351
|
Riedel SS, Haladyna JN, Bezzant M, Stevens B, Pollyea DA, Sinha AU, Armstrong SA, Wei Q, Pollock RM, Daigle SR, Jordan CT, Ernst P, Neff T, Bernt KM. MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia. J Clin Invest 2016; 126:1438-50. [PMID: 26927674 DOI: 10.1172/jci80825] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/14/2016] [Indexed: 11/17/2022] Open
Abstract
Meningioma-1 (MN1) overexpression is frequently observed in patients with acute myeloid leukemia (AML) and is predictive of poor prognosis. In murine models, forced expression of MN1 in hematopoietic progenitors induces an aggressive myeloid leukemia that is strictly dependent on a defined gene expression program in the cell of origin, which includes the homeobox genes Hoxa9 and Meis1 as key components. Here, we have shown that this program is controlled by two histone methyltransferases, MLL1 and DOT1L, as deletion of either Mll1 or Dot1l in MN1-expressing cells abrogated the cell of origin-derived gene expression program, including the expression of Hoxa cluster genes. In murine models, genetic inactivation of either Mll1 or Dot1l impaired MN1-mediated leukemogenesis. We determined that HOXA9 and MEIS1 are coexpressed with MN1 in a subset of clinical MN1hi leukemia, and human MN1hi/HOXA9hi leukemias were sensitive to pharmacologic inhibition of DOT1L. Together, these data point to DOT1L as a potential therapeutic target in MN1hi AML. In addition, our findings suggest that epigenetic modulation of the interplay between an oncogenic lesion and its cooperating developmental program has therapeutic potential in AML.
Collapse
|
352
|
Dutta P, Sager HB, Stengel KR, Naxerova K, Courties G, Saez B, Silberstein L, Heidt T, Sebas M, Sun Y, Wojtkiewicz G, Feruglio PF, King K, Baker JN, van der Laan AM, Borodovsky A, Fitzgerald K, Hulsmans M, Hoyer F, Iwamoto Y, Vinegoni C, Brown D, Di Carli M, Libby P, Hiebert SW, Scadden DT, Swirski FK, Weissleder R, Nahrendorf M. Myocardial Infarction Activates CCR2(+) Hematopoietic Stem and Progenitor Cells. Cell Stem Cell 2016; 16:477-87. [PMID: 25957903 DOI: 10.1016/j.stem.2015.04.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 02/02/2015] [Accepted: 04/20/2015] [Indexed: 12/24/2022]
Abstract
Following myocardial infarction (MI), myeloid cells derived from the hematopoietic system drive a sharp increase in systemic leukocyte levels that correlates closely with mortality. The origin of these myeloid cells, and the response of hematopoietic stem and progenitor cells (HSPCs) to MI, however, is unclear. Here, we identify a CCR2(+)CD150(+)CD48(-) LSK hematopoietic subset as the most upstream contributor to emergency myelopoiesis after ischemic organ injury. This subset has 4-fold higher proliferation rates than CCR2(-)CD150(+)CD48(-) LSK cells, displays a myeloid differentiation bias, and dominates the migratory HSPC population. We further demonstrate that the myeloid translocation gene 16 (Mtg16) regulates CCR2(+) HSPC emergence. Mtg16(-/-) mice have decreased levels of systemic monocytes and infarct-associated macrophages and display compromised tissue healing and post-MI heart failure. Together, these data provide insights into regulation of emergency hematopoiesis after ischemic injury and identify potential therapeutic targets to modulate leukocyte output after MI.
Collapse
Affiliation(s)
- Partha Dutta
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA.
| | - Hendrik B Sager
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Kristy R Stengel
- Department of Biochemistry, Vanderbilt School of Medicine, Nashville, TN 37235, USA
| | - Kamila Naxerova
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02144, USA
| | - Gabriel Courties
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Borja Saez
- Center for Regenerative Medicine, Massachusetts General Hospital, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Lev Silberstein
- Center for Regenerative Medicine, Massachusetts General Hospital, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Timo Heidt
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Matthew Sebas
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Yuan Sun
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Paolo Fumene Feruglio
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Kevin King
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Joshua N Baker
- Department of Cardiac Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02144, USA
| | - Anja M van der Laan
- Department of Cardiology, Academic Medical Center, University of Amsterdam, P.O. Box 22660, Amsterdam, the Netherlands
| | - Anna Borodovsky
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Kevin Fitzgerald
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Maarten Hulsmans
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Friedrich Hoyer
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Claudio Vinegoni
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Dennis Brown
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Marcelo Di Carli
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt School of Medicine, Nashville, TN 37235, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
353
|
Wilhelm T, Lipka DB, Witte T, Wierzbinska JA, Fluhr S, Helf M, Mücke O, Claus R, Konermann C, Nöllke P, Niemeyer CM, Flotho C, Plass C. Epigenetic silencing of AKAP12 in juvenile myelomonocytic leukemia. Epigenetics 2016; 11:110-9. [PMID: 26891149 DOI: 10.1080/15592294.2016.1145327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A-kinase anchor protein 12 (AKAP12) is a regulator of protein kinase A and protein kinase C signaling, acting downstream of RAS. Epigenetic silencing of AKAP12 has been demonstrated in different cancer entities and this has been linked to the process of tumorigenesis. Here, we used quantitative high-resolution DNA methylation measurement by MassARRAY to investigate epigenetic regulation of all three AKAP12 promoters (i.e., α, β, and γ) within a large cohort of juvenile myelomonocytic leukemia (JMML) patient samples. The AKAP12α promoter shows DNA hypermethylation in JMML samples, which is associated with decreased AKAP12α expression. Promoter methylation of AKAP12α correlates with older age at diagnosis, elevated levels of fetal hemoglobin and poor prognosis. In silico screening for transcription factor binding motifs around the sites of most pronounced methylation changes in the AKAP12α promoter revealed highly significant scores for GATA-2/-1 sequence motifs. Both transcription factors are known to be involved in the haematopoietic differentiation process. Methylation of a reporter construct containing this region resulted in strong suppression of AKAP12 promoter activity, suggesting that DNA methylation might be involved in the aberrant silencing of the AKAP12 promoter in JMML. Exposure to DNMT- and HDAC-inhibitors reactivates AKAP12α expression in vitro, which could potentially be a mechanism underlying clinical treatment responses upon demethylating therapy. Together, these data provide evidence for epigenetic silencing of AKAP12α in JMML and further emphasize the importance of dysregulated RAS signaling in JMML pathogenesis.
Collapse
Affiliation(s)
- Thomas Wilhelm
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Daniel B Lipka
- b Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Tania Witte
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Justyna A Wierzbinska
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany.,b Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Silvia Fluhr
- c Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology-Oncology, University of Freiburg Medical Center , Freiburg , Germany.,d Hermann Staudinger Graduate School, University of Freiburg , Freiburg , Germany
| | - Monika Helf
- b Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Oliver Mücke
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany.,b Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Rainer Claus
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany.,e Department of Medicine , Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center , Freiburg , Germany
| | - Carolin Konermann
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Peter Nöllke
- c Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology-Oncology, University of Freiburg Medical Center , Freiburg , Germany
| | - Charlotte M Niemeyer
- c Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology-Oncology, University of Freiburg Medical Center , Freiburg , Germany.,f German Cancer Consortium (DKTK)
| | - Christian Flotho
- c Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology-Oncology, University of Freiburg Medical Center , Freiburg , Germany.,f German Cancer Consortium (DKTK)
| | - Christoph Plass
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany.,f German Cancer Consortium (DKTK)
| |
Collapse
|
354
|
Holmfeldt P, Ganuza M, Marathe H, He B, Hall T, Kang G, Moen J, Pardieck J, Saulsberry AC, Cico A, Gaut L, McGoldrick D, Finkelstein D, Tan K, McKinney-Freeman S. Functional screen identifies regulators of murine hematopoietic stem cell repopulation. J Exp Med 2016; 213:433-49. [PMID: 26880577 PMCID: PMC4813668 DOI: 10.1084/jem.20150806] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 01/07/2016] [Indexed: 11/12/2022] Open
Abstract
Holmfeldt et al. perform a transplant-based screen to identify regulators of HSPC engraftment and report that Foxa3 is critical for optimal HSC function after transplant. Understanding the molecular regulation of hematopoietic stem and progenitor cell (HSPC) engraftment is paramount to improving transplant outcomes. To discover novel regulators of HSPC repopulation, we transplanted >1,300 mice with shRNA-transduced HSPCs within 24 h of isolation and transduction to focus on detecting genes regulating repopulation. We identified 17 regulators of HSPC repopulation: Arhgef5, Armcx1, Cadps2, Crispld1, Emcn, Foxa3, Fstl1, Glis2, Gprasp2, Gpr56, Myct1, Nbea, P2ry14, Smarca2, Sox4, Stat4, and Zfp521. Knockdown of each of these genes yielded a loss of function, except in the cases of Armcx1 and Gprasp2, whose loss enhanced hematopoietic stem cell (HSC) repopulation. The discovery of multiple genes regulating vesicular trafficking, cell surface receptor turnover, and secretion of extracellular matrix components suggests active cross talk between HSCs and the niche and that HSCs may actively condition the niche to promote engraftment. We validated that Foxa3 is required for HSC repopulating activity, as Foxa3−/− HSC fails to repopulate ablated hosts efficiently, implicating for the first time Foxa genes as regulators of HSPCs. We further show that Foxa3 likely regulates the HSC response to hematologic stress. Each gene discovered here offers a window into the novel processes that regulate stable HSPC engraftment into an ablated host.
Collapse
Affiliation(s)
- Per Holmfeldt
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Himangi Marathe
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Bing He
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242
| | - Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Joseph Moen
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Jennifer Pardieck
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | - Alba Cico
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Ludovic Gaut
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Daniel McGoldrick
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Kai Tan
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|
355
|
DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet 2016; 48:253-64. [PMID: 26780610 DOI: 10.1038/ng.3488] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 12/17/2015] [Indexed: 12/14/2022]
Abstract
Charting differences between tumors and normal tissue is a mainstay of cancer research. However, clonal tumor expansion from complex normal tissue architectures potentially obscures cancer-specific events, including divergent epigenetic patterns. Using whole-genome bisulfite sequencing of normal B cell subsets, we observed broad epigenetic programming of selective transcription factor binding sites coincident with the degree of B cell maturation. By comparing normal B cells to malignant B cells from 268 patients with chronic lymphocytic leukemia (CLL), we showed that tumors derive largely from a continuum of maturation states reflected in normal developmental stages. Epigenetic maturation in CLL was associated with an indolent gene expression pattern and increasingly favorable clinical outcomes. We further uncovered that most previously reported tumor-specific methylation events are normally present in non-malignant B cells. Instead, we identified a potential pathogenic role for transcription factor dysregulation in CLL, where excess programming by EGR and NFAT with reduced EBF and AP-1 programming imbalances the normal B cell epigenetic program.
Collapse
|
356
|
Belle JI, Petrov JC, Langlais D, Robert F, Cencic R, Shen S, Pelletier J, Gros P, Nijnik A. Repression of p53-target gene Bbc3/PUMA by MYSM1 is essential for the survival of hematopoietic multipotent progenitors and contributes to stem cell maintenance. Cell Death Differ 2016; 23:759-75. [PMID: 26768662 PMCID: PMC4832099 DOI: 10.1038/cdd.2015.140] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022] Open
Abstract
p53 is a central mediator of cellular stress responses, and its precise regulation is essential for the normal progression of hematopoiesis. MYSM1 is an epigenetic regulator essential for the maintenance of hematopoietic stem cell (HSC) function, hematopoietic progenitor survival, and lymphocyte development. We recently demonstrated that all developmental and hematopoietic phenotypes of Mysm1 deficiency are p53-mediated and rescued in the Mysm1(-/-)p53(-/-) mouse model. However, the mechanisms triggering p53 activation in Mysm1(-/-) HSPCs, and the pathways downstream of p53 driving different aspects of the Mysm1(-/-) phenotype remain unknown. Here we show the transcriptional activation of p53 stress responses in Mysm1(-/-) HSPCs. Mechanistically, we find that the MYSM1 protein associates with p53 and colocalizes to promoters of classical p53-target genes Bbc3/PUMA (p53 upregulated modulator of apoptosis) and Cdkn1a/p21. Furthermore, it antagonizes their p53-driven expression by modulating local histone modifications (H3K27ac and H3K4me3) and p53 recruitment. Using double-knockout mouse models, we establish that PUMA, but not p21, is an important mediator of p53-driven Mysm1(-/-) hematopoietic dysfunction. Specifically, Mysm1(-/-)Puma(-/-) mice show full rescue of multipotent progenitor (MPP) viability, partial rescue of HSC quiescence and function, but persistent lymphopenia. Through transcriptome analysis of Mysm1(-/-)Puma(-/-) MPPs, we demonstrate strong upregulation of other p53-induced mediators of apoptosis and cell-cycle arrest. The full viability of Mysm1(-/-)Puma(-/-) MPPs, despite strong upregulation of many other pro-apoptotic mediators, establishes PUMA as the essential non-redundant effector of p53-induced MPP apoptosis. Furthermore, we identify potential mediators of p53-dependent but PUMA-independent Mysm1(-/-)hematopoietic deficiency phenotypes. Overall, our study provides novel insight into the cell-type-specific roles of p53 and its downstream effectors in hematopoiesis using unique models of p53 hyperactivity induced by endogenous stress. We conclude that MYSM1 is a critical negative regulator of p53 transcriptional programs in hematopoiesis, and that its repression of Bbc3/PUMA expression is essential for MPP survival, and partly contributes to maintaining HSC function.
Collapse
Affiliation(s)
- J I Belle
- Department of Physiology, McGill University, Montreal, QC, Canada.,Complex Traits Group, McGill University, Montreal, QC, Canada
| | - J C Petrov
- Department of Physiology, McGill University, Montreal, QC, Canada.,Complex Traits Group, McGill University, Montreal, QC, Canada
| | - D Langlais
- Complex Traits Group, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - F Robert
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - R Cencic
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - S Shen
- Department of Physiology, McGill University, Montreal, QC, Canada.,Complex Traits Group, McGill University, Montreal, QC, Canada
| | - J Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - P Gros
- Complex Traits Group, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - A Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada.,Complex Traits Group, McGill University, Montreal, QC, Canada
| |
Collapse
|
357
|
Affiliation(s)
- Nina Cabezas-Wallscheid
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
358
|
Castrillo JI, Oliver SG. Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks. Methods Mol Biol 2016; 1303:3-48. [PMID: 26235058 DOI: 10.1007/978-1-4939-2627-5_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and sequence of events underlying AD. Indeed, studies of models of AD in simple organisms, differentiated cells in culture and rodents are beginning to offer hope that the onset and progression of AD, if detected at an early stage, may be stopped, delayed, or even reversed, by activating or modulating networks involved in proteostasis and the clearance of toxic species. In practice, the incorporation of next-generation neuroimaging, high-throughput and computational approaches are opening the way towards early diagnosis well before irreversible cell death. Thus, the presence or co-occurrence of: (a) accumulation of toxic Aβ oligomers and tau species; (b) altered splicing and transcriptome patterns; (c) impaired redox, proteostatic, and metabolic networks together with, (d) compromised homeostatic capacities may constitute relevant 'AD hallmarks at the cellular level' towards reliable and early diagnosis. From here, preventive lifestyle changes and tailored therapies may be investigated, such as combined strategies aimed at both lowering the production of toxic species and potentiating homeostatic responses, in order to prevent or delay the onset, and arrest, alleviate, or even reverse the progression of the disease.
Collapse
Affiliation(s)
- Juan I Castrillo
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK,
| | | |
Collapse
|
359
|
Zhang L, Tran NT, Su H, Wang R, Lu Y, Tang H, Aoyagi S, Guo A, Khodadadi-Jamayran A, Zhou D, Qian K, Hricik T, Côté J, Han X, Zhou W, Laha S, Abdel-Wahab O, Levine RL, Raffel G, Liu Y, Chen D, Li H, Townes T, Wang H, Deng H, Zheng YG, Leslie C, Luo M, Zhao X. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. eLife 2015; 4:07938. [PMID: 26575292 PMCID: PMC4775220 DOI: 10.7554/elife.07938] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia. DOI:http://dx.doi.org/10.7554/eLife.07938.001 The many different cell types in an adult animal all develop from a single fertilized egg. The development of cells into more specialized cell types is called ‘differentiation’. Proteins and other molecules from both inside and outside of the cells regulate the differentiation process. RNA is a molecule that is similar to DNA, and performs several important roles inside cells. Perhaps most importantly, RNA molecules act as messengers and carry genetic instructions during gene expression. RBM15 is an RNA-binding protein that is found throughout nature, and is involved in a number of developmental processes. Previous research has linked the incorrect control of RBM15 with an increased risk of certain cancers, including megakaryocytic leukemia. However, it is not clear what role RNA-binding proteins such as RBM15 play during differentiation. Now, Zhang, Tran, Su et al. have investigated the role of RBM15 during the development of large cells found in human bone marrow (called megakaryocytes). First, the experiments demonstrated that an enzyme called PRMT1 modifies RBM15. This enzyme adds a chemical mark called a methyl group at a specific site (an arginine amino acid) on the RNA-binding protein. Next, Zhang, Tran, Su et al. showed that the addition of this methyl group earmarks RBM15 for destruction. This means that an increase in PRMT1 levels reduces the amount of RBM15 in cells, while decreases in PRMT1 have the opposite effect. Further experiments showed that RBM15 normally processes the RNA messengers that carry the genetic instructions needed for the differentiation of bone marrow cells. An excess of PRMT1 enzyme leads to a lack of this RNA-binding protein. This in turn interferes with the differentiation process, and can contribute to the development of cancers such as megakaryocytic leukemia. Future work will therefore explore whether targeting PRMT1 with drugs could represent an effective treatment for these kinds of cancers. DOI:http://dx.doi.org/10.7554/eLife.07938.002
Collapse
Affiliation(s)
- Li Zhang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Hairui Su
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Rui Wang
- Program of Molecular Pharmacology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Yuheng Lu
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Haiping Tang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Sayura Aoyagi
- Cell Signaling Technology, Inc., Danvers, United States
| | - Ailan Guo
- Cell Signaling Technology, Inc., Danvers, United States
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Dewang Zhou
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Kun Qian
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, United States
| | - Todd Hricik
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Xiaosi Han
- Department of Neurology, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, United States
| | - Wenping Zhou
- Department of Internal Medicine, Zhengzhou - Henan Cancer Hospital, Zhengzhou, China
| | - Suparna Laha
- Division of Hematology and Oncology, University of Massachusetts Medical School, Worcester, United States
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Glen Raffel
- Division of Hematology and Oncology, University of Massachusetts Medical School, Worcester, United States
| | - Yanyan Liu
- Department of Internal Medicine, Zhengzhou - Henan Cancer Hospital, Zhengzhou, China
| | - Dongquan Chen
- Division of Preventive Medicine, The University of Alabama at Birmingham, Birmingham, United States
| | - Haitao Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tim Townes
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, United States
| | - Christina Leslie
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Minkui Luo
- Program of Molecular Pharmacology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
360
|
Flores-Figueroa E, Essers M, Bowman TV. Hematopoiesis "awakens": Evolving technologies, the force behind them. Exp Hematol 2015; 44:101-5. [PMID: 26546749 DOI: 10.1016/j.exphem.2015.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 11/24/2022]
Abstract
Amid the beauty of the Kyoto countryside, leaders in the field of hematology met at the 44th annual International Society for Experimental Hematology (ISEH) meeting in late September 2015. Led by ISEH President Paul Frenette and President-Elect David Traver, the meeting covered many aspects of hematopoiesis with a focus on technology. At the meeting, it became clear that the future of hematology is being shaped by innovations in single-cell "omics" and imaging approaches that will provide answers to age-old questions on cellular identity. In this meeting review, we highlight the advances presented in understanding the hematopoietic stem cell (HSC) niche, heterogeneity, stress response, epigenetics, and how these processes change from birth to old age.
Collapse
Affiliation(s)
- Eugenia Flores-Figueroa
- Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - Marieke Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Teresa V Bowman
- Departments of Developmental and Molecular Biology and Medicine (Oncology), Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
361
|
Manesia JK, Xu Z, Broekaert D, Boon R, van Vliet A, Eelen G, Vanwelden T, Stegen S, Van Gastel N, Pascual-Montano A, Fendt SM, Carmeliet G, Carmeliet P, Khurana S, Verfaillie CM. Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways. Stem Cell Res 2015; 15:715-721. [PMID: 26599326 DOI: 10.1016/j.scr.2015.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/16/2015] [Accepted: 11/02/2015] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic stem cells (HSCs) in the fetal liver (FL) unlike adult bone marrow (BM) proliferate extensively, posing different metabolic demands. However, metabolic pathways responsible for the production of energy and cellular building blocks in FL HSCs have not been described. Here, we report that FL HSCs use oxygen dependent energy generating pathways significantly more than their BM counterparts. RNA-Seq analysis of E14.5 FL versus BM derived HSCs identified increased expression levels of genes involved in oxidative phosphorylation (OxPhos) and the citric acid cycle (TCA). We demonstrated that FL HSCs contain more mitochondria than BM HSCs, which resulted in increased levels of oxygen consumption and reactive oxygen species (ROS) production. Higher levels of DNA repair and antioxidant pathway gene expression may prevent ROS-mediated (geno)toxicity in FL HSCs. Thus, we here for the first time highlight the underestimated importance of oxygen dependent pathways for generating energy and building blocks in FL HSCs.
Collapse
Affiliation(s)
- Javed K Manesia
- Inter-departmental Stem Cell Institute, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven, Belgium
| | - Zhuofei Xu
- Inter-departmental Stem Cell Institute, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven, Belgium
| | - Dorien Broekaert
- Inter-departmental Stem Cell Institute, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven, Belgium
| | - Ruben Boon
- Inter-departmental Stem Cell Institute, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven, Belgium
| | - Alex van Vliet
- Laboratory of Cell Death Research and Therapy, KU Leuven, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Neurovascular Link, KU Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Leuven, Belgium
| | - Thomas Vanwelden
- Inter-departmental Stem Cell Institute, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven, Belgium
| | - Steve Stegen
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Nick Van Gastel
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, KU Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Leuven, Belgium
| | - Satish Khurana
- Inter-departmental Stem Cell Institute, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven, Belgium.
| | - Catherine M Verfaillie
- Inter-departmental Stem Cell Institute, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
362
|
Low-Cell-Number Epigenome Profiling Aids the Study of Lens Aging and Hematopoiesis. Cell Rep 2015; 13:1505-1518. [PMID: 26549448 PMCID: PMC5466415 DOI: 10.1016/j.celrep.2015.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/10/2015] [Accepted: 09/25/2015] [Indexed: 11/20/2022] Open
Abstract
Understanding how chromatin modification regulates development and disease can be limited by available material. Despite recent progress, balancing high-quality and reliable mapping using chromatin-immunoprecipitation-based deep sequencing (ChIP-seq) remains a challenge. We report two techniques, recovery via protection (RP)-ChIP-seq and favored amplification RP-ChIP-seq (FARP-ChIP-seq), that provide reproducible mapping in as few as 500 cells. RP-ChIP-seq allows detection of age-associated epigenetic changes in a single mouse lens, whereas FARP-ChIP-seq accurately maps histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3 in long-term hematopoietic stem cells (LT-HSCs), short-term HSCs (ST-HSCs), and multi-potent progenitors (MPPs) from one mouse. These datasets not only highlight genes that may be involved in lens aging but also indicate a lack of H3K4me3/H3K27me3 bivalency on hematopoietic genes in HSCs.
Collapse
|
363
|
Lipka DB, Wang Q, Cabezas-Wallscheid N, Klimmeck D, Weichenhan D, Herrmann C, Lier A, Brocks D, von Paleske L, Renders S, Wünsche P, Zeisberger P, Gu L, Haas S, Essers MA, Brors B, Eils R, Trumpp A, Milsom MD, Plass C. Identification of DNA methylation changes at cis-regulatory elements during early steps of HSC differentiation using tagmentation-based whole genome bisulfite sequencing. Cell Cycle 2015; 13:3476-87. [PMID: 25483069 DOI: 10.4161/15384101.2014.973334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epigenetic alterations during cellular differentiation are a key molecular mechanism which both instructs and reinforces the process of lineage commitment. Within the haematopoietic system, progressive changes in the DNA methylome of haematopoietic stem cells (HSCs) are essential for the effective production of mature blood cells. Inhibition or loss of function of the cellular DNA methylation machinery has been shown to lead to a severe perturbation in blood production and is also an important driver of malignant transformation. HSCs constitute a very rare cell population in the bone marrow, capable of life-long self-renewal and multi-lineage differentiation. The low abundance of HSCs has been a major technological barrier to the global analysis of the CpG methylation status within both HSCs and their immediate progeny, the multipotent progenitors (MPPs). Within this Extra View article, we review the current understanding of how the DNA methylome regulates normal and malignant hematopoiesis. We also discuss the current methodologies that are available for interrogating the DNA methylation status of HSCs and MPPs and describe a new data set that was generated using tagmentation-based whole genome bisulfite sequencing (TWGBS) in order to comprehensively map methylated cytosines using the limited amount of genomic DNA that can be harvested from rare cell populations. Extended analysis of this data set clearly demonstrates the added value of genome-wide sequencing of methylated cytosines and identifies novel important cis-acting regulatory regions that are dynamically remodeled during the first steps of haematopoietic differentiation.
Collapse
Affiliation(s)
- Daniel B Lipka
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center (DKFZ) ; Heidelberg , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L, Uckelmann H, Wurzer S, Prendergast ÁM, Schnell A, Hexel K, Santarella-Mellwig R, Blaszkiewicz S, Kuck A, Geiger H, Milsom MD, Steinmetz LM, Schroeder T, Trumpp A, Krijgsveld J, Essers MAG. Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors. Cell Stem Cell 2015; 17:422-34. [PMID: 26299573 DOI: 10.1016/j.stem.2015.07.007] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/29/2015] [Accepted: 07/13/2015] [Indexed: 01/28/2023]
Abstract
Infections are associated with extensive platelet consumption, representing a high risk for health. However, the mechanism coordinating the rapid regeneration of the platelet pool during such stress conditions remains unclear. Here, we report that the phenotypic hematopoietic stem cell (HSC) compartment contains stem-like megakaryocyte-committed progenitors (SL-MkPs), a cell population that shares many features with multipotent HSCs and serves as a lineage-restricted emergency pool for inflammatory insults. During homeostasis, SL-MkPs are maintained in a primed but quiescent state, thus contributing little to steady-state megakaryopoiesis. Even though lineage-specific megakaryocyte transcripts are expressed, protein synthesis is suppressed. In response to acute inflammation, SL-MkPs become activated, resulting in megakaryocyte protein production from pre-existing transcripts and a maturation of SL-MkPs and other megakaryocyte progenitors. This results in an efficient replenishment of platelets that are lost during inflammatory insult. Thus, our study reveals an emergency machinery that counteracts life-threatening platelet depletions during acute inflammation.
Collapse
Affiliation(s)
- Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Jenny Hansson
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Daniel Klimmeck
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Lars Velten
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Hannah Uckelmann
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Stephan Wurzer
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Áine M Prendergast
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Alexandra Schnell
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Klaus Hexel
- Core Facility Flow Cytometry, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Rachel Santarella-Mellwig
- European Molecular Biology Laboratory (EMBL), Electron Microscopy Core Facility, 69117 Heidelberg, Germany
| | - Sandra Blaszkiewicz
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Andrea Kuck
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Hartmut Geiger
- Institute for Molecular Medicine, Ulm University, 89081 Ulm, Germany; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Michael D Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Experimental Hematology Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Stanford Genome Technology Center, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Timm Schroeder
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Marieke A G Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
365
|
Pietras EM, Reynaud D, Kang YA, Carlin D, Calero-Nieto FJ, Leavitt AD, Stuart JM, Göttgens B, Passegué E. Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions. Cell Stem Cell 2015; 17:35-46. [PMID: 26095048 PMCID: PMC4542150 DOI: 10.1016/j.stem.2015.05.003] [Citation(s) in RCA: 458] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/06/2015] [Accepted: 05/13/2015] [Indexed: 01/07/2023]
Abstract
Despite great advances in understanding the mechanisms underlying blood production, lineage specification at the level of multipotent progenitors (MPPs) remains poorly understood. Here, we show that MPP2 and MPP3 are distinct myeloid-biased MPP subsets that work together with lymphoid-primed MPP4 cells to control blood production. We find that all MPPs are produced in parallel by hematopoietic stem cells (HSCs), but with different kinetics and at variable levels depending on hematopoietic demands. We also show that the normally rare myeloid-biased MPPs are transiently overproduced by HSCs in regenerating conditions, hence supporting myeloid amplification to rebuild the hematopoietic system. This shift is accompanied by a reduction in self-renewal activity in regenerating HSCs and reprogramming of MPP4 fate toward the myeloid lineage. Our results support a dynamic model of blood development in which HSCs convey lineage specification through independent production of distinct lineage-biased MPP subsets that, in turn, support lineage expansion and differentiation.
Collapse
Affiliation(s)
- Eric M Pietras
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Damien Reynaud
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yoon-A Kang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniel Carlin
- Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 94720, USA
| | - Fernando J Calero-Nieto
- Cambridge University Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Andrew D Leavitt
- Departments of Medicine and Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joshua M Stuart
- Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 94720, USA
| | - Berthold Göttgens
- Cambridge University Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Emmanuelle Passegué
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
366
|
Abstract
PURPOSE OF REVIEW Epigenetic regulatory networks determine the fate of dividing hematopoietic stem cells (HSCs). Prior attempts at the ex-vivo expansion of transplantable human HSCs have led to the depletion or at best maintenance of the numbers of HSCs because of the epigenetic events that silence the HSC gene-expression pattern. The purpose of this review is to outline the recent efforts to use small molecules to reprogram cultured CD34 cells so as to expand their numbers. RECENT FINDINGS Chromatin-modifying agents (CMAs) reactivate the gene-expression patterns of HSCs that have been silenced as they divide ex vivo. Increasing evidence indicates that CMAs act not only by promoting HSC symmetrical self-renewal divisions, but also by reprogramming progenitor cells, resulting in greater numbers of HSCs. The use of such CMAs for these purposes has not resulted in malignant transformation of the ex-vivo treated cell product. SUMMARY The silencing of the gene-expression program that determines HSC function after ex-vivo culture can be reversed by reprogramming the progeny of dividing HSCs with transient exposure to CMAs. The successful implementation of this approach provides a strategy which might lead to the development of a clinically relevant means of manufacturing increased numbers of HSCs.
Collapse
Affiliation(s)
- Camelia Iancu-Rubin
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
367
|
Aspp1 Preserves Hematopoietic Stem Cell Pool Integrity and Prevents Malignant Transformation. Cell Stem Cell 2015; 17:23-34. [DOI: 10.1016/j.stem.2015.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 12/23/2022]
|
368
|
Broxmeyer HE, O'Leary HA, Huang X, Mantel C. The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo. Curr Opin Hematol 2015; 22:273-8. [PMID: 26049746 PMCID: PMC4721218 DOI: 10.1097/moh.0000000000000144] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Hematopoietic stem (HSCs) and progenitor (HPCs) cells reside in a hypoxic (lowered oxygen tension) environment, in vivo. We review literature on growth of HSCs and HPCs under hypoxic and normoxic (ambient air) conditions with a focus on our recent work demonstrating the detrimental effects of collecting and processing cells in ambient air through a phenomenon termed extra physiologic oxygen shock/stress (EPHOSS), and we describe means to counteract EPHOSS for enhanced collection of HSCs. RECENT FINDINGS Collection and processing of bone marrow and cord blood cells in ambient air cause rapid differentiation and loss of HSCs, with increases in HPCs. This apparently irreversible EPHOSS phenomenon results from increased mitochondrial reactive oxygen species, mediated by a p53-cyclophilin D-mitochondrial permeability transition pore axis, and involves hypoxia inducing factor-1α and micro-RNA 210. EPHOSS can be mitigated by collecting and processing cells in lowered (3%) oxygen, or in ambient air in the presence of, cyclosporine A which effects the mitochondrial permeability transition pore, resulting in increased HSC collections. SUMMARY Our recent findings may be advantageous for HSC collection for hematopoietic cell transplantation, and likely for enhanced collection of other stem cell types. EPHOSS should be considered when ex-vivo cell analysis is utilized for personalized medicine, as metabolism of cells and their response to targeted drug treatment ex vivo may not mimic what occurs in vivo.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | |
Collapse
|
369
|
Abstract
Hematopoiesis is characterized by a lifelong balance between hematopoietic stem cell (HSC) self-renewal and differentiation into mature blood populations. Proper instruction of cell fate decisions requires tight homeostatic regulation of transcriptional programs through a combination of epigenetic modifications, management of cis-regulatory elements, and transcription factor activity. Recent work has focused on integrating biochemical, genetic, and evolutionary data sets to gain further insight into these regulatory components. Long noncoding RNA (lncRNA), post-translational modifications of transcription factors, and circadian rhythm add additional layers of complexity. These analyses have provided a wealth of information, much of which has been made available through public databases. Elucidating the regulatory processes that govern hematopoietic transcriptional programs is expected to provide useful insights into hematopoiesis that may be applied broadly across tissue types while enabling the discovery and implementation of therapeutics to treat human disease.
Collapse
Affiliation(s)
- David E Muench
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
370
|
Abstract
Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This Review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease.
Collapse
Affiliation(s)
- Isabel Beerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA.
| |
Collapse
|
371
|
Tallmadge RL, Shen L, Tseng CT, Miller SC, Barry J, Felippe MJB. Bone marrow transcriptome and epigenome profiles of equine common variable immunodeficiency patients unveil block of B lymphocyte differentiation. Clin Immunol 2015; 160:261-76. [PMID: 25988861 DOI: 10.1016/j.clim.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/30/2022]
Abstract
Common variable immunodeficiency (CVID) is a late-onset humoral deficiency characterized by B lymphocyte dysfunction or loss, decreased immunoglobulin production, and recurrent bacterial infections. CVID is the most frequent human primary immunodeficiency but still presents challenges in the understanding of its etiology and treatment. CVID in equine patients manifests with a natural impairment of B lymphocyte differentiation, and is a unique model to identify genetic and epigenetic mechanisms of disease. Bone marrow transcriptome analyses revealed decreased expression of genes indicative of the pro-B cell differentiation stage, importantly PAX5 (p≤0.023). We hypothesized that aberrant epigenetic regulation caused PAX5 gene silencing, resulting in the late-onset and non-familial manifestation of CVID. A significant increase in PAX5 enhancer region methylation was identified in equine CVID patients by genome-wide reduced-representation bisulfite sequencing and bisulfite PCR sequencing (p=0.000). Thus, we demonstrate that integrating transcriptomics and epigenetics in CVID enlightens potential mechanisms of dysfunctional B lymphopoiesis or function.
Collapse
Affiliation(s)
- Rebecca L Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lishuang Shen
- Cornell Mammalian Cell Reprogramming Core, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Chia T Tseng
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Steven C Miller
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jay Barry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY 14853, USA
| | - M Julia B Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
372
|
Targets of opportunity for precision medicine. Blood 2015; 125:3041-2. [PMID: 25977578 DOI: 10.1182/blood-2015-04-638270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
373
|
Goodell MA, Nguyen H, Shroyer N. Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nat Rev Mol Cell Biol 2015; 16:299-309. [PMID: 25907613 PMCID: PMC5317203 DOI: 10.1038/nrm3980] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Somatic stem cells replenish many tissues throughout life to repair damage and to maintain tissue homeostasis. Stem cell function is frequently described as following a hierarchical model in which a single master cell undergoes self-renewal and differentiation into multiple cell types and is responsible for most regenerative activity. However, recent data from studies on blood, skin and intestinal epithelium all point to the concomitant action of multiple types of stem cells with distinct everyday roles. Under stress conditions such as acute injury, the surprising developmental flexibility of these stem cells enables them to adapt to diverse roles and to acquire different regeneration capabilities. This paradigm shift raises many new questions about the developmental origins, inter-relationships and molecular regulation of these multiple stem cell types.
Collapse
Affiliation(s)
- Margaret A Goodell
- Stem Cells and Regenerative Medicine Center and Departments of Pediatrics, Molecular and Cellular Biology, and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Hoang Nguyen
- Stem Cells and Regenerative Medicine Center and Departments of Pediatrics, Molecular and Cellular Biology, and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Noah Shroyer
- Stem Cells and Regenerative Medicine Center and Departments of Pediatrics, Molecular and Cellular Biology, and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
374
|
Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol 2015; 3:16. [PMID: 25914884 PMCID: PMC4390903 DOI: 10.3389/fcell.2015.00016] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed.
Collapse
Affiliation(s)
- Eiman Aleem
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA ; Department of Zoology, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Robert J Arceci
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA
| |
Collapse
|
375
|
Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 2015; 12:115-21. [PMID: 25633503 DOI: 10.1038/nmeth.3252] [Citation(s) in RCA: 2257] [Impact Index Per Article: 250.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/09/2014] [Indexed: 12/11/2022]
Abstract
Bioconductor is an open-source, open-development software project for the analysis and comprehension of high-throughput data in genomics and molecular biology. The project aims to enable interdisciplinary research, collaboration and rapid development of scientific software. Based on the statistical programming language R, Bioconductor comprises 934 interoperable packages contributed by a large, diverse community of scientists. Packages cover a range of bioinformatic and statistical applications. They undergo formal initial review and continuous automated testing. We present an overview for prospective users and contributors.
Collapse
|
376
|
Zhou BO, Ding L, Morrison SJ. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1. eLife 2015; 4:e05521. [PMID: 25821987 PMCID: PMC4411515 DOI: 10.7554/elife.05521] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are maintained by a perivascular niche in bone marrow but it is unclear whether the niche is reciprocally regulated by HSCs. Here, we systematically assessed the expression and function of Angiopoietin-1 (Angpt1) in bone marrow. Angpt1 was not expressed by osteoblasts. Angpt1 was most highly expressed by HSCs, and at lower levels by c-kit+ hematopoietic progenitors, megakaryocytes, and Leptin Receptor+ (LepR+) stromal cells. Global conditional deletion of Angpt1, or deletion from osteoblasts, LepR+ cells, Nes-cre-expressing cells, megakaryocytes, endothelial cells or hematopoietic cells in normal mice did not affect hematopoiesis, HSC maintenance, or HSC quiescence. Deletion of Angpt1 from hematopoietic cells and LepR+ cells had little effect on vasculature or HSC frequency under steady-state conditions but accelerated vascular and hematopoietic recovery after irradiation while increasing vascular leakiness. Hematopoietic stem/progenitor cells and LepR+ stromal cells regulate niche regeneration by secreting Angpt1, reducing vascular leakiness but slowing niche recovery. DOI:http://dx.doi.org/10.7554/eLife.05521.001 In adults, blood cells develop from a set of stem cells that are found in bone marrow. There are also specialized blood vessels and cells called ‘stromal cells’ within the bone marrow that provide these stem cells with oxygen, nutrients, and other molecules. This local environment, or ‘niche’, plays an important role in regulating the maintenance of these stem cells. But it has not been known whether stem cells can reciprocally regulate their niches. Unfortunately, radiation used to treat cancer obliterates the stem cells and their niche; both must recover after such a treatment before the patient can produce blood cells normally again. A protein called Angpt1 is thought to play a role in this post-treatment recovery. Angpt1 is known to regulate blood vessels in the bone marrow, and one influential study had previously suggested that bone cells produce Angpt1, which promotes and regulates the maintenance of the stem cells within the niche. However, this previous study did not directly test this. Thus, it was not clear whether Angpt1 promotes the regeneration of the stem cells themselves or if it regulates the rebuilding of the niche. Now, Zhou, Ding and Morrison have genetically engineered mice to make a ‘reporter’ molecule—which glows green when viewed under a microscope—wherever and whenever the gene for Angpt1 is active. These experiments showed where the protein is produced, and unexpectedly revealed that the bone cells do not make Angpt1. Instead, it is the stem cells and the stromal cells in the niche that made the protein. Further experiments showed that deleting the gene for Angpt1 from mice, or just from their bone cells, did not affect blood cell production; nor did it affect the maintenance or regulation of the stem cells. Next, Zhou, Ding and Morrison looked at whether Angpt1 might be involved in rebuilding the niche after being exposed to radiation. Some of these irradiated mice had been genetically engineered to lack Angpt1; and, in these mice, blood stem cells and blood cell production recovered more quickly than in mice with Angpt1. The blood vessels in the niche also grew back more quickly in the irradiated mice that lacked Angpt1. However, these regenerated blood vessels were leaky. This suggests that blood stem cells produce Angpt1 to slow the recovery of the niche and reduce leakage from the blood vessels. Thus, blood stem cells can regulate the regeneration of the niches that maintain them. DOI:http://dx.doi.org/10.7554/eLife.05521.002
Collapse
Affiliation(s)
- Bo O Zhou
- Department of Pediatrics and Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lei Ding
- Department of Pediatrics and Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics and Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
377
|
Tesio M, Tang Y, Müdder K, Saini M, von Paleske L, Macintyre E, Pasparakis M, Waisman A, Trumpp A. Hematopoietic stem cell quiescence and function are controlled by the CYLD-TRAF2-p38MAPK pathway. ACTA ACUST UNITED AC 2015; 212:525-38. [PMID: 25824820 PMCID: PMC4387289 DOI: 10.1084/jem.20141438] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/24/2015] [Indexed: 12/19/2022]
Abstract
Tesio at al. identify a novel pathway controlled by the tumor suppressor and deubiquitinase cylindromatosis (CYLD), which is involved in the regulation of hematopoietic stem cell quiescence and repopulation potential. The status of long-term quiescence and dormancy guarantees the integrity of hematopoietic stem cells (HSCs) during adult homeostasis. However the molecular mechanisms regulating HSC dormancy remain poorly understood. Here we show that cylindromatosis (CYLD), a tumor suppressor gene and negative regulator of NF-κB signaling with deubiquitinase activity, is highly expressed in label-retaining dormant HSCs (dHSCs). Moreover, Cre-mediated conditional elimination of the catalytic domain of CYLD induced dHSCs to exit quiescence and abrogated their repopulation and self-renewal potential. This phenotype is dependent on the interactions between CYLD and its substrate TRAF2 (tumor necrosis factor–associated factor 2). HSCs expressing a mutant CYLD with an intact catalytic domain, but unable to bind TRAF2, showed the same HSC phenotype. Unexpectedly, the robust cycling of HSCs lacking functional CYLD–TRAF2 interactions was not elicited by increased NF-κB signaling, but instead by increased activation of the p38MAPK pathway. Pharmacological inhibition of p38MAPK rescued the phenotype of CYLD loss, identifying the CYLD–TRAF2–p38MAPK pathway as a novel important regulator of HSC function restricting HSC cycling and promoting dormancy.
Collapse
Affiliation(s)
- Melania Tesio
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Yilang Tang
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Katja Müdder
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Massimo Saini
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa von Paleske
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Elizabeth Macintyre
- Institut Necker-Enfants Malades (INEM) and Université Paris Sorbonne Cité at Descartes, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1151, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Manolis Pasparakis
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany The German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
378
|
Luo M, Jeong M, Sun D, Park HJ, Rodriguez BAT, Xia Z, Yang L, Zhang X, Sheng K, Darlington GJ, Li W, Goodell MA. Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell 2015; 16:426-38. [PMID: 25772072 DOI: 10.1016/j.stem.2015.02.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 11/18/2014] [Accepted: 02/06/2015] [Indexed: 12/29/2022]
Abstract
Hematopoietic stem cells (HSCs) possess unique gene expression programs that enforce their identity and regulate lineage commitment. Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression and cell fate decisions, although their functions in HSCs are unclear. Here we profiled the transcriptome of purified HSCs by deep sequencing and identified 323 unannotated lncRNAs. Comparing their expression in differentiated lineages revealed 159 lncRNAs enriched in HSCs, some of which are likely HSC specific (LncHSCs). These lncRNA genes share epigenetic features with protein-coding genes, including regulated expression via DNA methylation, and knocking down two LncHSCs revealed distinct effects on HSC self-renewal and lineage commitment. We mapped the genomic binding sites of one of these candidates and found enrichment for key hematopoietic transcription factor binding sites, especially E2A. Together, these results demonstrate that lncRNAs play important roles in regulating HSCs, providing an additional layer to the genetic circuitry controlling HSC function.
Collapse
Affiliation(s)
- Min Luo
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mira Jeong
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Deqiang Sun
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun Jung Park
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Zheng Xia
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liubin Yang
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiaotian Zhang
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kuanwei Sheng
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | - Wei Li
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
379
|
Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 2015; 125:2605-13. [PMID: 25762175 DOI: 10.1182/blood-2014-12-570200] [Citation(s) in RCA: 345] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/03/2015] [Indexed: 12/25/2022] Open
Abstract
Hematopoietic stem cell (HSC) research took hold in the 1950s with the demonstration that intravenously injected bone marrow cells can rescue irradiated mice from lethality by reestablishing blood cell production. Attempts to quantify the cells responsible led to the discovery of serially transplantable, donor-derived, macroscopic, multilineage colonies detectable on the spleen surface 1 to 2 weeks posttransplant. The concept of self-renewing multipotent HSCs was born, but accompanied by perplexing evidence of great variability in the outcomes of HSC self-renewal divisions. The next 60 years saw an explosion in the development and use of more refined tools for assessing the behavior of prospectively purified subsets of hematopoietic cells with blood cell-producing capacity. These developments have led to the formulation of increasingly complex hierarchical models of hematopoiesis and a growing list of intrinsic and extrinsic elements that regulate HSC cycling status, viability, self-renewal, and lineage outputs. More recent examination of these properties in individual, highly purified HSCs and analyses of their perpetuation in clonally generated progeny HSCs have now provided definitive evidence of linearly transmitted heterogeneity in HSC states. These results anticipate the need and use of emerging new technologies to establish models that will accommodate such pluralistic features of HSCs and their control mechanisms.
Collapse
|
380
|
Imprinted genes in myeloid lineage commitment in normal and malignant hematopoiesis. Leukemia 2015; 29:1233-42. [PMID: 25703588 DOI: 10.1038/leu.2015.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/27/2015] [Accepted: 02/16/2015] [Indexed: 12/12/2022]
Abstract
Genomic imprinting is characterized by the parent-of-origin monoallelic expression of several diploid genes because of epigenetic regulation. Imprinted genes (IGs) are key factors in development, supporting the ability of a genotype to produce phenotypes in response to environmental stimuli. IGs are highly expressed during prenatal stages but are downregulated after birth. They also affect aspects of life other than growth such as cognition, behavior, adaption to novel environments, social dominance and memory consolidation. Deregulated genomic imprinting leads to developmental disorders and is associated with solid and blood cancer as well. Several data have been published highlighting the involvement of IGs in as early as the very small embryonic-like stem cells stage and further during myeloid lineage commitment in normal and malignant hematopoiesis. Therefore, we have assembled the current knowledge on the topic, based mainly on recent findings, trying not to focus on a particular cluster but rather to have a global view of several different IGs in hematopoiesis.
Collapse
|
381
|
Ebina W, Rossi DJ. Transcription factor-mediated reprogramming toward hematopoietic stem cells. EMBO J 2015; 34:694-709. [PMID: 25712209 DOI: 10.15252/embj.201490804] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs.
Collapse
Affiliation(s)
- Wataru Ebina
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA Department of Pediatrics, Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
382
|
Jaitin DA, Keren-Shaul H, Elefant N, Amit I. Each cell counts: Hematopoiesis and immunity research in the era of single cell genomics. Semin Immunol 2015; 27:67-71. [DOI: 10.1016/j.smim.2015.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/21/2022]
|
383
|
Trompouki E, King KY, Will B, Lessard J, Flores-Figueroa E, Kokkaliaris KD, Bowman T. Bloody signals: from birth to disease and death. Exp Hematol 2014; 42:989-94. [PMID: 25482344 DOI: 10.1016/j.exphem.2014.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eirini Trompouki
- Cellular and Molecular Immunology, Max Planck Institute of Immunology and Epigenetics, Freiburg, Germany
| | | | - Britta Will
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie Lessard
- IRIC, Université de Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
384
|
Schnöder TM, Arreba-Tutusaus P, Griehl I, Bullinger L, Buschbeck M, Lane SW, Döhner K, Plass C, Lipka DB, Heidel FH, Fischer T. Epo-induced erythroid maturation is dependent on Plcγ1 signaling. Cell Death Differ 2014; 22:974-85. [PMID: 25394487 DOI: 10.1038/cdd.2014.186] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 12/22/2022] Open
Abstract
Erythropoiesis is a tightly regulated process. Development of red blood cells occurs through differentiation of hematopoietic stem cells (HSCs) into more committed progenitors and finally into erythrocytes. Binding of erythropoietin (Epo) to its receptor (EpoR) is required for erythropoiesis as it promotes survival and late maturation of erythroid progenitors. In vivo and in vitro studies have highlighted the requirement of EpoR signaling through Janus kinase 2 (Jak2) tyrosine kinase and Stat5a/b as a central pathway. Here, we demonstrate that phospholipase C gamma 1 (Plcγ1) is activated downstream of EpoR-Jak2 independently of Stat5. Plcγ1-deficient pro-erythroblasts and erythroid progenitors exhibited strong impairment in differentiation and colony-forming potential. In vivo, suppression of Plcγ1 in immunophenotypically defined HSCs (Lin(-)Sca1(+)KIT(+)CD48(-)CD150(+)) severely reduced erythroid development. To identify Plcγ1 effector molecules involved in regulation of erythroid differentiation, we assessed changes occurring at the global transcriptional and DNA methylation level after inactivation of Plcγ1. The top common downstream effector was H2afy2, which encodes for the histone variant macroH2A2 (mH2A2). Inactivation of mH2A2 expression recapitulated the effects of Plcγ1 depletion on erythroid maturation. Taken together, our findings identify Plcγ1 and its downstream target mH2A2, as a 'non-canonical' Epo signaling pathway essential for erythroid differentiation.
Collapse
Affiliation(s)
- T M Schnöder
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| | - P Arreba-Tutusaus
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| | - I Griehl
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| | - L Bullinger
- Internal Medicine III, Department of Hematology/Oncology, University Hospital Ulm, Ulm, Germany
| | - M Buschbeck
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Campus Can Ruti, Badalona, Spain
| | - S W Lane
- Division of Immunology, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - K Döhner
- Internal Medicine III, Department of Hematology/Oncology, University Hospital Ulm, Ulm, Germany
| | - C Plass
- Division of Epigenomics and Cancer Risk Factors (C010), German Cancer Research Center, Heidelberg, Germany
| | - D B Lipka
- 1] Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany [2] Division of Epigenomics and Cancer Risk Factors (C010), German Cancer Research Center, Heidelberg, Germany
| | - F H Heidel
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| | - T Fischer
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| |
Collapse
|
385
|
Kalaitzidis D, Scadden DT. Deep diving in the blood stem cell-ome. EMBO J 2014; 33:2281-2. [PMID: 25190519 DOI: 10.15252/embj.201489778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Demetrios Kalaitzidis
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|