insulin sensitivity. Our results provide important insights in targeting NRK1 for treating hepatic steatosis.
Collapse
Affiliation(s)
- Rui Fan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jing Cui
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Feng Ren
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qingzhi Wang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Laboratory of Molecular Metabolism, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanmei Huang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bin Zhao
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Laboratory of Molecular Metabolism, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lai Wei
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Laboratory of Molecular Metabolism, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinlai Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Laboratory of Molecular Metabolism, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
396
|
Goyvaerts C, Breckpot K. The Journey of in vivo Virus Engineered Dendritic Cells From Bench to Bedside: A Bumpy Road. Front Immunol 2018; 9:2052. [PMID: 30254636 PMCID: PMC6141723 DOI: 10.3389/fimmu.2018.02052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are recognized as highly potent antigen-presenting cells that are able to stimulate cytotoxic T lymphocyte (CTL) responses with antitumor activity. Consequently, DCs have been explored as cellular vaccines in cancer immunotherapy. To that end, DCs are modified with tumor antigens to enable presentation of antigen-derived peptides to CTLs. In this review we discuss the use of viral vectors for in situ modification of DCs, focusing on their clinical applications as anticancer vaccines. Among the viral vectors discussed are those derived from viruses belonging to the families of the Poxviridae, Adenoviridae, Retroviridae, Togaviridae, Paramyxoviridae, and Rhabdoviridae. We will further shed light on how the combination of viral vector-based vaccination with T-cell supporting strategies will bring this strategy to the next level.
Collapse
|
397
|
Luther D, Lee Y, Nagaraj H, Scaletti F, Rotello V. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges. Expert Opin Drug Deliv 2018; 15:905-913. [PMID: 30169977 PMCID: PMC6295289 DOI: 10.1080/17425247.2018.1517746] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Therapeutic gene editing is becoming a viable biomedical tool with the emergence of the CRISPR/Cas9 system. CRISPR-based technologies have promise as a therapeutic platform for many human genetic diseases previously considered untreatable, providing a flexible approach to high-fidelity gene editing. For many diseases, such as sickle-cell disease and beta thalassemia, curative therapy may already be on the horizon, with CRISPR-based clinical trials slated for the next few years. Translation of CRISPR-based therapy to in vivo application however, is no small feat, and major hurdles remain for efficacious use of the CRISPR/Cas9 system in clinical contexts. AREAS COVERED In this topical review, we highlight recent advances to in vivo delivery of the CRISPR/Cas9 system using various packaging formats, including viral, mRNA, plasmid, and protein-based approaches. We also discuss some of the barriers which have yet to be overcome for successful translation of this technology. EXPERT OPINION This review focuses on the challenges to efficacy for various delivery formats, with specific emphasis on overcoming these challenges through the development of carrier vehicles for transient approaches to CRISPR/Cas9 delivery in vivo.
Collapse
Affiliation(s)
- D.C. Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Y.W. Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - H. Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
- School of Chemical and Biotechnology, Sastra Deemed-to-be University, Tirumalaisamudram, Thanjavur 613 401,Tamil Nadu, India
| | - F. Scaletti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - V.M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
398
|
Stepanenko AA, Chekhonin VP. A compendium of adenovirus genetic modifications for enhanced replication, oncolysis, and tumor immunosurveillance in cancer therapy. Gene 2018; 679:11-18. [PMID: 30171937 DOI: 10.1016/j.gene.2018.08.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 12/23/2022]
Abstract
In this review, we specifically focus on genetic modifications of oncolytic adenovirus 5 (Ad5)-based vectors that enhance replication, oncolysis/spread, and virus-mediated tumor immunosurveillance. The finding of negative regulation of minor core protein V by SUMOylation led to the identification of amino acid residues, which when mutated increase adenovirus replication and progeny yield. Suppression of Dicer and/or RNAi pathway with shRNA or p19 tomato bushy stunt protein also results in significant enhancement of adenovirus replication and progeny yield. Truncation mutations in E3-19K or i-leader sequence or overexpression of adenovirus death protein (ADP) potently increase adenovirus progeny release and spread without affecting virus yield. Moreover, E3-19K protein, which was found to inhibit both major histocompatibility complex I (MHCI) and MHC-I chain-related A and B proteins (MICA/MICB) expression on the cell surface, protecting infected cells from T-lymphocyte and natural killer (NK) cell attack, may be tailored to selectively target only MHCI or MICA/MICB, or to lose the ability to downregulate both. At last, E3-19K protein may be exploited to deliver tumor-associated epitopes directly to the endoplasmic reticulum for loading MHCI in the transporter associated with antigen processing (TAP)-deregulated cells.
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia; Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia
| |
Collapse
|
399
|
Stepanenko AA, Chekhonin VP. Tropism and transduction of oncolytic adenovirus 5 vectors in cancer therapy: Focus on fiber chimerism and mosaicism, hexon and pIX. Virus Res 2018; 257:40-51. [PMID: 30125593 DOI: 10.1016/j.virusres.2018.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/09/2023]
Abstract
The cellular internalization (infection of cells) of adenovirus 5 (Ad5) is mediated by the initial attachment of the globular knob domain of the capsid fiber protein to the cell surface coxsackievirus and adenovirus receptor (CAR), then followed by the interaction of the virus penton base proteins with cellular integrins. In tumors, there is a substantial intra- and intertumoral variability in CAR expression. The CAR-negative cells generally exhibit very low infectability. Since the fiber knob is a primary mediator of Ad5 binding to the cell surface, improved infectivity of Ad5-based vectors as oncolytic agents may be achieved via genetic modifications of this domain. The strategies to modify or broaden tropism and increase transduction efficiency of Ad5-based vectors include: 1) an incorporation of a targeting peptide into the fiber knob domain (the HI loop and/or C-terminus); 2) fiber knob serotype switching, or pseudotyping, by constructing chimeric fibers consisting of the knob domain derived from an alternate serotype (e.g., Ad5/3 or Ad5/35 chimeras), which binds to receptor(s) other than CAR (e.g., desmoglein 2/DSG2 and/or CD46); 3) "fiber complex mosaicism", an approach of combining serotype chimerism with peptide ligand(s) incorporation (e.g., Ad5/3-RGD); 4) "dual fiber mosaicism" by expressing two separate fibers with distinct receptor-binding capabilities on the same viral particle (e.g., Ad5-5/3 or Ad5-5/σ1); 5) fiber xenotyping by replacing the knob and shaft domains of wild-type Ad5 fiber protein with fibritin trimerization domain of T4 bacteriophage or σ1 attachment protein of reovirus. Other genetic approaches to increase the CAR-independent transduction efficiency include insertion of a targeting peptide into the hypervariable region of the capsid protein hexon or fusion to the C-terminus of pIX. Finally, we consider a yet unsolved molecular mechanism of liver targeting by Ad5-based vectors (CAR-, integrin-, fiber shaft KKTK motif-, and hepatic heparan sulfate glycosaminoglycans-independent, but fiber-, hexon- and blood factor X-dependent).
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia; Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia.
| |
Collapse
|
400
|
Enhancement of adenovirus infection and adenoviral vector-mediated gene delivery by bromodomain inhibitor JQ1. Sci Rep 2018; 8:11554. [PMID: 30068949 PMCID: PMC6070498 DOI: 10.1038/s41598-018-28421-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023] Open
Abstract
Adenovirus-based vectors are among the most commonly used platforms for gene delivery and gene therapy studies. One of the obstacles for potential application is dose-related toxicity. We show here that adenovirus infection and Ad-mediated gene delivery can be enhanced by inhibitors of bromodomain and extra-terminal (BET) family proteins. We showed that JQ1, but not its inactive enantiomer (−)-JQ1, dose-dependently promoted Ad infection and Ad-mediated gene delivery in both epithelial and lymphocyte cells. Given orally, JQ1 also enhanced transgene expression in a murine tumor model. Inhibitors of histone deacetylases (HDACi) are among the commonly reported small molecule compounds which enhance Ad-mediated gene delivery. We found that JQ1 treatment did not cause histone acetylation nor expression of Ad attachment receptor CAR. Instead, JQ1 treatment induced an increase in BRD4 association with CDK9, a subunit of P-TEFb of transcription elongation. Concurrently, we showed that CDK9 inhibition blocked Ad infection and JQ1 enhancement on the infection. The study exemplifies the potentials of BET inhibitors like JQ1 in oncolytic virotherapy.
Collapse
|