351
|
Caruana F, Cantalupo G, Lo Russo G, Mai R, Sartori I, Avanzini P. Human cortical activity evoked by gaze shift observation: an intracranial EEG study. Hum Brain Mapp 2013; 35:1515-28. [PMID: 23568412 DOI: 10.1002/hbm.22270] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 11/08/2022] Open
Abstract
While is widely accepted that the posterior temporal region is activated during the observation of faces showing gaze shifts, it is still unclear whether its activity is stronger while observing direct or averted gaze. Furthermore, despite its assessed role in social cognition, studies describing an enhanced activity of the posterior temporal region during the observation of gaze aversion interpreted this activity in terms of spatial attention toward the target direction. This spatial attention interpretation is not easily reconcilable with the role of the posterior temporal region in social cognition, and an overarching view of its global cognitive function would be much more preferable. Here we used intracranial EEG to assess the precise spatial localization of the gaze shifts coding in the posterior temporal region, to assess its selectivity for direct versus averted gaze and to distinguish between a spatial-attentional and a social interpretations of gaze aversion. We found stronger activation during gaze aversion than direct gaze and lateral side switch observation, the latter indicating that the crucial aspect of gaze aversion is the prior presence of the eye contact and its interruption, and not the gaze direction. These results suggest a more social-oriented interpretation based on the view that among humans, gaze aversion signals a negative relational evaluation in social interaction.
Collapse
Affiliation(s)
- Fausto Caruana
- Brain Center for Social and Motor Cognition, Italian Institute of Technology, Parma, Italy
| | | | | | | | | | | |
Collapse
|
352
|
Lempka SF, McIntyre CC. Theoretical analysis of the local field potential in deep brain stimulation applications. PLoS One 2013; 8:e59839. [PMID: 23555799 PMCID: PMC3610913 DOI: 10.1371/journal.pone.0059839] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
Deep brain stimulation (DBS) is a common therapy for treating movement disorders, such as Parkinson's disease (PD), and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP) recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz) in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics). The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.
Collapse
Affiliation(s)
- Scott F. Lempka
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Cameron C. McIntyre
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| |
Collapse
|
353
|
Headley DB, Weinberger NM. Fear conditioning enhances γ oscillations and their entrainment of neurons representing the conditioned stimulus. J Neurosci 2013; 33:5705-17. [PMID: 23536084 PMCID: PMC3645874 DOI: 10.1523/jneurosci.4915-12.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Learning alters the responses of neurons in the neocortex, typically strengthening their encoding of behaviorally relevant stimuli. These enhancements are studied extensively in the auditory cortex by characterizing changes in firing rates and evoked potentials. However, synchronous activity is also important for the processing of stimuli, especially the relationship between gamma oscillations in the local field potential and spiking. We investigated whether tone/shock fear conditioning in rats, a task known to alter responses in auditory cortex, also modified the relationship between gamma and unit activity. A boost in gamma oscillations developed, especially at sites tuned near the tone, and strengthened across multiple conditioning sessions. Unit activity became increasingly phase-locked to gamma, with sites tuned near the tone developing enhanced phase-locking during the tone, whereas those tuned away maintained a tendency to decrease their phase-locking. Enhancements in the coordination of spiking between sites tuned near the tone developed within the first conditioning session and remained throughout the rest of training. Enhanced cross-covariances in unit activity were strongest for subjects that exhibited robust conditioned fear. These results illustrate that changes in sensory cortex during associative learning extend to the coordination of neurons encoding the relevant stimulus, with implications for how it is processed downstream.
Collapse
Affiliation(s)
- Drew B. Headley
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, California 92697-3800
| | - Norman M. Weinberger
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, California 92697-3800
| |
Collapse
|
354
|
Mineault PJ, Zanos TP, Pack CC. Local field potentials reflect multiple spatial scales in V4. Front Comput Neurosci 2013; 7:21. [PMID: 23533106 PMCID: PMC3607798 DOI: 10.3389/fncom.2013.00021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/18/2013] [Indexed: 11/20/2022] Open
Abstract
Local field potentials (LFP) reflect the properties of neuronal circuits or columns recorded in a volume around a microelectrode (Buzsáki et al., 2012). The extent of this integration volume has been a subject of some debate, with estimates ranging from a few hundred microns (Katzner et al., 2009; Xing et al., 2009) to several millimeters (Kreiman et al., 2006). We estimated receptive fields (RFs) of multi-unit activity (MUA) and LFPs at an intermediate level of visual processing, in area V4 of two macaques. The spatial structure of LFP receptive fields varied greatly as a function of time lag following stimulus onset, with the retinotopy of LFPs matching that of MUAs at a restricted set of time lags. A model-based analysis of the LFPs allowed us to recover two distinct stimulus-triggered components: an MUA-like retinotopic component that originated in a small volume around the microelectrodes (~350 μm), and a second component that was shared across the entire V4 region; this second component had tuning properties unrelated to those of the MUAs. Our results suggest that the LFP reflects neural activity across multiple spatial scales, which both complicates its interpretation and offers new opportunities for investigating the large-scale structure of network processing.
Collapse
Affiliation(s)
- Patrick J Mineault
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | | | | |
Collapse
|
355
|
Electrophysiological low-frequency coherence and cross-frequency coupling contribute to BOLD connectivity. Neuron 2013; 76:1010-20. [PMID: 23217748 DOI: 10.1016/j.neuron.2012.09.033] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2012] [Indexed: 01/08/2023]
Abstract
Brain networks are commonly defined using correlations between blood oxygen level-dependent (BOLD) signals in different brain areas. Although evidence suggests that gamma-band (30-100 Hz) neural activity contributes to local BOLD signals, the neural basis of interareal BOLD correlations is unclear. We first defined a visual network in monkeys based on converging evidence from interareal BOLD correlations during a fixation task, task-free state, and anesthesia, and then simultaneously recorded local field potentials (LFPs) from the same four network areas in the task-free state. Low-frequency oscillations (<20 Hz), and not gamma activity, predominantly contributed to interareal BOLD correlations. The low-frequency oscillations also influenced local processing by modulating gamma activity within individual areas. We suggest that such cross-frequency coupling links local BOLD signals to BOLD correlations across distributed networks.
Collapse
|
356
|
Shih YYI, Chen YY, Lai HY, Kao YCJ, Shyu BC, Duong TQ. Ultra high-resolution fMRI and electrophysiology of the rat primary somatosensory cortex. Neuroimage 2013; 73:113-20. [PMID: 23384528 DOI: 10.1016/j.neuroimage.2013.01.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 01/16/2013] [Accepted: 01/28/2013] [Indexed: 11/29/2022] Open
Abstract
High-resolution functional-magnetic-resonance-imaging (fMRI) has been used to study brain functions at increasingly finer scale, but whether fMRI can accurately reflect layer-specific neuronal activities is less well understood. The present study investigated layer-specific cerebral-blood-volume (CBV) fMRI and electrophysiological responses in the rat cortex. CBV fMRI at 40×40 μm in-plane resolution was performed on an 11.7-T scanner. Electrophysiology used a 32-channel electrode array that spanned the entire cortical depth. Graded electrical stimulation was used to study activations in different cortical layers, exploiting the notion that most of the sensory-specific neurons are in layers II-V and most of the nociceptive-specific neurons are in layers V-VI. CBV response was strongest in layer IV of all stimulus amplitudes. Current source density analysis showed strong sink currents at cortical layers IV and VI. Multi-unit activities mainly appeared at layers IV-VI and peaked at layer V. Although our measures showed scaled activation profiles during modulation of stimulus amplitude and failed to detect specific recruitment at layers V and VI during noxious electrical stimuli, there appears to be discordance between CBV fMRI and electrophysiological peak responses, suggesting neurovascular uncoupling at laminar resolution. The technique implemented in the present study offers a means to investigate intracortical neurovascular function in the normal and diseased animal models at laminar resolution.
Collapse
Affiliation(s)
- Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
357
|
Busse M, Kraegeloh A, Arzt E, Strauss DJ. Modeling the influences of nanoparticles on neural field oscillations in thalamocortical networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:1230-3. [PMID: 23366120 DOI: 10.1109/embc.2012.6346159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study is twofold. First, we present a simplified multiscale modeling approach integrating activity on the scale of ionic channels into the spatiotemporal scale of neural field potentials: Resting upon a Hodgkin-Huxley based single cell model we introduced a neuronal feedback circuit based on the Llinás-model of thalamocortical activity and binding, where all cell specific intrinsic properties were adopted from patch-clamp measurements. In this paper, we expand this existing model by integrating the output to the spatiotemporal scale of field potentials. Those are supposed to originate from the parallel activity of a variety of synchronized thalamocortical columns at the quasi-microscopic level, where the involved neurons are gathered together in units. Second and more important, we study the possible effects of nanoparticles (NPs) that are supposed to interact with thalamic cells of our network model. In two preliminary studies we demonstrated in vitro and in vivo effects of NPs on the ionic channels of single neurons and thereafter on neuronal feedback circuits. By means of our new model we assumed now NPs induced changes on the ionic currents of the involved thalamic neurons. Here we found extensive diversified pattern formations of neural field potentials when comparing to the modeled activity without neuromodulating NPs addition. This model provides predictions about the influences of NPs on spatiotemporal neural field oscillations in thalamocortical networks. These predictions can be validated by high spatiotemporal resolution electrophysiological measurements like voltage sensitive dyes and multiarray recordings.
Collapse
Affiliation(s)
- Michael Busse
- Systems Neuroscience and Neurotechnology Unit, Neurocenter, Saarland University Hospital, Homburg/Saarbruecken, Germany.
| | | | | | | |
Collapse
|
358
|
Smith E, Kellis S, House P, Greger B. Decoding stimulus identity from multi-unit activity and local field potentials along the ventral auditory stream in the awake primate: implications for cortical neural prostheses. J Neural Eng 2013; 10:016010. [PMID: 23283406 DOI: 10.1088/1741-2560/10/1/016010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Hierarchical processing of auditory sensory information is believed to occur in two streams: a ventral stream responsible for stimulus identity and a dorsal stream responsible for processing spatial elements of a stimulus. The objective of the current study is to examine neural coding in this processing stream in the context of understanding the possibility for an auditory cortical neural prosthesis. APPROACH We examined the selectivity for species-specific primate vocalizations in the ventral auditory processing stream by applying a statistical classifier to neural data recorded from microelectrode arrays. Multi-unit activity (MUA) and local field potential (LFP) data recorded simultaneously from primary auditory complex (AI) and rostral parabelt (PBr) were decoded on a trial-by-trial basis. MAIN RESULTS While decode performance in AI was well above chance, mean performance in PBr did not deviate >15% from chance level. Mean performance levels were similar for MUA and LFP decodes. Increasing the spectral and temporal resolution improved decode performance; while inter-electrode spacing could be as large as 1.14 mm without degrading decode performance. SIGNIFICANCE These results serve as preliminary guidance for a human auditory cortical neural prosthesis; instructing interface implementation, microstimulation patterns and anatomical placement.
Collapse
Affiliation(s)
- Elliot Smith
- Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
359
|
Tenke CE, Kayser J. Generator localization by current source density (CSD): implications of volume conduction and field closure at intracranial and scalp resolutions. Clin Neurophysiol 2012; 123:2328-45. [PMID: 22796039 PMCID: PMC3498576 DOI: 10.1016/j.clinph.2012.06.005] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 05/21/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
The topographic ambiguity and reference-dependency that has plagued EEG/ERP research throughout its history are largely attributable to volume conduction, which may be concisely described by a vector form of Ohm's Law. This biophysical relationship is common to popular algorithms that infer neuronal generators via inverse solutions. It may be further simplified as Poisson's source equation, which identifies underlying current generators from estimates of the second spatial derivative of the field potential (Laplacian transformation). Intracranial current source density (CSD) studies have dissected the "cortical dipole" into intracortical sources and sinks, corresponding to physiologically-meaningful patterns of neuronal activity at a sublaminar resolution, much of which is locally cancelled (i.e., closed field). By virtue of the macroscopic scale of the scalp-recorded EEG, a surface Laplacian reflects the radial projections of these underlying currents, representing a unique, unambiguous measure of neuronal activity at scalp. Although the surface Laplacian requires minimal assumptions compared to complex, model-sensitive inverses, the resulting waveform topographies faithfully summarize and simplify essential constraints that must be placed on putative generators of a scalp potential topography, even if they arise from deep or partially-closed fields. CSD methods thereby provide a global empirical and biophysical context for generator localization, spanning scales from intracortical to scalp recordings.
Collapse
Affiliation(s)
- Craig E Tenke
- Division of Cognitive Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| | | |
Collapse
|
360
|
Hawking TG, Gerdjikov TV. Populations of striatal medium spiny neurons encode vibrotactile frequency in rats: modulation by slow wave oscillations. J Neurophysiol 2012; 109:315-20. [PMID: 23114217 DOI: 10.1152/jn.00489.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dorsolateral striatum (DLS) is implicated in tactile perception and receives strong projections from somatosensory cortex. However, the sensory representations encoded by striatal projection neurons are not well understood. Here we characterized the contribution of DLS to the encoding of vibrotactile information in rats by assessing striatal responses to precise frequency stimuli delivered to a single vibrissa. We applied stimuli in a frequency range (45-90 Hz) that evokes discriminable percepts and carries most of the power of vibrissa vibration elicited by a range of complex fine textures. Both medium spiny neurons and evoked potentials showed tactile responses that were modulated by slow wave oscillations. Furthermore, medium spiny neuron population responses represented stimulus frequency on par with previously reported behavioral benchmarks. Our results suggest that striatum encodes frequency information of vibrotactile stimuli which is dynamically modulated by ongoing brain state.
Collapse
|
361
|
de Cheveigné A, Edeline JM, Gaucher Q, Gourévitch B. Component analysis reveals sharp tuning of the local field potential in the guinea pig auditory cortex. J Neurophysiol 2012; 109:261-72. [PMID: 23054606 DOI: 10.1152/jn.00040.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Local field potentials (LFPs) recorded in the auditory cortex of mammals are known to reveal weakly selective and often multimodal spectrotemporal receptive fields in contrast to spiking activity. This may in part reflect the wider "listening sphere" of LFPs relative to spikes due to the greater current spread at low than high frequencies. We recorded LFPs and spikes from auditory cortex of guinea pigs using 16-channel electrode arrays. LFPs were processed by a component analysis technique that produces optimally tuned linear combinations of electrode signals. Linear combinations of LFPs were found to have sharply tuned responses, closer to spike-related tuning. The existence of a sharply tuned component implies that a cortical neuron (or group of neurons) capable of forming a linear combination of its inputs has access to that information. Linear combinations of signals from electrode arrays reveal information latent in the subspace spanned by multichannel LFP recordings and are justified by the fact that the observations themselves are linear combinations of neural sources.
Collapse
Affiliation(s)
- Alain de Cheveigné
- Centre National de la Recherche Scientifique, Laboratoire de Psychologie de la Perception UMR 8581, Paris, France.
| | | | | | | |
Collapse
|
362
|
Abstract
Switches between different behavioral states of the animal are associated with prominent changes in global brain activity, between sleep and wakefulness or from inattentive to vigilant states. What mechanisms control brain states, and what are the functions of the different states? Here we summarize current understanding of the key neural circuits involved in regulating brain states, with a particular emphasis on the subcortical neuromodulatory systems. At the functional level, arousal and attention can greatly enhance sensory processing, whereas sleep and quiet wakefulness may facilitate learning and memory. Several new techniques developed over the past decade promise great advances in our understanding of the neural control and function of different brain states.
Collapse
Affiliation(s)
- Seung-Hee Lee
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| |
Collapse
|
363
|
Bansal AK, Singer JM, Anderson WS, Golby A, Madsen JR, Kreiman G. Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes. J Neurophysiol 2012; 108:3073-86. [PMID: 22956795 DOI: 10.1152/jn.00458.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebral cortex needs to maintain information for long time periods while at the same time being capable of learning and adapting to changes. The degree of stability of physiological signals in the human brain in response to external stimuli over temporal scales spanning hours to days remains unclear. Here, we quantitatively assessed the stability across sessions of visually selective intracranial field potentials (IFPs) elicited by brief flashes of visual stimuli presented to 27 subjects. The interval between sessions ranged from hours to multiple days. We considered electrodes that showed robust visual selectivity to different shapes; these electrodes were typically located in the inferior occipital gyrus, the inferior temporal cortex, and the fusiform gyrus. We found that IFP responses showed a strong degree of stability across sessions. This stability was evident in averaged responses as well as single-trial decoding analyses, at the image exemplar level as well as at the category level, across different parts of visual cortex, and for three different visual recognition tasks. These results establish a quantitative evaluation of the degree of stationarity of visually selective IFP responses within and across sessions and provide a baseline for studies of cortical plasticity and for the development of brain-machine interfaces.
Collapse
Affiliation(s)
- Arjun K Bansal
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
364
|
Forsyth LH, Witton J, Brown JT, Randall AD, Jones MW. In Vitro and In Vivo Recording of Local Field Potential Oscillations in Mouse Hippocampus. ACTA ACUST UNITED AC 2012; 2:273-94. [PMID: 26069015 DOI: 10.1002/9780470942390.mo120089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oscillations in hippocampal local field potentials (LFP) reflect the coordinated, rhythmic activity of constituent interneuronal and principal cell populations. Quantifying changes in oscillatory patterns and power therefore provides a powerful metric through which to infer mechanisms and functions of hippocampal network activity at the mesoscopic level, bridging single-neuron studies to behavioral assays of hippocampal function. Here, complementary protocols that enable mechanistic analyses of oscillation generation in vitro (in slices and a whole hippocampal preparation) and functional analyses of hippocampal circuits in behaving mice are described. Used together, these protocols provide a comprehensive view of hippocampal phenotypes in mouse models, highlighting oscillatory biomarkers of hippocampal function and dysfunction. Curr. Protoc. Mouse Biol. 2:273-294 © 2012 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- L H Forsyth
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - J Witton
- Pfizer Applied Neurophysiology Group, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - J T Brown
- Pfizer Applied Neurophysiology Group, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - A D Randall
- Pfizer Applied Neurophysiology Group, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - M W Jones
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
365
|
Abstract
How does auditory cortex respond to silence? In this issue of Neuron, show that activity in macaque auditory cortex is highly structured even in the absence of sensory stimuli. These data reveal a close link between spontaneous neural activity and the functional organization of auditory cortex.
Collapse
Affiliation(s)
- Charles E Schroeder
- Nathan S. Kline Institute for Psychiatric Research, Columbia University College of Physicians and Surgeons, Orangeburg, NY 27910, USA.
| | | |
Collapse
|
366
|
The role of prefrontal dopamine D1 receptors in the neural mechanisms of associative learning. Neuron 2012; 74:874-86. [PMID: 22681691 DOI: 10.1016/j.neuron.2012.04.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2012] [Indexed: 11/22/2022]
Abstract
Dopamine is thought to play a major role in learning. However, while dopamine D1 receptors (D1Rs) in the prefrontal cortex (PFC) have been shown to modulate working memory-related neural activity, their role in the cellular basis of learning is unknown. We recorded activity from multiple electrodes while injecting the D1R antagonist SCH23390 in the lateral PFC as monkeys learned visuomotor associations. Blocking D1Rs impaired learning of novel associations and decreased cognitive flexibility but spared performance of already familiar associations. This suggests a greater role for prefrontal D1Rs in learning new, rather than performing familiar, associations. There was a corresponding greater decrease in neural selectivity and increase in alpha and beta oscillations in local field potentials for novel than for familiar associations. Our results suggest that weak stimulation of D1Rs observed in aging and psychiatric disorders may impair learning and PFC function by reducing neural selectivity and exacerbating neural oscillations associated with inattention and cognitive deficits.
Collapse
|
367
|
Fukushima M, Saunders RC, Leopold DA, Mishkin M, Averbeck BB. Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque. Neuron 2012; 74:899-910. [PMID: 22681693 DOI: 10.1016/j.neuron.2012.04.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
In the absence of sensory stimuli, spontaneous activity in the brain has been shown to exhibit organization at multiple spatiotemporal scales. In the macaque auditory cortex, responses to acoustic stimuli are tonotopically organized within multiple, adjacent frequency maps aligned in a caudorostral direction on the supratemporal plane (STP) of the lateral sulcus. Here, we used chronic microelectrocorticography to investigate the correspondence between sensory maps and spontaneous neural fluctuations in the auditory cortex. We first mapped tonotopic organization across 96 electrodes spanning approximately two centimeters along the primary and higher auditory cortex. In separate sessions, we then observed that spontaneous activity at the same sites exhibited spatial covariation that reflected the tonotopic map of the STP. This observation demonstrates a close relationship between functional organization and spontaneous neural activity in the sensory cortex of the awake monkey.
Collapse
Affiliation(s)
- Makoto Fukushima
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
368
|
Abstract
Successful spatial navigation is thought to employ a combination of at least two strategies: the following of landmark cues and path integration. Path integration requires that the brain use the speed and direction of movement in a meaningful way to continuously compute the position of the animal. Indeed, the running speed of rats modulates both the firing rate of neurons and the spectral properties of low frequency, theta oscillations seen in the local field potential (LFP) of the hippocampus, a region important for spatial memory formation. Higher frequency, gamma-band LFP oscillations are usually associated with decision-making, increased attention, and improved reaction times. Here, we show that increased running speed is accompanied by large, systematic increases in the frequency of hippocampal CA1 network oscillations spanning the entire gamma range (30-120 Hz) and beyond. These speed-dependent changes in frequency are seen on both linear tracks and two-dimensional platforms, and are thus independent of the behavioral task. Synchrony between anatomically distant CA1 regions also shifts to higher gamma frequencies as running speed increases. The changes in frequency are strongly correlated with changes in the firing rates of individual interneurons, consistent with models of gamma generation. Our results suggest that as a rat runs faster, there are faster gamma frequency transitions between sequential place cell-assemblies. This may help to preserve the spatial specificity of place cells and spatial memories at vastly different running speeds.
Collapse
|
369
|
Premereur E, Vanduffel W, Janssen P. Local Field Potential Activity Associated with Temporal Expectations in the Macaque Lateral Intraparietal Area. J Cogn Neurosci 2012; 24:1314-30. [DOI: 10.1162/jocn_a_00221] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Oscillatory brain activity is attracting increasing interest in cognitive neuroscience. Numerous EEG (magnetoencephalography) and local field potential (LFP) measurements have related cognitive functions to different types of brain oscillations, but the functional significance of these rhythms remains poorly understood. Despite its proven value, LFP activity has not been extensively tested in the macaque lateral intraparietal area (LIP), which has been implicated in a wide variety of cognitive control processes. We recorded action potentials and LFPs in area LIP during delayed eye movement tasks and during a passive fixation task, in which the time schedule was fixed so that temporal expectations about task-relevant cues could be formed. LFP responses in the gamma band discriminated reliably between saccade targets and distractors inside the receptive field (RF). Alpha and beta responses were much less strongly affected by the presence of a saccade target, however, but rose sharply in the waiting period before the go signal. Surprisingly, conditions without visual stimulation of the LIP-RF-evoked robust LFP responses in every frequency band—most prominently in those below 50 Hz—precisely time-locked to the expected time of stimulus onset in the RF. These results indicate that in area LIP, oscillations in the LFP, which reflect synaptic input and local network activity, are tightly coupled to the temporal expectation of task-relevant cues.
Collapse
Affiliation(s)
| | - Wim Vanduffel
- 1Katholieke Universiteit Leuven
- 2Massachusetts General Hospital
- 3Harvard Medical School
| | | |
Collapse
|
370
|
Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci 2012; 13:407-20. [PMID: 22595786 DOI: 10.1038/nrn3241] [Citation(s) in RCA: 2499] [Impact Index Per Article: 192.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources--including Na(+) and Ca(2+) spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations--can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal.
Collapse
Affiliation(s)
- György Buzsáki
- Center for Molecular and Behavioural Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, New Jersey 07102, USA.
| | | | | |
Collapse
|
371
|
Dean HL, Hagan MA, Pesaran B. Only coherent spiking in posterior parietal cortex coordinates looking and reaching. Neuron 2012; 73:829-41. [PMID: 22365554 DOI: 10.1016/j.neuron.2011.12.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2011] [Indexed: 11/16/2022]
Abstract
Here, we report that temporally patterned, coherent spiking activity in the posterior parietal cortex (PPC) coordinates the timing of looking and reaching. Using a spike-field approach, we identify a population of parietal area LIP neurons that fire spikes coherently with 15 Hz beta-frequency LFP activity. The firing rate of coherently active neurons predicts the reaction times (RTs) of coordinated reach-saccade movements but not of saccades when made alone. Area LIP neurons that do not fire coherently do not predict RT of either movement type. Similar beta-band LFP activity is present in the parietal reach region but not nearby visual area V3d. This suggests that coherent spiking activity in PPC can control reaches and saccades together. We propose that the neural mechanism of coordination involves a shared representation that acts to slow or speed movements together.
Collapse
Affiliation(s)
- Heather L Dean
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
372
|
Recording and analysis techniques for high-frequency oscillations. Prog Neurobiol 2012; 98:265-78. [PMID: 22420981 DOI: 10.1016/j.pneurobio.2012.02.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/26/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, high-frequency oscillations (HFO) can be recorded in human partial epilepsy. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings depends on the development of new data mining techniques to extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of HFO and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals, and potentially productive future directions.
Collapse
|
373
|
Ng BSW, Logothetis NK, Kayser C. EEG Phase Patterns Reflect the Selectivity of Neural Firing. Cereb Cortex 2012; 23:389-98. [DOI: 10.1093/cercor/bhs031] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
374
|
Mapping the local field potential. Nat Rev Neurosci 2012. [DOI: 10.1038/nrn3180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|