351
|
Shigenaga AM, Argueso CT. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 2016; 56:174-189. [PMID: 27312082 DOI: 10.1016/j.semcdb.2016.06.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022]
Abstract
Plant hormones are essential regulators of plant growth and immunity. In the last few decades, a vast amount of information has been obtained detailing the role of different plant hormones in immunity, and how they work together to ultimately shape the outcomes of plant pathogen interactions. Here we provide an overview on the roles of the main classes of plant hormones in the regulation of plant immunity, highlighting their metabolic and signaling pathways and how plants and pathogens utilize these pathways to activate or suppress defence.
Collapse
Affiliation(s)
- Alexandra M Shigenaga
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
352
|
Salicylic acid signalling: new insights and prospects at a quarter-century milestone. Essays Biochem 2016; 58:101-13. [PMID: 26374890 DOI: 10.1042/bse0580101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The plant hormone salicylic acid (SA) plays an essential role in the regulation of diverse biological processes throughout the entire lifespan of the plant. Twenty-five years ago, SA first emerged as an endogenous signal capable of inducing plant defence responses both at the site of infection and in the systemic tissue of the plant. Since then, SA-mediated signalling pathways have been extensively characterized and dissected using genetic and biochemical approaches. Current research is largely focused on the identification of novel SA downstream signalling genes, in order to understand their precise contributions to the phytohormonal cross-talk and signalling network. This will subsequently help us to identify novel targets that are important for plant health, and contribute to advances in modern agriculture. In this chapter we highlight recent advances in the field of SA biosynthesis and the discovery of candidates for systemic mobile signals. We also discuss the molecular mechanisms underlying SA perception. In addition, we review the novel SA signalling components that expand the scope of SA functions beyond plant immunity to include plant growth and development, endoplasmic reticulum (ER) stress, DNA repair and homologous recombination. Finally, we shed light on the roles of SA in epigenetically controlled transgenerational immune memory that has long-term benefits for plants.
Collapse
|
353
|
Reimer-Michalski EM, Conrath U. Innate immune memory in plants. Semin Immunol 2016; 28:319-27. [PMID: 27264335 DOI: 10.1016/j.smim.2016.05.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
Abstract
The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates.
Collapse
Affiliation(s)
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen 52056, Germany.
| |
Collapse
|
354
|
Ge J, Li B, Shen D, Xie J, Long J, Dong H. Tobacco TTG2 regulates vegetative growth and seed production via the predominant role of ARF8 in cooperation with ARF17 and ARF19. BMC PLANT BIOLOGY 2016; 16:126. [PMID: 27255279 PMCID: PMC4890496 DOI: 10.1186/s12870-016-0815-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/20/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant TRANSPARENT TESTA GLABRA (TTG) proteins regulate various developmental activities via the auxin signaling pathway. Recently, we elucidated the developmental role of tobacco (Nicotiana tabacum L.) NtTTG2 in association with 12 genes that putatively encode AUXIN RESPONSIVE FACTOR (ARF) proteins, including NtARF8, NtARF17, and NtARF19. Here we show that NtTTG2 regulates tobacco growth and development by involving the NtARF8, NtARF17, and NtARF19 genes, with the NtARF8 gene playing a predominant contribution. RESULTS Independent silencing of the NtARF8 gene more strongly repressed tobacco growth than silencing the NtARF17 or NtARF19 gene and more effectively eradicated the growth enhancement effect of NtTTG2 overexpression. In contrast, plant growth was not affected by silencing additional nine NtTTG2-regulated NtARF genes. In double and triple gene silencing combinations, silencing the NtARF8 gene was more effective than silencing the NtARF17 or NtARF19 gene to repress growth as well as nullify growth enhancement. Therefore, the NtARF8 predominantly cooperated with the NtARF17 and NtAFR19 of the NtTTG2 functional pathway. NtARF8 also contributed to NtTTG2-regulated seed production as concurrent NtTTG2 and NtARF8 overexpression played a synergistic role in seed production quantity, whereas concurrent silencing of both genes caused more severe seed abortion than single gene silencing. In plant cells, the NtTTG2 protein facilitated the nuclear import of NtARF8 as well as increased its function as a transcription activator. CONCLUSIONS NtARF8 is an integral component of the NtTTG2 functional pathway, which regulates tobacco growth and development.
Collapse
Affiliation(s)
- Jun Ge
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baoyan Li
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Dan Shen
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junyi Xie
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juying Long
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hansong Dong
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
355
|
Kamatham S, Neela KB, Pasupulati AK, Pallu R, Singh SS, Gudipalli P. Benzoylsalicylic acid isolated from seed coats of Givotia rottleriformis induces systemic acquired resistance in tobacco and Arabidopsis. PHYTOCHEMISTRY 2016; 126:11-22. [PMID: 26988727 DOI: 10.1016/j.phytochem.2016.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Systemic acquired resistance (SAR), a whole plant defense response to a broad spectrum of pathogens, is characterized by a coordinated expression of a large number of defense genes. Plants synthesize a variety of secondary metabolites to protect themselves from the invading microbial pathogens. Several studies have shown that salicylic acid (SA) is a key endogenous component of local and systemic disease resistance in plants. Although SA is a critical signal for SAR, accumulation of endogenous SA levels alone is insufficient to establish SAR. Here, we have identified a new acyl derivative of SA, the benzoylsalicylic acid (BzSA) also known as 2-(benzoyloxy) benzoic acid from the seed coats of Givotia rottleriformis and investigated its role in inducing SAR in tobacco and Arabidopsis. Interestingly, exogenous BzSA treatment induced the expression of NPR1 (Non-expressor of pathogenesis-related gene-1) and pathogenesis related (PR) genes. BzSA enhanced the expression of hypersensitivity related (HSR), mitogen activated protein kinase (MAPK) and WRKY genes in tobacco. Moreover, Arabidopsis NahG plants that were treated with BzSA showed enhanced resistance to tobacco mosaic virus (TMV) as evidenced by reduced leaf necrosis and TMV-coat protein levels in systemic leaves. We, therefore, conclude that BzSA, hitherto unknown natural plant product, is a new SAR inducer in plants.
Collapse
Affiliation(s)
- Samuel Kamatham
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Kishore Babu Neela
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Anil Kumar Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Reddanna Pallu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | | | - Padmaja Gudipalli
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
356
|
Chern M, Xu Q, Bart RS, Bai W, Ruan D, Sze-To WH, Canlas PE, Jain R, Chen X, Ronald PC. A Genetic Screen Identifies a Requirement for Cysteine-Rich-Receptor-Like Kinases in Rice NH1 (OsNPR1)-Mediated Immunity. PLoS Genet 2016; 12:e1006049. [PMID: 27176732 PMCID: PMC4866720 DOI: 10.1371/journal.pgen.1006049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/21/2016] [Indexed: 12/03/2022] Open
Abstract
Systemic acquired resistance, mediated by the Arabidopsis NPR1 gene and the rice NH1 gene, confers broad-spectrum immunity to diverse pathogens. NPR1 and NH1 interact with TGA transcription factors to activate downstream defense genes. Despite the importance of this defense response, the signaling components downstream of NPR1/NH1 and TGA proteins are poorly defined. Here we report the identification of a rice mutant, snim1, which suppresses NH1-mediated immunity and demonstrate that two genes encoding previously uncharacterized cysteine-rich-receptor-like kinases (CRK6 and CRK10), complement the snim1 mutant phenotype. Silencing of CRK6 and CRK10 genes individually in the parental genetic background recreates the snim1 phenotype. We identified a rice mutant in the Kitaake genetic background with a frameshift mutation in crk10; this mutant also displays a compromised immune response highlighting the important role of crk10. We also show that elevated levels of NH1 expression lead to enhanced CRK10 expression and that the rice TGA2.1 protein binds to the CRK10 promoter. These experiments demonstrate a requirement for CRKs in NH1-mediated immunity and establish a molecular link between NH1 and induction of CRK10 expression. To survive, plants and animals must resist microbial infection. Plants employ an immune response called systemic acquired resistance that confers long-lasting resistance to a broad-spectrum of pathogens. Researchers have previously identified two key proteins (NPR1/NH1 and TGA) that control this immune response. Despite these advances, there remain many gaps in our knowledge and understanding of this important immune response. We have identified a new gene (CRK10) required for this immune response; without it, plants are more susceptible to infection. These findings advance basic knowledge of systemic acquired resistance and open the door to a new avenue of research on this exciting and important resistance mechanism.
Collapse
Affiliation(s)
- Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Qiufang Xu
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rebecca S. Bart
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Wei Bai
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- College of Life Sciences, Inner Mongolia Agricultural University, Huhhot, China
| | - Deling Ruan
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Wing Hoi Sze-To
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Patrick E. Canlas
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Xuewei Chen
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
- Rice Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Chengdu, Sichuan, China
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
- * E-mail:
| |
Collapse
|
357
|
Isaacs M, Carella P, Faubert J, Champigny MJ, Rose JKC, Cameron RK. Orthology Analysis and In Vivo Complementation Studies to Elucidate the Role of DIR1 during Systemic Acquired Resistance in Arabidopsis thaliana and Cucumis sativus. FRONTIERS IN PLANT SCIENCE 2016; 7:566. [PMID: 27200039 PMCID: PMC4854023 DOI: 10.3389/fpls.2016.00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/12/2016] [Indexed: 05/05/2023]
Abstract
AtDIR1 (Defective in Induced Resistance1) is an acidic lipid transfer protein essential for systemic acquired resistance (SAR) in Arabidopsis thaliana. Upon SAR induction, DIR1 moves from locally infected to distant uninfected leaves to activate defense priming; however, a molecular function for DIR1 has not been elucidated. Bioinformatic analysis and in silico homology modeling identified putative AtDIR1 orthologs in crop species, revealing conserved protein motifs within and outside of DIR1's central hydrophobic cavity. In vitro assays to compare the capacity of recombinant AtDIR1 and targeted AtDIR1-variant proteins to bind the lipophilic probe TNS (6,P-toluidinylnaphthalene-2-sulfonate) provided evidence that conserved leucine 43 and aspartic acid 39 contribute to the size of the DIR1 hydrophobic cavity and possibly hydrophobic ligand binding. An Arabidopsis-cucumber SAR model was developed to investigate the conservation of DIR1 function in cucumber (Cucumis sativus), and we demonstrated that phloem exudates from SAR-induced cucumber rescued the SAR defect in the Arabidopsis dir1-1 mutant. Additionally, an AtDIR1 antibody detected a protein of the same size as AtDIR1 in SAR-induced cucumber phloem exudates, providing evidence that DIR1 function during SAR is conserved in Arabidopsis and cucumber. In vitro TNS displacement assays demonstrated that recombinant AtDIR1 did not bind the SAR signals azelaic acid (AzA), glycerol-3-phosphate or pipecolic acid. However, recombinant CsDIR1 and CsDIR2 interacted weakly with AzA and pipecolic acid. Bioinformatic and functional analyses using the Arabidopsis-cucumber SAR model provide evidence that DIR1 orthologs exist in tobacco, tomato, cucumber, and soybean, and that DIR1-mediated SAR signaling is conserved in Arabidopsis and cucumber.
Collapse
Affiliation(s)
- Marisa Isaacs
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Philip Carella
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Jennifer Faubert
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Marc J. Champigny
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jocelyn K. C. Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Robin K. Cameron
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
358
|
Sugano S, Hayashi N, Kawagoe Y, Mochizuki S, Inoue H, Mori M, Nishizawa Y, Jiang CJ, Matsui M, Takatsuji H. Rice OsVAMP714, a membrane-trafficking protein localized to the chloroplast and vacuolar membrane, is involved in resistance to rice blast disease. PLANT MOLECULAR BIOLOGY 2016; 91:81-95. [PMID: 26879413 DOI: 10.1007/s11103-016-0444-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Membrane trafficking plays pivotal roles in many cellular processes including plant immunity. Here, we report the characterization of OsVAMP714, an intracellular SNARE protein, focusing on its role in resistance to rice blast disease caused by the fungal pathogen Magnaporthe oryzae. Disease resistance tests using OsVAMP714 knockdown and overexpressing rice plants demonstrated the involvement of OsVAMP714 in blast resistance. The overexpression of OsVAMP7111, whose product is highly homologous to OsVAMP714, did not enhance blast resistance to rice, implying a potential specificity of OsVAMP714 to blast resistance. OsVAMP714 was localized to the chloroplast in mesophyll cells and to the cellular periphery in epidermal cells of transgenic rice plant leaves. We showed that chloroplast localization is critical for the normal OsVAMP714 functioning in blast resistance by analyzing the rice plants overexpressing OsVAMP714 mutants whose products did not localize in the chloroplast. We also found that OsVAMP714 was located in the vacuolar membrane surrounding the invasive hyphae of M. oryzae. Furthermore, we showed that OsVAMP714 overexpression promotes leaf sheath elongation and that the first 19 amino acids, which are highly conserved between animal and plant VAMP7 proteins, are crucial for normal rice plant growths. Our studies imply that the OsVAMP714-mediated trafficking pathway plays an important role in rice blast resistance as well as in the vegetative growth of rice.
Collapse
Affiliation(s)
- Shoji Sugano
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Nagao Hayashi
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yasushi Kawagoe
- Functional Plant Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Susumu Mochizuki
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
- Graduate School and Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Haruhiko Inoue
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masaki Mori
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yoko Nishizawa
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Chang-Jie Jiang
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Minami Matsui
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Takatsuji
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
359
|
Abstract
Because the genome stores all genetic information required for growth and development, it is of pivotal importance to maintain DNA integrity, especially during cell division, when the genome is prone to replication errors and damage. Although over the last two decades it has become evident that the basic cell cycle toolbox of plants shares several similarities with those of fungi and mammals, plants appear to have evolved a set of distinct checkpoint regulators in response to different types of DNA stress. This might be a consequence of plants' sessile lifestyle, which exposes them to a set of unique DNA damage-inducing conditions. In this review, we highlight the types of DNA stress that plants typically experience and describe the plant-specific molecular mechanisms that control cell division in response to these stresses.
Collapse
Affiliation(s)
- Zhubing Hu
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | - Toon Cools
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | | |
Collapse
|
360
|
Stuttmann J, Peine N, Garcia AV, Wagner C, Choudhury SR, Wang Y, James GV, Griebel T, Alcázar R, Tsuda K, Schneeberger K, Parker JE. Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like Resistance Locus Underlies Three Different Cases of EDS1-Conditioned Autoimmunity. PLoS Genet 2016; 12:e1005990. [PMID: 27082651 PMCID: PMC4833295 DOI: 10.1371/journal.pgen.1005990] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/24/2016] [Indexed: 11/18/2022] Open
Abstract
Plants have a large panel of nucleotide-binding/leucine rich repeat (NLR) immune receptors which monitor host interference by diverse pathogen molecules (effectors) and trigger disease resistance pathways. NLR receptor systems are necessarily under tight control to mitigate the trade-off between induced defenses and growth. Hence, mis-regulated NLRs often cause autoimmunity associated with stunting and, in severe cases, necrosis. Nucleocytoplasmic ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) is indispensable for effector-triggered and autoimmune responses governed by a family of Toll-Interleukin1-Receptor-related NLR receptors (TNLs). EDS1 operates coincidently or immediately downstream of TNL activation to transcriptionally reprogram cells for defense. We show here that low levels of nuclear-enforced EDS1 are sufficient for pathogen resistance in Arabidopsis thaliana, without causing negative effects. Plants expressing higher nuclear EDS1 amounts have the genetic, phenotypic and transcriptional hallmarks of TNL autoimmunity. In a screen for genetic suppressors of nuclear EDS1 autoimmunity, we map multiple, independent mutations to one gene, DM2h, lying within the polymorphic DANGEROUS MIX2 cluster of TNL RPP1-like genes from A. thaliana accession Landsberg erecta (Ler). The DM2 locus is a known hotspot for deleterious epistatic interactions leading to immune-related incompatibilities between A. thaliana natural accessions. We find that DM2hLer underlies two further genetic incompatibilities involving the RPP1-likeLer locus and EDS1. We conclude that the DM2hLer TNL protein and nuclear EDS1 cooperate, directly or indirectly, to drive cells into an immune response at the expense of growth. A further conclusion is that regulating the available EDS1 nuclear pool is fundamental for maintaining homeostatic control of TNL immune pathways. Plants tune their cellular and developmental programs to different environmental stimuli. Central players in the plant biotic stress response network are intracellular NLR receptors which intercept specific disease-inducing molecules (effectors) produced by pathogenic microbes. Variation in NLR gene repertoires between plant genetic lines is driven by pathogen selection pressure. One evolutionary question is how new, functional NLRs are assembled within a plant genome without mis-activating defense pathways, which can have strong negative effects on growth and fitness. This study focuses on a large, polymorphic sub-class of NLR receptors called TNLs present in dicotyledenous plant lineages. TNL receptors confer immunity to a broad range of pathogens. They also frequently underlie autoimmunity caused by their mis-regulation or deleterious allelic interactions with other genes in crosses between different genetic lines (hybrid incompatibility, HI). TNL pathogen-triggered and autoimmune responses require the conserved nucleocytoplasmic protein EDS1 to transcriptionally reprogram cells for defense. We discover in Arabidopsis thaliana that high levels of nuclear-enriched EDS1 induce transcriptional activation of defenses and growth inhibition without a pathogen effector stimulus. In a mutational screen, we identify one rapidly evolving TNL gene, DM2hLer, as a driver of nuclear EDS1 autoimmunity. DM2hLer also contributes to two separate cases of EDS1-dependent autoimmunity. Genetic cooperation between DM2hLer and EDS1 suggests a functional relationship in the transcriptional feed-forward regulation of defense pathways.
Collapse
Affiliation(s)
- Johannes Stuttmann
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Genetics, Martin Luther University Halle (Saale), Halle, Germany
- * E-mail: (JS); (JEP)
| | - Nora Peine
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ana V. Garcia
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christine Wagner
- Department of Genetics, Martin Luther University Halle (Saale), Halle, Germany
| | - Sayan R. Choudhury
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Geo Velikkakam James
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Thomas Griebel
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ruben Alcázar
- Department of Natural Products, Plant Biology and Soil Science, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Kenichi Tsuda
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail: (JS); (JEP)
| |
Collapse
|
361
|
Ding Y, Dommel M, Mou Z. Abscisic acid promotes proteasome-mediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:20-34. [PMID: 26865090 DOI: 10.1111/tpj.13141] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/12/2016] [Accepted: 02/04/2016] [Indexed: 05/20/2023]
Abstract
Proteasome-mediated turnover of the transcription coactivator NPR1 is pivotal for efficient activation of the broad-spectrum plant immune responses known as localized acquired resistance (LAR) and systemic acquired resistance (SAR) in adjacent and systemic tissues, respectively, and requires the CUL3-based E3 ligase and its adaptor proteins, NPR3 and NPR4, which are receptors for the signaling molecule salicylic acid (SA). It has been shown that SA prevents NPR1 turnover under non-inducing and LAR/SAR-inducing conditions, but how cellular NPR1 homeostasis is maintained remains unclear. Here, we show that the phytohormone abscisic acid (ABA) and SA antagonistically influence cellular NPR1 protein levels. ABA promotes NPR1 degradation via the CUL3(NPR) (3/) (NPR) (4) complex-mediated proteasome pathway, whereas SA may protect NPR1 from ABA-promoted degradation through phosphorylation. Furthermore, we demonstrate that the timing and strength of SA and ABA signaling are critical in modulating NPR1 accumulation and target gene expression. Perturbing ABA or SA signaling in adjacent tissues alters the temporal dynamic pattern of NPR1 accumulation and target gene transcription. Finally, we show that sequential SA and ABA treatment leads to dynamic changes in NPR1 protein levels and target gene expression. Our results revealed a tight correlation between sequential SA and ABA signaling and dynamic changes in NPR1 protein levels and NPR1-dependent transcription in plant immune responses.
Collapse
Affiliation(s)
- Yezhang Ding
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Matthew Dommel
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| |
Collapse
|
362
|
Corwin JA, Subedy A, Eshbaugh R, Kliebenstein DJ. Expansive Phenotypic Landscape of Botrytis cinerea Shows Differential Contribution of Genetic Diversity and Plasticity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:287-298. [PMID: 26828401 DOI: 10.1094/mpmi-09-15-0196-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The modern evolutionary synthesis suggests that both environmental variation and genetic diversity are critical determinants of pathogen success. However, the relative contribution of these two sources of variation is not routinely measured. To estimate the relative contribution of plasticity and genetic diversity for virulence-associated phenotypes in a generalist plant pathogen, we grew a population of 15 isolates of Botrytis cinerea from throughout the world, under a variety of in vitro and in planta conditions. Under in planta conditions, phenotypic differences between the isolates were determined by the combination of genotypic variation within the pathogen and environmental variation. In contrast, phenotypic differences between the isolates under in vitro conditions were predominantly determined by genetic variation in the pathogen. Using a correlation network approach, we link the phenotypic variation under in vitro experimental conditions to phenotypic variation during plant infection. This study indicates that there is a high level of phenotypic variation within B. cinerea that is controlled by a mixture of genetic variation, environment, and genotype × environment. This argues that future experiments into the pathogenicity of B. cinerea must account for the genetic and environmental variation within the pathogen to better sample the potential phenotypic space of the pathogen.
Collapse
Affiliation(s)
- Jason A Corwin
- 1 Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, U.S.A.; and
| | - Anushriya Subedy
- 1 Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, U.S.A.; and
| | - Robert Eshbaugh
- 1 Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, U.S.A.; and
| | - Daniel J Kliebenstein
- 1 Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, U.S.A.; and
- 2 DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
363
|
Kadotani N, Akagi A, Takatsuji H, Miwa T, Igarashi D. Exogenous proteinogenic amino acids induce systemic resistance in rice. BMC PLANT BIOLOGY 2016; 16:60. [PMID: 26940322 PMCID: PMC4778346 DOI: 10.1186/s12870-016-0748-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/26/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant immune responses can be induced by endogenous and exogenous signaling molecules. Recently, amino acids and their metabolites have been reported to affect the plant immune system. However, how amino acids act in plant defense responses has yet to be clarified. Here, we report that treatment of rice roots with amino acids such as glutamate (Glu) induced systemic disease resistance against rice blast in leaves. RESULTS Treatment of roots with Glu activated the transcription of a large variety of defense-related genes both in roots and leaves. In leaves, salicylic acid (SA)-responsive genes, rather than jasmonic acid (JA) or ethylene (ET)-responsive genes, were induced by this treatment. The Glu-induced blast resistance was partially impaired in rice plants deficient in SA signaling such as NahG plants expressing an SA hydroxylase, WRKY45-knockdown, and OsNPR1-knockdown plants. The JA-deficient mutant cpm2 exhibited full Glu-induced blast resistance. CONCLUSIONS Our results indicate that the amino acid-induced blast resistance partly depends on the SA pathway but an unknown SA-independent signaling pathway is also involved.
Collapse
Affiliation(s)
- Naoki Kadotani
- Institute for Innovation, Ajinomoto Co., Inc, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| | - Aya Akagi
- Plant Disease Resistance Research Unit, Division of Plant Science, National Institute of Agrobiological Sciences, 2-1-2, Kannondai, Tsukuba, 305-8602, Japan.
- Bayer Crop Science, Tokyo, 100-8262, Japan.
| | - Hiroshi Takatsuji
- Plant Disease Resistance Research Unit, Division of Plant Science, National Institute of Agrobiological Sciences, 2-1-2, Kannondai, Tsukuba, 305-8602, Japan.
| | - Tetsuya Miwa
- Institute for Innovation, Ajinomoto Co., Inc, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| | - Daisuke Igarashi
- Institute for Innovation, Ajinomoto Co., Inc, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| |
Collapse
|
364
|
Zhu QH, Shan WX, Ayliffe MA, Wang MB. Epigenetic Mechanisms: An Emerging Player in Plant-Microbe Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:187-96. [PMID: 26524162 DOI: 10.1094/mpmi-08-15-0194-fi] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plants have developed diverse molecular and cellular mechanisms to cope with a lifetime of exposure to a variety of pathogens. Host transcriptional reprogramming is a central part of plant defense upon pathogen recognition. Recent studies link DNA methylation and demethylation as well as chromatin remodeling by posttranslational histone modifications, including acetylation, methylation, and ubiquitination, to changes in the expression levels of defense genes upon pathogen challenge. Remarkably these inducible defense mechanisms can be primed prior to pathogen attack by epigenetic modifications and this heightened resistance state can be transmitted to subsequent generations by inheritance of these modification patterns. Beside the plant host, epigenetic mechanisms have also been implicated in virulence development of pathogens. This review highlights recent findings and insights into epigenetic mechanisms associated with interactions between plants and pathogens, in particular bacterial and fungal pathogens, and demonstrates the positive role they can have in promoting plant defense.
Collapse
Affiliation(s)
- Qian-Hao Zhu
- 1 CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Wei-Xing Shan
- 2 College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
| | | | - Ming-Bo Wang
- 1 CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
365
|
Kamal AHM, Komatsu S. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions. Mol Biol Rep 2016; 43:73-89. [PMID: 26754663 DOI: 10.1007/s11033-015-3940-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/31/2015] [Indexed: 01/15/2023]
Abstract
To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the nano LC-MS along with SIEVE software. Biophoton emissions were significantly increased in both light and dark conditions after flooding stress, but gradually decreased with continued flooding exposure compared to the control plants. Among the 120 significantly identified proteins in the roots of soybean plants, 73 and 19 proteins were decreased and increased in the light condition, respectively, and 4 and 24 proteins were increased and decreased, respectively, in the dark condition. The proteins were mainly functionally grouped into cell organization, protein degradation/synthesis, and glycolysis. The highly abundant lactate/malate dehydrogenase proteins were decreased in flooding-stressed roots exposed to light, whereas the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme was increased in both light and dark conditions. Notably, however, specific enzyme assays revealed that the activities of these enzymes and biophoton emission were sharply increased after 3 days of flooding stress. This finding suggests that the source of biophoton emission in roots might involve the chemical excitation of electron or proton through enzymatic or non-enzymatic oxidation and reduction reactions. Moreover, the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme may play important roles in responses in flooding stress of soybean under the light condition and as a contributing factor to biophoton emission.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan.
| |
Collapse
|
366
|
Bailey M, Srivastava A, Conti L, Nelis S, Zhang C, Florance H, Love A, Milner J, Napier R, Grant M, Sadanandom A. Stability of small ubiquitin-like modifier (SUMO) proteases OVERLY TOLERANT TO SALT1 and -2 modulates salicylic acid signalling and SUMO1/2 conjugation in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:353-63. [PMID: 26494731 PMCID: PMC4682439 DOI: 10.1093/jxb/erv468] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Small ubiquitin-like modifier proteases 1 and 2 (SUMO1/2) have been linked to the regulation of salicylic acid (SA)-mediated defence signalling in Arabidopsis thaliana. In order to define the role of the SUMO proteases OVERLY TOLERANT TO SALT1 and -2 (OTS1/2) in defence and to provide insight into SUMO1/2-mediated regulation of SA signalling, we examined the status of SA-mediated defences in ots1/2 mutants. The ots1 ots2 double mutant displayed enhanced resistance to virulent Pseudomonas syringae and higher levels of SA compared with wild-type (WT) plants. Furthermore, ots1 ots2 mutants exhibited upregulated expression of the SA biosynthesis gene ICS1 in addition to enhanced SA-responsive ICS1 expression beyond that of WT. SA stimulated OTS1/2 degradation and promoted accumulation of SUMO1/2 conjugates. These results indicate that OTS1 and -2 act in a feedback loop in SA signalling and that de novo OTS1/2 synthesis works antagonistically to SA-promoted degradation, adjusting the abundance of OTS1/2 to moderate SA signalling. Accumulation of SUMO1/2 conjugates coincides with SA-promoted OTS degradation and may play a positive role in SA-mediated signalling in addition to its repressive roles reported elsewhere.
Collapse
Affiliation(s)
- Mark Bailey
- Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, UK Present address: Plant proteolysis and signalling laboratory, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Anjil Srivastava
- Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Lucio Conti
- Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, UK Department of BioSciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Stuart Nelis
- Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Cunjin Zhang
- Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Hannah Florance
- Geoffrey Pope Building, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Andrew Love
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Joel Milner
- Plant Science Group, School of Life Sciences, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard Napier
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7ES, UK
| | - Murray Grant
- Geoffrey Pope Building, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ari Sadanandom
- Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
367
|
Expression of genes involved in the salicylic acid pathway in type h1 thioredoxin transiently silenced pepper plants during a begomovirus compatible interaction. Mol Genet Genomics 2015; 291:819-30. [PMID: 26606929 DOI: 10.1007/s00438-015-1148-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022]
Abstract
The type-h thioredoxins (TRXs) play a fundamental role in oxidative stress tolerance and defense responses against pathogens. In pepper plants, type-h TRXs participate in the defense mechanism against Cucumber mosaic virus. The goal of this study was to analyze the role of the CaTRXh1-cicy gene in pepper plants during compatible interaction with a DNA virus, the Euphorbia mosaic virus-Yucatan Peninsula (EuMV-YP). The effects of a transient silencing of the CaTRXh1-cicy gene in pepper plants wëre evaluated by observing the accumulation of viral DNA and the visible symptoms of pepper plants under different treatments. The accumulation of salicylic acid (SA) and the relative expression of the defense genes NPR1 and PR10 were also evaluated. Results showed that viral DNA accumulation was higher in transiently CaTRXh1-cicy silenced plants that were also infected with EuMV-YP. Symptoms in these plants were more severe compared to the non-silenced plants infected with EuMV-YP. The SA levels in the EuMV-YP-infected plants were rapidly induced at 1 h post infection (hpi) in comparison to the non-silenced plants inoculated with EuMV-YP. Additionally, in pepper plants infected with EuMV-YP, the expression of NPR1 decreased by up to 41 and 58 % at 28 days post infection (dpi) compared to the non-silenced pepper plants infected with only EuMV-YP and healthy non-inoculated pepper plants, respectively. PR10 gene expression decreased by up to 70 % at 28 dpi. Overall, the results indicate that the CaTRXh1-cicy gene participates in defense mechanisms during the compatible interaction of pepper plants with the EuMV-YP DNA virus.
Collapse
|
368
|
Lemarié S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N, Jubault M, Manzanares-Dauleux MJ, Gravot A. Both the Jasmonic Acid and the Salicylic Acid Pathways Contribute to Resistance to the Biotrophic Clubroot Agent Plasmodiophora brassicae in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:2158-68. [PMID: 26363358 DOI: 10.1093/pcp/pcv127] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/02/2015] [Indexed: 05/18/2023]
Abstract
The role of salicylic acid (SA) and jasmonic acid (JA) signaling in resistance to root pathogens has been poorly documented. We assessed the contribution of SA and JA to basal and partial resistance of Arabidopsis to the biotrophic clubroot agent Plasmodiophora brassicae. SA and JA levels as well as the expression of the SA-responsive genes PR2 and PR5 and the JA-responsive genes ARGAH2 and THI2.1 were monitored in infected roots of the accessions Col-0 (susceptible) and Bur-0 (partially resistant). SA signaling was activated in Bur-0 but not in Col-0. The JA pathway was weakly activated in Bur-0 but was strongly induced in Col-0. The contribution of both pathways to clubroot resistance was then assessed using exogenous phytohormone application and mutants affected in SA or JA signaling. Exogenous SA treatment decreased clubroot symptoms in the two Arabidopsis accessions, whereas JA treatment reduced clubroot symptoms only in Col-0. The cpr5-2 mutant, in which SA responses are constitutively induced, was more resistant to clubroot than the corresponding wild type, and the JA signaling-deficient mutant jar1 was more susceptible. Finally, we showed that the JA-mediated induction of NATA1 drove N(δ)-acetylornithine biosynthesis in infected Col-0 roots. The 35S::NATA1 and nata1 lines displayed reduced or enhanced clubroot symptoms, respectively, thus suggesting that in Col-0 this pathway was involved in the JA-mediated basal clubroot resistance. Overall, our data support the idea that, depending on the Arabidopsis accession, both SA and JA signaling can play a role in partial inhibition of clubroot development in compatible interactions with P. brassicae.
Collapse
Affiliation(s)
| | | | | | | | - Nathalie Marnet
- Plateau de Profilage Métabolique et Métabolomique (P2M2) Centre de Recherche Angers Nantes BIA, INRA de Rennes, F-35653 Le Rheu, France
| | | | | | - Antoine Gravot
- Université Rennes 1, UMR1349 IGEPP, F-35000 Rennes, France
| |
Collapse
|
369
|
Kaurilind E, Xu E, Brosché M. A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genomics 2015; 16:837. [PMID: 26493993 PMCID: PMC4619244 DOI: 10.1186/s12864-015-1964-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/29/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To survive in a changing environment plants constantly monitor their surroundings. In response to several stresses and during photorespiration plants use reactive oxygen species as signaling molecules. The Arabidopsis thaliana catalase2 (cat2) mutant lacks a peroxisomal catalase and under photorespiratory conditions accumulates H2O2, which leads to activation of cell death. METHODS A cat2 double mutant collection was generated through crossing and scored for cell death in different assays. Selected double mutants were further analyzed for photosynthetic performance and H2O2 accumulation. RESULTS We used a targeted mutant analysis with more than 50 cat2 double mutants to investigate the role of stress hormones and other defense regulators in H2O2-mediated cell death. Several transcription factors (AS1, MYB30, MYC2, WRKY70), cell death regulators (RCD1, DND1) and hormone regulators (AXR1, ERA1, SID2, EDS1, SGT1b) were essential for execution of cell death in cat2. Genetic loci required for cell death in cat2 was compared with regulators of cell death in spontaneous lesion mimic mutants and led to the identification of a core set of plant cell death regulators. Analysis of gene expression data from cat2 and plants undergoing cell death revealed similar gene expression profiles, further supporting the existence of a common program for regulation of plant cell death. CONCLUSIONS Our results provide a genetic framework for further study on the role of H2O2 in regulation of cell death. The hormones salicylic acid, jasmonic acid and auxin, as well as their interaction, are crucial determinants of cell death regulation.
Collapse
Affiliation(s)
- Eve Kaurilind
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Enjun Xu
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia.
| |
Collapse
|
370
|
Ramírez V, Gonzalez B, López A, Castelló MJ, Gil MJ, Zheng B, Chen P, Vera P. Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity. PLoS Genet 2015; 11:e1005586. [PMID: 26492405 PMCID: PMC4619653 DOI: 10.1371/journal.pgen.1005586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/16/2015] [Indexed: 12/20/2022] Open
Abstract
tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA) signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response. Numerous studies revealed the existence of nearly 110 ribonucleoside structures incorporated as post-transcriptional modifications in tRNA, with 25–30 modifications present in any one organism. Emerging evidence points to the critical role of tRNA modifications in various cellular responses to stimuli, including transcription of stress response genes and control of cell viability and growth. The primary function of tRNA modifications, and in particular tRNA methylations, are linked to different steps in protein synthesis including stabilization of tRNA structures, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. Furthermore, tRNA methylations are involved in the RNA quality control system and regulation of tRNA localization in the cell, all of which affect translation rate, but modifications in the anti-codon, which exhibit important roles in decoding mRNA are particularly important. We identified that the SCS9 gene from Arabidopsis encodes a tRNA 2´-O-ribose methyltransferase homologous to the TRM7 methyltransferase from yeast. We identify that SCS9 is crucial for the 2´-O-ribose methylation of nucleotides 32 and 34 of the tRNAs anticodon loop of certain tRNA molecules. We show that SCS9 is required for effectiveness of plant immunity and suggest the importance of precise tRNA modifications in this process.
Collapse
Affiliation(s)
- Vicente Ramírez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Valencia, Spain
| | - Beatriz Gonzalez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Valencia, Spain
| | - Ana López
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Valencia, Spain
| | - María José Castelló
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Valencia, Spain
| | - María José Gil
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Valencia, Spain
| | - Bo Zheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, HuaZhong Agricultural University, Wuhan, China
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Valencia, Spain
- * E-mail:
| |
Collapse
|
371
|
Ueno Y, Yoshida R, Kishi-Kaboshi M, Matsushita A, Jiang CJ, Goto S, Takahashi A, Hirochika H, Takatsuji H. Abiotic Stresses Antagonize the Rice Defence Pathway through the Tyrosine-Dephosphorylation of OsMPK6. PLoS Pathog 2015; 11:e1005231. [PMID: 26485146 PMCID: PMC4617645 DOI: 10.1371/journal.ppat.1005231] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/24/2015] [Indexed: 01/07/2023] Open
Abstract
Plants, as sessile organisms, survive environmental changes by prioritizing their responses to the most life-threatening stress by allocating limited resources. Previous studies showed that pathogen resistance was suppressed under abiotic stresses. Here, we show the mechanism underlying this phenomenon. Phosphorylation of WRKY45, the central transcription factor in salicylic-acid (SA)-signalling-dependent pathogen defence in rice, via the OsMKK10-2-OsMPK6 cascade, was required to fully activate WRKY45. The activation of WRKY45 by benzothiadiazole (BTH) was reduced under low temperature and high salinity, probably through abscisic acid (ABA) signalling. An ABA treatment dephosphorylated/inactivated OsMPK6 via protein tyrosine phosphatases, OsPTP1/2, leading to the impaired activation of WRKY45 and a reduction in Magnaporthe oryzae resistance, even after BTH treatment. BTH induced a strong M. oryzae resistance in OsPTP1/2 knockdown rice, even under cold and high salinity, indicating that OsPTP1/2 is the node of SA-ABA signalling crosstalk and its down-regulation makes rice disease resistant, even under abiotic stresses. These results points to one of the directions to further improve crops by managing the tradeoffs between different stress responses of plants.
Collapse
Affiliation(s)
- Yoshihisa Ueno
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Riichiro Yoshida
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Mitsuko Kishi-Kaboshi
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Akane Matsushita
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Chang-Jie Jiang
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Shingo Goto
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Akira Takahashi
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hirohiko Hirochika
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hiroshi Takatsuji
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
372
|
Liu X, Sun Y, Kørner CJ, Du X, Vollmer ME, Pajerowska-Mukhtar KM. Bacterial Leaf Infiltration Assay for Fine Characterization of Plant Defense Responses using the Arabidopsis thaliana-Pseudomonas syringae Pathosystem. J Vis Exp 2015:53364. [PMID: 26485301 PMCID: PMC4692633 DOI: 10.3791/53364] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the absence of specialized mobile immune cells, plants utilize their localized programmed cell death and Systemic Acquired Resistance to defend themselves against pathogen attack. The contribution of a specific Arabidopsis gene to the overall plant immune response can be specifically and quantitatively assessed by assaying the pathogen growth within the infected tissue. For over three decades, the hemibiotrophic bacterium Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326) has been widely applied as the model pathogen to investigate the molecular mechanisms underlying the Arabidopsis immune response. To deliver pathogens into the leaf tissue, multiple inoculation methods have been established, e.g., syringe infiltration, dip inoculation, spray, vacuum infiltration, and flood inoculation. The following protocol describes an optimized syringe infiltration method to deliver virulent Psm ES4326 into leaves of adult soil-grown Arabidopsis plants and accurately screen for enhanced disease susceptibility (EDS) towards this pathogen. In addition, this protocol can be supplemented with multiple pre-treatments to further dissect specific immune defects within different layers of plant defense, including Salicylic Acid (SA)-Triggered Immunity (STI) and MAMP-Triggered Immunity (MTI).
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Biology, University of Alabama at Birmingham
| | - Yali Sun
- Department of Biology, University of Alabama at Birmingham
| | | | - Xinran Du
- Department of Biology, University of Alabama at Birmingham
| | | | | |
Collapse
|
373
|
Arabidopsis VQ motif-containing proteins VQ12 and VQ29 negatively modulate basal defense against Botrytis cinerea. Sci Rep 2015; 5:14185. [PMID: 26394921 PMCID: PMC4585807 DOI: 10.1038/srep14185] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Arabidopsis VQ motif-containing proteins have recently been demonstrated to interact with several WRKY transcription factors; however, their specific biological functions and the molecular mechanisms underlying their involvement in defense responses remain largely unclear. Here, we showed that two VQ genes, VQ12 and VQ29, were highly responsive to the necrotrophic fungal pathogen Botrytis cinerea. To characterize their roles in plant defense, we generated amiR-vq12 transgenic plants by using an artificial miRNA approach to suppress the expression of VQ12, and isolated a loss-of-function mutant of VQ29. Phenotypic analysis showed that decreasing the expression of VQ12 and VQ29 simultaneously rendered the amiR-vq12 vq29 double mutant plants resistant against B. cinerea. Consistently, the B. cinerea-induced expression of defense-related PLANT DEFENSIN1.2 (PDF1.2) was increased in amiR-vq12 vq29. In contrast, constitutively-expressing VQ12 or VQ29 confered transgenic plants susceptible to B. cinerea. Further investigation revealed that VQ12 and VQ29 physically interacted with themselves and each other to form homodimers and heterodimer. Moreover, expression analysis of VQ12 and VQ29 in defense-signaling mutants suggested that they were partially involved in jasmonate (JA)-signaling pathway. Taken together, our study indicates that VQ12 and VQ29 negatively regulate plant basal resistance against B. cinerea.
Collapse
|
374
|
Dutt M, Barthe G, Irey M, Grosser J. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening). PLoS One 2015; 10:e0137134. [PMID: 26398891 PMCID: PMC4580634 DOI: 10.1371/journal.pone.0137134] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB), a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars ‘Hamlin’ and ‘Valencia’ expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2) promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| | - Gary Barthe
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Michael Irey
- Southern Gardens Citrus, Clewiston, Florida, United States of America
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| |
Collapse
|
375
|
Profile of Xinnian Dong. Proc Natl Acad Sci U S A 2015; 112:11144-5. [PMID: 26305971 DOI: 10.1073/pnas.1514692112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
376
|
Meur G, Shukla P, Dutta-Gupta A, Kirti P. Characterization of Brassica juncea–Alternaria brassicicola interaction and jasmonic acid carboxyl methyl transferase expression. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.plgene.2015.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
377
|
Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM. Disease Resistance Gene Analogs (RGAs) in Plants. Int J Mol Sci 2015; 16:19248-90. [PMID: 26287177 PMCID: PMC4581296 DOI: 10.3390/ijms160819248] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/01/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022] Open
Abstract
Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs), as resistance (R) gene candidates, have conserved domains and motifs that play specific roles in pathogens' resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL) or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed.
Collapse
Affiliation(s)
- Manoj Kumar Sekhwal
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Pingchuan Li
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Irene Lam
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Xiue Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sylvie Cloutier
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Frank M You
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
- Plant Science Department, University of Manitoba, Winnipeg, MB R3T 2N6, Canada.
| |
Collapse
|
378
|
Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella. Nat Commun 2015; 6:7960. [PMID: 26268845 PMCID: PMC4539569 DOI: 10.1038/ncomms8960] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/01/2015] [Indexed: 11/13/2022] Open
Abstract
In the Bateson–Dobzhansky–Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles. A hybrid incompatibility between Capsella plant species is due to an interaction between two immune regulators. Here, the authors show that highly divergent haplotypes result from balancing selection in the ancestral lineage and their sorting into derived lineages facilitated the evolution of the incompatibility.
Collapse
|
379
|
Goto S, Sasakura-Shimoda F, Suetsugu M, Selvaraj MG, Hayashi N, Yamazaki M, Ishitani M, Shimono M, Sugano S, Matsushita A, Tanabata T, Takatsuji H. Development of disease-resistant rice by optimized expression of WRKY45. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:753-65. [PMID: 25487714 DOI: 10.1111/pbi.12303] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 09/18/2014] [Accepted: 10/28/2014] [Indexed: 05/21/2023]
Abstract
The rice transcription factor WRKY45 plays a central role in the salicylic acid signalling pathway and mediates chemical-induced resistance to multiple pathogens, including Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. Previously, we reported that rice transformants overexpressing WRKY45 driven by the maize ubiquitin promoter were strongly resistant to both pathogens; however, their growth and yield were negatively affected because of the trade-off between the two conflicting traits. Also, some unknown environmental factor(s) exacerbated this problem. Here, we report the development of transgenic rice lines resistant to both pathogens and with agronomic traits almost comparable to those of wild-type rice. This was achieved by optimizing the promoter driving WRKY45 expression. We isolated 16 constitutive promoters from rice genomic DNA and tested their ability to drive WRKY45 expression. Comparisons among different transformant lines showed that, overall, the strength of WRKY45 expression was positively correlated with disease resistance and negatively correlated with agronomic traits. We conducted field trials to evaluate the growth of transgenic and control lines. The agronomic traits of two lines expressing WRKY45 driven by the OsUbi7 promoter (PO sUbi7 lines) were nearly comparable to those of untransformed rice, and both lines were pathogen resistant. Interestingly, excessive WRKY45 expression rendered rice plants sensitive to low temperature and salinity, and stress sensitivity was correlated with the induction of defence genes by these stresses. These negative effects were barely observed in the PO sUbi7 lines. Moreover, their patterns of defence gene expression were similar to those in plants primed by chemical defence inducers.
Collapse
Affiliation(s)
- Shingo Goto
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Fuyuko Sasakura-Shimoda
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Mai Suetsugu
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Nagao Hayashi
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Muneo Yamazaki
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Manabu Ishitani
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Masaki Shimono
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Shoji Sugano
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Akane Matsushita
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Takanari Tanabata
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hiroshi Takatsuji
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
380
|
Wittek F, Kanawati B, Wenig M, Hoffmann T, Franz-Oberdorf K, Schwab W, Schmitt-Kopplin P, Vlot AC. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola. MOLECULAR PLANT PATHOLOGY 2015; 16:616-22. [PMID: 25348251 PMCID: PMC6638506 DOI: 10.1111/mpp.12216] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.
Collapse
Affiliation(s)
- Finni Wittek
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Basem Kanawati
- Department of Environmental Sciences, Research Unit Analytical Biogeochemistry, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Marion Wenig
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universitaet Muenchen, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Katrin Franz-Oberdorf
- Biotechnology of Natural Products, Technische Universitaet Muenchen, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universitaet Muenchen, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Philippe Schmitt-Kopplin
- Department of Environmental Sciences, Research Unit Analytical Biogeochemistry, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
- Analytical Food Chemistry, Technische Universitaet Muenchen, Alte Akademie 10, 85354, Freising, Germany
| | - A Corina Vlot
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
381
|
Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL. PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 2015; 349:860-4. [PMID: 26184915 DOI: 10.1126/science.aaa8764] [Citation(s) in RCA: 661] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/26/2015] [Indexed: 12/29/2022]
Abstract
Immune systems distinguish "self" from "nonself" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community. We established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome. Salicylic acid modulates colonization of the root by specific bacterial families. Thus, plant immune signaling drives selection from the available microbial communities to sculpt the root microbiome.
Collapse
Affiliation(s)
- Sarah L Lebeis
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA. Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | - Sur Herrera Paredes
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Derek S Lundberg
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Natalie Breakfield
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Jase Gehring
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Meredith McDonald
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Stephanie Malfatti
- Joint Genome Institute, U.S. Department of Energy, Walnut Creek, CA, USA
| | | | - Corbin D Jones
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Susannah G Tringe
- Joint Genome Institute, U.S. Department of Energy, Walnut Creek, CA, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
382
|
Zhao X, Wang J, Yuan J, Wang XL, Zhao QP, Kong PT, Zhang X. NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) is essential for salicylic acid-induced root waving in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 207:211-224. [PMID: 25690466 DOI: 10.1111/nph.13327] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/10/2015] [Indexed: 05/07/2023]
Abstract
Root waving responses have been attributed to both environmental and genetics factors, but the potential inducers and transducers of root waving remain elusive. Thus, the identification of novel signal elements related to root waving is an intriguing field of research. Genetic, physiological, cytological, live cell imaging, and pharmacological approaches provide strong evidence for the involvement of Arabidopsis thaliana NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) in salicylic acid (SA)-induced root waving. SA specially induced root waving, with an overall decrease in root elongation in A. thaliana, and this SA-induced response was disrupted in the Atnoa1 mutant, as well as in nonexpresser of pathogenesis-related genes 1 (npr1), which is defective in SA-mediated plant defense signal transduction, but not in npr3/4 single and double mutants. The expression assays revealed that the abundance of AtNOA1 was significantly increased by application of SA. Genetic and pharmacological analyses showed that SA-induced root waving involved an AtNOA1-dependent Ca(2+) signal transduction pathway, and PIN-FORMED2 (PIN2) -based polar auxin transport possibly plays a crucial role in this process. Our work suggests that SA signaling through NPR1 and AtNOA1 is involved in the control of root waving, which provides new insights into the mechanisms that control root growth behavior on a hard agar surface.
Collapse
Affiliation(s)
- Xiang Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jin Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jing Yuan
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xi-Li Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qing-Ping Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Pei-Tao Kong
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiao Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
383
|
Redox rhythm reinforces the circadian clock to gate immune response. Nature 2015; 523:472-6. [PMID: 26098366 PMCID: PMC4526266 DOI: 10.1038/nature14449] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/07/2015] [Indexed: 12/18/2022]
Abstract
Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism’s metabolic activities1–3. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated4–7. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant’s redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid (SA) does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.
Collapse
|
384
|
Fan J, Guo XY, Li L, Huang F, Sun WX, Li Y, Huang YY, Xu YJ, Shi J, Lei Y, Zheng AP, Wang WM. Infection of Ustilaginoidea virens intercepts rice seed formation but activates grain-filling-related genes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:577-90. [PMID: 25319482 PMCID: PMC5024071 DOI: 10.1111/jipb.12299] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/14/2014] [Indexed: 05/04/2023]
Abstract
Rice false smut has become an increasingly serious disease in rice (Oryza sativa L.) production worldwide. The typical feature of this disease is that the fungal pathogen Ustilaginoidea virens (Uv) specifically infects rice flower and forms false smut ball, the ustiloxin-containing ball-like fungal colony, of which the size is usually several times larger than that of a mature rice seed. However, the underlying mechanisms of Uv-rice interaction are poorly understood. Here, we applied time-course microscopic and transcriptional approaches to investigate rice responses to Uv infection. The results demonstrated that the flower-opening process and expression of associated transcription factors, including ARF6 and ARF8, were inhibited in Uv-infected spikelets. The ovaries in infected spikelets were interrupted in fertilization and thus were unable to set seeds. However, a number of grain-filling-related genes, including seed storage protein genes, starch anabolism genes and endosperm-specific transcription factors (RISBZ1 and RPBF), were highly transcribed as if the ovaries were fertilized. In addition, critical defense-related genes like NPR1 and PR1 were downregulated by Uv infection. Our data imply that Uv may hijack host nutrient reservoir by activation of the grain-filling network because of growth and formation of false smut balls.
Collapse
Affiliation(s)
- Jing Fan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yi Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liang Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fu Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen-Xian Sun
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Yan Huang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-Ju Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Shi
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Lei
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ai-Ping Zheng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen-Ming Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
385
|
Zhong X, Xi L, Lian Q, Luo X, Wu Z, Seng S, Yuan X, Yi M. The NPR1 homolog GhNPR1 plays an important role in the defense response of Gladiolus hybridus. PLANT CELL REPORTS 2015; 34:1063-74. [PMID: 25708873 DOI: 10.1007/s00299-015-1765-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 05/08/2023]
Abstract
GhNPR1 shares similar functions as Arabidopsis NPR1 . Silencing of GhNPR1 in Gladiolus results in an enhanced susceptibility to Curvularia gladioli. We propose that GhNPR1 plays important roles in plant immunity. Gladiolus plants and corms are susceptible to various types of pathogens including fungi, bacteria and viruses. Understanding the innate defense mechanism in Gladiolus is a prerequisite for the development of new protection strategies. The non-expressor of pathogenesis-related gene 1 (NPR1) and bzip transcription factor TGA2 play a key role in regulating salicylic acid (SA)-mediated systemic acquired resistance (SAR). In this study, the homologous genes, GhNPR1 and GhTGA2, were isolated from Gladiolus and functionally characterized. Expression of GhNPR1 exhibited a 3.8-fold increase in Gladiolus leaves following salicylic acid treatment. A 1332 bp fragment of the GhNPR1 promoter from Gladiolus hybridus was identified. Inducibility of the GhNPR1 promoter by SA was demonstrated using transient expression assays in the leaves of Nicotiana benthamiana. The GhNPR1 protein is located in the nucleus and cytomembrane. GhNPR1 interacts with GhTGA2, as observed using the bimolecular fluorescence complementation system. Overexpression of GhNPR1 in an Arabidopsis npr1 mutant can restore its basal resistance to Pseudomonas syringae pv. tomato DC3000. Silencing of GhNPR1, using a tobacco rattle virus-based silencing vector, resulted in an enhanced susceptibility to Curvularia gladioli. In conclusion, these results suggest that GhNPR1 plays a pivotal role in the SA-dependent systemic acquired resistance in Gladiolus.
Collapse
Affiliation(s)
- Xionghui Zhong
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Yuan Mingyuan Western Road 2#, Beijing, 100193, China,
| | | | | | | | | | | | | | | |
Collapse
|
386
|
Backer R, Mahomed W, Reeksting BJ, Engelbrecht J, Ibarra-Laclette E, van den Berg N. Phylogenetic and expression analysis of the NPR1-like gene family from Persea americana (Mill.). FRONTIERS IN PLANT SCIENCE 2015; 6:300. [PMID: 25972890 PMCID: PMC4413732 DOI: 10.3389/fpls.2015.00300] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/14/2015] [Indexed: 05/04/2023]
Abstract
The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) forms an integral part of the salicylic acid (SA) pathway in plants and is involved in cross-talk between the SA and jasmonic acid/ethylene (JA/ET) pathways. Therefore, NPR1 is essential to the effective response of plants to pathogens. Avocado (Persea americana) is a commercially important crop worldwide. Significant losses in production result from Phytophthora root rot, caused by the hemibiotroph, Phytophthora cinnamomi. This oomycete infects the feeder roots of avocado trees leading to an overall decline in health and eventual death. The interaction between avocado and P. cinnamomi is poorly understood and as such limited control strategies exist. Thus uncovering the role of NPR1 in avocado could provide novel insights into the avocado - P. cinnamomi interaction. A total of five NPR1-like sequences were identified. These sequences were annotated using FGENESH and a maximum-likelihood tree was constructed using 34 NPR1-like protein sequences from other plant species. The conserved protein domains and functional motifs of these sequences were predicted. Reverse transcription quantitative PCR was used to analyze the expression of the five NPR1-like sequences in the roots of avocado after treatment with salicylic and jasmonic acid, P. cinnamomi infection, across different tissues and in P. cinnamomi infected tolerant and susceptible rootstocks. Of the five NPR1-like sequences three have strong support for a defensive role while two are most likely involved in development. Significant differences in the expression profiles of these five NPR1-like genes were observed, assisting in functional classification. Understanding the interaction of avocado and P. cinnamomi is essential to developing new control strategies. This work enables further classification of these genes by means of functional annotation and is a crucial step in understanding the role of NPR1 during P. cinnamomi infection.
Collapse
Affiliation(s)
- Robert Backer
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
- Department of Genetics, Fruit Tree Biotechnology Program, University of PretoriaPretoria, South Africa
| | - Waheed Mahomed
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
- Department of Genetics, Fruit Tree Biotechnology Program, University of PretoriaPretoria, South Africa
| | - Bianca J. Reeksting
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
- Department of Genetics, Fruit Tree Biotechnology Program, University of PretoriaPretoria, South Africa
| | - Juanita Engelbrecht
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
- Department of Genetics, Fruit Tree Biotechnology Program, University of PretoriaPretoria, South Africa
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del – Instituto Politécnico NacionalIrapuato, México
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C.,Xalapa, México
| | - Noëlani van den Berg
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
- Department of Genetics, Fruit Tree Biotechnology Program, University of PretoriaPretoria, South Africa
| |
Collapse
|
387
|
Carella P, Isaacs M, Cameron RK. Plasmodesmata-located protein overexpression negatively impacts the manifestation of systemic acquired resistance and the long-distance movement of Defective in Induced Resistance1 in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:395-401. [PMID: 25296648 DOI: 10.1111/plb.12234] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/23/2014] [Indexed: 05/22/2023]
Abstract
Systemic acquired resistance (SAR) is a plant defence response that provides immunity to distant uninfected leaves after an initial localised infection. The lipid transfer protein (LTP) Defective in Induced Resistance1 (DIR1) is an essential component of SAR that moves from induced to distant leaves following a SAR-inducing local infection. To understand how DIR1 is transported to distant leaves during SAR, we analysed DIR1 movement in transgenic Arabidopsis lines with reduced cell-to-cell movement caused by the overexpression of Plasmodesmata-Located Proteins PDLP1 and PDLP5. These PDLP-overexpressing lines were defective for SAR, and DIR1 antibody signals were not observed in phloem sap-enriched petiole exudates collected from distant leaves. Our data support the idea that cell-to-cell movement of DIR1 through plasmodesmata is important during long-distance SAR signalling in Arabidopsis.
Collapse
Affiliation(s)
- P Carella
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
388
|
Wang F, Lin R, Feng J, Chen W, Qiu D, Xu S. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:108. [PMID: 25774162 PMCID: PMC4342887 DOI: 10.3389/fpls.2015.00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/10/2015] [Indexed: 05/20/2023]
Abstract
Plant-specific NAC transcription factors (TFs) constitute a large family and play important roles in regulating plant developmental processes and responses to environmental stresses, but only some of them have been investigated for effects on disease reaction in cereal crops. Virus-induced gene silencing (VIGS) is an effective strategy for rapid functional analysis of genes in plant tissues. In this study, TaNAC1, encoding a new member of the NAC1 subgroup, was cloned from bread wheat and characterized. It is a TF localized in the cell nucleus, and contains an activation domain in its C-terminal. TaNAC1 was strongly expressed in wheat roots and was involved in responses to infection by the obligate pathogen Puccinia striiformis f. sp. tritici and defense-related hormone treatments such as salicylic acid (SA), methyl jasmonate, and ethylene. Knockdown of TaNAC1 with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) enhanced stripe rust resistance. TaNAC1-overexpression in Arabidopsis thaliana plants gave enhanced susceptibility, attenuated systemic-acquired resistance to Pseudomonas syringae DC3000, and promoted lateral root development. Jasmonic acid-signaling pathway genes PDF1.2 and ORA59 were constitutively expressed in transgenic plants. TaNAC1 overexpression suppressed the expression levels of resistance-related genes PR1 and PR2 involved in SA signaling and AtWRKY70, which functions as a connection node between the JA- and SA-signaling pathways. Collectively, TaNAC1 is a novel NAC member of the NAC1 subgroup, negatively regulates plant disease resistance, and may modulate plant JA- and SA-signaling defense cascades.
Collapse
Affiliation(s)
| | - Ruiming Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| | | | | | | | | |
Collapse
|
389
|
Shimada S, Komatsu T, Yamagami A, Nakazawa M, Matsui M, Kawaide H, Natsume M, Osada H, Asami T, Nakano T. Formation and dissociation of the BSS1 protein complex regulates plant development via brassinosteroid signaling. THE PLANT CELL 2015; 27:375-90. [PMID: 25663622 PMCID: PMC4456923 DOI: 10.1105/tpc.114.131508] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/30/2014] [Accepted: 01/20/2015] [Indexed: 05/22/2023]
Abstract
Brassinosteroids (BRs) play important roles in plant development and the response to environmental cues. BIL1/BZR1 is a master transcription factor in BR signaling, but the mechanisms that lead to the finely tuned targeting of BIL1/BZR1 by BRs are unknown. Here, we identified BRZ-SENSITIVE-SHORT HYPOCOTYL1 (BSS1) as a negative regulator of BR signaling in a chemical-biological analysis involving brassinazole (Brz), a specific BR biosynthesis inhibitor. The bss1-1D mutant, which overexpresses BSS1, exhibited a Brz-hypersensitive phenotype in hypocotyl elongation. BSS1 encodes a BTB-POZ domain protein with ankyrin repeats, known as BLADE ON PETIOLE1 (BOP1), which is an important regulator of leaf morphogenesis. The bss1-1D mutant exhibited an increased accumulation of phosphorylated BIL1/BZR1 and a negative regulation of BR-responsive genes. The number of fluorescent BSS1/BOP1-GFP puncta increased in response to Brz treatment, and the puncta were diffused by BR treatment in the root and hypocotyl. We show that BSS1/BOP1 directly interacts with BIL1/BZR1 or BES1. The large protein complex formed between BSS1/BOP1 and BIL1/BZR1 was only detected in the cytosol. The nuclear BIL1/BZR1 increased in the BSS1/BOP1-deficient background and decreased in the BSS1/BOP1-overexpressing background. Our study suggests that the BSS1/BOP1 protein complex inhibits the transport of BIL1/BZR1 to the nucleus from the cytosol and negatively regulates BR signaling.
Collapse
Affiliation(s)
- Setsuko Shimada
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Tomoyuki Komatsu
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan
| | - Ayumi Yamagami
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Miki Nakazawa
- RIKEN Genome Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Minami Matsui
- Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Kawaide
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan
| | - Masahiro Natsume
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan
| | - Hiroyuki Osada
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Takeshi Nakano
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
390
|
Bektas Y, Eulgem T. Synthetic plant defense elicitors. FRONTIERS IN PLANT SCIENCE 2015; 5:804. [PMID: 25674095 PMCID: PMC4306307 DOI: 10.3389/fpls.2014.00804] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/22/2014] [Indexed: 05/18/2023]
Abstract
To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.
Collapse
Affiliation(s)
- Yasemin Bektas
- Center for Plant Cell Biology, Institute for Integrative Genome Biology – Department of Botany and Plant Sciences, University of CaliforniaRiverside, CA, USA
- Department of Biology, Faculty of Arts and Science, Gaziosmanpasa UniversityTokat, Turkey
| | - Thomas Eulgem
- Center for Plant Cell Biology, Institute for Integrative Genome Biology – Department of Botany and Plant Sciences, University of CaliforniaRiverside, CA, USA
| |
Collapse
|
391
|
Zhao T, Rui L, Li J, Nishimura MT, Vogel JP, Liu N, Liu S, Zhao Y, Dangl JL, Tang D. A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant. PLoS Genet 2015; 11:e1004945. [PMID: 25617755 PMCID: PMC4305288 DOI: 10.1371/journal.pgen.1004945] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 12/09/2014] [Indexed: 11/18/2022] Open
Abstract
During exocytosis, the evolutionarily conserved exocyst complex tethers Golgi-derived vesicles to the target plasma membrane, a critical function for secretory pathways. Here we show that exo70B1 loss-of-function mutants express activated defense responses upon infection and express enhanced resistance to fungal, oomycete and bacterial pathogens. In a screen for mutants that suppress exo70B1 resistance, we identified nine alleles of TIR-NBS2 (TN2), suggesting that loss-of-function of EXO70B1 leads to activation of this nucleotide binding domain and leucine-rich repeat-containing (NLR)-like disease resistance protein. This NLR-like protein is atypical because it lacks the LRR domain common in typical NLR receptors. In addition, we show that TN2 interacts with EXO70B1 in yeast and in planta. Our study thus provides a link between the exocyst complex and the function of a 'TIR-NBS only' immune receptor like protein. Our data are consistent with a speculative model wherein pathogen effectors could evolve to target EXO70B1 to manipulate plant secretion machinery. TN2 could monitor EXO70B1 integrity as part of an immune receptor complex.
Collapse
Affiliation(s)
- Ting Zhao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lu Rui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Marc T. Nishimura
- Howard Hughes Medical Institute and Department of Biology, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - John P. Vogel
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Na Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Simu Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Yaofei Zhao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Jeffery L. Dangl
- Howard Hughes Medical Institute and Department of Biology, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Dingzhong Tang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
392
|
Singh M, Bag SK, Bhardwaj A, Ranjan A, Mantri S, Nigam D, Sharma YK, Sawant SV. Global nucleosome positioning regulates salicylic acid mediated transcription in Arabidopsis thaliana. BMC PLANT BIOLOGY 2015; 15:13. [PMID: 25604550 PMCID: PMC4318435 DOI: 10.1186/s12870-014-0404-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 12/22/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND The nucleosome positioning regulates the gene expression and many other DNA-related processes in eukaryotes. Genome-wide mapping of nucleosome positions and correlation of genome-wide nucleosomal remodeling with the changes in the gene expression can help us understanding gene regulation on genome level. RESULTS In the present study, we correlate the gene expression and the genomic nucleosomal remodeling in response to salicylic acid (SA) treatment in A. thaliana. We have mapped genome-wide nucleosomes by performing tiling microarray using 146 bp mononucleosomal template DNA. The average nucleosomal coverage is approximately 346 bp per nucleosome both under the control and the SA-treated conditions. The nucleosomal coverage is more in the coding region than in the 5' regulatory regions. We observe approximately 50% nucleosomal remodeling on SA treatment where significant nucleosomal depletion and nucleosomal enrichment around the transcription start site (TSS) occur in SA induced genes and SA repressed genes respectively in response to SA treatment. Especially in the case of the SA-induced group, the nucleosomal remodeling over the minimal promoter in response to SA is especially significant in the Non-expresser of PR1 (NPR1)-dependent genes. A detailed investigation of npr1-1 mutant confirms a distinct role of NPR1 in the nucleosome remodeling over the core promoter. We have also identified several motifs for various hormonal responses; including ABRE elements in the remodeled nucleosomal regions around the promoter region in the SA regulated genes. We have further identified that the W-box and TGACG/C motif, reported to play an important role in SA-mediated induction, are enriched in nucleosome free regions (NFRs) of the promoter region of the SA induced genes. CONCLUSIONS This is the first study reporting genome-wide effects of SA treatment on the chromatin architecture of A. thaliana. It also reports significant role of NPR1 in genome-wide nucleosomal remodeling in response to SA.
Collapse
Affiliation(s)
- Mala Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India.
| | - Archana Bhardwaj
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India.
| | - Amol Ranjan
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | - Shrikant Mantri
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | - Deepti Nigam
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | | | - Samir Vishwanath Sawant
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India.
| |
Collapse
|
393
|
Carella P, Wilson DC, Cameron RK. Some things get better with age: differences in salicylic acid accumulation and defense signaling in young and mature Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 5:775. [PMID: 25620972 PMCID: PMC4288333 DOI: 10.3389/fpls.2014.00775] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/15/2014] [Indexed: 05/25/2023]
Abstract
In Arabidopsis, much of what we know about the phytohormone salicylic acid (SA) and its role in plant defense comes from experiments using young plants. We are interested in understanding why young plants are susceptible to virulent strains of Pseudomonas syringae, while mature plants exhibit a robust defense response known as age-related resistance (ARR). SA-mediated signaling is important for defense in young plants, however, ARR occurs independently of the defense regulators NPR1 and WHY1. Furthermore, intercellular SA accumulation is an important component of ARR, and intercellular washing fluids from ARR-competent plants exhibit antibacterial activity, suggesting that SA acts as an antimicrobial agent in the intercellular space. Young plants accumulate both intracellular and intercellular SA during PAMP- and effector-triggered immunity, however, virulent P. syringae promotes susceptibility by suppressing SA accumulation using the phytotoxin coronatine. Here we outline the hypothesis that mature, ARR-competent Arabidopsis alleviates coronatine-mediated suppression of SA accumulation. We also explore the role of SA in other mature-plant processes such as flowering and senescence, and discuss their potential impact on ARR.
Collapse
Affiliation(s)
| | | | - Robin K. Cameron
- *Correspondence: Robin K. Cameron, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada e-mail:
| |
Collapse
|
394
|
Salicylic Acid Signaling in Plant Innate Immunity. PLANT HORMONE SIGNALING SYSTEMS IN PLANT INNATE IMMUNITY 2015. [DOI: 10.1007/978-94-017-9285-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
395
|
Ding Y, Mou Z. Elongator and its epigenetic role in plant development and responses to abiotic and biotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:296. [PMID: 25972888 PMCID: PMC4413731 DOI: 10.3389/fpls.2015.00296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/13/2015] [Indexed: 05/20/2023]
Abstract
Elongator, a six-subunit protein complex, was initially isolated as an interactor of hyperphosphorylated RNA polymerase II in yeast, and was subsequently identified in animals and plants. Elongator has been implicated in multiple cellular activities or biological processes including tRNA modification, histone modification, DNA demethylation or methylation, tubulin acetylation, and exocytosis. Studies in the model plant Arabidopsis thaliana suggest that the structure of Elongator and its functions are highly conserved between plants and yeast. Disruption of the Elongator complex in plants leads to aberrant growth and development, resistance to abiotic stresses, and susceptibility to plant pathogens. The morphological and physiological phenotypes of Arabidopsis Elongator mutants are associated with decreased histone acetylation and/or altered DNA methylation. This review summarizes recent findings related to the epigenetic function of Elongator in plant development and responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
| | - Zhonglin Mou
- *Correspondence: Zhonglin Mou, Department of Microbiology and Cell Science, University of Florida, Museum Road, Building 981, Gainesville, FL 32611, USA
| |
Collapse
|
396
|
Furniss JJ, Spoel SH. Cullin-RING ubiquitin ligases in salicylic acid-mediated plant immune signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:154. [PMID: 25821454 PMCID: PMC4358073 DOI: 10.3389/fpls.2015.00154] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/26/2015] [Indexed: 05/19/2023]
Abstract
Plant immune responses against biotrophic pathogens are regulated by the signaling hormone salicylic acid (SA). SA establishes immunity by regulating a variety of cellular processes, including programmed cell death (PCD) to isolate and kill invading pathogens, and development of systemic acquired resistance (SAR) which provides long-lasting, broad-spectrum resistance throughout the plant. Central to these processes is post-translational modification of SA-regulated signaling proteins by ubiquitination, i.e., the covalent addition of small ubiquitin proteins. Emerging evidence indicates SA-induced protein ubiquitination is largely orchestrated by Cullin-RING ligases (CRLs), which recruit specific substrates for ubiquitination using interchangeable adaptors. Ligation of ubiquitin chains interlinked at lysine 48 leads to substrate degradation by the 26S proteasome. Here we discuss how CRL-mediated degradation of both nucleotide-binding/leucine-rich repeat domain containing immune receptors and SA-induced transcription regulators are critical for functional PCD and SAR responses, respectively. By placing these recent findings in context of knowledge gained in other eukaryotic model species, we highlight potential alternative roles for processive ubiquitination in regulating the activity of SA-mediated immune responses.
Collapse
Affiliation(s)
| | - Steven H. Spoel
- *Correspondence: Steven H. Spoel, Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| |
Collapse
|
397
|
Sharma M, Pandey GK. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1218. [PMID: 26793205 PMCID: PMC4707873 DOI: 10.3389/fpls.2015.01218] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein-protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants.
Collapse
|
398
|
Baldrich P, Kakar K, Siré C, Moreno AB, Berger A, García-Chapa M, López-Moya JJ, Riechmann JL, San Segundo B. Small RNA profiling reveals regulation of Arabidopsis miR168 and heterochromatic siRNA415 in response to fungal elicitors. BMC Genomics 2014; 15:1083. [PMID: 25491154 PMCID: PMC4299684 DOI: 10.1186/1471-2164-15-1083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/27/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs), have emerged as important regulators of eukaryotic gene expression. In plants, miRNAs play critical roles in development, nutrient homeostasis and abiotic stress responses. Accumulating evidence also reveals that sRNAs are involved in plant immunity. Most studies on pathogen-regulated sRNAs have been conducted in Arabidopsis plants infected with the bacterial pathogen Pseudomonas syringae, or treated with the flagelin-derived elicitor peptide flg22 from P. syringae. This work investigates sRNAs that are regulated by elicitors from the fungus Fusarium oxysporum in Arabidopsis. RESULTS Microarray analysis revealed alterations on the accumulation of a set of sRNAs in response to elicitor treatment, including miRNAs and small RNA sequences derived from massively parallel signature sequencing. Among the elicitor-regulated miRNAs was miR168 which regulates ARGONAUTE1, the core component of the RNA-induced silencing complex involved in miRNA functioning. Promoter analysis in transgenic Arabidopsis plants revealed transcriptional activation of MIR168 by fungal elicitors. Furthermore, transgenic plants expressing a GFP-miR168 sensor gene confirmed that the elicitor-induced miR168 is active. MiR823, targeting Chromomethylase3 (CMT3) involved in RNA-directed DNA methylation (RdDM) was also found to be regulated by fungal elicitors. In addition to known miRNAs, microarray analysis allowed the identification of an elicitor-inducible small RNA that was incorrectly annotated as a miRNA. Studies on Arabidopsis mutants impaired in small RNA biogenesis demonstrated that this sRNA, is a heterochromatic-siRNA (hc-siRNA) named as siRNA415. Hc-siRNAs are known to be involved in RNA-directed DNA methylation (RdDM). SiRNA415 is detected in several plant species. CONCLUSION Results here presented support a transcriptional regulatory mechanism underlying MIR168 expression. This finding highlights the importance of miRNA functioning in adaptive processes of Arabidopsis plants to fungal infection. The results of this study also lay a foundation for the involvement of RdDM processes through the activity of siRNA415 and miR823 in mediating regulation of immune responses in Arabidopsis plants.
Collapse
Affiliation(s)
- Patricia Baldrich
- />Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Campus UAB, 08193 Barcelona, Spain
| | - Klementina Kakar
- />Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Campus UAB, 08193 Barcelona, Spain
| | - Christelle Siré
- />Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Campus UAB, 08193 Barcelona, Spain
| | - Ana Beatriz Moreno
- />Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Campus UAB, 08193 Barcelona, Spain
| | - Angélique Berger
- />Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Campus UAB, 08193 Barcelona, Spain
| | - Meritxell García-Chapa
- />Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Campus UAB, 08193 Barcelona, Spain
| | - Juan José López-Moya
- />Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Campus UAB, 08193 Barcelona, Spain
| | - José Luis Riechmann
- />Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Campus UAB, 08193 Barcelona, Spain
- />Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Blanca San Segundo
- />Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Campus UAB, 08193 Barcelona, Spain
| |
Collapse
|
399
|
Ger MJ, Louh GY, Lin YH, Feng TY, Huang HE. Ectopically expressed sweet pepper ferredoxin PFLP enhances disease resistance to Pectobacterium carotovorum subsp. carotovorum affected by harpin and protease-mediated hypersensitive response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2014; 15:892-906. [PMID: 24796566 PMCID: PMC6638834 DOI: 10.1111/mpp.12150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant ferredoxin-like protein (PFLP) is a photosynthesis-type ferredoxin (Fd) found in sweet pepper. It contains an iron-sulphur cluster that receives and delivers electrons between enzymes involved in many fundamental metabolic processes. It has been demonstrated that transgenic plants overexpressing PFLP show a high resistance to many bacterial pathogens, although the mechanism remains unclear. In this investigation, the PFLP gene was transferred into Arabidopsis and its defective derivatives, such as npr1 (nonexpresser of pathogenesis-related gene 1) and eds1 (enhanced disease susceptibility 1) mutants and NAHG-transgenic plants. These transgenic plants were then infected with the soft-rot bacterial pathogen Pectobacterium carotovorum subsp. carotovorum (Erwinia carotovora ssp. carotovora, ECC) to investigate the mechanism behind PFLP-mediated resistance. The results revealed that, instead of showing soft-rot symptoms, ECC activated hypersensitive response (HR)-associated events, such as the accumulation of hydrogen peroxide (H2 O2 ), electrical conductivity leakage and expression of the HR marker genes (ATHSR2 and ATHSR3) in PFLP-transgenic Arabidopsis. This PFLP-mediated resistance could be abolished by inhibitors, such as diphenylene iodonium (DPI), 1-l-trans-epoxysuccinyl-leucylamido-(4-guanidino)-butane (E64) and benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), but not by myriocin and fumonisin. The PFLP-transgenic plants were resistant to ECC, but not to its harpin mutant strain ECCAC5082. In the npr1 mutant and NAHG-transgenic Arabidopsis, but not in the eds1 mutant, overexpression of the PFLP gene increased resistance to ECC. Based on these results, we suggest that transgenic Arabidopsis contains high levels of ectopic PFLP; this may lead to the recognition of the harpin and to the activation of the HR and other resistance mechanisms, and is dependent on the protease-mediated pathway.
Collapse
Affiliation(s)
- Mang-Jye Ger
- Department of Life Science, National University of Kaohsiung, Kaohsiung, 811, Taiwan
| | | | | | | | | |
Collapse
|
400
|
Geng X, Jin L, Shimada M, Kim MG, Mackey D. The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. PLANTA 2014; 240:1149-65. [PMID: 25156488 PMCID: PMC4228168 DOI: 10.1007/s00425-014-2151-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/08/2014] [Indexed: 05/20/2023]
Abstract
Plant pathogens deploy an array of virulence factors to suppress host defense and promote pathogenicity. Numerous strains of Pseudomonas syringae produce the phytotoxin coronatine (COR). A major aspect of COR function is its ability to mimic a bioactive jasmonic acid (JA) conjugate and thus target the JA-receptor COR-insensitive 1 (COI1). Biological activities of COR include stimulation of JA-signaling and consequent suppression of SA-dependent defense through antagonistic crosstalk, antagonism of stomatal closure to allow bacterial entry into the interior of plant leaves, contribution to chlorotic symptoms in infected plants, and suppression of plant cell wall defense through perturbation of secondary metabolism. Here, we review the virulence function of COR, including updates on these established activities as well as more recent findings revealing COI1-independent activity of COR and shedding light on cooperative or redundant defense suppression between COR and type III effector proteins.
Collapse
Affiliation(s)
- Xueqing Geng
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Lin Jin
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
| | - Mikiko Shimada
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, PMBBRC Gyeongsang National University, Jinju daero, Jinju, 660-751 Republic of Korea
| | - David Mackey
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|