351
|
Wang YA, Zhou WX, Li JX, Liu YQ, Yue YJ, Zheng JQ, Liu KL, Ruan JX. Anticonvulsant effects of phencynonate hydrochloride and other anticholinergic drugs in soman poisoning: neurochemical mechanisms. Life Sci 2005; 78:210-23. [PMID: 16154160 DOI: 10.1016/j.lfs.2005.04.071] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 04/19/2005] [Indexed: 11/19/2022]
Abstract
Previous studies have paid little attention to the anticonvulsant effect of anticholinergic drugs that act on both muscarinic (M) and nicotinic (N) receptors during soman-induced seizures. Therefore, with the establishment of a soman-induced seizures model in rats, this study evaluated the efficacy in preventing soman-induced convulsions of two antagonists of both the M and N receptors, phencynonate hydrochloride (PCH) and penehyclidine hydrochloride (8018), which were synthesized by our institute, and of other anticholinergic drugs, and investigated the mechanisms of their antiseizures responses. Male rats, previously prepared with electrodes to record electroencephalographic (EEG) activity, were pretreated with the oxime HI-6 (125 mg kg-1, i.p.) 30 min before they were administered soman (180 microg kg-1, s.c.). All animals developed seizures subsequent to this treatment. Different drugs were given at different times (5, 20 and 40 min after seizures onset) and their anticonvulsant effects were monitored and compared using the two variables, i.e. the dose that could totally control the ongoing seizures, as well as the speed of seizures control. The anticonvulsant effects of atropine, scopolamine and 8018 decreased with the progression of the seizures, and they eventually lost their anticonvulsant activity when the seizures had progressed for 40 min. In contrast, PCH showed good anticonvulsant effectiveness at 5 and 20 min, and especially at 40 min after seizures onset. Of the anticholinergic drugs tested, atropine, scopolamine, and 8018 showed no obvious protection against pentylenetetrazol (PTZ)-induced convulsions or N-methyl-D-aspartate (NMDA)-induced lethality in mice. However, PCH antagonized the PTZ-induced convulsions in a dose-dependant manner with an ED50 of 10.8 mg kg-1, i.p. (range of 7.1-15.2 mg kg-1) and partly blocked the lethal effects of NMDA in mice. PCH also dose-dependently inhibited NMDA-induced injury in rat primary hippocampal neuronal cultures, suggesting a possible neuroprotective action in vivo. In conclusion, our study suggests that the mechanisms of PCH action against soman-induced seizures might differ from those of the M receptor antagonists atropine and scopolamine, and that of the antagonist of both the M and N receptors, 8018. The pharmacological profile of PCH might include anticholinergic and anti-NMDA properties. Compared with the currently recommended anticonvulsant drug diazepam, with known NMDA receptor antagonists such as MK-801 and with conventional anticholinergics such as scopolamine and atropine, the potent anticonvulsant effects of PCH during the entire initial 40 min period of soman poisoning, and its fewer adverse effects, all suggest that PCH might serve as a new type of anticonvulsant for the treatment of seizures induced by soman.
Collapse
Affiliation(s)
- Yong-An Wang
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Baille V, Clarke PGH, Brochier G, Dorandeu F, Verna JM, Four E, Lallement G, Carpentier P. Soman-induced convulsions: the neuropathology revisited. Toxicology 2005; 215:1-24. [PMID: 16054742 DOI: 10.1016/j.tox.2005.05.028] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Revised: 05/03/2005] [Accepted: 05/12/2005] [Indexed: 01/26/2023]
Abstract
The organophosphorus compound soman, an irreversible inhibitor of cholinesterases, produces seizure activity and related brain damage. Studies using various biochemical markers of programmed cell death (PCD) suggested that soman-induced cell damage in the brain was apoptotic rather than necrotic. However, it has recently become clear that not all PCD is apoptotic, and the unequivocal demonstration of apoptosis requires ultrastructural examination. Therefore, the present study was undertaken to reinvestigate the damage produced in the brains of mice sacrificed at various times within the first 24 h or at 7 days after a convulsive dose of soman. Classical histology and ultrastructural examination were performed. The immunohistochemical expression of proteins (p53, Bax) involved in PCD, DNA fragmentation (TUNEL method at light and electron microscopy levels) and the glial reaction were also explored. Our study confirms that the severity of lesions depended on the duration of convulsions and shows that cerebral changes were still occurring as late as 7 days after the onset of long-lasting convulsions. Our observations also establish that there was a large variety of ultrastructurally distinct types of cell damage, including hybrid forms between apoptosis and necrosis, but that pure apoptosis was very rare. A prominent expression of p53 and Bax proteins was detected indicating that PCD mechanisms were certainly involved in the morphologically diverse forms of cell death. Since purely apoptotic cells were very rare, these protein expressions were presumably involved either in nonapoptotic cell death mechanisms or in apoptotic mechanisms occurring in parallel with nonapoptotic ones. Moreover, evidence for DNA fragmentation by the TUNEL method was found in apoptotic but also in numerous other morphotypes of cell damage. Therefore, TUNEL-positivity and the expression of PCD-related proteins, in the absence of ultrastructural confirmation, were here shown not to provide proof of apoptosis. In soman poisoning as well as in other cerebral pathologies, premature conclusions on this question can potentially be misleading and might even lead to detrimental therapies.
Collapse
Affiliation(s)
- Valérie Baille
- Centre de Recherches du Service de Santé des Armées, Département de Toxicologie, BP87, 38702 LA TRONCHE Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
353
|
Schori H, Robenshtok E, Schwartz M, Hourvitz A. Post-intoxication vaccination for protection of neurons against the toxicity of nerve agents. Toxicol Sci 2005; 87:163-8. [PMID: 15976190 DOI: 10.1093/toxsci/kfi237] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nerve agents are highly toxic organophosphates (OPs) that can cause severe damage to the central and peripheral nervous systems. The central nervous system insult results in seizures and neuronal death. The glutamatergic system apparently contributes to the neuropathology. Using a model of OP intoxication causing death of retinal ganglion cells in the mouse eye, we show here that intoxication is exacerbated if the mice are devoid of mature T cells. The retinal neurons could be protected from these effects by vaccination, 7 days before or immediately after intoxication, with the copolymer glatiramer acetate (Cop-1), recently found to limit the usual consequences of an acute glutamate insult to the eye. These findings underlie a new therapeutic approach to protection against OP intoxication, based on the rationale that boosting of the adaptive immunity recruited at the site of intoxication helps the local cellular machinery such as resident microglia to withstand the neurotoxic effects.
Collapse
Affiliation(s)
- Hadas Schori
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | |
Collapse
|
354
|
Lockridge O, Duysen EG, Voelker T, Thompson CM, Schopfer LM. Life without acetylcholinesterase: the implications of cholinesterase inhibitor toxicity in AChE-knockout mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:463-469. [PMID: 21783513 DOI: 10.1016/j.etap.2004.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The acetylcholinesterase (AChE)-knockout mouse is a new tool for identifying physiologically relevant targets of organophosphorus toxicants (OP). If AChE were the only important target for OP toxicity, then mice with zero AChE would have been expected to be resistant to OP. The opposite was found. AChE-/- mice were more sensitive to the lethality of DFP, chlorpyrifos oxon, iso-OMPA, and the nerve agent VX. A lethal dose of OP caused the same cholinergic signs of toxicity in mice with zero AChE as in mice with normal amounts of AChE. This implied that the mechanism of toxicity of a lethal dose of OP in AChE-/- mice was the same as in mice that had AChE, namely accumulation of excess acetylcholine followed by overstimulation of receptors. OP lethality in AChE-/- mice could be due to inhibition of BChE, or to inhibition of a set of proteins. A search for additional targets used biotinylated-OP as a marker. In vitro experiments found that biotinylated-OP appeared to label as many as 55 proteins in the 100,000×g supernatant of mouse brain. Chlorpyrifos oxon bound a set of proteins (bands 12, 41, 45) that did not completely overlap with the set of proteins bound by diazoxon (bands 9, 12, 41, 47) or dichlorvos (bands 12, 23, 24, 32, 44, 45, 51) or malaoxon (band 9). These results support the idea that a variety of proteins could be interacting with a given OP to give the neurotoxic symptoms characteristic of a particular OP.
Collapse
Affiliation(s)
- Oksana Lockridge
- University of Nebraska Medical Center, Eppley Institute, 986805 Omaha, NE 68198-6805, USA
| | | | | | | | | |
Collapse
|
355
|
Bloch-Shilderman E, Kadar T, Levy A, Sahar R, Rabinovitz I, Gilat E. Subcellular Alterations of Protein Kinase C Isozymes in the Rat Brain after Organophosphate Poisoning. J Pharmacol Exp Ther 2005; 313:1082-9. [PMID: 15716382 DOI: 10.1124/jpet.105.083469] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The protein kinase C (PKC) signaling pathway has been associated with modulation of N-metyl-D-aspartate receptor activity, motor behavior, learning, and memory, all of which are severely impaired in organophosphate (OP) intoxication. Nevertheless, the role of PKC in OP intoxication is largely unknown. The present study attempted to characterize alterations in the immunoreactivity levels of PKC isozymes expressed in different brain areas in the rat following exposure to the nerve agent sarin (1x LD(50)). Furthermore, possible neuroprotective effect of selective PKC regulating peptide after such insult was evaluated. The results indicated that a significant reduction in the immunoreactivity level of the conventional betaII-PKC and the atypical zeta-PKC was observed in frontal cortex up to 24 h postsarin and in the striatum up to 5 days postsarin exposure. This reduction was in contrast to the increase in the immuno-reactivity level of both isozymes seen in the hippocampus or thalamus. Treatment with the anticonvulsant midazolam (0.5 mg/kg) 10 min postsarin exposure markedly reduced zeta-PKC immunoreactivity level and betaII-PKC in the membrane fractions in the hippocampus. betaII-PKC peptide (380 ng/kg), known to inhibit PKC translocation and activation, attenuated sarin-induced neuropathology. These observations suggest a role for both conventional and atypical PKC isozymes in OP-induced neuropathy in the rat and further support their involvement in cell death.
Collapse
|
356
|
Carpentier P, Foquin A, Lallement G, Dorandeu F. Flunarizine: a possible adjuvant medication against soman poisoning? Drug Chem Toxicol 2005; 27:213-31. [PMID: 15478944 DOI: 10.1081/dct-120037503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Organophosphate (OP) nerve agents are amongst the most toxic chemicals. One of them, soman, can induce severe epileptic seizures and brain damage for which therapy is incomplete. The present study shows that pretreatment with flunarizine (Flu), a voltage-dependent calcium channel blocker, when used alone, does not produce any beneficial effect against the convulsions, neuropathology and lethality induced by soman. Flu was also tested in combination with atropine sulfate and diazepam. In this case, although only some results reach statistical significance, an encouraging general trend toward an improvement of the anticonvulsant, neuroprotective and antilethal capacities of this classical anti-OP two-drug regimen is constantly observed. In the light of these findings, it seems premature to definitely reject (or recommend) Flu as a possible adjuvant medication against soman poisoning. Further studies are required to determine its real potential interest.
Collapse
Affiliation(s)
- Pierre Carpentier
- Centre de Recherches du Service de Santé des Armées, Unité de Neuropharmacologie, La Tronche Cedex, France.
| | | | | | | |
Collapse
|
357
|
Freitas RM, Sousa FCF, Vasconcelos SMM, Viana GSB, Fonteles MMF. Pilocarpine-induced status epilepticus in rats: lipid peroxidation level, nitrite formation, GABAergic and glutamatergic receptor alterations in the hippocampus, striatum and frontal cortex. Pharmacol Biochem Behav 2005; 78:327-32. [PMID: 15219774 DOI: 10.1016/j.pbb.2004.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2003] [Revised: 04/04/2004] [Accepted: 04/08/2004] [Indexed: 10/26/2022]
Abstract
The aim of the study was to investigate the lipid peroxidation levels, nitrite formation, GABAergic and glutamatergic receptor densities in the hippocampus, frontal cortex and striatum of Wistar rats after seizures and status epilepticus (SE) induced by pilocarpine. The control group was treated with 0.9% saline and sacrificed 1 h after the treatment. One group of rats was administered with pilocarpine (400 mg/kg sc) and sacrificed 1 h after treatment. The result shows that pilocarpine administration and the resulting SE produced a significant increase of lipid peroxidation level in the hippocampus (46%), striatum (25%) and frontal cortex (21%). In nitrite formation, increases of 49%, 49% and 75% in hippocampus, striatum and frontal cortex, respectively, was observed. Pilocarpine treatment induced down-regulation of GABAergic receptors in the hippocampus (38%), striatum (15%) and frontal cortex (11%). However, with regard to glutamatergic receptor densities, increases in the hippocampus (11%), striatum (17%) and frontal cortex (14%) was observed during the observation period. These results show a direct evidence of lipid peroxidation and nitrite formation during seizure activity that could be responsible for the GABAergic and glutamatergic receptor concentration changes during the establishment of SE induced by pilocarpine.
Collapse
Affiliation(s)
- R M Freitas
- Department of Physiology and Pharmacology, Laboratory of Neuropharmacology, School of Medicine, Federal University of Ceará, Rua Frederico Severo 201, Ap 103, Bl 07, Messejana, Fortaleza 60830-310, Brazil.
| | | | | | | | | |
Collapse
|
358
|
Myhrer T, Andersen JM, Nguyen NHT, Aas P. Soman-induced convulsions in rats terminated with pharmacological agents after 45 min: neuropathology and cognitive performance. Neurotoxicology 2005; 26:39-48. [PMID: 15527872 DOI: 10.1016/j.neuro.2004.07.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 07/20/2004] [Indexed: 11/25/2022]
Abstract
It has been demonstrated that a triple regimen consisting of procyclidine (6 mg/kg), diazepam (10 mg/kg) and pentobarbital (30 mg/kg) can effectively terminate soman-induced (1 x LD50) seizures/convulsions in rats when administered 30-40 min following onset. However, convulsive activity lasting for only 45 min can result in marked neuronal pathology. The purpose of the present study was to examine potential cognitive impairments of such brain lesions. The results showed that the neuronal pathology (assessed with Fluoro-Jade B) varied from none at all to 30% damage in the index areas (hippocampus, amygdala, piriform cortex). Cognitive deficits were seen in a novelty test (11 days post-exposure) and retention of a brightness discrimination task (28 days post-exposure) among the rats with neuropathology. Furthermore, significant correlations between neuropathology scores and behavioral measures were found for the animals that convulsed. Among these rats, the mortality rate was relatively high (60%) compared with rats in a previous study that had undergone implantation of hippocampal electrodes (17%). Neither the soman poisoning in the absence of convulsions nor the triple regimen alone affected behavior. It is concluded that early management of soman-induced convulsions is of major importance in preventing neuropathology and accompanying cognitive impairments.
Collapse
Affiliation(s)
- Trond Myhrer
- Norwegian Defence Research Establishment, Protection Division, NO-2027 Kjeller, Norway.
| | | | | | | |
Collapse
|
359
|
McDonough JH, Benjamin A, McMonagle JD, Rowland T, Shih TM. Effects of Fosphenytoin on Nerve Agent‐InducedStatus epilepticus. Drug Chem Toxicol 2004; 27:27-39. [PMID: 15038246 DOI: 10.1081/dct-120027895] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study evaluated the effectiveness of fosphenytoin as a single or adjunctive anticonvulsant treatment for nerve agent-induced status epilepticus. Guinea pigs, implanted with cortical electroencephalographic (EEG) recording electrodes, were pretreated with pyridostigmine bromide (0.026 mg/kg, intramuscular (i.m.)) 30 min before challenge with 56 micrograms/kg, subcutaneous (s.c.), (2 x LD50) of the nerve agent soman. One min after soman, the animals were treated (i.m.) with 2 mg/kg atropine sulfate admixed with 25 mg/kg of the oxime 2-pralidoxime chloride, and the EEG was observed for seizure onset. When administered (intraperitoneal, i.p.) therapeutically 5 min after seizure onset, only the highest fosphenytoin dose (180 mg/kg) was capable of terminating seizure activity in 50% of the animals tested (3 of 6). When fosphenytoin (18-180 mg/kg) was administered as a pretreatment, i.p., 30 min before soman challenge, seizures were blocked or terminated in a dose-dependent fashion (ED50 = 61.8 mg/kg; 40.5-94.7 mg/kg = 95% confidence limits). Combinations of diazepam and fosphenytoin were also tested for effectiveness. No dose of fosphenytoin (18-56 mg/kg), given in conjunction with a fixed dose of diazepam (4.8 mg/kg, i.m.) 5 min after seizure onset, enhanced the anticonvulsant effect of diazepam. When fosphenytoin (18 or 32 mg/kg, i.p.) was given as a pretreatment and diazepam was given 5 min after seizure onset, the 32 mg/kg dose of fosphenytoin significantly reduced the time for seizure control. These studies show that fosphenytoin, either alone or in combination with diazepam, has little or no therapeutic anticonvulsant effectiveness for nerve agent-induced status epilepticus.
Collapse
Affiliation(s)
- John H McDonough
- Pharmacology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, 3100 Ricketts Point Road, APG-EA, MD 21010-5400, USA.
| | | | | | | | | |
Collapse
|
360
|
Choi EK, Park D, Yon JM, Hur GH, Ha YC, Che JH, Kim J, Shin S, Jang JY, Hwang SY, Seong YH, Kim DJ, Kim JC, Kim YB. Protection by sustained release of physostigmine and procyclidine of soman poisoning in rats. Eur J Pharmacol 2004; 505:83-91. [PMID: 15556140 DOI: 10.1016/j.ejphar.2004.10.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 10/12/2004] [Indexed: 11/17/2022]
Abstract
The efficacy of a combinational prophylactic regimen on the lethality, convulsions, and loss of morphological and functional integrities of the brain induced by an organophosphate soman was investigated in rats. The rats were implanted subcutaneously with osmotic minipumps containing the combinational prophylactic regimen composed of physostigmine, a reversible cholinesterase inhibitor, and procyclidine, an N-methyl-D-aspartate antagonist possessing anticholinergic action, for 3 days, and intoxicated subcutaneously with soman (160 microg/kg, 1.3 LD50). The doses of combinational regimen in minipumps were optimized to achieve 30-35% inhibition of blood cholinesterase activity by physostigmine and 50-100 ng/ml of blood concentrations of procyclidine as clinically available doses, respectively. In comparison, 1-[([4-(aminocarbonyl)pyridinio]methoxy)methyl]-2-[(hydroxyimino)methyl]pyridinium (HI-6, 125 mg/kg) was administered intraperitoneally 30 min prior to the soman challenge in control groups to reduce mortality of rats without affecting convulsions. Soman induced profound limbic convulsions and 30% mortality, leading to increased blood-brain barrier permeability, neural injuries, learning and memory impairments, and physical incapacitation of survived rats pretreated with HI-6. The combinational regimen, at optimal doses without adverse effects on passive avoidance performances (72 microg/kg/h of physostigmine plus 432 microg/kg/h of procyclidine), exerted full protective effects against lethality, convulsions, blood-brain barrier opening, brain injuries, learning and memory impairments, and physical incapacitation induced by soman. Taken together, it is suggested that the combination of physostigmine and procyclidine, at adequate doses, could be a choice to provide the victims of organophosphate poisoning with chance of intensive care for survival and neuroprotection.
Collapse
Affiliation(s)
- Ehn-Kyoung Choi
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, San 48, Gaeshin-dong, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Myhrer T, Enger S, Aas P. Cognitive side effects in rats caused by pharmacological agents used to prevent soman-induced lethality. Eur J Pharmacol 2004; 483:271-9. [PMID: 14729117 DOI: 10.1016/j.ejphar.2003.09.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is important that prophylactics used to protect military and emergency personnel against lethal doses of nerve agents do not by themselves produce impairment of cognitive capability. The purpose of the present study was to examine whether physostigmine, scopolamine, and various doses of procyclidine might reduce rats' innate preference for novelty. When these drugs were tested separately, the results showed that physostigmine (0.1 mg/kg) and procyclidine (3 mg/kg) did not affect preference for novelty, whereas scopolamine (0.15 mg/kg) and procyclidine in a higher dose (6 mg/kg) resulted in a preference deficit (Experiment 1). In Experiment 2, the combination of physostigmine and scopolamine or physostigmine and procyclidine (6 mg/kg) caused a marked deficit in preference for novelty. A much milder deficit was observed when physostigmine was combined with lower doses (1 or 3 mg/kg) of procyclidine. The latter combinations also had milder adverse impact on the animals' interest in the test environment and activity measures than the former combinations. By combining physostigmine with anticholinergics, a potentiation of adverse effects on behavior was seen. It is concluded that a slight cognitive impairment might be unavoidable with effective prophylactics.
Collapse
Affiliation(s)
- Trond Myhrer
- Division for Protection and Materiel, Norwegian Defence Research Establishment, P.O. Box 25, NO-2027 Kjeller, Norway.
| | | | | |
Collapse
|
362
|
Peterson SL, Purvis RS, Griffith JW. Differential Neuroprotective Effects of the NMDA Receptor-Associated Glycine Site Partial Agonists 1-Aminocyclopropanecarboxylic Acid (ACPC) and d-Cycloserine in Lithium-Pilocarpine Status Epilepticus. Neurotoxicology 2004; 25:835-47. [PMID: 15288514 DOI: 10.1016/j.neuro.2004.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 01/13/2004] [Indexed: 11/30/2022]
Abstract
The status epilepticus (SE) induced in rats by lithium-pilocarpine (Li-pilo) shares many common features with soman-induced SE including a glutamatergic phase that is inhibited by NMDA antagonists. The present study determined whether 1-aminocyclopropanecarboxylic acid (ACPC) or D-cycloserine (DCS), both partial agonists of the strychnine-insensitive glycine site on the NMDA receptor ionophore complex, exerted anticonvulsant or neuroprotectant activity in Li-pilo SE. ACPC or DCS were administered either immediately following pilocarpine (exposure treatment) or 5 min after the onset of SE as determined by ECoG activity. SE was allowed to proceed for 3 h before termination with propofol. The rats were sacrificed 24 h following pilocarpine administration. Neither drug had an effect on the latency to seizure onset or the duration of seizure activity. ACPC administered 5 min after SE onset produced significant neuroprotection in cortical regions, amygdala and CA1 of the hippocampus. In contrast, when administered as exposure treatment ACPC enhanced the neural damage in the thalamus and CA3 of the hippocampus suggesting the neuropathology in those regions is mediated by a different subset of NMDA receptors. DCS had no neuroprotectant activity in Li-pilo SE but exacerbated neuronal damage in the thalamus. Neither drug affected the cholinergic convulsions but both had differential effects on neural damage. This suggests that the SE-induced seizure activity and subsequent neuronal damage involve independent mechanisms.
Collapse
Affiliation(s)
- Steven L Peterson
- College of Pharmacy, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | |
Collapse
|
363
|
Samnaliev I, Kassa J. A comparison of protective and anticonvulsive efficacy of two prophylactic mixtures in soman-poisoned rats. J Appl Biomed 2004. [DOI: 10.32725/jab.2004.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
364
|
Harrison PK, Sheridan RD, Green AC, Scott IR, Tattersall JEH. A guinea pig hippocampal slice model of organophosphate-induced seizure activity. J Pharmacol Exp Ther 2004; 310:678-86. [PMID: 15031302 DOI: 10.1124/jpet.104.065433] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular recording techniques have been used in the guinea pig hippocampal slice preparation to investigate the electrophysiological actions of the organophosphate (OP) anticholinesterase soman. When applied at a concentration of 100 nM, soman induced epileptiform activity in the CA1 region in approximately 75% of slices. This effect was mimicked by the anticholinesterases paraoxon (1 and 3 microM), physostigmine (30 microM), and neostigmine (30 microM), thus providing indirect evidence that the epileptiform response was mediated by elevated acetylcholine levels. Soman-induced bursting was inhibited by the muscarinic receptor antagonists atropine (concentrations tested, 0.1-10 microM), telenzepine (0.03-3 microM), AF-DX116 [11-(2-[(diethylamino)methyl]-1-piperidinyl acetyl)-5,11-dihydro-6H-pyrido 92.b-b) (1,4)-benzodiazepin-6-one] (0.3-300 microM), and biperiden (0.1-10 microM) and by the benzodiazepine anticonvulsants diazepam (3-30 microM) and midazolam (3-30 microM), but it was not inhibited by the nicotinic antagonists mecamylamine (30 microM) and methyllycaconitine (300 nM). In contrast to soman-induced epileptiform activity, bursting induced by the K(+) channel blocker 4-aminopyridine (30 microM), the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (30 nM) or perfusion with low Mg(2+) buffer was insensitive to atropine (10 microM). The ability of muscarinic antagonists and benzodiazepines to inhibit soman-induced epileptiform activity is in accordance with the in vivo pharmacology of soman-induced seizures and suggests that the guinea pig hippocampal slice preparation may provide a useful tool for the evaluation of novel anticonvulsant therapies for the treatment of seizures related to OP poisoning.
Collapse
Affiliation(s)
- Patrick K Harrison
- Biomedical Sciences, DSTL, Bldg. 04, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | | | | | | | | |
Collapse
|
365
|
Munirathinam S, Bahr BA. Repeated contact with subtoxic soman leads to synaptic vulnerability in hippocampus. J Neurosci Res 2004; 77:739-46. [PMID: 15352221 DOI: 10.1002/jnr.20209] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Soman, an anticholinesterase and dangerous nerve agent, produces convulsions, memory impairment, and cell loss in the brain, especially in the hippocampus. Soman-induced accumulation of acetylcholine initiates mechanisms responsible for the development of incapacitating seizures. The prolonged epileptiform nature of these seizures causes the release of another excitatory neurotransmitter, glutamate, which has been linked to the toxic action of the nerve agent. Here, we tested whether subtoxic soman exposures influence the brain's sensitivity to glutamate-based excitotoxicity. Over a 1-week period, hippocampal slice cultures were exposed daily to a transient level of soman that produced no evidence of synaptic deterioration. After the subtoxic soman treatments, however, the tissue became vulnerable to a brief episode of glutamate receptor overstimulation that normally resulted in little or no excitotoxic damage. In those slice cultures treated with subtoxic soman, a decline in synaptic markers as well as an increase in spectrin breakdown occurred 24 hr after the mild excitotoxic event. Exposure to high soman concentrations alone produced similar synaptic degeneration, but without evident cell death, suggesting that synaptic decline is an early neurotoxicological response to the nerve agent. Interestingly, enhanced excitotoxic sensitivity caused the brain tissue to become susceptible to disparate insults initiated before or after the soman contact. These findings indicate that seemingly innocuous soman exposures leave the hippocampus sensitive to the types of insults implicated in traumatic brain injury and stroke. They also warn that asymptomatic contact with soman may lead to progressive synaptopathogenesis and that early indicators of soman exposure are critical to prevent potential brain injury.
Collapse
Affiliation(s)
- Subramani Munirathinam
- Department of Pharmaceutical Sciences, Center for Drug Discovery, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
366
|
Segura Aguilar J, Kostrzewa RM. Neurotoxins and neurotoxic species implicated in neurodegeneration. Neurotox Res 2004; 6:615-30. [PMID: 15639792 DOI: 10.1007/bf03033456] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurotoxins, in the general sense, represent novel chemical structures which when administered in vivo or in vitro, are capable of producing neuronal damage or neurodegeneration--with some degree of specificity relating to neuronal phenotype or populations of neurons with specific characteristics (i.e., receptor type, ion channel type, astrocyte-dependence, etc.). The broader term 'neurotoxin' includes this categorization but extends the term to include intra- or extracellular mediators involved in the neurodegenerative event, including necrotic and apoptotic factors. Moreover, as it is recognized that astrocytes are essential supportive satellite cells for neurons, and because damage to these cells ultimately affects neuronal function, the term 'neurotoxin' might reasonably be extended to include those chemical species which also adversely affect astrocytes. This review is intended to highlight developments that have occurred in the field of 'neurotoxins' during the past 5 years, including MPTP/MPP+, 6-hydroxydopamine (6-OHDA), methamphetamine; salsolinol; leukoaminochrome-o-semiquinone; rotenone; iron; paraquat; HPP+; veratridine; soman; glutamate; kainate; 3-nitropropionic acid; peroxynitrite anion; and metals (copper, manganese, lead, mercury). Neurotoxins represent tools to help elucidate intra- and extra-cellular processes involved in neuronal necrosis and apoptosis, so that drugs can be developed towards targets that interrupt the processes leading towards neuronal death.
Collapse
Affiliation(s)
- Juan Segura Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Casilla 70000, Santiago, Chile.
| | | |
Collapse
|
367
|
Savić MM, Obradović DI, Ugresić ND, Bokonjić DR. The Influence of Diazepam on Atropine Reversal of Behavioural Impairment in Dichlorvos-Treated Rats. ACTA ACUST UNITED AC 2003; 93:211-8. [PMID: 14629732 DOI: 10.1046/j.1600-0773.2003.pto930503.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acute effects on the behaviour of the organophosphate insecticide dichlorvos and its standard antidotes possessing behavioural activity, atropine and diazepam, were studied separately and in combinations in male Wistar rats. In the spontaneous locomotor activity test, dichlorvos and diazepam decreased, whereas atropine increased performance. The effect of dichlorvos was obtained at a dose (5 mg/kg) that induced overt intoxication, and could not be reversed during first half hour-period after administration of any combination of drugs. In the other two tests, active avoidance learning and rotarod performance, the effective dose of dichlorvos (2 mg/kg) was devoid of somatic signs of intoxication. In these more sensitive tests, the effective atropine dose (40 mg/kg) completely reversed dichlorvos-induced incapacitation. In the rotarod test, diazepam (0.5 mg/kg) contributed to the incapacitating effect of dichlorvos, and impeded desirable influence of atropine as well. In the active avoidance test, diazepam (2.5 mg/kg) contributed to failure to escape; it did not influence the dichlorvos-induced decrease of avoidance performance, nor did it impair the completely reversing effects of atropine. The results point to the possible summation of acute incapacitating effects of organophosphates and diazepam on motor performance, which seems to be, at least partly, antagonized by sufficiently high doses of atropine. However, taking into account the long-term neuroprotective role of the anticonvulsant diazepam, and hence its delayed beneficial influences on behaviour, the immediate testing of atropine/diazepam treatment of organophosphate intoxication in active avoidance paradigm could possess beside sensitivity the predictive value as well.
Collapse
Affiliation(s)
- Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, PO Box 146, Vojvode Stepe 450, 11221 Belgrade, Serbia and Montenegro.
| | | | | | | |
Collapse
|
368
|
Taysse L, Calvet JH, Buée J, Christin D, Delamanche S, Breton P. Comparative efficacy of diazepam and avizafone against sarin-induced neuropathology and respiratory failure in guinea pigs: influence of atropine dose. Toxicology 2003; 188:197-209. [PMID: 12767691 DOI: 10.1016/s0300-483x(03)00086-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This investigation compared the efficacy of diazepam and the water-soluble prodiazepam-avizafone-in sarin poisoning therapy. Guinea pigs, pretreated with pyridostigmine 0.1 mg/kg, were intoxicated with 4LD(50) of sarin (s.c. route) and 1 min after intoxication treated by intramuscular injection of atropine (3 or 33.8 mg/kg), pralidoxime (32 mg/kg) and either diazepam (2 mg/kg) or avizafone (3.5 mg/kg). EEG and pneumo-physiological parameters were simultaneously recorded. When atropine was administered at a dose of 3 mg/kg, seizures were observed in 87.5% of the cases; if an anticonvulsant was added (diazepam (2 mg/kg) or avizafone (3.5 mg/kg)), seizure was prevented but respiratory disorders were observed. At 33.8 mg/kg, atropine markedly increased the seizure threshold and prevented early respiratory distress induced by sarin. When diazepam was administered together with atropine, seizures were not observed but 62.5% of the animals displayed respiratory difficulties. These symptoms were not observed when using avizafone. The pharmacokinetic data showed marked variation of the plasma levels of atropine and diazepam in different antidote combination groups, where groups receiving diazepam exhibited the lowest concentration of atropine in plasma. Taken together, the results indicate that avizafone is suitable in therapy against sarin when an anticonvulsant is judged necessary.
Collapse
Affiliation(s)
- L Taysse
- Centre d'Etudes du Bouchet, Defense Research Centre, BP No. 3, Vert-Le-Petit 91710, France.
| | | | | | | | | | | |
Collapse
|
369
|
Myhrer T, Skymoen LR, Aas P. Pharmacological agents, hippocampal EEG, and anticonvulsant effects on soman-induced seizures in rats. Neurotoxicology 2003; 24:357-67. [PMID: 12782101 DOI: 10.1016/s0161-813x(03)00040-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Changes in the hippocampal theta rhythm were used as a model in which anticonvulsant drugs may be screened for their potential to antagonize soman-induced (1xLD(50)) seizures. The zinc chelator, ethylenediaminetetra acetic acid (EDTA) (300mg/kg), and the NMDA receptor antagonist, HA-966 (60mg/kg), both disrupted the theta rhythm, but did not antagonize soman-induced seizures, neither separately, nor in combination. The anticholinergic and antiglutamatergic procyclidine (6mg/kg) did not influence the theta activity. The GABAergic agonists, diazepam (10mg/kg) and pentobarbital (30mg/kg), both reduced the theta frequency. Procyclidine, diazepam, and pentobarbital did not stop soman-induced seizures when administered separately, but both convulsions and seizure activity terminated when these agents were given together, and the rats slept through the critical convulsion period. This triple therapy was 100% effective, when administered 30-40min following onset of convulsions, and the rats displayed apparently normal behavior the next day. A screening model of potential anticonvulsants cannot be based on alterations in hippocampal EEG activity. Procyclidine, diazepam, and pentobarbital in combination disrupted the theta rhythm like the combination of EDTA and HA-966, but the latter combination did not have anticonvulsant effect. It is concluded that a triple regimen consisting of procyclidine, diazepam, and pentobarbital can effectively terminate soman-induced seizures that have lasted 30min or more.
Collapse
Affiliation(s)
- Trond Myhrer
- Division for Protection and Materiel, Norwegian Defence Research Establishment, Kjeller, Norway.
| | | | | |
Collapse
|
370
|
Cowan FM, Broomfield CA, Lenz DE, Smith WJ. Putative role of proteolysis and inflammatory response in the toxicity of nerve and blister chemical warfare agents: implications for multi-threat medical countermeasures. J Appl Toxicol 2003; 23:177-86. [PMID: 12794939 DOI: 10.1002/jat.901] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the contrasts in chemistry and toxicity, for blister and nerve chemical warfare agents there may be some analogous proteolytic and inflammatory mediators and pathological pathways that can be pharmacological targets for a single-drug multi-threat medical countermeasure. The dermal-epidermal separation caused by proteases and bullous diseases compared with that observed following exposure to the blister agent sulfur mustard (2,2'-dichlorodiethyl sulfide) has fostered the hypothesis that sulfur mustard vesication involves proteolysis and inflammation. In conjunction with the paramount toxicological event of cholinergic crisis that causes acute toxicity and precipitates neuronal degeneration, both anaphylactoid reactions and pathological proteolytic activity have been reported in nerve-agent-intoxicated animals. Two classes of drugs already have demonstrated multi-threat activity for both nerve and blister agents. Serine protease inhibitors can prolong the survival of animals intoxicated with the nerve agent soman and can also protect against vesication caused by the blister agent sulfur mustard. Poly (ADP-ribose) polymerase (PARP) inhibitors can reduce both soman-induced neuronal degeneration and sulfur-mustard-induced epidermal necrosis. Protease and PARP inhibitors, like many of the other countermeasures for blister and nerve agents, have potent primary or secondary anti-inflammatory pharmacology. Accordingly, we hypothesize that drugs with anti-inflammatory actions against either nerve or blister agent might also display multi-threat efficacy for the inflammatory pathogenesis of both classes of chemical warfare agent.
Collapse
Affiliation(s)
- F M Cowan
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | | | |
Collapse
|
371
|
Shih TM, Duniho SM, McDonough JH. Control of nerve agent-induced seizures is critical for neuroprotection and survival. Toxicol Appl Pharmacol 2003; 188:69-80. [PMID: 12691725 DOI: 10.1016/s0041-008x(03)00019-x] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study evaluated the potency and rapidity of some anticholinergics (atropine, biperiden, and trihexyphenidyl) and benzodiazepines (diazepam and midazolam) as an anticonvulsant treatment against seizures induced by six nerve agents (tabun, sarin, soman, cyclosarin, VR, and VX) and summarized the relationship between anticonvulsant activity and nerve agent-induced lethality and neuropathology. Guinea pigs, previously implanted with cortical electrodes for EEG recording, were pretreated with pyridostigmine bromide (0.026 mg/kg im) 30 min prior to challenge with 2x LD50 dose (sc) of a given nerve agent; in a separate experiment, animals were challenged with 5x LD50 sc of soman. One minute after agent challenge the animals were treated im with 2 mg/kg atropine SO(4) admixed with 25 mg/kg 2-PAM Cl. Five minutes after the start of EEG seizures, animals were treated im with different doses of anticholinergics or benzodiazepines and observed for seizure termination. The time to seizure onset, the time to seizure termination, and 24-h lethality were recorded. The anticonvulsant ED50 of each drug for termination of seizures induced by each agent was calculated and compared. Brain tissue from animals that survived 24 h was examined for pathology. All drugs were capable of terminating seizure activity, with midazolam and trihexyphenidyl being significantly more potent than the other drugs, and midazolam being more rapid in controlling seizure than atropine, trihexyphenidyl, or diazepam against each agent. Seizures induced by sarin or VX required lower doses of all the test anticonvulsants. The dose of a given drug that was an effective anticonvulsant against a 2x LD50 challenge of soman was equally effective against seizures induced by a 5x LD50 challenge. All nerve agents were capable of producing neuropathology. Seizure control was strongly associated with protection against acute lethality and brain pathology.
Collapse
Affiliation(s)
- Tsung-Ming Shih
- Pharmacology and Comparative Medicine Divisions, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | |
Collapse
|
372
|
Gilat E, Goldman M, Lahat E, Levy A, Rabinovitz I, Cohen G, Brandeis R, Amitai G, Alkalai D, Eshel G. Nasal midazolam as a novel anticonvulsive treatment against organophosphate-induced seizure activity in the guinea pig. Arch Toxicol 2003; 77:167-72. [PMID: 12632257 DOI: 10.1007/s00204-002-0425-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Accepted: 10/14/2002] [Indexed: 10/20/2022]
Abstract
Seizures and status epilepticus, which may contribute to brain injury, are common consequences of exposure to organophosphorus (OP) cholinesterase inhibitors. Effective management of these seizures is critical. To investigate the efficacy of nasal midazolam as an anticonvulsive treatment for OP exposure, as compared to intramuscular midazolam, guinea pigs were connected to a recording swivel for electrocorticograph (ECoG) monitoring and clinical observation. The experimental paradigm consisted of pyridostigmine pretreatment (0.1 mg/kg i.m.) 20 min prior to sarin exposure (1.2x LD(50,) 56 micro g/kg i.m.). One minute post-exposure, atropine (3 mg/kg i.m.) and TMB-4 (1 mg/kg im) were administered. Within 3-8 min after sarin exposure all animals developed electrographic seizure activity (EGSA), with convulsive behavior. Treatment with midazolam (1 mg/kg i.m.) 10 min after the onset of EGSA abolished EGSA within 389+/-181 s. The same dose was not effective, in most cases, when given 30 min after onset. However, a higher dose (2 mg/kg) was found efficacious after 30 min (949+/-466 s). In contrast, nasal application of midazolam (1 mg/kg) was found most effective, with significant advantages, in amelioration of EGSA and convulsive behavior, when given 10 min (216+/-185 s) or 30 min (308+/-122 s) following the onset of EGSA ( P<0.001). Thus, nasal midazolam could be used as a novel, rapid and convenient route of application against seizure activity induced by nerve agent poisoning.
Collapse
Affiliation(s)
- E Gilat
- Department of Pharmacology, Israel Institute for Biological Research, PO Box 19, Ness Ziona, 74100 Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Santos MD, Pereira EFR, Aracava Y, Castro NG, Fawcett WP, Randall WR, Albuquerque EX. Low concentrations of pyridostigmine prevent soman-induced inhibition of GABAergic transmission in the central nervous system: involvement of muscarinic receptors. J Pharmacol Exp Ther 2003; 304:254-65. [PMID: 12490599 DOI: 10.1124/jpet.102.043109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to investigate the effects of the cholinesterase inhibitors soman and pyridostigmine bromide (PB) on synaptic transmission in the CA1 field of rat hippocampal slices. Soman (1-100 nM, 10-15 min) decreased the amplitude of GABAergic postsynaptic currents (IPSCs) evoked by stimulation of Schaffer collaterals and recorded from CA1 pyramidal neurons. It also decreased the amplitude and frequency of spontaneous IPSCs recorded from pyramidal neurons. Whereas the maximal effect of soman on evoked GABAergic transmission was observed at 10 nM, full cholinesterase inhibition was induced by 1 nM soman. After 10-15-min exposure of hippocampal slices to 100 nM PB, GABAergic transmission was facilitated and cholinesterase activity was not significantly affected. At nanomolar concentrations, soman and PB have no direct effect on GABA(A) receptors. The effects of soman and PB on GABAergic transmission were inhibited by the m2 receptor antagonist 11-[[[2-diethylamino-O-methyl]-1-piperidinyl] acetyl]-5,11-dihydrol-6H-pyridol[2,3-b][1,4]benzodiazepine-6- one (1 nM) and the m3 receptor antagonist 4-diphenylacetoxy-N-methyl-piperidine (100 nM), respectively, and by the nonselective muscarinic receptor antagonist atropine (1 microM). Thus, changes in GABAergic transmission are likely to result from direct interactions of soman and PB with m2 and m3 receptors, respectively, located on GABAergic fibers/neurons synapsing onto the neurons under study. Although the effects of 1 nM soman and 100 nM PB were diametrically opposed, they only canceled one another when PB was applied to the neurons before soman. Therefore, PB, acting via m3 receptors, can effectively counteract effects arising from the interactions of soman with m2 receptors in the brain.
Collapse
Affiliation(s)
- Máriton D Santos
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
374
|
Myers TM, Galbicka G, Sipos ML, Varadi S, Oubre JL, Clark MG. Effects of anticholinergics on serial-probe recognition accuracy of rhesus macaques (Macaca mulatta). Pharmacol Biochem Behav 2002; 73:829-34. [PMID: 12213528 DOI: 10.1016/s0091-3057(02)00909-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Potential deleterious behavioral effects of the anticholinergics biperiden and scopolamine were examined via the performance of rhesus monkeys on a serial-probe recognition (SPR) procedure. On each trial, six unique stimuli (list items) were presented sequentially followed by a choice phase. In the choice phase, two stimuli were presented, a standard or 'default' stimulus (a white rectangle) and a 'probe' stimulus that differed with each choice trial. Choosing the probe stimulus was considered correct if the probe matched one of the list items; otherwise, choosing the default stimulus was considered correct. Behavior was examined under a range of doses of biperiden (0.001-1.0 mg/kg) and scopolamine (0.0056-0.03 mg/kg). Scopolamine (0.01-0.03 mg/kg) and biperiden (0.3-1.0 mg/kg) reduced overall accuracy. At the highest dose, scopolamine, but not biperiden, reduced the number of trials completed per session. The results suggest that doses of scopolamine and biperiden necessary to prevent or eliminate organophosphate induced seizures may affect performance adversely. However, because the degree of impairment from biperiden was modest, further examination of this anticonvulsant may be warranted.
Collapse
Affiliation(s)
- Todd M Myers
- Division of Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | | | | | | | | | | |
Collapse
|
375
|
Affiliation(s)
- Fred M Henretig
- Division of Emergency Medicine and Poison Control Center, Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
376
|
Wetherell J, Hall T, Passingham S. Physostigmine and hyoscine improves protection against the lethal and incapacitating effects of nerve agent poisoning in the guinea-pig. Neurotoxicology 2002; 23:341-9. [PMID: 12387361 DOI: 10.1016/s0161-813x(02)00082-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study is drawn from a work programme aimed at developing improved medical counter measures for nerve agent poisoning. Guinea-pigs were administered pyridostigmine (5.1 microg/h) or physostigmine (4.7 microg/h) and hyoscine (1.94 microg/h) for 6 days via a subcutaneously implanted mini osmotic pump. Pyridostigmine inhibited red cell acetylcholinesterase (AChE) by 44.2 +/- 2.7% and plasma cholinesterase (ChE) by 29.9 +/- 1.8%. Physostigmine and hyoscine inhibited red cell AChE by 18.7 +/- 3.7% and plasma ChE by 44.1 +/- 3.1%. On day 6, animals were challenged with a lethal dose of tabun (GA; 125 microg/kg), sarin (GB; 51.2 microg/kg), soman (GD; 31.2 microg/kg), GF (50 microg/kg) or VX (11.25 microg/kg) administered by the subcutaneous route. Animals were closely observed for signs of poisoning. The time to the onset of signs of poisoning was similar for all the agents except for VX, which showed a delay compared to the other agents. Following pretreatment with either pyridostigmine or physostigmine and hyoscine most animals survived for 2-3 h following nerve agent administration. In contrast, only physostigmine and hyoscine prevented or reduced the duration of the signs of incapacitation and the temperature drop produced by all the agents. Pyridostigmine-pretreated animals showed little or no recovery from incapacitation prior to death. Physostigmine and hyoscine pretreatment provided statistically (P < 0.05) better protection against GB, GD and VX lethality (24 h) than pyridostigmine pretreatment and better protection against GA and GF lethality.
Collapse
|
377
|
Mark GP, Finn DA. The Relationship Between Hippocampal Acetylcholine Release and Cholinergic Convulsant Sensitivity in Withdrawal Seizure-Prone and Withdrawal Seizure-Resistant Selected Mouse Lines. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02650.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
378
|
The Relationship Between Hippocampal Acetylcholine Release and Cholinergic Convulsant Sensitivity in Withdrawal Seizure???Prone and Withdrawal Seizure???Resistant Selected Mouse Lines. Alcohol Clin Exp Res 2002. [DOI: 10.1097/00000374-200208000-00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
379
|
Hulet SW, McDonough JH, Shih TM. The dose-response effects of repeated subacute sarin exposure on guinea pigs. Pharmacol Biochem Behav 2002; 72:835-45. [PMID: 12062573 DOI: 10.1016/s0091-3057(02)00761-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study assessed the effects of repeated subacute exposure to the organophosphorous nerve agent, sarin. Guinea pigs were injected five times per week (Monday-Friday) for 2 weeks with fractions of the established LD(50) dose of sarin (42 microg/kg sc). The animals were assessed for the development of cortical EEG seizures. Changes in body weight, red blood cell (RBC) acetylcholinesterase (AChE) levels and neurobehavioral reactions to a functional observational battery were monitored over the 2 weeks of sarin exposure and for an extended postinjection period. There were dose-related changes in body weight and RBC AChE levels. No guinea pigs receiving 0.3, 0.4 or 0.5 x LD(50) of sarin showed signs of cortical EEG seizures despite decreases in RBC AChE levels to as low as 10% of baseline. Seizures were evident in animals receiving 0.6 x LD(50) of sarin as early as the second day, and subsequent injections led to incapacitation and death. Animals receiving 0.5 x LD(50) sarin showed obvious signs of cholinergic toxicity, which included a significant increase in their angle of gait. Overall, 2/13 animals receiving 0.5 x LD(50) sarin died before all 10 injections were given. By the 10th day of injections, the animals receiving saline were significantly easier to remove from their cages and handle as compared to the first day of injections. They were also significantly less responsive to an approaching pencil and touch on the rump in comparison to the first day of testing. In contrast, the animals receiving 0.4 x LD(50) sarin failed to show any significant reductions in their responses to an approaching pencil and a touch on the rump as compared to the first day. The 0.5 x LD(50) sarin animals failed to show any significant changes to the approach response and touch response and did not adjust to handling or cage removal from the first day of injections to the last day of handling. In summary, the guinea pigs receiving the 0.4 x LD(50) and 0.5 x LD(50) doses of sarin failed to habituate to some aspects of the functional observational battery testing.
Collapse
Affiliation(s)
- S W Hulet
- Neurotoxicology and Applied Pharmacology Branches, US Army Medical Research Institute of Chemical Defense, MCMR-UV-PN, Aberdeen Proving Grounds, MD 21010-5400, USA
| | | | | |
Collapse
|
380
|
Peterson SL, Morrow D, Liu S, Liu KJ. Hydroethidine detection of superoxide production during the lithium-pilocarpine model of status epilepticus. Epilepsy Res 2002; 49:226-38. [PMID: 12076844 DOI: 10.1016/s0920-1211(02)00047-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hydroethidine is reported to be selectively oxidized to ethidium by superoxide. Using digital imaging and fluorescence microscopy it is possible to evaluate neuronal ethidium accumulation in specific brain regions of rats damaged in the lithium-pilocarpine model of status epilepticus. Intravenous or intraperitoneal administration of hydroethidine prior to 1 h of status epilepticus produced diffuse cytosolic distribution of ethidium fluorescence suggesting an increased neuronal production of superoxide that was not observed in control animals. A significantly increased number of neurons with the enhanced ethidium fluorescence was observed in parietal cortex, piriform cortex, perirhinal cortex, lateral amygdala, mediodorsal thalamus and laterodorsal thalamus, suggesting superoxide as a mechanism of neuronal injury in those regions. Other regions injured by lithium-pilocarpine seizures, such as the basolateral amygdala and hippocampus, did not demonstrate the enhanced neuronal ethidium fluorescence. In such regions it is possible that superoxide is not a mechanism of injury or that 1 h of status epilepticus is not sufficient to produce superoxide or other reactive oxygen species.
Collapse
Affiliation(s)
- Steven L Peterson
- College of Pharmacy, University of New Mexico Health Science Center, 2502 Marble Dr. NE, Albuquerque 87131-5691, USA.
| | | | | | | |
Collapse
|
381
|
Kim YB, Cheon KC, Hur GH, Phi TS, Choi SJ, Hong D, Kang JK. Effects of combinational prophylactics composed of physostigmine and procyclidine on soman-induced lethality, seizures and brain injuries. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2002; 11:15-21. [PMID: 21782582 DOI: 10.1016/s1382-6689(01)00096-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2001] [Revised: 06/20/2001] [Accepted: 06/22/2001] [Indexed: 05/31/2023]
Abstract
The antidotal, anticonvulsant and neuroprotective effects of physostigmine (PhS) and procyclidine (PC), the combinational prophylactics for organophosphate poisoning, were evaluated. For the investigation of dose-response relationship in rats and guinea pigs, various doses (0-6 mg/kg) of PC in combination with a fixed dose (0.1 mg/kg) of PhS were pretreated subcutaneously 30 min prior to subcutaneous poisoning with soman. Procyclidine in combination with PhS exhibited remarkable synergistic effects in a dose-dependent manner, leading to 1.92-5.07 folds of protection ratio in rats and 3.00-4.70 folds in guinea pigs. On the other hand, a low effect (1.65 fold) was achieved with the traditional antidotes atropine (17.4 mg/kg) plus 2-pralidoxime (30 mg/kg) treated immediately after soman poisoning, compared with a marked protection (5.50 fold) with atropine (17.4 mg/kg) plus HI-6 (125 mg/kg) in unpretreated rats. Noteworthy, the combinational prophylactics greatly potentiated the effect of atropine plus 2-pralidoxime to 6.13 or 12.27 folds and that of atropine plus HI-6 to 12.00 or 21.50 folds with 1.0 or 3.0 mg/kg of PC, respectively. A high dose (100 μg/kg, 1.3×LD(50)) of soman induced severe epileptiform seizures in rats pretreated with HI-6 (125 mg/kg), resulting in brain injuries in discrete brain regions under histopathological examination in 24 h. Interestingly, such seizures and excitotoxic brain injuries were fully prevented by pretreatment with PhS (0.1 mg/kg) and PC (1 mg/kg). Taken together, it is proposed that the prophylactics composed of PhS and PC could be a promising regimen for the prevention of lethality, seizures and brain injuries induced by soman poisoning.
Collapse
Affiliation(s)
- Yun-Bae Kim
- Biomedical Assessment Laboratory (GSDC-2-4), Agency for Defense Development, Yuseong, P.O. Box 35-1, Taejon 305-600, South Korea
| | | | | | | | | | | | | |
Collapse
|
382
|
Wood SJ, Tattersall JE. An improved brain slice model of nerve agent-induced seizure activity. J Appl Toxicol 2001; 21 Suppl 1:S83-6. [PMID: 11920926 DOI: 10.1002/jat.817] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A brain slice model was developed to investigate the mechanisms of seizure activity induced by soman and the effectiveness of potential anticonvulsant drugs. Unlike previously reported slice studies with nerve agents, this model contains the entorhinal cortex as well as the hippocampus. This allows the study of the spread of seizure discharges within the limbic system and the development of prolonged, sustained discharges that are rarely seen in the simple hippocampal slice preparation. Soman (1 microM) induced a second population spike in the evoked field potential in the CA1 or CA3 region within 15-20 min. In almost all the slices tested, this developed into spontaneous seizure activity within 30-40 min. As well as interictal bursts, many slices also showed longer periods of high-frequency bursting analogous to ictal seizure activity that originated in the entorhinal cortex. This activity appeared similar to that induced by the muscarinic agonist pilocarpine. Both the second population spike and the spontaneous discharges could be blocked by diazepam and by AMPA/kainate antagonists, but not by the NMDA antagonists AP5 and MK-801. This study confirms that the combined hippocampal-entorhinal cortex slice preparation is a suitable model for investigating the origin and propagation of nerve-agent-induced seizures within the limbic system.
Collapse
Affiliation(s)
- S J Wood
- Biomedical Sciences Department, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | | |
Collapse
|
383
|
Kassa J, Koupilová M, Vachek J. The influence of low-level sarin inhalation exposure on spatial memory in rats. Pharmacol Biochem Behav 2001; 70:175-9. [PMID: 11566155 DOI: 10.1016/s0091-3057(01)00592-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To study the influence of low-level sarin exposure on cognitive functions, the rats were exposed to three various low concentrations of sarin (Levels 1-3) for 60 min in the inhalation chamber. In addition, one group of rats was exposed to Level 2 of sarin repeatedly. Testing of cognitive functions was carried out using the Y-maze evaluating learning and spatial memory. The correct averse behavior of sarin-exposed rats in the Y-maze was tested several times within 6 weeks following sarin inhalation exposure to look for any cognitive impairments. The results were compared to the Y-maze performance of control rats exposed to pure air instead of sarin. While a subtle and short-term deficiency in the Y-maze performance was observed in rats exposed to the Levels 1 and 2 of sarin, the exposure to the Level 3 of sarin caused a significant decrease in the Y-maze performance for a relatively long time. Similar sarin-induced spatial memory impairments were demonstrated in rats exposed repeatedly to the Level 2. A decrease in the Y-maze performance was observed until the end of the third week following the last exposure to sarin. Thus, our findings confirm that both nonconvulsive symptomatic and clinically asymptomatic concentrations of sarin can cause relatively long-term memory impairments in sarin-poisoned rats when the rats are exposed to clinically asymptomatic sarin concentration repeatedly.
Collapse
Affiliation(s)
- J Kassa
- Purkyne Military Medical Academy, 500 01, Hradec Králové, Czech Republic.
| | | | | |
Collapse
|
384
|
Baille V, Dorandeu F, Carpentier P, Bizot JC, Filliat P, Four E, Denis J, Lallement G. Acute exposure to a low or mild dose of soman: biochemical, behavioral and histopathological effects. Pharmacol Biochem Behav 2001; 69:561-9. [PMID: 11509217 DOI: 10.1016/s0091-3057(01)00549-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effects of low to mild doses of soman on central and blood cholinesterase (ChE) activities and anxiety behavior were studied in mice 30 min, 24 h and 7 days after poisoning. At these two latter time points, histopathological consequences of soman intoxication were also studied. The 30-microg/kg dose of soman produced 30 min after intoxication, about 35% of central ChE inhibition, and an anxiolytic effect without toxic signs or histopathological changes. The 50-microg/kg dose of soman produced at the same time, about 56% of central ChE inhibition, slight clinical signs of poisoning without convulsions, an anxiogenic effect with a slight hypolocomotion but no brain damage. A mild dose of soman (90 microg/kg) produced at this same time point about 80% of central ChE inhibition, and led to ataxia and tremors in every mouse and to convulsions in some of them. Thirty minutes and 24 h after poisoning, the behavioral tests revealed neither anxiolytic nor anxiogenic responses despite a clear hypolocomotion. Only mice that experienced long-lasting convulsions developed neuropathological changes. The functional implication of our results, as well as the biological relevance of blood vs. brain ChE levels, as an index of intoxication severity are discussed.
Collapse
Affiliation(s)
- V Baille
- Unité de Neuropharmacologie, Centre de Recherches du Service de Santé des Armées Emile Pardé, BP87, 38702 La Tronche Cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
385
|
Cowan FM, Broomfield CA, Lenz DE, Shih TM. Protective action of the serine protease inhibitor N-tosyl-L-lysine chloromethyl ketone (TLCK) against acute soman poisoning. J Appl Toxicol 2001; 21:293-6. [PMID: 11481662 DOI: 10.1002/jat.757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Soman-poisoned rats display cholinergic crisis, a systemic mast cell degranulation characteristic of anaphylactic reactions and an excitotoxin-like sequential seizure and neuronal degeneration. The protection of guinea pigs from soman lethality by prophylactic administration of the serine protease inhibitor suramin suggests a possible proteolytic component in soman poisoning. The present study tested the effect of N-tosyl-L-lysine chloromethyl ketone (TLCK), an inhibitor of trypsin-like serine proteases, on soman-induced toxic signs (convulsions, righting reflex) and survival time. Nine control guinea pigs receiving 2 x LD(50) (56 microg kg(-1), s.c.) of soman immediately followed by a therapeutic dose of atropine sulfate (17.4 mg kg(-1) i.m.) experienced severe convulsions, and 8/9 lost the righting reflex. Six of these nine animals expired within 65 min; the three remaining animals survived 24 h to termination of the experiment. When a second group of animals were given TLCK (12 mg kg(-1), i.p.) 30 min prior to a 2 x LD(50) soman challenge and atropine-sulfate therapy, 5/9 experienced convulsions and only 3/9 lost the righting reflex. All nine animals survived beyond 4 h, with six surviving to 24 h. Compared with soman controls, prophylaxis with TLCK significantly prevented the loss of righting reflex (P = 0.05) and enhanced 4-h survival (P = 0.005). Although, convulsions were reduced and 24-h survival was improved in TLCK-treated animals, these results were not statistically significant. The protection from soman toxicity by chemically distinct protease inhibitors such as suramin and TLCK suggests a role for pathological proteolytic pathways in soman intoxication.
Collapse
Affiliation(s)
- F M Cowan
- Biochemical Pharmacology and Neurotoxicology Branches, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA
| | | | | | | |
Collapse
|
386
|
Carpentier P, Foquin A, Dorandeu F, Lallement G. Delta activity as an early indicator for soman-induced brain damage: a review. Neurotoxicology 2001; 22:299-315. [PMID: 11456332 DOI: 10.1016/s0161-813x(01)00019-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The organophosphorus (OP) compound soman is known to produce long-lasting epileptic seizure activity and associated brain damage. The present paper reviews the findings of five recent studies that tentatively established correlations between the development of soman-induced neuropathology and some subtle changes in the electrocortigraphic (ECoG) power spectrum. It is important to note that the reported experiments have been performed independently by three different teams (France, The Netherlands, USA) in various animal models (rat, guinea-pig, cynomolgus monkey) through different protocols of intoxication, pharmacological environments, and methods for ECoG spectral analysis. Despite these disparities, the five studies show that a suistained shift of ECoG power toward the lowest frequency range, i.e. the delta band, occurs within the first hours of soman-induced seizures. This early ECoG spectral change is concurrent with the first neuropathological changes in brain and is almost constantly followed, days or weeks later, by at least minimal neuropathology. Moreover the relative contribution of delta activity to the ECoG power spectrum still remains abnormally high for 1-3 days after seizure onset, i.e. within the phase of damage maturation. On the other hand, somnan-induced neuropathology was not observed in non-seizuring animals in which the delta activity was not increased above the pre-soman baseline. Similarly, no brain damage was ever shown in seizuring subjects in which the initial delta change eventually normalized after the curative administration of efficient anticonvulsant drugs such as the non-competitive antagonists of the NMDA receptor. These results, in agreement with previously published observations, strongly suggest that an increase of the relative power in the delta band might be a real-time marker of the ongoing development of soman-induced, seizure-related cerebral lesions and a reliable predictor for the final neuronal losses to come. Therefore, the monitoring of delta activity during the 24-72 h period that follows soman exposure may potentially be a useful tool to follow "on-line" the progression of brain damage and to control the neuroprotective activity of'a medication. Moreover since the method is non-invasive in man and since the above-presented results have been partly found in primates, the applicability of spectral analysis as a prognostic means in human OP poisoning ought to be seriously considered.
Collapse
Affiliation(s)
- P Carpentier
- Unité de Neuropharmacologie, Centre de Recherches du Service de Santé des Armées, La Tronche, France.
| | | | | | | |
Collapse
|
387
|
Bourne JA, Fosbraey P, Halliday J. SCH 23390 affords protection against soman-evoked seizures in the freely moving guinea-pig: a concomitant neurochemical, electrophysiological and behavioural study. Neuropharmacology 2001; 40:279-88. [PMID: 11114407 DOI: 10.1016/s0028-3908(00)00136-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We studied the role of striatal dopamine (DA) release in seizure activity evoked by the subcutaneous administration of the cholinesterase inhibitor pinacolyl methylphosphonofluoridate (soman), in the guinea-pig. The involvement of the dopamine receptor subtypes was studied by systemic administration of the D(1)-like receptor antagonist SCH 23390 (0.5 mg kg(-1)) or the D(2)-like receptor antagonist sulpiride (30 mg kg(-1)). Microdialysis and HPLC with electrochemical detection were used to monitor changes in extracellular levels of striatal DA and its metabolites, acetylcholine and choline. These data were correlated with changes in the striatal and cortical electroencephalogram and observation of predefined clinical signs. We found that the blockade of the D(1) receptor with SCH 23390 can inhibit seizure activity, while blockade of the D(2) receptor with sulpiride can augment the evoked seizure activity. These results clarify the involvement of the dopaminergic system in soman-evoked seizures.
Collapse
Affiliation(s)
- J A Bourne
- Biomedical Sciences Department, CBD Porton Down, Salisbury SP4 0JQ, UK.
| | | | | |
Collapse
|
388
|
Abstract
The neuroprotective effects of antidotes (atropine, obidoxime, obidoxime/atropine mixture) on rats poisoned with soman at a sublethal dose (54 microg/kg, im, 80% of LD(50) value) were studied. The soman-induced neurotoxicity was monitored using a functional observational battery (FOB) and an automatic measurement of motor activity. The neurotoxicity of soman was monitored at 24 h and 7 days following soman challenge. The results indicate that obidoxime alone is not able to protect the rats from the lethal effects of soman. Three soman-poisoned rats treated with obidoxime alone died within 24 h. On the other hand, atropine alone or combined with obidoxime allows all soman-poisoned rats to survive within 7 days following soman challenge. Atropine alone and combined with obidoxime seems to be relatively effective antidotal treatment for the elimination of soman-induced neurotoxicity in the case of sublethal poisonings, although the antidotal mixture is significantly less effective than atropine alone because obidoxime can counteract the beneficial effects of atropine. Obidoxime appears to be practically ineffective to diminish soman-induced neurotoxicity. The neuroprotective effects of antidotal mixture consisting of atropine and obidoxime depend on the antimuscarinic effects of atropine only. Thus, the replacement of obidoxime by more effective acetylcholinesterase (AChE) reactivators is necessary to increase the neuroprotective efficacy of antidotal treatment in the case of soman poisonings.
Collapse
Affiliation(s)
- J Kassa
- Purkyne Military Medical Academy, PO Box 35/T, 500 01, Hradec Králové, Czech Republic.
| | | |
Collapse
|
389
|
Rogawski MA. KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends Neurosci 2000; 23:393-8. [PMID: 10941184 DOI: 10.1016/s0166-2236(00)01629-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In 1998, the discovery of two novel genes KCNQ2 and KCNQ3, mutated in a rare inherited form of epilepsy known as benign familial neonatal convulsions, for the first time enabled insight into the molecular etiology of a human idiopathic generalized epilepsy syndrome. These disease genes encode subunits of neuronal M-type K+ channels, key regulators of brain excitability. Analogies between benign familial neonatal convulsions and other channelopathies of skeletal and cardiac muscle, including periodic paralysis, myotonia and the long QT syndrome, provide clues about the nature of epilepsy-susceptibility genes and about the fundamental basis of epilepsy as an episodic disorder. It now appears that the KCNQ2/KCNQ3 K+ channels that are mutated in benign familial neonatal convulsions represent an important new target for anti-epileptic drugs. In the future, the identification of ion channel defects as predisposing factors in the common epilepsies could herald a new era of genotype-specific therapies.
Collapse
Affiliation(s)
- M A Rogawski
- Epilepsy Research Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1408, USA
| |
Collapse
|
390
|
Abstract
In an attempt to know the relation of seizure and gastric mucosal damage, we challenged arecoline (ACL) centrally to induce seizure and investigated gastric hemorrhagic injury in acid-irrigated stomachs of rats. The protective effects of several drugs also were evaluated. After deprivation of food for 24 h, rats were received laparotomy under diethylether-anesthesia. Both pylorus sphincters and carotid esophagus were ligated. The forestomach was equipped with a cannula for gastric irrigation. After recovery from anesthesia (approximately 1 h), the stomach was irrigated for 2 h with an acid solution containing 100 mM HCl and 54 mM NaCl or the same volume of normal saline. Intracerebroventricular (i.c.v.) ACL (0, 1, 3 or 10 mg/kg dissolved in 10 microl of CSF) was challenged to rats immediately after gastric irrigation. The seizure in rats was produced by ACL in a dose-related manner. The ulcerogenic parameters such as decrease of gastric mucosal glutathione levels and increase of histamine concentrations and lipid peroxide generations as well as the raise of luminal hemoglobin contents and exacerbated mucosal lesions were obtained depending on the doses of ACL challenged. These ulcerogenic parameters produced in ACL (10 mg/kg, i.c.v.) seizure rats were markedly ameliorated by gastric vagotomy or central anticholinergics. Intraperitoneal ketotifen, zinc sulfate, diphenhydramine or cimetidine also produced significant (p<0.05) inhibitions of these ulcerogenic parameters in ACL seizure rats. In conclusion, central ACL seizure may produce gastric oxidative stress and hemorrhagic lesions via vagal nervous activation and histamine release in acid-irrigated stomachs of rats.
Collapse
Affiliation(s)
- C R Hung
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | | | | |
Collapse
|
391
|
McDonough JH, Zoeffel LD, McMonagle J, Copeland TL, Smith CD, Shih TM. Anticonvulsant treatment of nerve agent seizures: anticholinergics versus diazepam in soman-intoxicated guinea pigs. Epilepsy Res 2000; 38:1-14. [PMID: 10604601 DOI: 10.1016/s0920-1211(99)00060-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A total of eight anticholinergic drugs (aprophen, atropine, azaprophen, benactyzine, biperiden, procyclidine, scopolamine, trihexyphenidyl) were tested in parallel with diazepam for the ability to terminate seizure activity induced by the nerve agent soman. Guinea pigs, implanted with electrodes to record cortical electroencephalographic (EEG) activity, were pretreated with pyridostigmine Br (0.026 mg/kg, i.m.) and 30 min later challenged with 2 x LD50 soman (56 microg/kg, s.c.) followed 1 min later by treatment with atropine SO4 (2 mg/kg, i.m.) and pralidoxime chloride (2-PAM Cl; 25 mg/kg, i.m.). All guinea pigs developed sustained seizure activity following this treatment. Dose-effect curves were determined for the ability of each drug to terminate seizure activity when anticonvulsant treatment was given either 5 or 40 min after seizure onset. Body weight gain and recovery of behavioral performance of a previously trained one-way avoidance task were measured after exposure. With the exception of atropine, all anticholinergic drugs were effective at lower doses than diazepam in terminating seizures when given 5 min after seizure onset; benactyzine, procyclidine and aprophen terminated seizures most rapidly while scopolamine, trihexyphenidyl, biperiden, and diazepam were significantly slower. When given 40 min after seizure onset, diazepam was the most potent compound tested, followed by scopolamine, benactyzine and biperiden; atropine was not effective when tested 40 min after seizure onset. For diazepam, the time to terminate the seizure was the same whether it was given at the 5- or 40-min delay. In contrast, most anticholinergics were significantly slower in terminating seizure activity when
Collapse
Affiliation(s)
- J H McDonough
- Pharmacology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | | | | | | | |
Collapse
|
392
|
Tonduli L, Testylier G, Marino IP, Lallement G. Triggering of soman-induced seizures in rats: Multiparametric analysis with special correlation between enzymatic, neurochemical and electrophysiological data. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991101)58:3<464::aid-jnr13>3.0.co;2-o] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
393
|
Shih TM, McDonough JH. Organophosphorus nerve agents-induced seizures and efficacy of atropine sulfate as anticonvulsant treatment. Pharmacol Biochem Behav 1999; 64:147-53. [PMID: 10495009 DOI: 10.1016/s0091-3057(99)00114-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ability of five organophosphorus nerve agents (tabun, sarin, soman, GF, and VX) to produce brain seizures and the effectiveness of atropine as an anticonvulsant treatment against these nerve agents were studied in two different animal models--the rat and guinea pig. All animals were implanted with cortical electrodes for EEG recordings. Five minutes after the start of nerve agent-induced EEG seizures, animals were treated intramuscularly (IM) with different doses of atropine sulfate and observed for seizure termination. The anticonvulsant ED50 of atropine sulfate for termination of seizures induced by each nerve agent was calculated and compared. In the rat model, selected oximes were administered either before, concurrent with, or following challenge with a 1.6 x LD50 dose of a given nerve agent to maximize seizure development with certain agent/oxime combinations. The choice and the timing of oxime administration significantly effected the incidence of seizure development by different nerve agents. When oxime administration did not effect seizure development (tabun, soman) the anticonvulsant ED50 for atropine sulfate was the same, regardless of the nerve agent used to elicit the seizure. When oxime administration reduced the incidence of seizure occurrence (sarin, GF, VX), the anticonvulsant ED50 dose of atropine sulfate for a nerve agent was lower. In the guinea pig model, animals were pretreated with pyridostigmine prior to challenge with 2 x LD50 of a given agent, and treated 1 min later with atropine sulfate (2 mg/kg) and 2-PAM (25 mg/kg). Under these conditions, the incidence, latency of seizure development, and anticonvulsant ED50s of atropine for soman-, tabun-, and GF-elicited seizures were virtually identical. With sarin, although the latency of seizure development was the same as with soman, tabun, and GF, seizures occurred with a lower incidence, and the anticonvulsant ED50 of atropine was lower. With VX, the latency of seizure development was notably longer, while the incidence of seizure development and anticonvulsant ED50 of atropine were significantly lower than with soman, tabun, or GF. In both models, a lower incidence of seizure development predicted a lower anticonvulsant dose of atropine. In the rat, the incidence of seizure development and the anticonvulsant effectiveness of atropine was highly dependent on the oxime used. In the guinea pig, higher doses of atropine sulfate were required to control soman-, tabun-, or GF-induced seizures, perhaps reflecting the lower cholinesterase reactivating ability of 2-PAM against these agents.
Collapse
Affiliation(s)
- T M Shih
- Pharmacology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA
| | | |
Collapse
|
394
|
Abstract
This report describes studies of anticonvulsants for the organophosphorus (OP) nerve agent soman: a basic research effort to understand how different pharmacological classes of compounds influence the expression of seizure produced by soman in rats, and a drug screening effort to determine whether clinically useful antiepileptics can modulate soman-induced seizures in rats. Electroencephalographic (EEG) recordings were used in these studies. Basic studies were conducted in rats pretreated with HI-6 and challenged with 1.6 x LD50 soman. Antimuscarinic compounds were extremely effective in blocking (pretreatment) or terminating soman seizures when given 5 min after seizure onset. However, significantly higher doses were required when treatment was delayed for more than 10 min, and some antimuscarinic compounds lost anticonvulsant efficacy when treatment was delayed for more than 40 min. Diazepam blocked seizure onset, yet seizures could recur after an initial period of anticonvulsant effect at doses </=2.5 mg/kg. Diazepam could terminate ongoing seizures when given 5 min after seizure onset, but doses up to 20 mg/kg were ineffective when treatment was delayed for 40 min. The GABA uptake inhibitor, tiagabine, was ineffective in blocking or terminating soman motor convulsions or seizures. The glutamate receptor antagonists, NBQX, GYKI 52466, and memantine, had weak or minimal antiseizure activity, even at doses that virtually eliminated signs of motor convulsions. The antinicotinic, mecamylamine, was ineffective in blocking or stopping seizure activity. Pretreatment with a narrow range of doses of alpha2-adrenergic agonist, clonidine, produced variable protection (40-60%) against seizure onset; treatment after seizure onset with clonidine was not effective. Screening studies in rats, using HI-6 pretreatment, showed that benzodiazepines (diazepam, midazolam and lorazepam) were quite effective when given 5 min after seizure onset, but lost their efficacy when given 40 min after onset. The barbiturate, pentobarbital, was modestly effective in terminating seizures when given 5 or 40 min after seizure onset, while other clinically effective antiepileptic drugs, trimethadione and valproic acid, were only slightly effective when given 5 min after onset. In contrast, phenytoin, carbamazepine, ethosuximide, magnesium sulfate, lamotrigine, primidone, felbamate, acetazolamide, and ketamine were ineffective.
Collapse
Affiliation(s)
- T Shih
- Pharmacology and Drug Assessment Divisions, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Md., USA
| | | | | |
Collapse
|