351
|
Koyama S, Kanemitsu Y, Weight FF. Spontaneous activity and properties of two types of principal neurons from the ventral tegmental area of rat. J Neurophysiol 2005; 93:3282-93. [PMID: 15659533 DOI: 10.1152/jn.00776.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the spontaneous activity and properties of freshly isolated ventral tegmental area (VTA) principal neurons by whole cell recording and single-cell RT-PCR. The VTA principal neurons, which were tyrosine hydroxylase-positive and glutamic acid decarboxylase (GAD67)-negative, exhibited low firing frequency and a long action potential (AP) duration. The VTA principal neurons exhibited a calretinin-positive and parvalbumin-negative Ca2+-binding protein mRNA expression pattern. The VTA principal neurons were classified into two subpopulations based on their firing frequency coefficient of variation (CV) at room temperature (21-23 degrees C): irregular-type neurons with a large CV and tonic-type neurons with a small CV. These two firing patterns were also recorded at the temperature of 34 degrees C and in nystatin-perforated patch recording. In VTA principal neurons, the AP afterhyperpolarization (AHP) amplitude contributed to the firing regularity and AHP decay slope contributed to the firing frequency. The AHP amplitude in the irregular-type VTA principal neurons was smaller than that in the tonic-type VTA principal neurons. There was no significant difference in the AHP decay slope between the two-types of VTA principal neurons. Apamin-sensitive small-conductance Ca2+-activated K+ (SK) channels contributed to the AHP and the regular firing of the tonic-type neurons but contributed little to the AHP and firing of the irregular-type neurons. In voltage-clamp tail-current analysis, in both conventional and nystatin-perforated whole cell recording, the apamin-sensitive AHP current density of the tonic-type neurons was significantly larger than that of the irregular-type neurons. We suggest that apamin-sensitive SK current contributes to intrinsic firing differences between the two subpopulations of VTA principal neurons.
Collapse
Affiliation(s)
- Susumu Koyama
- Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
352
|
Lee CR, Abercrombie ED, Tepper JM. Pallidal control of substantia nigra dopaminergic neuron firing pattern and its relation to extracellular neostriatal dopamine levels. Neuroscience 2005; 129:481-9. [PMID: 15501605 DOI: 10.1016/j.neuroscience.2004.07.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2004] [Indexed: 11/26/2022]
Abstract
The firing patterns of dopaminergic neurons in vivo are strongly modulated by afferent input. The principal GABAergic inputs to the dopaminergic neurons of the substantia nigra originate from neurons of the neostriatum, globus pallidus and substantia nigra pars reticulata. It has previously been shown that the firing pattern of nigral dopaminergic neurons can be manipulated by pharmacologically induced excitation or inhibition of the globus pallidus with relatively little effect on firing rate. We used this technique to explore the relation between the firing pattern of dopaminergic neurons and extracellular dopamine levels in the neostriatum in vivo. Specifically, we tested whether an increase in burst firing in dopaminergic neurons produced by increased pallidal activity led to increased extracellular dopamine levels in the neostriatum. Single unit extracellular recording combined with simultaneous microdialysis was used to measure the firing rates and patterns of dopaminergic neurons and extracellular striatal dopamine levels, respectively, during bicuculline-induced excitation of the globus pallidus. Pallidal excitation resulted in a marked increase in burst firing in dopaminergic neurons along with only a slight increase in firing rate, but produced a significant elevation (approximately 45%) in neostriatal dopamine levels. These data suggest that afferent-induced burst firing in dopaminergic neurons leads to an increase in extracellular dopamine levels in the neostriatum when compared with less bursty patterns with similar overall firing rates.
Collapse
Affiliation(s)
- C R Lee
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | | | | |
Collapse
|
353
|
Canavier CC, Perla SR, Shepard PD. Scaling of prediction error does not confirm chaotic dynamics underlying irregular firing using interspike intervals from midbrain dopamine neurons. Neuroscience 2005; 129:491-502. [PMID: 15501606 DOI: 10.1016/j.neuroscience.2004.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2004] [Indexed: 10/26/2022]
Abstract
Dopamine neurons in the substantia nigra pars compacta often fire in an irregular, single spike mode in vivo, and a similar firing pattern can be observed in vitro when small conductance calcium-activated potassium channel blockers are applied to the bath. It is not clear whether the irregular firing is due to stochastic processes or nonlinear deterministic processes. A previous study [Neuroscience 104 (2001) 829] used nonlinear forecasting methods applied to a continuous function derived from the interspike interval (ISI) data from irregularly firing dopamine neurons to show that the predictability scaled exponentially with forecast horizon and was consistent with nonlinear deterministic chaos. However, we show here that the observed exponential scaling is also consistent with a stochastic process, because it did not differ significantly from that of shuffled surrogate data. On the other hand, nonlinear forecasting directly from the ISI data using the package TISEAN provided some evidence for nonlinear deterministic structure in four of five records obtained in vitro and in two of nine records obtained in vivo. Although we cannot rule out a role for nonlinear chaotic dynamics in structuring the firing pattern, we suggest an alternate hypothesis that includes a mechanism by which the firing pattern can become more variable in the presence of a constant level of background noise.
Collapse
Affiliation(s)
- C C Canavier
- Department of Psychology, University of New Orleans, GP2001, 2000 Lakeshore Drive, New Orleans, LA 70471, USA.
| | | | | |
Collapse
|
354
|
Gonzales RA, Job MO, Doyon WM. The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 2005; 103:121-46. [PMID: 15369680 DOI: 10.1016/j.pharmthera.2004.06.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neurobiological processes by which ethanol seeking and consumption are established and maintained are thought to involve areas of the brain that mediate motivated behavior, such as the mesolimbic dopamine system. The mesolimbic dopamine system is comprised of cells that originate in the ventral tegmental area (VTA) and project to several forebrain regions, including a prominent terminal area, the nucleus accumbens (NAcc). The NAcc has been subdivided into core and shell subregions. Both areas receive converging excitatory input from the cortex and amygdala and dopamine input from the VTA, with the accumbal medium spiny neuron situated to integrate the signals. Although forced ethanol administration enhances dopamine activity in the NAcc, conclusions regarding the role of mesolimbic dopamine in ethanol reinforcement cannot be made from these experiments. Behavioral experiments consistently show that pharmacological manipulations of the dopamine transmission in the NAcc alter responding for ethanol, although ethanol reinforcement is maintained after lesions of the accumbal dopamine system. Additionally, extracellular dopamine increases in the NAcc during operant self-administration of ethanol, which is consistent with a role of dopamine in ethanol reinforcement. Behavioral studies that distinguish appetitive responding from ethanol consumption show that dopamine is important in ethanol-seeking behavior, whereas neurochemical studies suggest that accumbal dopamine is also important during ethanol consumption before pharmacological effects occur. Cellular studies suggest that ethanol alters synaptic plasticity in the mesolimbic system, possibly through dopaminergic mechanisms, and this may underlie the development of ethanol reinforcement. Thus, anatomical, pharmacological, neurochemical, cellular, and behavioral studies are more clearly defining the role of mesolimbic dopamine in ethanol reinforcement.
Collapse
Affiliation(s)
- Rueben A Gonzales
- Department of Pharmacology, College of Pharmacy, The University of Texas at Austin, 1 University Station A1915, Austin, TX 78712-0125, USA.
| | | | | |
Collapse
|
355
|
Wickens J, Arbuthnott G. Chapter IV Structural and functional interactions in the striatum at the receptor level. HANDBOOK OF CHEMICAL NEUROANATOMY 2005. [DOI: 10.1016/s0924-8196(05)80008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
356
|
Bentivoglio M, Morelli M. Chapter I The organization and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain. HANDBOOK OF CHEMICAL NEUROANATOMY 2005. [DOI: 10.1016/s0924-8196(05)80005-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
357
|
Carelli RM. Nucleus accumbens cell firing and rapid dopamine signaling during goal-directed behaviors in rats. Neuropharmacology 2004; 47 Suppl 1:180-9. [PMID: 15464136 DOI: 10.1016/j.neuropharm.2004.07.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 07/16/2004] [Accepted: 07/20/2004] [Indexed: 11/22/2022]
Abstract
The nucleus accumbens (Acb) is a key neural substrate underlying goal-directed behaviors for both drugs of abuse as well as 'natural' rewards. Here, I review electrophysiological and electrochemical studies completed in our laboratory that examined Acb cell firing and rapid dopamine signaling during behaviors directed toward reward procurement. Electrophysiological studies are reviewed showing that Acb neurons exhibit patterned discharges relative to operant responding for intravenous self-administration of cocaine versus 'natural' reinforcement in rodents. Importantly, subsequent studies showed that discrete subsets of Acb neurons are selectively activated during multiple schedules for a natural reward (water or food) versus cocaine self-administration. These later findings indicate that separate neural circuits selectively process information about goal-directed behaviors for cocaine versus natural reward. In addition, recent findings are reviewed showing that reinforcer selective firing of Acb neurons is not a direct consequence of chronic drug exposure. Next, electrochemical studies are summarized that used fast scan cyclic voltammetry to measure rapid (subsecond) changes in dopamine in the Acb during cocaine self-administration as well as 'natural' reinforcement in rodents. These findings are considered with respect to the role of dopamine in modulating the activity of Acb neurons that encode goal-directed behaviors, the functional organization of the Acb on a microcircuit level, and proposed directions for future studies.
Collapse
Affiliation(s)
- Regina M Carelli
- Department of Psychology, The University of North Carolina at Chapel Hill, CB# 3270, Davie Hall, Chapel Hill, NC 27599-3270, USA.
| |
Collapse
|
358
|
Gale SD, Perkel DJ. Properties of dopamine release and uptake in the songbird basal ganglia. J Neurophysiol 2004; 93:1871-9. [PMID: 15548618 DOI: 10.1152/jn.01053.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vocal learning in songbirds requires a basal ganglia circuit termed the anterior forebrain pathway (AFP). The AFP is not required for song production, and its role in song learning is not well understood. Like the mammalian striatum, the striatal component of the AFP, Area X, receives dense dopaminergic innervation from the midbrain. Since dopamine (DA) clearly plays a crucial role in basal ganglia-mediated motor control and learning in mammals, it seems likely that DA signaling contributes importantly to the functions of Area X as well. In this study, we used voltammetric methods to detect subsecond changes in extracellular DA concentration to gain better understanding of the properties and regulation of DA release and uptake in Area X. We electrically stimulated Ca(2+)- and action potential-dependent release of an electroactive substance in Area X brain slices and identified the substance as DA by the voltammetric waveform, electrode selectivity, and neurochemical and pharmacological evidence. As in the mammalian striatum, DA release in Area X is depressed by autoinhibition, and the lifetime of extracellular DA is strongly constrained by monoamine transporters. These results add to the known physiological similarities of the mammalian and songbird striatum and support further use of voltammetry in songbirds to investigate the role of basal ganglia DA in motor learning.
Collapse
Affiliation(s)
- Samuel D Gale
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
359
|
Korotkova TM, Ponomarenko AA, Brown RE, Haas HL. Functional diversity of ventral midbrain dopamine and GABAergic neurons. Mol Neurobiol 2004; 29:243-59. [PMID: 15181237 DOI: 10.1385/mn:29:3:243] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 11/14/2003] [Indexed: 12/21/2022]
Abstract
Recent findings indicate that VTA and SN dopaminergic (DA) and GABAergic neurons form subpopulations that are divergent in their electrophysiological features, vulnerability to neurodegeneration, and regulation by neuropeptides. This diversity can be correlated with the anatomical organization of the VTA and SN and their inputs and outputs. In this review we describe the heterogeneity in ion channels and firing patterns, especially burst firing, in subpopulations of dopamine neurons. We go on to describe variations in vulnerability to neurotoxic damage in models of Parkinson's disease in subgroups of DA neurons and its possible relationship to developmental gene regulation, the expression of different ion channels, and the expression of different protein markers, such as the neuroprotective marker calbindin. The electrophysiological properties of subgroups of GABAergic midbrain neurons, patterns of expression of protein markers and receptors, possible involvement of GABAergic neurons in a number of processes that are usually attributed exclusively to dopaminergic neurons, and the characteristics of a subgroup of neurons that contains both dopamine and GABA are also discussed.
Collapse
Affiliation(s)
- Tatiana M Korotkova
- Institute of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany.
| | | | | | | |
Collapse
|
360
|
Cheer JF, Wassum KM, Heien MLAV, Phillips PEM, Wightman RM. Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J Neurosci 2004; 24:4393-400. [PMID: 15128853 PMCID: PMC6729440 DOI: 10.1523/jneurosci.0529-04.2004] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dopaminergic neurotransmission has been highly implicated in the reinforcing properties of many substances of abuse, including marijuana. Cannabinoids activate ventral tegmental area dopaminergic neurons, the main ascending projections of the mesocorticolimbic dopamine system, and change their spiking pattern by increasing the number of impulses in a burst and elevating the frequency of bursts. Although they also increase time-averaged striatal dopamine levels for extended periods of time, little is known about the temporal structure of this change. To elucidate this, fast-scan cyclic voltammetry was used to monitor extracellular dopamine in the nucleus accumbens of freely moving rats with subsecond timescale resolution. Intravenous administration of the central cannabinoid (CB1) receptor agonist, R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-(1-naphthalenyl) methanone mesylate, dose-dependently produced catalepsy, decreased locomotion, and reduced the amplitude of electrically evoked dopamine release while markedly increasing the frequency of detected (nonstimulated) dopamine concentration transients. The CB1 receptor antagonist [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide] reversed and prevented all agonist-induced effects but did not show effects on dopamine release when injected alone. These data demonstrate that doses of a cannabinoid agonist known to increase burst firing produce ongoing fluctuations in extracellular dopamine on a previously unrecognized temporal scale in the nucleus accumbens.
Collapse
Affiliation(s)
- Joseph F Cheer
- Department of Chemistry, The University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | | | |
Collapse
|
361
|
Abstract
This review describes inputs to neurons in the substantia nigra and contrasts them with the action of agonists for the putative receptors through which they act. Special emphasis is placed on gamma-aminobutyric acid (GABA) afferents. Dopamine released from the somato-dendritic compartment of dopamine neurons and endocannabinoids released from dopamine and GABA neurons serve as retrograde signals to modulate GABA release. The release may be fostered by Ca(2+) release from intracellular Ca(2+) stores, which in turn may be influenced by the inputs.
Collapse
Affiliation(s)
- Ulrich Misgeld
- Institut für Physiologie und Pathophysiologie und IZN, Universität Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
| |
Collapse
|
362
|
Robinson S, Smith DM, Mizumori SJY, Palmiter RD. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: effects of dopamine receptor activation and anesthesia. Proc Natl Acad Sci U S A 2004; 101:13329-34. [PMID: 15317940 PMCID: PMC516529 DOI: 10.1073/pnas.0405084101] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is <1% of that in control animals, the firing properties of midbrain dopamine neurons were remarkably similar among genotypes. However, L-dopa treatment, which restores dopamine and feeding and locomotor behavior in DD mice, profoundly inhibited the firing rate and bursting of dopamine neurons in DD mice. In addition, dopamine neurons in DD mice were hypersensitive to the dopamine receptor agonists quinpirole and SKF 81297. Anesthesia markedly reduced the firing rate of dopamine neurons in DD mice but did not significantly decrease the firing rate in control dopamine neurons. These data suggest that restoration of endogenous dopamine signaling activates hypersensitive long-loop feedback pathways that serve to limit dopamine release and underscore the importance of recording from awake animals.
Collapse
Affiliation(s)
- Siobhan Robinson
- Neurobiology and Behavior Program, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
363
|
Prokopenko VF, Pawlak AP, West MO. Fluctuations in somatosensory responsiveness and baseline firing rates of neurons in the lateral striatum of freely moving rats: effects of intranigral apomorphine. Neuroscience 2004; 125:1077-82. [PMID: 15120867 DOI: 10.1016/j.neuroscience.2004.02.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2004] [Indexed: 11/28/2022]
Abstract
Somatosensory responsiveness and baseline firing rates of 102 striatal neurons were studied in freely moving rats. For individual neurons, mean levels of responsiveness and baseline firing fluctuated unpredictably in direction and magnitude and independently of each other throughout an experiment. Following microinjections of apomorphine into the substantia nigra, which were used as a means of reducing nigral output activity, the magnitude of fluctuations in striatal somatosensory responsiveness significantly increased, while the magnitude of fluctuations in baseline firing was unaltered. The receptive zones of 54 neurons studied in control experiments remained stable, whereas receptive zones changed in 12 of 25 neurons studied after apomorphine microinjection. Normal nigrostriatal dopamine transmission appears to selectively restrict the magnitude of fluctuations in responsiveness of striatal neurons to corticostriatal synaptic input and may exert additional control over afferent projections from cutaneous receptive zones to these neurons.
Collapse
Affiliation(s)
- V F Prokopenko
- Department of Psychology, Rutgers University, New Brunswick, NJ, USA
| | | | | |
Collapse
|
364
|
Zhang H, Sulzer D. Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci 2004; 7:581-2. [PMID: 15146187 DOI: 10.1038/nn1243] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Accepted: 03/10/2004] [Indexed: 11/08/2022]
Abstract
Although nicotine activation of dopamine release is implicated in addiction, it also desensitizes nicotinic acetylcholine receptors (nAChRs), leading to a prolonged depression of evoked dopamine release. Here we show that nicotine's effects depend on the firing pattern of dopamine neurons, so that while desensitization of nAChRs indeed curbs dopamine released by stimuli emulating tonic firing, it allows a rapid rise in dopamine from stimuli emulating phasic firing patterns associated with incentive/salience paradigms. Nicotine may thus enhance the contrast of dopamine signals associated with behavioral cues.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurology, Columbia University, 650 W 168th Street, New York, New York 10032, USA
| | | |
Collapse
|
365
|
Rice ME, Cragg SJ. Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 2004; 7:583-4. [PMID: 15146188 DOI: 10.1038/nn1244] [Citation(s) in RCA: 432] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 03/23/2004] [Indexed: 11/09/2022]
Abstract
Reward-seeking behaviors depend critically on dopamine signaling--dopamine neurons encode reward-related information by switching from tonic to phasic (burst-like) activity. Using guinea pig brain slices, we show that nicotine, like cocaine and amphetamine, acts directly in striatum where it enhances dopamine release during phasic but not tonic activity. This amplification provides a mechanism for nicotine facilitation of reward-related dopamine signals, including responses to other primary reinforcers that govern nicotine dependence in smokers.
Collapse
Affiliation(s)
- Margaret E Rice
- University Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK
| | | |
Collapse
|
366
|
Montague PR, McClure SM, Baldwin PR, Phillips PEM, Budygin EA, Stuber GD, Kilpatrick MR, Wightman RM. Dynamic gain control of dopamine delivery in freely moving animals. J Neurosci 2004; 24:1754-9. [PMID: 14973252 PMCID: PMC6730459 DOI: 10.1523/jneurosci.4279-03.2004] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity changes in a large subset of midbrain dopamine neurons fulfill numerous assumptions of learning theory by encoding a prediction error between actual and predicted reward. This computational interpretation of dopaminergic spike activity invites the important question of how changes in spike rate are translated into changes in dopamine delivery at target neural structures. Using electrochemical detection of rapid dopamine release in the striatum of freely moving rats, we established that a single dynamic model can capture all the measured fluctuations in dopamine delivery. This model revealed three independent short-term adaptive processes acting to control dopamine release. These short-term components generalized well across animals and stimulation patterns and were preserved under anesthesia. The model has implications for the dynamic filtering interposed between changes in spike production and forebrain dopamine release.
Collapse
Affiliation(s)
- P Read Montague
- Human Neuroimaging Laboratory, Center for Theoretical Neuroscience, Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
367
|
Roitman MF, Stuber GD, Phillips PEM, Wightman RM, Carelli RM. Dopamine operates as a subsecond modulator of food seeking. J Neurosci 2004; 24:1265-71. [PMID: 14960596 PMCID: PMC6730321 DOI: 10.1523/jneurosci.3823-03.2004] [Citation(s) in RCA: 516] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dopamine projection to the nucleus accumbens has been implicated in behaviors directed toward the acquisition and consumption of natural rewards. The neurochemical studies that established this link made time-averaged measurements over minutes, and so the precise temporal relationship between dopamine changes and these behaviors is not known. To resolve this, we sampled dopamine every 100 msec using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in the nucleus accumbens of rats trained to press a lever for sucrose. Cues that signal the opportunity to respond for sucrose evoked dopamine release (67 +/- 20 nm) with short latency (0.2 +/- 0.1 sec onset). When the same cues were presented to rats naive to the cue-sucrose pairing, similar dopamine signals were not observed. Thus, cue-evoked increases in dopamine in trained rats reflected a learned association between the cues and sucrose availability. Lever presses for sucrose occurred at the peak of the dopamine surges. After lever presses, and while sucrose was delivered and consumed, no further increases in dopamine were detected. Rather, dopamine returned to baseline levels. Together, the results strongly implicate subsecond dopamine signaling in the nucleus accumbens as a real-time modulator of food-seeking behavior.
Collapse
Affiliation(s)
- Mitchell F Roitman
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3270, USA
| | | | | | | | | |
Collapse
|
368
|
Abstract
The analysis of the neural mechanisms responsible for reward-related learning has benefited from recent studies of the effects of dopamine on synaptic plasticity. Dopamine-dependent synaptic plasticity may lead to strengthening of selected inputs on the basis of an activity-dependent conjunction of sensory afferent activity, motor output activity, and temporally related firing of dopamine cells. Such plasticity may provide a link between the reward-related firing of dopamine cells and the acquisition of changes in striatal cell activity during learning. This learning mechanism may play a special role in the translation of reward signals into context-dependent response probability or directional bias in movement responses.
Collapse
Affiliation(s)
- Jeffery R Wickens
- Department of Anatomy and Structural Biology, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
369
|
Peters Y, Barnhardt NE, O'Donnell P. Prefrontal cortical up states are synchronized with ventral tegmental area activity. Synapse 2004; 52:143-52. [PMID: 15034920 DOI: 10.1002/syn.20015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The innervation of the prefrontal cortex (PFC) by the ventral tegmental area (VTA) has an important role in incentive-motivation and cognitive functions. Although this projection has been extensively studied, the precise actions of its transmitters, dopamine (DA) and GABA, on PFC pyramidal neurons remain to be determined. We have recently shown that VTA stimulation elicits a sustained depolarization in PFC pyramidal neurons resembling the periodic depolarizations (up states) these neurons exhibit. This response was shortened by a D1 antagonist, suggesting that DA may sustain depolarized up states in PFC neurons. Here, we tested whether spontaneous PFC up states in vivo require spontaneous VTA activity. Intracellular recordings from PFC neurons conducted simultaneously with VTA local field potentials (LFPs) revealed PFC membrane potential fluctuations occurring synchronously with VTA field potential transitions. Extracellular PFC recordings performed simultaneously with VTA LFPs also indicated a high coherence between these two regions, with VTA oscillations trailing PFC oscillations by a few milliseconds. Furthermore, blockade of VTA activity with lidocaine transiently eliminated PFC LFPs, but not PFC cell up states; instead, up states became irregular during intra-VTA lidocaine administration. These results suggest that baseline levels of VTA activity are necessary for synchronizing PFC pyramidal neurons in the up-down oscillations observed in the anesthetized preparation, allowing the emergence of slow EEG components.
Collapse
Affiliation(s)
- Yvette Peters
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | | | |
Collapse
|
370
|
Venton BJ, Zhang H, Garris PA, Phillips PEM, Sulzer D, Wightman RM. Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. J Neurochem 2003; 87:1284-95. [PMID: 14622108 DOI: 10.1046/j.1471-4159.2003.02109.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fundamental process that underlies volume transmission in the brain is the extracellular diffusion of neurotransmitters from release sites to distal target cells. Dopaminergic neurons display a range of activity states, from low-frequency tonic firing to bursts of high-frequency action potentials (phasic firing). However, it is not clear how this activity affects volume transmission on a subsecond time scale. To evaluate this, we developed a finite-difference model that predicts the lifetime and diffusion of dopamine in brain tissue. We first used this model to decode in vivo amperometric measurements of electrically evoked dopamine, and obtained rate constants for release and uptake as well as the extent of diffusion. Accurate predictions were made under a variety of conditions including different regions, different stimulation parameters and with uptake inhibited. Second, we used the decoded rate constants to predict how heterogeneity of dopamine release and uptake sites would affect dopamine concentration fluctuations during different activity states in the absence of an electrode. These simulations show that synchronous phasic firing can produce spatially and temporally heterogeneous concentration profiles whereas asynchronous tonic firing elicits uniform, steady-state dopamine concentrations.
Collapse
Affiliation(s)
- B Jill Venton
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | | | | | | | | | |
Collapse
|
371
|
Bergstrom BP, Garris PA. "Passive stabilization" of striatal extracellular dopamine across the lesion spectrum encompassing the presymptomatic phase of Parkinson's disease: a voltammetric study in the 6-OHDA-lesioned rat. J Neurochem 2003; 87:1224-36. [PMID: 14622102 DOI: 10.1046/j.1471-4159.2003.02104.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Symptoms of Parkinson's disease do not present until the degeneration of nigrostriatal dopaminergic neurons is nearly complete. Maintenance of dopaminergic tone governing striatal efferents is postulated to preserve motor control during the presymptomatic phase, but the neuroadaptation responsible for normalization is not completely understood. In particular, the prevailing view that surviving dopaminergic neurons compensate by up-regulating release has been difficult to demonstrate directly. Here we investigate dopaminergic neurotransmission in the hemiparkinsonian rat using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. Electrical stimulation was used to elicit extracellular dopamine levels mimicking the steady-state dynamics of tonic dopaminergic signaling. In agreement with microdialysis studies, evoked steady-state dopamine levels remained constant over the entire lesion spectrum (0 to approximately 85%) observed during the presymptomatic stage. Kinetic analysis of the voltammetric recordings demonstrated that evoked dopamine concentrations were normalized without plasticity of dopamine release and uptake, suggesting that the primary mechanisms controlling ambient levels of extracellular dopamine were not actively altered. In the present study, we formalize this neuroadaptation as "passive stabilization" . We further propose that passive stabilization is mediated by the simple physical principles of diffusion and steady state, is predicated on extrasynaptic transmission, and forms the basis for a new compensation model of preclinical parkinsonism.
Collapse
|
372
|
Joseph MH, Datla K, Young AMJ. The interpretation of the measurement of nucleus accumbens dopamine by in vivo dialysis: the kick, the craving or the cognition? Neurosci Biobehav Rev 2003; 27:527-41. [PMID: 14599434 DOI: 10.1016/j.neubiorev.2003.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Psychopharmacological studies have implicated the dopaminergic innervation of the nucleus accumbens (NAC) in reward and reinforcement, in the actions of addictive drugs, and in the control of the symptoms of schizophrenia. Recent developments in in vivo dialysis, and other in vivo neurochemical techniques have permitted a more direct analysis of the behavioural correlates of increased dopamine release in rats, and have largely confirmed these findings in relation to reward, and drugs of abuse potential. However, dopamine release has also been found to be increased by many other stimuli/situations including aversive stimuli, stimuli conditioned to aversive stimuli, complex novel stimuli, and in the process of conditioning itself. These results contrast with electrophysiological data obtained in the behaving monkey, where rewarding stimuli, or stimuli predictive of reward are associated with increased firing of presumptive dopamine neurones projecting to the NAC (and indeed to the striatum), but mild aversive stimuli are not, leading to the suggestion that this system subserves a more purely reward function, or indeed that it provides a reward error signal. Further exploration of these issues will depend upon a comparison of increased dopamine cell firing and increased dopamine release, and an analysis of the behavioural effects of blocking these increases in dopamine transmission. One suggestion, deriving from work on latent inhibition, is that the significance of dopamine release by salient stimuli is to allow learning about stimuli which would otherwise be excluded on the basis of familiarity. This suggests that in addition to a role in some types of learning about salient stimuli, dopamine release in NAC may have a role in controlling the attention paid to familiar stimuli. Since it is difficult to see a connection between simple learning about rewards, and the symptoms of schizophrenia, this provides a more convincing link between the dopamine theory of schizophrenia, and the attentional difficulties held by many theorists to underlie schizophrenic symptoms.
Collapse
Affiliation(s)
- Michael H Joseph
- Behavioural Neuroscience Group, School of Psychology, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | | | | |
Collapse
|
373
|
Variable dopamine release probability and short-term plasticity between functional domains of the primate striatum. J Neurosci 2003. [PMID: 12764127 DOI: 10.1523/jneurosci.23-10-04378.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Release of the neuromodulator dopamine (DA) is critical to the control of locomotion, motivation, and reward. However, the probability of DA release is not well understood. Current understanding of neurotransmitter release probability in the CNS is limited to the conventional synaptic amino acid transmitters (e.g., glutamate and GABA). These fast neurotransmitters are released with a repertoire of probabilities according to synapse type, and these probabilities show activity-dependent plasticity according to synapse use. Synapses for neuromodulators such as DA, however, are designed for signaling that diverges temporally and spatially from that for fast neurotransmitters: DA receptors are exclusively metabotropic and at sites that extend to extrasynaptic locations and neighboring synapses. In this study, the release probability of DA was explored in real time in limbicversus motor-associated functional domains of the striatum of a primate (marmoset; Callithrix jacchus) using fast-scan voltammetry at a carbon-fiber microelectrode. We show that the probability of axonal DA release varies with striatal domain. Furthermore, release probability exhibits a short-term, activity-dependent plasticity that ranges from depression to facilitation in motor-through limbic-associated regions, respectively. Rapid plasticity does not result from metabotropic D2-like DA receptor activation or ionotropic GABA(A) receptor effects but is dependent on Ca2+ availability. These data reveal that rapid dynamics in DA release probability will participate in the transmission of the patterns and frequencies encoded by DA neuron action potential discharge. Furthermore, the regional variation in these features indicates that limbic-versus motor-associated DA neurons are permitted to generate diverse DA signals in response to a given firing pattern.
Collapse
|
374
|
Phillips PEM, Stuber GD, Heien MLAV, Wightman RM, Carelli RM. Subsecond dopamine release promotes cocaine seeking. Nature 2003; 422:614-8. [PMID: 12687000 DOI: 10.1038/nature01476] [Citation(s) in RCA: 806] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2002] [Accepted: 02/03/2003] [Indexed: 11/09/2022]
Abstract
The dopamine-containing projection from the ventral tegmental area of the midbrain to the nucleus accumbens is critically involved in mediating the reinforcing properties of cocaine. Although neurons in this area respond to rewards on a subsecond timescale, neurochemical studies have only addressed the role of dopamine in drug addiction by examining changes in the tonic (minute-to-minute) levels of extracellular dopamine. To investigate the role of phasic (subsecond) dopamine signalling, we measured dopamine every 100 ms in the nucleus accumbens using electrochemical technology. Rapid changes in extracellular dopamine concentration were observed at key aspects of drug-taking behaviour in rats. Before lever presses for cocaine, there was an increase in dopamine that coincided with the initiation of drug-seeking behaviours. Notably, these behaviours could be reproduced by electrically evoking dopamine release on this timescale. After lever presses, there were further increases in dopamine concentration at the concurrent presentation of cocaine-related cues. These cues alone also elicited similar, rapid dopamine signalling, but only in animals where they had previously been paired to cocaine delivery. These findings reveal an unprecedented role for dopamine in the regulation of drug taking in real time.
Collapse
Affiliation(s)
- Paul E M Phillips
- Department of Psychology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
375
|
Cheer JF, Kendall DA, Mason R, Marsden CA. Differential cannabinoid-induced electrophysiological effects in rat ventral tegmentum. Neuropharmacology 2003; 44:633-41. [PMID: 12668049 DOI: 10.1016/s0028-3908(03)00029-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cannabinoids are known to exert mainly excitatory effects on dopaminergic cells of the ventral tegmental area (VTA). We have utilized an in vivo multiple-single unit electrophysiological approach to assess different neuronal contributions that may ultimately lead to excitation in this area. Baseline neuron recordings, using low impedance microwires, showed a variety of waveforms with a wide range of durations (0.8-3.2 ms). In the first experiment systemic injection of the potent cannabinoid agonist HU210 (100 microg/kg, i.p.) led predominantly to an increase in firing rate (approximately 214%, compared to pre-drug) in slowly firing cells with broad action potentials, possibly driven by a majority of presumed dopaminergic neurons (n = 31). However, the firing rate of some units was either unaffected (<25%, n = 9) or even decreased (approximately 67%, n = 9) following cannabinoid injection concomitantly with excitation. Apomorphine (75 microg/kg, i.p.) injected following HU210 produced a marked inhibition of both responses (approximately 76%) in 39 out of 49 cells. The second group of animals was treated with the CB(1) receptor antagonist SR141716A (1 mg/kg, i.p.), which had no effect when injected alone but prevented all HU210-evoked changes in firing rate suggesting that cannabinoid receptors mediated the observed responses (n = 39). Taken together, the present results suggest that the observed actions of cannabinoids may involve complex neurotransmitter interactions leading to differential effects on dopamine release. These heterogeneous neuronal responses are likely to underly the behavioural discrepancies reported in animal models of cannabinoid reinforcement.
Collapse
Affiliation(s)
- J F Cheer
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, UK
| | | | | | | |
Collapse
|
376
|
Paladini CA, Robinson S, Morikawa H, Williams JT, Palmiter RD. Dopamine controls the firing pattern of dopamine neurons via a network feedback mechanism. Proc Natl Acad Sci U S A 2003; 100:2866-71. [PMID: 12604788 PMCID: PMC151432 DOI: 10.1073/pnas.0138018100] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in the firing pattern of midbrain dopamine neurons are thought to encode information for certain types of reward-related learning. In particular, the burst pattern of firing is predicted to result in more efficient dopamine release at target loci, which could underlie changes in synaptic plasticity. In this study, the effects of dopamine on the firing patterns of dopaminergic neurons in vivo and their electrophysiological characteristics in vitro were examined by using a genetic dopamine-deficient (DD) mouse model. Extracellular recordings in vivo showed that, although the firing pattern of dopamine neurons in normal mice included bursting activity, DD mice recordings showed only a single-spike pattern of activity with no bursts. Bursting was restored in DD mice after systemic administration of the dopamine precursor, L-3,4-dihydroxyphenylalanine (L-dopa). Whole-cell recordings in vitro demonstrated that the basic electrophysiology and pharmacology of dopamine neurons were identical between DD and control mice, except that amphetamine did not elicit a hyperpolarizing current in slices from DD mice. These data suggest that endogenously released dopamine plays a critical role in the afferent control of dopamine neuron bursting activity and that this control is exerted via a network feedback mechanism.
Collapse
Affiliation(s)
- Carlos A Paladini
- Vollum Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | | | | | | | | |
Collapse
|
377
|
Abstract
Dopamine may exert different actions depending on a number of factors. A common view is that D1 receptors may be responsible for excitatory actions whereas D2 receptors are involved in inhibitory actions. However, this position cannot be reconciled with several findings indicating otherwise. The role of dopamine on forebrain neural ensembles may be better understood in the light of functional states of the system. Pyramidal cortical neurons and striatal medium spiny neurons alternate between two membrane potential states ('up' and 'down') that could shape dopamine actions. It is proposed that D1 receptors can act as state-stabilizers by sustaining up states and thereby facilitating plasticity mechanisms by providing postsynaptic depolarization and increasing NMDA function. In this way, dopamine can sustain activity in depolarized units. This action is accompanied by a decrease in cell firing (perhaps mediated by D2 receptors), which renders the cells responsive only to strong stimuli. The result would be a net increase in signal-to-noise ratio in a selected assembly of neurons.
Collapse
Affiliation(s)
- Patricio O'Donnell
- Center for Neuropharmacology & Neuroscience, Albany Medical College (MC-136), 47 New Scotland Ave, NY 12208, USA.
| |
Collapse
|
378
|
Abstract
Knowledge of the effect of dopamine on corticostriatal synaptic plasticity has advanced rapidly over the last 5 years. We consider this new knowledge in relation to three factors proposed earlier to describe the rules for synaptic plasticity in the corticostriatal pathway. These factors are a phasic increase in dopamine release, presynaptic activity and postsynaptic depolarisation. A function is proposed which relates the amount of dopamine release in the striatum to the modulation of corticostriatal synaptic efficacy. It is argued that this function, and the experimental data from which it arises, are compatible with existing models which associate the reward-related firing of dopamine neurons with changes in corticostriatal synaptic efficacy.
Collapse
Affiliation(s)
- John N J Reynolds
- The Neuroscience Research Centre, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|