351
|
Koch CM, Wagner W. Epigenetic-aging-signature to determine age in different tissues. Aging (Albany NY) 2012; 3:1018-27. [PMID: 22067257 PMCID: PMC3229965 DOI: 10.18632/aging.100395] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All tissues of the organism are affected by aging. This process is associated with epigenetic modifications such as methylation changes at specific cytosine residues in the DNA (CpG sites). Here, we have identified an Epigenetic-Aging-Signature which is applicable for many tissues to predict donor age. DNA-methylation profiles of various cell types were retrieved from public data depositories - all using the HumanMethylation27 BeadChip platform which represents 27,578 CpG sites. Five datasets from dermis, epidermis, cervical smear, T-cells and monocytes were used for Pavlidis Template Matching to identify 19 CpG sites that are continuously hypermethylated upon aging (R > 0.6; p-value <10−13). Four of these CpG sites (associated with the genes NPTX2, TRIM58, GRIA2 and KCNQ1DN) and an additional hypomethylated CpG site (BIRC4BP) were implemented in a model to predict donor age. This Epigenetic-Aging-Signature was tested on a validation group of eight independent datasets corresponding to several cell types from different tissues. Overall, the five CpG sites revealed age-associated DNA-methylation changes in all tissues. The average absolute difference between predicted and real chronological age was about 11 years. This method can be used to predict donor age in various cell preparations - for example in forensic analysis.
Collapse
Affiliation(s)
- Carmen M Koch
- Helmholtz-Institute for Biomedical Engineering, Aachen, Germany
| | | |
Collapse
|
352
|
Bellizzi D, D’Aquila P, Montesanto A, Corsonello A, Mari V, Mazzei B, Lattanzio F, Passarino G. Global DNA methylation in old subjects is correlated with frailty. AGE (DORDRECHT, NETHERLANDS) 2012; 34:169-79. [PMID: 21336567 PMCID: PMC3260357 DOI: 10.1007/s11357-011-9216-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/30/2011] [Indexed: 05/12/2023]
Abstract
Epigenetic variations have been widely described to occur during the aging process. To verify if these modifications are correlated with the inter-individual phenotypic variability of elderly people, we searched for a correlation between global DNA methylation levels and frailty. We found that the global DNA methylation levels were correlated to the frailty status in middle/advanced-aged subjects but not with age. A 7-year follow-up study also revealed that a worsening in the frailty status was associated to a significant decrease in the global DNA methylation levels. These results suggest that the relaxation of the epigenetic control in aging is specifically associated with the functional decline rather than with the chronological age of individuals. Thus, the modifications of DNA methylation, representing a drawbridge between the genetic and the environmental factors affecting the age-related decay of the organism, may play an important role in determining physiological changes over old age.
Collapse
Affiliation(s)
- Dina Bellizzi
- Department of Cell Biology, University of Calabria, 87036 Rende, Italy
| | - Patrizia D’Aquila
- Department of Cell Biology, University of Calabria, 87036 Rende, Italy
| | | | | | - Vincenzo Mari
- Italian National Research Center on Aging, 87100 Cosenza, Italy
| | - Bruno Mazzei
- Italian National Research Center on Aging, 87100 Cosenza, Italy
| | | | | |
Collapse
|
353
|
Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, Warren ST. Age-associated DNA methylation in pediatric populations. Genome Res 2012; 22:623-32. [PMID: 22300631 DOI: 10.1101/gr.125187.111] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
DNA methylation (DNAm) plays diverse roles in human biology, but this dynamic epigenetic mark remains far from fully characterized. Although earlier studies uncovered loci that undergo age-associated DNAm changes in adults, little is known about such changes during childhood. Despite profound DNAm plasticity during embryogenesis, monozygotic twins show indistinguishable childhood methylation, suggesting that DNAm is highly coordinated throughout early development. Here we examine the methylation of 27,578 CpG dinucleotides in peripheral blood DNA from a cross-sectional study of 398 boys, aged 3-17 yr, and find significant age-associated changes in DNAm at 2078 loci. These findings correspond well with pyrosequencing data and replicate in a second pediatric population (N = 78). Moreover, we report a deficit of age-related loci on the X chromosome, a preference for specific nucleotides immediately surrounding the interrogated CpG dinucleotide, and a primary association with developmental and immune ontological functions. Meta-analysis (N = 1158) with two adult populations reveals that despite a significant overlap of age-associated loci, most methylation changes do not follow a lifelong linear pattern due to a threefold to fourfold higher rate of change in children compared with adults; consequently, the vast majority of changes are more accurately modeled as a function of logarithmic age. We therefore conclude that age-related DNAm changes in peripheral blood occur more rapidly during childhood and are imperfectly accounted for by statistical corrections that are linear in age, further suggesting that future DNAm studies should be matched closely for age.
Collapse
Affiliation(s)
- Reid S Alisch
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
354
|
Dietary restriction increases site-specific histone H3 acetylation in rat liver: Possible modulation by sirtuins. Biochem Biophys Res Commun 2012; 418:836-40. [DOI: 10.1016/j.bbrc.2012.01.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 11/21/2022]
|
355
|
Abstract
Lifespan prolongation is a common desire of the human race. With advances in biotechnology, the mechanism of aging has been gradually unraveled, laying the theoretical basis of nucleic acid therapy for lifespan prolongation. Regretfully, clinically applicable interventions do not exist without the efforts of converting theory into action, and it is the latter that has been far from adequately addressed at the moment. This was demonstrated by a database search on PubMed and Web of Science, from which only seven studies published between 2000 and 2010 were found to directly touch on the development of nucleic acid therapy for anti-aging and/or longevity enhancing purposes. In light of this, the objective of this article is to overview the current understanding of the intimate association between genes and longevity, and to bring the prospect of nucleic acid therapy for lifespan prolongation to light.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
356
|
de Magalhães JP, Wuttke D, Wood SH, Plank M, Vora C. Genome-environment interactions that modulate aging: powerful targets for drug discovery. Pharmacol Rev 2012; 64:88-101. [PMID: 22090473 PMCID: PMC3250080 DOI: 10.1124/pr.110.004499] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aging is the major biomedical challenge of this century. The percentage of elderly people, and consequently the incidence of age-related diseases such as heart disease, cancer, and neurodegenerative diseases, is projected to increase considerably in the coming decades. Findings from model organisms have revealed that aging is a surprisingly plastic process that can be manipulated by both genetic and environmental factors. Here we review a broad range of findings in model organisms, from environmental to genetic manipulations of aging, with a focus on those with underlying gene-environment interactions with potential for drug discovery and development. One well-studied dietary manipulation of aging is caloric restriction, which consists of restricting the food intake of organisms without triggering malnutrition and has been shown to retard aging in model organisms. Caloric restriction is already being used as a paradigm for developing compounds that mimic its life-extension effects and might therefore have therapeutic value. The potential for further advances in this field is immense; hundreds of genes in several pathways have recently emerged as regulators of aging and caloric restriction in model organisms. Some of these genes, such as IGF1R and FOXO3, have also been associated with human longevity in genetic association studies. The parallel emergence of network approaches offers prospects to develop multitarget drugs and combinatorial therapies. Understanding how the environment modulates aging-related genes may lead to human applications and disease therapies through diet, lifestyle, or pharmacological interventions. Unlocking the capacity to manipulate human aging would result in unprecedented health benefits.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
357
|
Delgado-Calle J, Sañudo C, Fernández AF, García-Renedo R, Fraga MF, Riancho JA. Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics 2012; 7:83-91. [PMID: 22207352 DOI: 10.4161/epi.7.1.18753] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osteoblasts are specialized cells that form new bone and also indirectly influence bone resorption by producing factors that modulate osteoclast differentiation. Although the methylation of CpG islands plays an important role in the regulation of gene expression, there is still scanty information about its role in human bone. The aim of this study was to investigate the influence of CpG methylation on the transcriptional levels of two osteoblast-derived critical factors in the regulation of osteoclastogenesis: the receptor activator of nuclear factor NF-κB ligand (RANKL) and its soluble decoy receptor osteoprotegerin (OPG). Quantitative methylation specific PCR (qMSP) and pyrosequencing analysis in various cell types showed that the methylation of regulatory regions of these genes, in the vicinity of the transcription start sites, repressed gene transcription, whereas an active transcription was associated with low levels of methylation. In addition, treatment with the DNA demethylating agent 5-azadeoxycitidine promoted a 170-fold induction of RANKL and a 20-fold induction of OPG mRNA expression in HEK-293 cells, which showed hypermethylation of the CpG islands and barely expressed RANKL and OPG transcripts at baseline. Transcriptional levels of both genes were also explored in bone tissue samples from patients with hip fractures and hip osteoarthritis. Although RANKL transcript abundance and the RANKL:OPG transcript ratio were significantly higher in patients with fractures than in those with osteoarthritis (RANKL: 0.76 ± 0.23 vs. 0.24 ± 0.08, p = 0.012; RANKL/OPG: 7.66 ± 2.49 vs. 0.92 ± 0.21, p = 0.002), there was no evidence for differential methylation across patient groups. In conclusion, the association between DNA methylation and the repression of RANKL and OPG expression strongly suggests that methylation-dependent mechanisms influence the transcription of these genes, which play a critical role in osteoclastogenesis. However, other mechanisms appear to be involved in the increased RANKL/OPG ratio of patients with osteoporotic fractures.
Collapse
Affiliation(s)
- Jesús Delgado-Calle
- Department of Internal Medicine, Hospital U.M. Valdecilla-IFIMAV, University of Cantabria, RETICEF, Santander, Spain
| | | | | | | | | | | |
Collapse
|
358
|
Abstract
AbstractAccumulating evidence from the field of neuroscience indicates a crucial role for epigenetic regulation of gene expression in development and aging of nervous system and suggests that aberrations in the epigenetic machinery are involved in the etiology of psychiatric disorders. Epidemiologic evidence on epigenetics in psychiatry, however, is currently very sparsely available, but is consistent with a mediating role for epigenetic mechanisms in bringing together inherited and acquired risk factors into a neurodevelopmental etiological model of psychiatric disorders. Here, we review evidence from the epidemiological and neuroscience literature, and aim to converge the evidence into an etiological model of psychiatric disorders that encompasses environmental, genetic and epigenetic contributions. Given the dynamic nature of the epigenetic machinery and the potential reversibility of epigenetic modifications, future well-designed interdisciplinary and translational studies will be of key importance in order to identify new targets for prevention and therapeutic strategies.
Collapse
|
359
|
Driskell I, Oda H, Blanco S, Nascimento E, Humphreys P, Frye M. The histone methyltransferase Setd8 acts in concert with c-Myc and is required to maintain skin. EMBO J 2011; 31:616-29. [PMID: 22117221 PMCID: PMC3273381 DOI: 10.1038/emboj.2011.421] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 10/27/2011] [Indexed: 12/03/2022] Open
Abstract
Keratinocyte-specific ablation of the histone H4K20 methyltransferase Setd8 reveals its essential role in embryonic and postnatal skin homeostasis. Molecularly, the c-myc target gene Setd8 regulates proliferation/differentiation by controlling p63 function. Setd8/PR-Set7/KMT5a-dependent mono-methylation of histone H4 at lysine 20 is essential for mitosis of cultured cells; yet, the functional roles of Setd8 in complex mammalian tissues are unknown. We use skin as a model system to explore how Setd8 may regulate cell division in vivo. Deletion of Setd8 in undifferentiated layers of the mouse epidermis impaired both proliferation and differentiation processes. Long-lived epidermal progenitor cells are lost in the absence of Setd8, leading to an irreversible loss of sebaceous glands and interfollicular epidermis. We show that Setd8 is a transcriptional target of c-Myc and an essential mediator of Myc-induced epidermal differentiation. Deletion of Setd8 in c-Myc-overexpressing skin blocks proliferation and differentiation and causes apoptosis. Increased apoptosis may be explained by our discovery that p63, an essential transcription factor for epidermal commitment is lost, while p53 is gained upon removal of Setd8. Both overexpression of p63 and deletion of p53 rescue Setd8-induced apoptosis. Thus, Setd8 is a crucial inhibitor of apoptosis in skin and its activity is essential for epidermal stem cell survival, proliferation and differentiation.
Collapse
Affiliation(s)
- Iwona Driskell
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
360
|
Yu J, Feng Q, Ruan Y, Komers R, Kiviat N, Bomsztyk K. Microplate-based platform for combined chromatin and DNA methylation immunoprecipitation assays. BMC Mol Biol 2011; 12:49. [PMID: 22098709 PMCID: PMC3247195 DOI: 10.1186/1471-2199-12-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/18/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The processes that compose expression of a given gene are far more complex than previously thought presenting unprecedented conceptual and mechanistic challenges that require development of new tools. Chromatin structure, which is regulated by DNA methylation and histone modification, is at the center of gene regulation. Immunoprecipitations of chromatin (ChIP) and methylated DNA (MeDIP) represent a major achievement in this area that allow researchers to probe chromatin modifications as well as specific protein-DNA interactions in vivo and to estimate the density of proteins at specific sites genome-wide. Although a critical component of chromatin structure, DNA methylation has often been studied independently of other chromatin events and transcription. RESULTS To allow simultaneous measurements of DNA methylation with other genomic processes, we developed and validated a simple and easy-to-use high throughput microplate-based platform for analysis of DNA methylation. Compared to the traditional beads-based MeDIP the microplate MeDIP was more sensitive and had lower non-specific binding. We integrated the MeDIP method with a microplate ChIP assay which allows measurements of both DNA methylation and histone marks at the same time, Matrix ChIP-MeDIP platform. We illustrated several applications of this platform to relate DNA methylation, with chromatin and transcription events at selected genes in cultured cells, human cancer and in a model of diabetic kidney disease. CONCLUSION The high throughput capacity of Matrix ChIP-MeDIP to profile tens and potentially hundreds of different genomic events at the same time as DNA methylation represents a powerful platform to explore complex genomic mechanism at selected genes in cultured cells and in whole tissues. In this regard, Matrix ChIP-MeDIP should be useful to complement genome-wide studies where the rich chromatin and transcription database resources provide fruitful foundation to pursue mechanistic, functional and diagnostic information at genes of interest in health and disease.
Collapse
Affiliation(s)
- Jingjing Yu
- UW Medicine Lake Union, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
361
|
|
362
|
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. It results from an accumulation of genetic and epigenetic changes in colon epithelial cells, which transforms them into adenocarcinomas. Over the past decade, major advances have been made in understanding cancer epigenetics, particularly regarding aberrant DNA methylation. Assessment of the colon cancer epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has hundreds to thousands of abnormally methylated genes. As with gene mutations in the cancer genome, a subset of these methylated genes, called driver genes, is presumed to have a functional role in CRC. The assessment of methylated genes in CRCs has also revealed a unique molecular subgroup of CRCs called CpG island methylator phenotype (CIMP) cancers; these tumors have a particularly high frequency of methylated genes. These advances in our understanding of aberrant methylation in CRC have led to epigenetic alterations being developed as clinical biomarkers for diagnostic, prognostic and therapeutic applications. Progress in this field suggests that these epigenetic alterations will be commonly used in the near future to direct the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Victoria Valinluck Lao
- Department of Surgery, University of Washington, Seattle, WA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA,Department of Medicine, University of Washington Medical School, Seattle, WA
| |
Collapse
|
363
|
Varga F, Karlic H, Thaler R, Klaushofer K. Functional aspects of cytidine-guanosine dinucleotides and their locations in genes. Biomol Concepts 2011; 2:391-405. [DOI: 10.1515/bmc.2011.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/12/2011] [Indexed: 12/31/2022] Open
Abstract
AbstractOriginally, the finding of a particular distribution of cytidine-guanosine dinucleotides (CpGs) in genomic DNA was considered to be an interesting structural feature of eukaryotic genome organization. Despite a global depletion of CpGs, genes are frequently associated with CpG clusters called CpG islands (CGIs). CGIs are prevalently unmethylated but often found methylated in pathologic situations. On the other hand, CpGs outside of CGIs are generally methylated and are found mainly in the heterochromatic fraction of the genome. Hypomethylation of those CpGs is associated with genomic instability in malignancy. Additionally, CpG-rich and CpG-poor regions, as well as CpG-shores, are defined. Usually, the methylation status inversely correlates with gene expression. Methylation of CpGs, as well as demethylation and generation of hydroxmethyl-cytosines, is strictly regulated during development and differentiation. This review deals with the relevance of the organizational features of CpGs and their relation to each other.
Collapse
Affiliation(s)
- Franz Varga
- 1Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - Heidrun Karlic
- 2Ludwig Boltzmann Institute for Leukemia Research and Hematology, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria and Ludwig Boltzmann Cluster Oncology, Vienna, Austria
| | - Roman Thaler
- 1Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - Klaus Klaushofer
- 1Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| |
Collapse
|
364
|
Decottignies A, d'Adda di Fagagna F. Epigenetic alterations associated with cellular senescence: a barrier against tumorigenesis or a red carpet for cancer? Semin Cancer Biol 2011; 21:360-6. [PMID: 21946622 DOI: 10.1016/j.semcancer.2011.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 02/03/2023]
Abstract
Cellular senescence is eminently characterized by a permanent cell cycle arrest and the acquisition of morphological, physiological and epigenetic changes. The establishment of cellular senescence can occur in response to telomere attrition associated with cell turnover and ageing or following oncogene activation. Although seemingly two distinct phenomena, cellular senescence and cancer share similarly altered global epigenetic profiles comprising changes in DNA methylation, involving global hypomethylation of repetitive DNA sequences and regional hypermethylation of some gene promoters, and in histone post-translational modifications. As epigenetic and genetic alterations are likely to act synergistically in cancer, anomalous epigenetic marks acquired during ageing or in response to oncogene activation might play important roles in tumorigenesis and cancer progression. These potentially tumor-promoting epigenetic alterations include transcriptional repression of genes encoding tumor suppressors or developmentally regulated proteins, expression of non-coding repetitive RNAs and acquisition of distinct heterochromatin marks that may contribute to suppress cell death by reducing DNA damage response. Cellular senescence may thus be viewed as a double-edged sword that, although acting as a potent anti-proliferative barrier, may pave the way to tumorigenesis in senescence-escaping cells by altering their epigenetic make up.
Collapse
Affiliation(s)
- Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Catholic University of Louvain, Brussels, Belgium.
| | | |
Collapse
|
365
|
Owen L, Sunram-Lea SI. Metabolic agents that enhance ATP can improve cognitive functioning: a review of the evidence for glucose, oxygen, pyruvate, creatine, and L-carnitine. Nutrients 2011; 3:735-55. [PMID: 22254121 PMCID: PMC3257700 DOI: 10.3390/nu3080735] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/18/2011] [Accepted: 08/04/2011] [Indexed: 11/16/2022] Open
Abstract
Over the past four or five decades, there has been increasing interest in the neurochemical regulation of cognition. This field received considerable attention in the 1980s, with the identification of possible cognition enhancing agents or "smart drugs". Even though many of the optimistic claims for some agents have proven premature, evidence suggests that several metabolic agents may prove to be effective in improving and preserving cognitive performance and may lead to better cognitive aging through the lifespan. Aging is characterized by a progressive deterioration in physiological functions and metabolic processes. There are a number of agents with the potential to improve metabolic activity. Research is now beginning to identify these various agents and delineate their potential usefulness for improving cognition in health and disease. This review provides a brief overview of the metabolic agents glucose, oxygen, pyruvate, creatine, and L-carnitine and their beneficial effects on cognitive function. These agents are directly responsible for generating ATP (adenosine triphosphate) the main cellular currency of energy. The brain is the most metabolically active organ in the body and as such is particularly vulnerable to disruption of energy resources. Therefore interventions that sustain adenosine triphosphate (ATP) levels may have importance for improving neuronal dysfunction and loss. Moreover, recently, it has been observed that environmental conditions and diet can affect transgenerational gene expression via epigenetic mechanisms. Metabolic agents might play a role in regulation of nutritional epigenetic effects. In summary, the reviewed metabolic agents represent a promising strategy for improving cognitive function and possibly slowing or preventing cognitive decline.
Collapse
Affiliation(s)
- Lauren Owen
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, Victoria 3122, Australia;
| | - Sandra I. Sunram-Lea
- Department of Psychology, Fylde College University of Lancaster, Lancaster LA1 4YW, England, UK
| |
Collapse
|
366
|
Mori Y, Olaru AV, Cheng Y, Agarwal R, Yang J, Luvsanjav D, Yu W, Selaru FM, Hutfless S, Lazarev M, Kwon JH, Brant SR, Marohn MR, Hutcheon DF, Duncan MD, Goel A, Meltzer SJ. Novel candidate colorectal cancer biomarkers identified by methylation microarray-based scanning. Endocr Relat Cancer 2011; 18:465-78. [PMID: 21636702 PMCID: PMC3464012 DOI: 10.1530/erc-11-0083] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA hypermethylation is a common epigenetic abnormality in colorectal cancers (CRCs) and a promising class of CRC screening biomarkers. We conducted a genome-wide search for novel neoplasia-specific hypermethylation events in the colon. We applied methylation microarray analysis to identify loci hypermethylated in 17 primary CRCs relative to eight non-neoplastic colonic mucosae (NCs) from neoplasia-free subjects. These CRC-associated hypermethylation events were then individually evaluated for their ability to discriminate neoplastic from non-neoplastic cases, based on real-time quantitative methylation-specific PCR (qMSP) assays in 113 colonic tissues: 51 CRCs, nine adenomas, 19 NCs from CRC patients (CRC-NCs), and 34 NCs from neoplasia-free subjects (control NCs). A strict microarray data filtering identified 169 candidate CRC-associated hypermethylation events. Fourteen of these 169 loci were evaluated using qMSP assays. Ten of these 14 methylation events significantly distinguished CRCs from age-matched control NCs (P<0.05 by receiver operator characteristic curve analysis); methylation of visual system homeobox 2 (VSX2) achieved the highest discriminative accuracy (83.3% sensitivity and 92.3% specificity, P<1×10(-6)), followed by BEN domain containing 4 (BEND4), neuronal pentraxin I (NPTX1), ALX homeobox 3 (ALX3), miR-34b, glucagon-like peptide 1 receptor (GLP1R), BTG4, homer homolog 2 (HOMER2), zinc finger protein 583 (ZNF583), and gap junction protein, gamma 1 (GJC1). Adenomas were significantly discriminated from control NCs by hypermethylation of VSX2, BEND4, NPTX1, miR-34b, GLP1R, and HOMER2 (P<0.05). CRC-NCs were significantly distinguished from control NCs by methylation of ALX3 (P<1×10(-4)). In conclusion, systematic methylome-wide analysis has identified ten novel methylation events in neoplastic and non-neoplastic colonic mucosae from CRC patients. These potential biomarkers significantly discriminate CRC patients from controls. Thus, they merit further evaluation in stool- and circulating DNA-based CRC detection studies.
Collapse
Affiliation(s)
- Yuriko Mori
- Division of Gastroenterology, Department of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Transcriptional repression of repeat-derived transcripts correlates with histone hypoacetylation at repetitive DNA elements in aged mice brain. Exp Gerontol 2011; 46:811-8. [PMID: 21782924 DOI: 10.1016/j.exger.2011.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/28/2011] [Accepted: 07/04/2011] [Indexed: 11/22/2022]
Abstract
In order to better characterize epigenetic alterations at repetitive DNA elements with aging, DNA methylation and histone marks at various repeat classes were investigated. Repetitive DNA elements were hypermethylated in the brains of old mice. Histone hypoacetylation and altered histone trimethylation at repetitive sequences were detected in brain tissues during aging. The expression of repeat-derived transcripts (RDTs) was then measured to explore any correlations with the observed epigenetic alterations. Large numbers of RDTs investigated were down-regulated along with age. Bisulfite sequencing revealed that CpG dinucleotide methylation patterns at the repeats of the RDT promoter region were mostly well maintained during aging. ChIP assay showed that histones were deacetylated at the promoter region of RDTs in aged mice brain. The observations indicate that the transcriptional repression of RDTs appears to be related to histone hypoacetylation, but not to DNA hypermethylation at repeat DNA elements in the brains of aged mice.
Collapse
|
368
|
Feser J, Tyler J. Chromatin structure as a mediator of aging. FEBS Lett 2011; 585:2041-8. [PMID: 21081125 PMCID: PMC3988783 DOI: 10.1016/j.febslet.2010.11.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 11/17/2022]
Abstract
The aging process is characterized by gradual changes to an organism's macromolecules, which negatively impacts biological processes. The complex macromolecular structure of chromatin regulates all nuclear processes requiring access to the DNA sequence. As such, maintenance of chromatin structure is an integral component to deter premature aging. In this review, we describe current research that links aging to chromatin structure. Histone modifications influence chromatin compaction and gene expression and undergo many changes during aging. Histone protein levels also decline during aging, dramatically affecting chromatin structure. Excitingly, lifespan can be extended by manipulations that reverse the age-dependent changes to chromatin structure, indicating the pivotal role chromatin structure plays during aging.
Collapse
Affiliation(s)
- Jason Feser
- Molecular Biology Program, University of Colorado School of Medicine, Aurora, CO, USA
| | | |
Collapse
|
369
|
Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J. Epigenetic mechanisms in Alzheimer's disease. Neurobiol Aging 2011; 32:1161-80. [PMID: 21482442 PMCID: PMC3115415 DOI: 10.1016/j.neurobiolaging.2010.08.017] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 07/20/2010] [Accepted: 08/07/2010] [Indexed: 12/20/2022]
Abstract
Epigenetic modifications help orchestrate sweeping developmental, aging, and disease-causing changes in phenotype by altering transcriptional activity in multiple genes spanning multiple biologic pathways. Although previous epigenetic research has focused primarily on dividing cells, particularly in cancer, recent studies have shown rapid, dynamic, and persistent epigenetic modifications in neurons that have significant neuroendocrine, neurophysiologic, and neurodegenerative consequences. Here, we provide a review of the major mechanisms for epigenetic modification and how they are reportedly altered in aging and Alzheimer's disease (AD). Because of their reach across the genome, epigenetic mechanisms may provide a unique integrative framework for the pathologic diversity and complexity of AD.
Collapse
Affiliation(s)
- Diego Mastroeni
- Banner Sun Health Research Institute, P.O. Box 1278, Sun City, AZ 85372 U.S.A
| | - Andrew Grover
- Banner Sun Health Research Institute, P.O. Box 1278, Sun City, AZ 85372 U.S.A
| | - Elaine Delvaux
- Banner Sun Health Research Institute, P.O. Box 1278, Sun City, AZ 85372 U.S.A
| | - Charisse Whiteside
- Banner Sun Health Research Institute, P.O. Box 1278, Sun City, AZ 85372 U.S.A
| | - Paul D. Coleman
- Banner Sun Health Research Institute, P.O. Box 1278, Sun City, AZ 85372 U.S.A
| | - Joseph Rogers
- Banner Sun Health Research Institute, P.O. Box 1278, Sun City, AZ 85372 U.S.A
| |
Collapse
|
370
|
Liu L, van Groen T, Kadish I, Li Y, Wang D, James SR, Karpf AR, Tollefsbol TO. Insufficient DNA methylation affects healthy aging and promotes age-related health problems. Clin Epigenetics 2011; 2:349-60. [PMID: 22704347 PMCID: PMC3365396 DOI: 10.1007/s13148-011-0042-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 05/29/2011] [Indexed: 01/16/2023] Open
Abstract
DNA methylation plays an integral role in development and aging through epigenetic regulation of genome function. DNA methyltransferase 1 (Dnmt1) is the most prevalent DNA methyltransferase that maintains genomic methylation stability. To further elucidate the function of Dnmt1 in aging and age-related diseases, we exploited the Dnmt1+/− mouse model to investigate how Dnmt1 haploinsufficiency impacts the aging process by assessing the changes of several major aging phenotypes. We confirmed that Dnmt1 haploinsufficiency indeed decreases DNA methylation as a result of reduced Dnmt1 expression. To assess the effect of Dnmt1 haploinsufficiency on general body composition, we performed dual-energy X-ray absorptiometry analysis and showed that reduced Dnmt1 activity decreased bone mineral density and body weight, but with no significant impact on mortality or body fat content. Using behavioral tests, we demonstrated that Dnmt1 haploinsufficiency impairs learning and memory functions in an age-dependent manner. Taken together, our findings point to the interesting likelihood that reduced genomic methylation activity adversely affects the healthy aging process without altering survival and mortality. Our studies demonstrated that cognitive functions of the central nervous system are modulated by Dnmt1 activity and genomic methylation, highlighting the significance of the original epigenetic hypothesis underlying memory coding and function.
Collapse
Affiliation(s)
- Liang Liu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Center for Aging, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Department of Dermatology, Columbia University Medical Center, 1150 St. Nicholas Ave., RM 307, New York, NY 10032 USA
| | - Thomas van Groen
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Inga Kadish
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Yuanyuan Li
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Deli Wang
- Children’s Memorial Research Center, Northwestern University’s Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Smitha R. James
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Adam R. Karpf
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Center for Aging, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Clinical Nutrition Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
371
|
Allele-specific, age-dependent and BMI-associated DNA methylation of human MCHR1. PLoS One 2011; 6:e17711. [PMID: 21637341 PMCID: PMC3102661 DOI: 10.1371/journal.pone.0017711] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 02/11/2011] [Indexed: 12/15/2022] Open
Abstract
Background Melanin-concentrating hormone receptor 1 (MCHR1) plays a significant role in regulation of energy balance, food intake, physical activity and body weight in humans and rodents. Several association studies for human obesity showed contrary results concerning the SNPs rs133072 (G/A) and rs133073 (T/C), which localize to the first exon of MCHR1. The variations constitute two main haplotypes (GT, AC). Both SNPs affect CpG dinucleotides, whereby each haplotype contains a potential methylation site at one of the two SNP positions. In addition, 15 CpGs in close vicinity of these SNPs constitute a weak CpG island. Here, we studied whether DNA methylation in this sequence context may contribute to population- and age-specific effects of MCHR1 alleles in obesity. Principal Findings We analyzed DNA methylation of a 315 bp region of MCHR1 encompassing rs133072 and rs133073 and the CpG island in blood samples of 49 individuals by bisulfite sequencing. The AC haplotype shows a significantly higher methylation level than the GT haplotype. This allele-specific methylation is age-dependent. In young individuals (20–30 years) the difference in DNA methylation between haplotypes is significant; whereas in individuals older than 60 years it is not detectable. Interestingly, the GT allele shows a decrease in methylation status with increasing BMI, whereas the methylation of the AC allele is not associated with this phenotype. Heterozygous lymphoblastoid cell lines show the same pattern of allele-specific DNA methylation. The cell line, which exhibits the highest difference in methylation levels between both haplotypes, also shows allele-specific transcription of MCHR1, which can be abolished by treatment with the DNA methylase inhibitor 5-aza-2′-deoxycytidine. Conclusions We show that DNA methylation at MCHR1 is allele-specific, age-dependent, BMI-associated and affects transcription. Conceivably, this epigenetic regulation contributes to the age- and/or population specific effects reported for MCHR1 in several human obesity studies.
Collapse
|
372
|
Chouliaras L, van den Hove DLA, Kenis G, Dela Cruz J, Lemmens MAM, van Os J, Steinbusch HWM, Schmitz C, Rutten BPF. Caloric restriction attenuates age-related changes of DNA methyltransferase 3a in mouse hippocampus. Brain Behav Immun 2011; 25:616-23. [PMID: 21172419 DOI: 10.1016/j.bbi.2010.11.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/08/2010] [Accepted: 11/28/2010] [Indexed: 01/06/2023] Open
Abstract
Recent studies have suggested that DNA methylation is implicated in age-related changes in gene expression as well as in cognition. DNA methyltransferase 3a (Dnmt3a), which catalyzes DNA methylation, is essential for memory formation and underlying changes in neuronal and synaptic plasticity. Because caloric restriction (CR) and upregulation of antioxidants have been suggested as strategies to attenuate age-related alterations in the brain, we hypothesized that both a diet restricted in calories and transgenic overexpression of normal human Cu/Zn superoxide dismutase 1 (SOD) attenuate age-related changes in Dnmt3a in the aging mouse hippocampus. For this purpose, we performed qualitative and quantitative analyses of Dnmt3a-immunoreactivity (IR) for the hippocampal dentate gyrus (DG), CA3 and CA1-2 regions in 12- and 24-month-old mice from 4 groups, i.e. (1) wild-type (WT) mice on a control diet (WT-CD), (2) SOD-CD mice, (3) WT mice on CR (WT-CR), and (4) SOD-CR. Qualitative analyses revealed two types of Dnmt3a immunoreactive cells: type I cells--present throughout all hippocampal cell layers showing moderate levels of nuclear Dnmt3a-IR, and type II cells--a subpopulation of hippocampal cells showing very intense nuclear Dnmt3a-IR, and colocalization with Bromodeoxyuridine. Quantitative analyses indicated that the age-related increase in Dnmt3a-IR within the CA3 and CA1-2 in type I cells was attenuated by CR, but not by SOD overexpression. In contrast, the density of type II Dnmt3a immunoreactive cells showed an age-related reduction, without significant effects of both CR and SOD. These changes in Dnmt3a levels in the mouse hippocampus may have a significant impact on gene expression and associated cognitive functioning.
Collapse
Affiliation(s)
- L Chouliaras
- School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, Boileau P, Le Bouc Y, Deal CL, Lillycrop K, Scharfmann R, Sheppard A, Skinner M, Szyf M, Waterland RA, Waxman DJ, Whitelaw E, Ong K, Albertsson-Wikland K. Child health, developmental plasticity, and epigenetic programming. Endocr Rev 2011; 32:159-224. [PMID: 20971919 PMCID: PMC3365792 DOI: 10.1210/er.2009-0039] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 08/27/2010] [Indexed: 11/19/2022]
Abstract
Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developmental origins of health and disease and life-history transitions are purported to use placental, nutritional, and endocrine cues for setting long-term biological, mental, and behavioral strategies in response to local ecological and/or social conditions. The window of developmental plasticity extends from preconception to early childhood and involves epigenetic responses to environmental changes, which exert their effects during life-history phase transitions. These epigenetic responses influence development, cell- and tissue-specific gene expression, and sexual dimorphism, and, in exceptional cases, could be transmitted transgenerationally. Translational epigenetic research in child health is a reiterative process that ranges from research in the basic sciences, preclinical research, and pediatric clinical research. Identifying the epigenetic consequences of fetal programming creates potential applications in clinical practice: the development of epigenetic biomarkers for early diagnosis of disease, the ability to identify susceptible individuals at risk for adult diseases, and the development of novel preventive and curative measures that are based on diet and/or novel epigenetic drugs.
Collapse
Affiliation(s)
- Z Hochberg
- Rambam Medical Center, Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Marques SCF, Oliveira CR, Pereira CMF, Outeiro TF. Epigenetics in neurodegeneration: a new layer of complexity. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:348-55. [PMID: 20736041 DOI: 10.1016/j.pnpbp.2010.08.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/14/2010] [Accepted: 08/11/2010] [Indexed: 11/25/2022]
Abstract
Several diseases are known to have a multifactorial origin, depending not only on genetic but also on environmental factors. They are called "complex disorders" and include cardiovascular disease, cancer, diabetes, and neuropsychiatric and neurodegenerative diseases. In the latter class, Alzheimer's (AD) and Parkinson's diseases (PD) are by far the most common in the elderly and constitute a tremendous social and economical problem. Both disorders present familial and sporadic forms and although some polymorphisms and risk factors have been associated with AD and PD, the precise way by which the environment contributes to neurodegeneration is still unclear. Recent studies suggest that environmental factors may contribute for neurodegeneration through induction of epigenetic modifications, such as DNA methylation, and chromatin remodeling, which may induce alterations in gene expression programs. Epigenetics, which refers to any process that alters gene activity without changing the actual DNA sequence, and leads to modifications that can be transmitted to daughter cells, is a relatively novel area of research that is currently attracting a high level of interest. Epigenetic modulation is present since the prenatal stages, and the aging process is now accepted to be associated with a loss of phenotypic plasticity to epigenetic modifications. Since aging is the most important risk factor for idiopathic AD and PD, it is expected that epigenetic alterations on DNA and/or chromatin structure may also accumulate in neurodegeneration, accounting at least in part to the etiology of these disorders.
Collapse
Affiliation(s)
- Sueli C F Marques
- Programa Doutoral em Biologia Experimental e Biomedicina, Centro de Neurociências e Biologia Celular, Coimbra, Portugal
| | | | | | | |
Collapse
|
375
|
|
376
|
Koch CM, Suschek CV, Lin Q, Bork S, Goergens M, Joussen S, Pallua N, Ho AD, Zenke M, Wagner W. Specific age-associated DNA methylation changes in human dermal fibroblasts. PLoS One 2011; 6:e16679. [PMID: 21347436 PMCID: PMC3035656 DOI: 10.1371/journal.pone.0016679] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/23/2010] [Indexed: 11/17/2022] Open
Abstract
Epigenetic modifications of cytosine residues in the DNA play a critical role for cellular differentiation and potentially also for aging. In mesenchymal stromal cells (MSC) from human bone marrow we have previously demonstrated age-associated methylation changes at specific CpG-sites of developmental genes. In continuation of this work, we have now isolated human dermal fibroblasts from young (<23 years) and elderly donors (>60 years) for comparison of their DNA methylation profiles using the Infinium HumanMethylation27 assay. In contrast to MSC, fibroblasts could not be induced towards adipogenic, osteogenic and chondrogenic lineage and this is reflected by highly significant differences between the two cell types: 766 CpG sites were hyper-methylated and 752 CpG sites were hypo-methylated in fibroblasts in comparison to MSC. Strikingly, global DNA methylation profiles of fibroblasts from the same dermal region clustered closely together indicating that fibroblasts maintain positional memory even after in vitro culture. 75 CpG sites were more than 15% differentially methylated in fibroblasts upon aging. Very high hyper-methylation was observed in the aged group within the INK4A/ARF/INK4b locus and this was validated by pyrosequencing. Age-associated DNA methylation changes were related in fibroblasts and MSC but they were often regulated in opposite directions between the two cell types. In contrast, long-term culture associated changes were very consistent in fibroblasts and MSC. Epigenetic modifications at specific CpG sites support the notion that aging represents a coordinated developmental mechanism that seems to be regulated in a cell type specific manner.
Collapse
Affiliation(s)
- Carmen M. Koch
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Christoph V. Suschek
- Department of Plastic and Reconstructive Surgery, Hand Surgery, Burn Center, RWTH Aachen University Medical School, Aachen, Germany
| | - Qiong Lin
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Simone Bork
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
- Heidelberg Academy of Sciences and Humanities, Heidelberg, Germany
| | - Maria Goergens
- Department of Plastic and Reconstructive Surgery, Hand Surgery, Burn Center, RWTH Aachen University Medical School, Aachen, Germany
| | - Sylvia Joussen
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Norbert Pallua
- Department of Plastic and Reconstructive Surgery, Hand Surgery, Burn Center, RWTH Aachen University Medical School, Aachen, Germany
| | - Anthony D. Ho
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Martin Zenke
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
377
|
Obermann-Borst SA, van Driel LMJW, Helbing WA, de Jonge R, Wildhagen MF, Steegers EAP, Steegers-Theunissen RPM. Congenital heart defects and biomarkers of methylation in children: a case-control study. Eur J Clin Invest 2011; 41:143-50. [PMID: 20868449 DOI: 10.1111/j.1365-2362.2010.02388.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Derangements in the maternal methylation pathway, expressed by global hypomethylation and hyperhomocysteinemia, are associated with the risk of having a child with a congenital heart defect (CHD). It is not known whether periconception exposure to these metabolic derangements contributes to chromosome segregation and metabolic programming of this pathway in the foetus. DESIGN In a Dutch population-based case-control study of 143 children with CHD and 186 healthy children, we investigated S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), total homocysteine (tHcy), the vitamins folate and B12 and the functional single nucleotide polymorphisms in the folate gene MTHFR 677C>T and 1298A>C. Comparisons were made between cases and controls adjusting for age, medication, vitamin use and CHD family history. RESULTS In the overall CHD group, the median concentrations of SAM (P = 0·011), folate in serum (P = 0·021) and RBC (P = 0·030) were significantly higher than in the controls. Subgroup analysis showed that this was mainly attributable to complex CHD with higher SAM (P < 0·001), SAH (P = 0·012) and serum folate (P = 0·010) independent of carriership of MTHFR polymorphisms. Highest concentrations of SAM, SAH and folate RBC were observed in complex syndromic CHD. The subgroup of children with Down syndrome, however, showed significantly higher SAH (P = 0·037) and significantly lower SAM:SAH ratio (P = 0·034) compared with other complex CHD, suggesting a state of global hypomethylation. CONCLUSION High concentrations of methylation biomarkers in very young children are associated with complex CHD. Down syndrome and CHD may be associated with a global hypomethylation status, which has to be confirmed in tissues and global DNA methylation in future studies.
Collapse
Affiliation(s)
- Sylvia A Obermann-Borst
- Department of Obstetrics and Gynaecology/Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
378
|
Olmos Y, Brosens JJ, Lam EWF. Interplay between SIRT proteins and tumour suppressor transcription factors in chemotherapeutic resistance of cancer. Drug Resist Updat 2011; 14:35-44. [PMID: 21195657 DOI: 10.1016/j.drup.2010.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/20/2022]
Abstract
Sirtuins, commonly referred to as SIRTs, are a family of seven mammalian NAD+-dependent deacetylases implicated in the regulation of critical biological processes, including metabolism, cell division, differentiation, survival, and senescence. These diverse functions reflect the ability of SIRTs to target and modify a broad spectrum of protein substrates, including cytoskeletal proteins, signalling components, transcription factors, and histones. SIRTs are also implicated in tumorigenesis as well as in the response of the tumour to chemotherapy. In particular, SIRT1 has been found to be overexpressed in many drug resistant cancers. Emerging evidence suggests that the role of SIRTs in drug resistance may be foremost related to their ability to target and modulate the activity of tumour suppressors, including p53, p73, E2F1, and FOXO3a. In other words, while SIRT-dependent deacetylation of transcription factors is normally used to fine-tune gene expression, this function is hijacked by cancer cells to evade proliferative arrest and cell death in response to chemotherapy. Consequently, interventions predicated on disrupting the interactions between tumour suppressors and SIRTs may be effective in circumventing or reversing drug resistance in cancer.
Collapse
Affiliation(s)
- Yolanda Olmos
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W120NN, UK
| | | | | |
Collapse
|
379
|
Abstract
Organismal aging and longevity are influenced by many complex interacting factors. Epigenetics has recently emerged as another possible determinant of aging. Here, we review some of the epigenetic pathways that contribute to cellular senescence and age-associated phenotypes. Strategies aimed to reverse age-linked epigenetic alterations may lead to the development of new therapeutic interventions to delay or alleviate some of the most debilitating age-associated diseases.
Collapse
Affiliation(s)
- Ursula Muñoz-Najar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA.
| | | |
Collapse
|
380
|
|
381
|
Genescà A, Pampalona J, Frías C, Domínguez D, Tusell L. Role of telomere dysfunction in genetic intratumor diversity. Adv Cancer Res 2011; 112:11-41. [PMID: 21925300 DOI: 10.1016/b978-0-12-387688-1.00002-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most solid tumors are unable to maintain the stability of their genomes at the chromosome level. Indeed, cancer cells display highly rearranged karyotypes containing translocations, amplifications, deletions, and gains and losses of whole chromosomes, which reshuffle steadily. This chromosomal instability most likely occurs early in the development of cancer, and may represent an important step in promoting the multiple genetic changes required for the initiation and/or progression of the disease. Different mechanisms may underlie chromosome instability in cancer cells, but a prominent role for telomeres, the tip of linear chromosomes, has been determined. Telomeres are ribonucleoprotein structures that prevent natural chromosome ends being recognized as DNA double-strand breaks, by adopting a loop structure. Loss of telomere function appears from either alteration on telomere-binding proteins or from the progressive telomere shortening that normally occurs under physiological conditions in the majority of cells in tissues. Importantly, unmasked telomeres may either trigger the senescent phenotype that has been linked to the aging process or may initiate the chromosome instability needed for cancer development, depending on the integrity of the DNA damage checkpoint responses. Telomere dysfunction contributes to chromosome instability through end-to-end chromosome fusions entering breakage-fusion-bridge (BFB) cycles. Resolution of chromatin bridge intermediates is likely to contribute greatly to the generation of segmental chromosome amplification events, unbalanced chromosome rearrangements, and whole chromosome aneuploidy. Noteworthy is the fact that telomere length heterogeneity among individuals may directly influence the scrambling of the genome at tumor initiation. However, reiterated BFB cycles would randomly reorganize the cell karyotype, thus increasing the genetic diversity that characterizes tumor cells. Even though a direct link is still lacking, multiple evidence lead one to believe that telomere dysfunction directly contributes to cancer development in humans. The expansion of highly unstable cells due to telomere dysfunction enhances the genetic diversity needed to fuel specific mutations that may promote cell immortalization and the acquisition of a tumor phenotype.
Collapse
|
382
|
McHale CM, Zhang L, Hubbard AE, Smith MT. Toxicogenomic profiling of chemically exposed humans in risk assessment. Mutat Res 2010; 705:172-83. [PMID: 20382258 PMCID: PMC2928857 DOI: 10.1016/j.mrrev.2010.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/01/2010] [Indexed: 12/13/2022]
Abstract
Gene-environment interactions contribute to complex disease development. The environmental contribution, in particular low-level and prevalent environmental exposures, may constitute much of the risk and contribute substantially to disease. Systematic risk evaluation of the majority of human chemical exposures, has not been conducted and is a goal of regulatory agencies in the U.S. and worldwide. With the recent recognition that toxicological approaches more predictive of effects in humans are required for risk assessment, in vitro human cell line data as well as animal data are being used to identify toxicity mechanisms that can be translated into biomarkers relevant to human exposure studies. In this review, we discuss how data from toxicogenomic studies of exposed human populations can inform risk assessment, by generating biomarkers of exposure, early effect, and/or susceptibility, elucidating mechanisms of action underlying exposure-related disease, and detecting response at low doses. Good experimental design incorporating precise, individual exposure measurements, phenotypic anchors (pre-disease or traditional toxicological markers), and a range of relevant exposure levels, is necessary. Further, toxicogenomic studies need to be designed with sufficient power to detect true effects of the exposure. As more studies are performed and incorporated into databases such as the Comparative Toxicogenomics Database (CTD) and Chemical Effects in Biological Systems (CEBS), data can be mined for classification of newly tested chemicals (hazard identification), and, for investigating the dose-response, and inter-relationship among genes, environment and disease in a systems biology approach (risk characterization).
Collapse
Affiliation(s)
- Cliona M. McHale
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Luoping Zhang
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Alan E. Hubbard
- School of Public Health, Division of Biostatistics, University of California, Berkeley, CA 94720
| | - Martyn T. Smith
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| |
Collapse
|
383
|
Matsumoto L, Takuma H, Tamaoka A, Kurisaki H, Date H, Tsuji S, Iwata A. CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson's disease. PLoS One 2010; 5:e15522. [PMID: 21124796 PMCID: PMC2991358 DOI: 10.1371/journal.pone.0015522] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/13/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alpha-synuclein (SNCA) gene expression is an important factor in the pathogenesis of Parkinson's disease (PD). Gene multiplication can cause inherited PD, and promoter polymorphisms that increase SNCA expression are associated with sporadic PD. CpG methylation in the promoter region may also influence SNCA expression. METHODOLOGY/PRINCIPAL FINDINGS By using cultured cells, we identified a region of the SNCA CpG island in which the methylation status altered along with increased SNCA expression. Postmortem brain analysis revealed regional non-specific methylation differences in this CpG region in the anterior cingulate and putamen among controls and PD; however, in the substantia nigra of PD, methylation was significantly decreased. CONCLUSIONS/SIGNIFICANCE This CpG region may function as an intronic regulatory element for SNCA gene. Our findings suggest that a novel epigenetic regulatory mechanism controlling SNCA expression influences PD pathogenesis.
Collapse
Affiliation(s)
- Lumine Matsumoto
- Division of Neuroscience, Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
384
|
Wong CM, Anderton DL, Smith-Schneider S, Wing MA, Greven MC, Arcaro KF. Quantitative analysis of promoter methylation in exfoliated epithelial cells isolated from breast milk of healthy women. Epigenetics 2010; 5:645-55. [PMID: 20716965 DOI: 10.4161/epi.5.7.12961] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Promoter methylation analysis of genes frequently silenced in breast cancer is a promising indicator of breast cancer risk, as these methylation events are thought to occur long before presentation of disease. The numerous exfoliated epithelial cells present in breast milk may provide the breast epithelial DNA needed for detailed methylation analysis and assessment of breast cancer risk. Fresh breast milk samples and health, lifestyle, and reproductive history questionnaires were collected from 111 women. Pyrosequencing analysis was conducted on DNA isolated from the exfoliated epithelial cells immunomagnetically separated from the total cell population in the breast milk of 102 women. A total of 65 CpG sites were examined in six tumor suppressor genes: PYCARD (also known as ASC or TMS1), CDH1, GSTP1, RBP1 (also known as CRBP1), SFRP1, and RASSF1. A sufficient quantity of DNA was obtained for meaningful analysis of promoter methylation; women donated an average of 86 ml of milk with a mean yield of 32,700 epithelial cells per ml. Methylation scores were in general low as expected of benign tissue, but analysis of outlier methylation scores revealed a significant relationship between breast cancer risk, as indicated by previous biopsy, and methylation score for several CpG sites in CDH1, GSTP1, SFRP1, and RBP1. Methylation of RASSF1 was positively correlated with women's age irrespective of her reproductive history. Promoter methylation patterns in DNA from breast milk epithelial cells can likely be used to assess breast cancer risk. Additional studies of women at high breast cancer risk are warranted.
Collapse
Affiliation(s)
- Chung M Wong
- Department of Veterinary & Animal Science, University of Massachusetts at Amherst, MA, USA
| | | | | | | | | | | |
Collapse
|
385
|
Lin H, Kwan AL, Dutcher SK. Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii. PLoS Genet 2010; 6:e1001105. [PMID: 20838591 PMCID: PMC2936527 DOI: 10.1371/journal.pgen.1001105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/02/2010] [Indexed: 01/30/2023] Open
Abstract
The essential coenzyme nicotinamide adenine dinucleotide (NAD+) plays important roles in metabolic reactions and cell regulation in all organisms. Bacteria, fungi, plants, and animals use different pathways to synthesize NAD+. Our molecular and genetic data demonstrate that in the unicellular green alga Chlamydomonas NAD+ is synthesized from aspartate (de novo synthesis), as in plants, or nicotinamide, as in mammals (salvage synthesis). The de novo pathway requires five different enzymes: L-aspartate oxidase (ASO), quinolinate synthetase (QS), quinolate phosphoribosyltransferase (QPT), nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT), and NAD+ synthetase (NS). Sequence similarity searches, gene isolation and sequencing of mutant loci indicate that mutations in each enzyme result in a nicotinamide-requiring mutant phenotype in the previously isolated nic mutants. We rescued the mutant phenotype by the introduction of BAC DNA (nic2-1 and nic13-1) or plasmids with cloned genes (nic1-1 and nic15-1) into the mutants. NMNAT, which is also in the de novo pathway, and nicotinamide phosphoribosyltransferase (NAMPT) constitute the nicotinamide-dependent salvage pathway. A mutation in NAMPT (npt1-1) has no obvious growth defect and is not nicotinamide-dependent. However, double mutant strains with the npt1-1 mutation and any of the nic mutations are inviable. When the de novo pathway is inactive, the salvage pathway is essential to Chlamydomonas for the synthesis of NAD+. A homolog of the human SIRT6-like gene, SRT2, is upregulated in the NS mutant, which shows a longer vegetative life span than wild-type cells. Our results suggest that Chlamydomonas is an excellent model system to study NAD+ metabolism and cell longevity.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alan L. Kwan
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
386
|
Abstract
Despite advances in the prevention and management of cardiovascular disease (CVD), this group of multifactorial disorders remains a leading cause of mortality worldwide. CVD is associated with multiple genetic and modifiable risk factors; however, known environmental and genetic influences can only explain a small part of the variability in CVD risk, which is a major obstacle for its prevention and treatment. A more thorough understanding of the factors that contribute to CVD is, therefore, needed to develop more efficacious and cost-effective therapy. Application of the 'omics' technologies will hopefully make these advances a reality. Epigenomics has emerged as one of the most promising areas that will address some of the gaps in our current knowledge of the interaction between nature and nurture in the development of CVD. Epigenetic mechanisms include DNA methylation, histone modification, and microRNA alterations, which collectively enable the cell to respond quickly to environmental changes. A number of CVD risk factors, such as nutrition, smoking, pollution, stress, and the circadian rhythm, have been associated with modification of epigenetic marks. Further examination of these mechanisms may lead to earlier prevention and novel therapy for CVD.
Collapse
Affiliation(s)
- José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| | | |
Collapse
|
387
|
Voelter-Mahlknecht S, Mahlknecht U. The sirtuins in the pathogenesis of cancer. Clin Epigenetics 2010; 1:71-83. [PMID: 22704201 PMCID: PMC3365368 DOI: 10.1007/s13148-010-0008-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 08/05/2010] [Indexed: 12/31/2022] Open
Abstract
Aging is the natural trace that time leaves behind on life during blossom and maturation, culminating in senescence and death. This process is accompanied by a decline in the healthy function of multiple organ systems, leading to increased incidence and mortality from diseases such as diabetes, cancer, cardiovascular disease, and neurodegeneration. Based on the fact that both sirtuin expression and activity appear to be upregulated in some types of cancer while they are being downregulated in others, there is quite some controversy stirring up as to the role of sirtuins, acting as cancer suppressors in some cases while under other circumstances they may promote cellular malignancy. It is therefore currently quite unclear as to what extent and under which particular circumstances sirtuin activators and/or inhibitors will find their place in the treatment of age-related disease and cancer. In this review, we take an effort to bring together the highlights of sirtuin research in order to shed some light on the mechanistic impact that sirtuins have on the pathogenesis of cellular malignancy.
Collapse
Affiliation(s)
- Susanne Voelter-Mahlknecht
- Department of Internal Medicine, Division of Immunotherapy and Gene Therapy, José Carreras Center for Immunotherapy and Gene Therapy, Saarland University Medical Center, 66421 Homburg, Saarland Germany
| | | |
Collapse
|
388
|
Szarc vel Szic K, Ndlovu MN, Haegeman G, Vanden Berghe W. Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem Pharmacol 2010; 80:1816-32. [PMID: 20688047 DOI: 10.1016/j.bcp.2010.07.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/19/2010] [Accepted: 07/23/2010] [Indexed: 01/05/2023]
Abstract
Numerous clinical, physiopathological and epidemiological studies have underlined the detrimental or beneficial role of nutritional factors in complex inflammation related disorders such as allergy, asthma, obesity, type 2 diabetes, cardiovascular disease, rheumatoid arthritis and cancer. Today, nutritional research has shifted from alleviating nutrient deficiencies to chronic disease prevention. It is known that lifestyle, environmental conditions and nutritional compounds influence gene expression. Gene expression states are set by transcriptional activators and repressors and are often locked in by cell-heritable chromatin states. Only recently, it has been observed that the environmental conditions and daily diet can affect transgenerational gene expression via "reversible" heritable epigenetic mechanisms. Epigenetic changes in DNA methylation patterns at CpG sites (epimutations) or corrupt chromatin states of key inflammatory genes and noncoding RNAs, recently emerged as major governing factors in cancer, chronic inflammatory and metabolic disorders. Reciprocally, inflammation, metabolic stress and diet composition can also change activities of the epigenetic machinery and indirectly or directly change chromatin marks. This has recently launched re-exploration of anti-inflammatory bioactive food components for characterization of their effects on epigenome modifying enzymatic activities (acetylation, methylation, phosphorylation, ribosylation, oxidation, ubiquitination, sumoylation). This may allow to improve healthy aging by reversing disease prone epimutations involved in chronic inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, Gent, Belgium
| | | | | | | |
Collapse
|
389
|
Abstract
Genomes are organized into complex higher-order structures by folding of the DNA into chromatin fibers, chromosome domains, and ultimately chromosomes. The higher-order organization of genomes is functionally important for gene regulation and control of gene expression programs. Defects in how chromatin is globally organized are relevant for physiological and pathological processes. Mutations and transcriptional misregulation of several global genome organizers are linked to human diseases and global alterations in chromatin structure are emerging as key players in maintenance of genome stability, aging, and the formation of cancer translocations.
Collapse
Affiliation(s)
- Tom Misteli
- National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.
| |
Collapse
|
390
|
Scott JL, Gabrielides C, Davidson RK, Swingler TE, Clark IM, Wallis GA, Boot-Handford RP, Kirkwood TB, Talyor RW, Young DA. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis 2010; 69:1502-10. [PMID: 20511611 PMCID: PMC3789136 DOI: 10.1136/ard.2009.119966] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Oxidative stress is proposed as an important factor in osteoarthritis (OA). OBJECTIVE To investigate the expression of the three superoxide dismutase (SOD) antioxidant enzymes in OA. METHODS SOD expression was determined by real-time PCR and immunohistochemistry using human femoral head cartilage. SOD2 expression in Dunkin-Hartley guinea pig knee articular cartilage was determined by immunohistochemistry. The DNA methylation status of the SOD2 promoter was determined using bisulphite sequencing. RNA interference was used to determine the consequence of SOD2 depletion on the levels of reactive oxygen species (ROS) using MitoSOX and collagenases, matrix metalloproteinase 1 (MMP-1) and MMP-13, gene expression. RESULTS All three SOD were abundantly expressed in human cartilage but were markedly downregulated in end-stage OA cartilage, especially SOD2. In the Dunkin-Hartley guinea pig spontaneous OA model, SOD2 expression was decreased in the medial tibial condyle cartilage before, and after, the development of OA-like lesions. The SOD2 promoter had significant DNA methylation alterations in OA cartilage. Depletion of SOD2 in chondrocytes increased ROS but decreased collagenase expression. CONCLUSION This is the first comprehensive expression profile of all SOD genes in cartilage and, importantly, using an animal model, it has been shown that a reduction in SOD2 is associated with the earliest stages of OA. A decrease in SOD2 was found to be associated with an increase in ROS but a reduction of collagenase gene expression, demonstrating the complexities of ROS function.
Collapse
Affiliation(s)
- Jenny L. Scott
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Christos Gabrielides
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rose K. Davidson
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | - Ian M. Clark
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Gillian A. Wallis
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Raymond P. Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Tom B.L. Kirkwood
- Institute for Ageing and Health, Newcastle University, Newcastle-upon-Tyne, UK
| | - Robert W. Talyor
- Institute for Ageing and Health, Newcastle University, Newcastle-upon-Tyne, UK
| | - David A. Young
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
391
|
Abrass CK, Hansen K, Popov V, Denisenko O. Alterations in chromatin are associated with increases in collagen III expression in aging nephropathy. Am J Physiol Renal Physiol 2010; 300:F531-9. [PMID: 20610530 DOI: 10.1152/ajprenal.00237.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aging nephropathy is a slowly progressive fibrotic process that affects all compartments of the kidney and eventually impairs kidney function; however, little is known about the mechanisms that contribute to this process. These studies examined the epigenetic control of expression of collagen III (Col3a1), a matrix protein that contributes to kidney fibrosis. Using real-time PCR, Western blotting, and chromatin immunoprecipitation assay of kidneys harvested from 4- and 24-mo-old ad libitum-fed F344 rats, we found increased transcription of Col3a1 that was associated with increased RNA polymerase II recruitment despite elevated posttranslational histone modification (H3K27me3) normally associated with gene silencing. A reduction in the density of another repressive modification (H3K9me3) at the Col3a1 locus in aged rats suggests that cooperation between Polycomb- and heterochromatin-mediated systems are required to maintain repression of the Col3a1 gene. These findings demonstrate alterations in epigenetic control of gene expression in association with the fibrosis of aging nephropathy.
Collapse
Affiliation(s)
- Christine K Abrass
- Primary and Specialty Care Medicine, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
| | | | | | | |
Collapse
|
392
|
Mentis AFA, Kararizou E. Does ageing originate in utero? Biogerontology 2010; 11:725-9. [PMID: 20607402 DOI: 10.1007/s10522-010-9293-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 06/19/2010] [Indexed: 11/30/2022]
Abstract
Ageing still remains a conundrum on the cellular and molecular level, while environmental factors and interactions further increase the complexity of the ageing process. On the other hand is cancer, for which 20 years ago, it was proposed by Trichopoulos that it might have intrauterine origin. We herein discuss the idea that parameters such as the influence of insulin-like growth factor (IGF) signalling, of hormones and of the number of stem cells, as well as the effect of foetal and early life nutrition on ageing may also commence in utero and we provide epidemiological and biological data to advocate for this hypothesis. Finally, we analyse the public health implication of this hypothesis based on the World Health Organization (WHO) report that the burden of diseases, including ageing, may be due to impaired foetal development.
Collapse
|
393
|
Passarino G, Rose G, Bellizzi D. Mitochondrial function, mitochondrial DNA and ageing: a reappraisal. Biogerontology 2010; 11:575-88. [PMID: 20602257 DOI: 10.1007/s10522-010-9294-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/22/2010] [Indexed: 01/13/2023]
Abstract
The impressive performance of the research in biology of mitochondrion has greatly improved our knowledge on the functions of this organelle and highlighted the influence its functioning has on numerous human phenotypes. In particular, many studies have focused on the involvement of mitochondrion function (and dysfunction) in human ageing. To date, the literature in this specific field of mitochondrial biology is so vast that it is often difficult to properly put new data and new findings in the right context. The present paper aims to review the findings of the last few years in order to outline a general framework to understand how mitochondria can affect ageing and how ageing affects mitochondria.
Collapse
|
394
|
Stauffer BL, DeSouza CA. Epigenetics: an emerging player in health and disease. J Appl Physiol (1985) 2010; 109:230-1. [DOI: 10.1152/japplphysiol.00530.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Brian L. Stauffer
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora; and
- Denver Health Medical Center, Denver, Colorado
| | - Christopher A. DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora; and
| |
Collapse
|
395
|
de Magalhães JP, Finch CE, Janssens G. Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res Rev 2010; 9:315-23. [PMID: 19900591 DOI: 10.1016/j.arr.2009.10.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/17/2009] [Accepted: 10/28/2009] [Indexed: 01/08/2023]
Abstract
Recent technological advances that allow faster and cheaper DNA sequencing are now driving biological and medical research. In this review, we provide an overview of state-of-the-art next-generation sequencing (NGS) platforms and their applications, including in genome sequencing and resequencing, transcriptional profiling (RNA-Seq) and high-throughput survey of DNA-protein interactions (ChIP-Seq) and of the epigenome. Particularly, we focus on how new methods made possible by NGS can help unravel the biological and genetic mechanisms of aging, longevity and age-related diseases. In the same way, however, NGS platforms open discovery not available before, they also give rise to new challenges, in particular in processing, analyzing and interpreting the data. Bioinformatics and software issues plus statistical difficulties in genome-wide studies are discussed, as well as the use of targeted sequencing to decrease costs and facilitate statistical analyses. Lastly, we discuss a number of methods to gather biological insights from massive amounts of data, such as functional enrichment, transcriptional regulation and network analyses. Although in the fast-moving field of NGS new platforms will soon take center stage, the approaches made possible by NGS will be at the basis of molecular biology, genetics and systems biology for years to come, making them instrumental for research on aging.
Collapse
|
396
|
Vogt G. Suitability of the clonal marbled crayfish for biogerontological research: a review and perspective, with remarks on some further crustaceans. Biogerontology 2010; 11:643-69. [PMID: 20582627 DOI: 10.1007/s10522-010-9291-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/11/2010] [Indexed: 12/20/2022]
Abstract
This article examines the suitability of the parthenogenetic marbled crayfish for research on ageing and longevity. The marbled crayfish is an emerging laboratory model for development, epigenetics and toxicology that produces up to 400 genetically identical siblings per batch. It is easily cultured, has an adult size of 4-9 cm, a generation time of 6-7 months and a life span of 2-3 years. Experimental data and biological peculiarities like isogenicity, direct development, indeterminate growth, high regeneration capacity and negligible senescence suggest that the marbled crayfish is particularly suitable to investigate the dependency of ageing and longevity from non-genetic factors such as stochastic developmental variation, allocation of metabolic resources, damage and repair, caloric restriction and social stress. It is also well applicable to examine alterations of the epigenetic code with increasing age and to identify mechanisms that keep stem cells active until old age. As a representative of the sparsely investigated crustaceans and of animals with indeterminate growth and extended brood care the marbled crayfish may even contribute to evolutionary theories of ageing and longevity. Some relatives are recommended as substitutes for investigation of topics, for which the marbled crayfish is less suitable like genetics of ageing and achievement of life spans of decades under conditions of low food and low temperature. Research on ageing in the marbled crayfish and its relatives is of practical relevance for crustacean fisheries and aquaculture and may offer starting points for the development of novel anti-ageing interventions in humans.
Collapse
Affiliation(s)
- Günter Vogt
- Department of Zoology, University of Heidelberg, Germany.
| |
Collapse
|
397
|
Grönniger E, Weber B, Heil O, Peters N, Stäb F, Wenck H, Korn B, Winnefeld M, Lyko F. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet 2010; 6:e1000971. [PMID: 20523906 PMCID: PMC2877750 DOI: 10.1371/journal.pgen.1000971] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 04/26/2010] [Indexed: 12/18/2022] Open
Abstract
Epigenetic changes are widely considered to play an important role in aging, but experimental evidence to support this hypothesis has been scarce. We have used array-based analysis to determine genome-scale DNA methylation patterns from human skin samples and to investigate the effects of aging, chronic sun exposure, and tissue variation. Our results reveal a high degree of tissue specificity in the methylation patterns and also showed very little interindividual variation within tissues. Data stratification by age revealed that DNA from older individuals was characterized by a specific hypermethylation pattern affecting less than 1% of the markers analyzed. Interestingly, stratification by sun exposure produced a fundamentally different pattern with a significant trend towards hypomethylation. Our results thus identify defined age-related DNA methylation changes and suggest that these alterations might contribute to the phenotypic changes associated with skin aging. Although a role of epigenetic mechanisms in aging and in the adaptation to environmental exposures has been widely assumed, research in this area has been hampered by major methodological challenges. We have now used a novel platform for genome-scale methylation analysis to determine the methylation patterns of human skin samples. Skin represents a particularly suitable model for this study because of its well-known phenotype changes associated with aging and sun exposure, and because skin samples are characterized by a very high degree of cellular homogeneity. By examining 50 samples, and analyzing 50 million data points, we show that aging and sun exposure are associated with comparably small, but significant changes in the DNA methylation patterns of human epidermis and dermis samples. Interestingly, aging was not associated with a general variation in DNA methylation patterns, but rather with a directed DNA hypermethylation shift. Importantly, our results also suggest that epigenetic mechanisms may be functionally important for the phenotypic changes associated with aging and chronic sun exposure.
Collapse
Affiliation(s)
- Elke Grönniger
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Barbara Weber
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Oliver Heil
- Genomics and Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Nils Peters
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Franz Stäb
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Horst Wenck
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Bernhard Korn
- Genomics and Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Marc Winnefeld
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
398
|
Affiliation(s)
- J David Sweatt
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
399
|
Inflammation, aging, and cancer vaccines. Biogerontology 2010; 11:615-26. [PMID: 20455022 DOI: 10.1007/s10522-010-9280-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Immunosenescence is characterized by a series of changes of immune pathways, including a chronic state of low-grade inflammation. Mounting evidence from experimental and clinical studies suggests that persistent inflammation increases the risk of cancer and the progression of the disease. Cancer vaccination, which came into view in the last years as the most intriguing means of activating an immune response capable of effectively hampering the progression of the preclinical stages of a tumour, has been shown to be less effective in older age than in young adults. Available evidence on the use of inhibitors of inflammation has indicated their potential enhancement of cancer vaccines, suggesting the possibility to improve the low effectiveness of cancer vaccines in old age employing pharmacological or natural compounds-based anti-inflammatory intervention. This review addresses the effects of age and inflammation on cancer development and progression, and speculates as to whether the modulation of inflammation may influence the response to cancer immunization.
Collapse
|
400
|
Abstract
Aging is a multifaceted process characterized by genetic and epigenetic changes in the genome. The genetic component of aging received initially all of the attention. Telomere attrition and accumulation of mutations due to a progressive deficiency in the repair of DNA damage with age remain leading causes of genomic instability. However, epigenetic mechanisms have now emerged as key contributors to the alterations of genome structure and function that accompany aging. The three pillars of epigenetic regulation are DNA methylation, histone modifications, and noncoding RNA species. Alterations of these epigenetic mechanisms affect the vast majority of nuclear processes, including gene transcription and silencing, DNA replication and repair, cell cycle progression, and telomere and centromere structure and function. Here, we summarize the lines of evidence indicating that these epigenetic defects might represent a major factor in the pathophysiology of aging and aging-related diseases, especially cancer.
Collapse
Affiliation(s)
- Susana Gonzalo
- Radiation and Cancer Biology Division, Dept. of Radiation Oncology, Washington Univ. School of Medicine, 4511 Forest Park, St. Louis, MO 63108, USA.
| |
Collapse
|