351
|
Osheim YN, French SL, Keck KM, Champion EA, Spasov K, Dragon F, Baserga SJ, Beyer AL. Pre-18S Ribosomal RNA Is Structurally Compacted into the SSU Processome Prior to Being Cleaved from Nascent Transcripts in Saccharomyces cerevisiae. Mol Cell 2004; 16:943-54. [PMID: 15610737 DOI: 10.1016/j.molcel.2004.11.031] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/11/2004] [Accepted: 11/12/2004] [Indexed: 12/01/2022]
Abstract
Recent studies have revealed multiple dynamic complexes that are precursors to eukaryotic ribosomes. EM visualization of nascent rRNA transcripts provides in vivo temporal and structural context for these events. In exponentially growing S. cerevisiae, pre-18S rRNA is dramatically compacted into a large particle (SSU processome) within seconds of completion of its transcription and is released cotranscriptionally by cleavage in ITS1. After cleavage, a new terminal knob is formed on the nascent large subunit rRNA, compacting it progressively in a 5'-3' direction. Depletion of individual components shows that cotranscriptional SSU processome formation is a sensitive indicator of the occurrence or timing of the early A0-A2 cleavages and depends on factors not isolated in preribosome complexes, as well as on favorable growth conditions. The results show that the approximately 40 components of the SSU processome/90S preribosome can complete their tasks within approximately 85 s in optimal conditions.
Collapse
Affiliation(s)
- Yvonne N Osheim
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Galani K, Nissan TA, Petfalski E, Tollervey D, Hurt E. Rea1, a dynein-related nuclear AAA-ATPase, is involved in late rRNA processing and nuclear export of 60 S subunits. J Biol Chem 2004; 279:55411-8. [PMID: 15528184 DOI: 10.1074/jbc.m406876200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rea1, the largest predicted protein in the yeast genome, is a member of the AAA(+) family of ATPases and is associated with pre-60 S ribosomes. Here we report that Rea1 is required for maturation and nuclear export of the pre-60 S subunit. Rea1 exhibits a predominantly nucleoplasmic localization and is present in a late pre-60 S particle together with members of the Rix1 complex. To study the role of Rea1 in ribosome biogenesis, we generated a repressible GAL::REA1 strain and temperature-sensitive rea1 alleles. In vivo depletion of Rea1 results in the significant reduction of mature 60 S subunits concomitant with defects in pre-rRNA processing and late pre-60 S ribosome stability following ITS2 cleavage and prior to the generation of mature 5.8 S rRNA. Strains depleted of the components of the Rix1 complex (Rix1, Ipi1, and Ipi3) showed similar defects. Using an in vivo 60 S subunit export assay, a strong accumulation of the large subunit reporter Rpl25-GFP (green fluorescent protein) in the nucleus and at the nuclear periphery was seen in rea1 mutants at restrictive conditions.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/chemistry
- ATPases Associated with Diverse Cellular Activities
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/physiology
- Alleles
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- DNA, Ribosomal Spacer
- Genes, Reporter
- Green Fluorescent Proteins/metabolism
- Magnesium Chloride/pharmacology
- Membrane Proteins/chemistry
- Models, Biological
- Mutation
- Oligonucleotides/chemistry
- Plasmids/metabolism
- Protein Structure, Tertiary
- RNA/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 5.8S/chemistry
- Receptors, Steroid
- Ribosomes/chemistry
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/physiology
- Salts/pharmacology
- Sodium Dodecyl Sulfate/chemistry
Collapse
Affiliation(s)
- Kyriaki Galani
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
353
|
Gallagher JEG, Dunbar DA, Granneman S, Mitchell BM, Osheim Y, Beyer AL, Baserga SJ. RNA polymerase I transcription and pre-rRNA processing are linked by specific SSU processome components. Genes Dev 2004; 18:2506-17. [PMID: 15489292 PMCID: PMC529538 DOI: 10.1101/gad.1226604] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 08/19/2004] [Indexed: 01/30/2023]
Abstract
Sequential events in macromolecular biosynthesis are often elegantly coordinated. The small ribosomal subunit (SSU) processome is a large ribonucleoprotein (RNP) required for processing of precursors to the small subunit RNA, the 18S, of the ribosome. We have found that a subcomplex of SSU processome proteins, the t-Utps, is also required for optimal rRNA transcription in vivo in the yeast Saccharomyces cerevisiae. The t-Utps are ribosomal chromatin (r-chromatin)-associated, and they exist in a complex in the absence of the U3 snoRNA. Transcription is required neither for the formation of the subcomplex nor for its r-chromatin association. The t-Utps are associated with the pre-18S rRNAs independent of the presence of the U3 snoRNA. This association may thus represent an early step in the formation of the SSU processome. Our results indicate that rRNA transcription and pre-rRNA processing are coordinated via specific components of the SSU processome.
Collapse
Affiliation(s)
- Jennifer E G Gallagher
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-8024, USA
| | | | | | | | | | | | | |
Collapse
|
354
|
Gerbasi VR, Weaver CM, Hill S, Friedman DB, Link AJ. Yeast Asc1p and mammalian RACK1 are functionally orthologous core 40S ribosomal proteins that repress gene expression. Mol Cell Biol 2004; 24:8276-87. [PMID: 15340087 PMCID: PMC515043 DOI: 10.1128/mcb.24.18.8276-8287.2004] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Translation of mRNA into protein is a fundamental step in eukaryotic gene expression requiring the large (60S) and small (40S) ribosome subunits and associated proteins. By modern proteomic approaches, we previously identified a novel 40S-associated protein named Asc1p in budding yeast and RACK1 in mammals. The goals of this study were to establish Asc1p or RACK1 as a core conserved eukaryotic ribosomal protein and to determine the role of Asc1p or RACK1 in translational control. We provide biochemical, evolutionary, genetic, and functional evidence showing that Asc1p or RACK1 is indeed a conserved core component of the eukaryotic ribosome. We also show that purified Asc1p-deficient ribosomes have increased translational activity compared to that of wild-type yeast ribosomes. Further, we demonstrate that asc1Delta null strains have increased levels of specific proteins in vivo and that this molecular phenotype is complemented by either Asc1p or RACK1. Our data suggest that one of Asc1p's or RACK1's functions is to repress gene expression.
Collapse
Affiliation(s)
- Vincent R Gerbasi
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, 1161 21st Ave. South, Nashville, TN 37232-2363, USA
| | | | | | | | | |
Collapse
|
355
|
Nagahama M, Hara Y, Seki A, Yamazoe T, Kawate Y, Shinohara T, Hatsuzawa K, Tani K, Tagaya M. NVL2 is a nucleolar AAA-ATPase that interacts with ribosomal protein L5 through its nucleolar localization sequence. Mol Biol Cell 2004; 15:5712-23. [PMID: 15469983 PMCID: PMC532049 DOI: 10.1091/mbc.e04-08-0692] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
NVL (nuclear VCP-like protein), a member of the AAA-ATPase family, is known to exist in two forms with N-terminal extensions of different lengths in mammalian cells. Here, we show that they are localized differently in the nucleus; NVL2, the major species, is mainly present in the nucleolus, whereas NVL1 is nucleoplasmic. Mutational analysis demonstrated the presence of two nuclear localization signals in NVL2, one of which is shared with NVL1. In addition, a nucleolar localization signal was found to exist in the N-terminal extra region of NVL2. The nucleolar localization signal is critical for interaction with ribosomal protein L5, which was identified as a specific interaction partner of NVL2 on yeast two-hybrid screening. The interaction of NVL2 with L5 is ATP-dependent and likely contributes to the nucleolar translocation of NVL2. The physiological implication of this interaction was suggested by the finding that a dominant negative NVL2 mutant inhibits ribosome biosynthesis, which is known to take place in the nucleolus.
Collapse
Affiliation(s)
- Masami Nagahama
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Nissan TA, Galani K, Maco B, Tollervey D, Aebi U, Hurt E. A pre-ribosome with a tadpole-like structure functions in ATP-dependent maturation of 60S subunits. Mol Cell 2004; 15:295-301. [PMID: 15260980 DOI: 10.1016/j.molcel.2004.06.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/17/2004] [Accepted: 05/24/2004] [Indexed: 11/25/2022]
Abstract
Analyses of isolated pre-ribosomes yielded biochemical "snapshots" of the dynamic, nascent 60S and 40S subunits during their path from the nucleolus to the cytoplasm. Here, we present the structure of a pre-60S ribosomal intermediate located in the nucleoplasm. A huge dynein-related AAA-type ATPase (Rea1) and the Rix1 complex (Rix1-Ipi1-Ipi3) are components of an extended (approximately 45 nm long) pre-60S particle. Antibody crosslinking in combination with electron microscopy revealed that the Rea1 localizes to the "tail" region and ribosomal proteins to the "head" region of the elongated "tadpole-like" structure. Furthermore, in vitro treatment with ATP induces dissociation of Rea1 from the pre-60S subunits. Rea1 and the Rix1 complex could mediate ATP-dependent remodeling of 60S subunits and subsequent export from the nucleoplasm to the cytoplasm.
Collapse
Affiliation(s)
- Tracy A Nissan
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120, Germany
| | | | | | | | | | | |
Collapse
|
357
|
Yamamoto K, Yamamoto M, Hanada KI, Nogi Y, Matsuyama T, Muramatsu M. Multiple protein-protein interactions by RNA polymerase I-associated factor PAF49 and role of PAF49 in rRNA transcription. Mol Cell Biol 2004; 24:6338-49. [PMID: 15226435 PMCID: PMC434256 DOI: 10.1128/mcb.24.14.6338-6349.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated the critical role of RNA polymerase I (Pol I)-associated factor PAF53 in mammalian rRNA transcription. Here, we report the isolation and characterization of another Pol I-associated factor, PAF49. Mouse PAF49 shows striking homology to the human nucleolar protein ASE-1, so that they are considered orthologues. PAF49 and PAF53 were copurified with a subpopulation of Pol I during purification from cell extracts. Physical association of PAF49 with Pol I was confirmed by a coimmunoprecipitation assay. PAF49 was shown to interact with PAF53 through its N-terminal segment. This region of PAF49 also served as the target for TAF(I)48, the 48-kDa subunit of selectivity factor SL1. Concomitant with this interaction, the other components of SL1 also coimmunoprecipitated with PAF49. Specific transcription from the mouse rRNA promoter in vitro was severely impaired by anti-PAF49 antibody, which was overcome by addition of recombinant PAF49 protein. Moreover, overexpression of a deletion mutant of PAF49 significantly reduced pre-rRNA synthesis in vivo. Immunolocalization analysis revealed that PAF49 accumulated in the nucleolus of growing cells but dispersed to nucleoplasm in growth-arrested cells. These results strongly suggest that PAF49/ASE-1 plays an important role in rRNA transcription.
Collapse
Affiliation(s)
- Kazuo Yamamoto
- Department of Biochemistry, Saitama Medical School, Iruma-gun, Japan
| | | | | | | | | | | |
Collapse
|
358
|
Lahmy S, Guilleminot J, Cheng CM, Bechtold N, Albert S, Pelletier G, Delseny M, Devic M. DOMINO1, a member of a small plant-specific gene family, encodes a protein essential for nuclear and nucleolar functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:809-820. [PMID: 15341625 DOI: 10.1111/j.1365-313x.2004.02166.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Arabidopsis embryos carrying the domino1 mutation grow slowly in comparison with wild type embryos and as a consequence reach only the globular stage at desiccation. The primary defect of the mutation at the cellular level is the large size of the nucleolus that can be observed soon after fertilization in the nuclei of both the embryo and the endosperm. The ultrastructure of mutant nucleoli is drastically different from wild type and points to a fault in ribosome biogenesis. DOMINO1 encodes a protein, which belongs to a plant-specific gene family sharing a common motif of unknown function, present in the tomato DEFECTIVE CHLOROPLASTS AND LEAVES (LeDCL) protein. Using a GFP protein fusion, we show that DOMINO1 is targeted to the nucleus. We propose that inactivation of DOMINO1 has a negative effect on ribosome biogenesis and on the rate of cell division.
Collapse
Affiliation(s)
- Sylvie Lahmy
- Laboratoire Génome et Développement des Plantes, CNRS-UMR 5096, Université de Perpignan, 52 Avenue de Villeneuve, 66860 Perpignan-cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
359
|
Mingot JM, Bohnsack MT, Jäkle U, Görlich D. Exportin 7 defines a novel general nuclear export pathway. EMBO J 2004; 23:3227-36. [PMID: 15282546 PMCID: PMC514512 DOI: 10.1038/sj.emboj.7600338] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 06/29/2004] [Indexed: 11/09/2022] Open
Abstract
Most transport pathways between cell nucleus and cytoplasm are mediated by nuclear transport receptors of the importin beta family. These receptors are in continuous circulation between the two compartments and transfer cargo molecules from one side of the nuclear envelope to the other. RanBP16 is a family member from higher eukaryotes of so far unknown function. We now show that it exports p50RhoGAP from the nucleus and thereby confines this activity to the cytoplasm. It also accounts for nuclear exclusion of 14-3-3sigma, which in turn is known to anchor, for example, cyclin-dependent kinases in the cytoplasm. Our data further suggest that RanBP16 exports several additional cargoes. It thus appears to be a nuclear export mediator with broad substrate specificity and we will therefore refer to it as exportin 7 (Exp7). Finally, we demonstrate that Exp7-dependent nuclear export signals differ fundamentally from the leucine-rich, CRM1-dependent ones: First, they are not just short linear sequences, but instead include folded motifs. Second, basic residues are critical for Exp7 recruitment.
Collapse
|
360
|
Abstract
Different RNA species are exported from the nucleus by distinct mechanisms. Among the different RNAs, mRNAs and major spliceosomal U snRNAs share several structural similarities, yet they are exported by distinct factors. We previously showed that U1 snRNAs behaved like an mRNA in nuclear export if various approximately 300-nucleotide fragments were inserted in a central position. Here we show that this export switch is dependent on the length of the insertion but independent of its position, indicating unequivocally that this switch is indeed the result of RNA length. We also show that intronless mRNAs can be progressively converted to use the U snRNA export pathway if the mRNAs are progressively shortened by deletion. In addition, immunoprecipitation experiments show that the protein composition of export RNPs is influenced by RNA length. These findings indicate that RNA length is one of the key determinants of the choice of RNA export pathway. Based on these results and previous observations, a unified model of how an RNA is committed to a specific export pathway is proposed.
Collapse
Affiliation(s)
- Kaoru Masuyama
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
361
|
Pertschy B, Zisser G, Schein H, Köffel R, Rauch G, Grillitsch K, Morgenstern C, Durchschlag M, Högenauer G, Bergler H. Diazaborine treatment of yeast cells inhibits maturation of the 60S ribosomal subunit. Mol Cell Biol 2004; 24:6476-87. [PMID: 15226447 PMCID: PMC434233 DOI: 10.1128/mcb.24.14.6476-6487.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 03/08/2004] [Accepted: 04/19/2004] [Indexed: 11/20/2022] Open
Abstract
Diazaborine treatment of yeast cells was shown previously to cause accumulation of aberrant, 3'-elongated mRNAs. Here we demonstrate that the drug inhibits maturation of rRNAs for the large ribosomal subunit. Pulse-chase analyses showed that the processing of the 27S pre-rRNA to consecutive species was blocked in the drug-treated wild-type strain. The steady-state level of the 7S pre-rRNA was clearly reduced after short-term treatment with the inhibitor. At the same time an increase of the 35S pre-rRNA was observed. Longer incubation with the inhibitor resulted in a decrease of the 27S precursor. Primer extension assays showed that an early step in 27S pre-rRNA processing is inhibited, which results in an accumulation of the 27SA2 pre-rRNA and a strong decrease of the 27SA3, 27SB1L, and 27SB1S precursors. The rRNA processing pattern observed after diazaborine treatment resembles that reported after depletion of the RNA binding protein Nop4p/Nop77p. This protein is essential for correct pre-27S rRNA processing. Using a green fluorescent protein-Nop4 fusion, we found that diazaborine treatment causes, within minutes, a rapid redistribution of the protein from the nucleolus to the periphery of the nucleus, which provides a possible explanation for the effect of diazaborine on rRNA processing.
Collapse
Affiliation(s)
- Brigitte Pertschy
- Institut für Molekularbiologie, Biochemie und Mikrobiologie, Karl-Franzens-Universität Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Rosado IV, de la Cruz J. Npa1p is an essential trans-acting factor required for an early step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2004; 10:1073-83. [PMID: 15208443 PMCID: PMC1370598 DOI: 10.1261/rna.7340404] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 04/05/2004] [Indexed: 05/19/2023]
Abstract
Ribosome biogenesis requires >100 nonribosomal proteins, which are associated with different preribosomal particles. The substrates, the interacting partners, and the timing of action of most of these proteins are largely unknown. To elucidate the functional environment of the putative ATP-dependent RNA helicase Dbp6p from Saccharomyces cerevisiae, which is required for 60S ribosomal subunit assembly, we have previously performed a synthetic lethal screen and thereby revealed a genetic interaction network between Dbp6p, Rpl3p, Nop8p, and the novel Rsa3p. In this report, we extended the characterization of this functional network by performing a synthetic lethal screen with the rsa3 null allele. This screen identified the so far uncharacterized Npa1p (YKL014C). Polysome profile analysis indicates that there is a deficit of 60S ribosomal subunits and an accumulation of halfmer polysomes in the slowly growing npa1-1 mutant. Northern blotting and primer extension analysis shows that the npa1-1 mutation negatively affects processing of all 27S pre-rRNAs and the normal accumulation of both mature 25S and 5.8S rRNAs. In addition, 27SA(2) pre-rRNA is prematurely cleaved at site C(2). Moreover, GFP-tagged Npa1p localizes predominantly to the nucleolus and sediments with large complexes in sucrose gradients, which most likely correspond to pre-60S ribosomal particles. We conclude that Npa1p is required for ribosome biogenesis and operates in the same functional environment of Rsa3p and Dbp6p during early maturation of 60S ribosomal subunits.
Collapse
Affiliation(s)
- Ivan V Rosado
- Departamento de Genetica, Facultad de Biologia, Universidad de Sevilla, Avda. Reina Mercedes, 6, E-41012 Sevilla, Spain
| | | |
Collapse
|
363
|
Dez C, Froment C, Noaillac-Depeyre J, Monsarrat B, Caizergues-Ferrer M, Henry Y. Npa1p, a component of very early pre-60S ribosomal particles, associates with a subset of small nucleolar RNPs required for peptidyl transferase center modification. Mol Cell Biol 2004; 24:6324-37. [PMID: 15226434 PMCID: PMC434229 DOI: 10.1128/mcb.24.14.6324-6337.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 02/08/2004] [Accepted: 04/09/2004] [Indexed: 11/20/2022] Open
Abstract
We have identified a novel essential nucleolar factor required for the synthesis of 5.8S and 25S rRNAs termed Npa1p. In the absence of Npa1p, the pre-rRNA processing pathway leading to 5.8S and 25S rRNA production is perturbed such that the C2 cleavage within internal transcribed spacer 2 occurs prematurely. Npa1p accumulates in the immediate vicinity of the dense fibrillar component of the nucleolus and is predominantly associated with the 27SA2 pre-rRNA, the RNA component of the earliest pre-60S ribosomal particles. By mass spectrometry, we have identified the protein partners of Npa1p, which include eight putative helicases as well as the novel Npa2p factor. Strikingly, we also show that Npa1p can associate with a subset of H/ACA and C/D small nucleolar RNPs (snoRNPs) involved in the chemical modification of residues in the vicinity of the peptidyl transferase center. Our results suggest that 27SA2-containing pre-60S ribosomal particles are located at the interface between the dense fibrillar and the granular components of the nucleolus and that these particles can contain a subset of snoRNPs.
Collapse
Affiliation(s)
- Christophe Dez
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099 CNRS-Université Paul Sabatier, IFR 109, Toulouse, France
| | | | | | | | | | | |
Collapse
|
364
|
Dosil M, Bustelo XR. Functional characterization of Pwp2, a WD family protein essential for the assembly of the 90 S pre-ribosomal particle. J Biol Chem 2004; 279:37385-97. [PMID: 15231838 DOI: 10.1074/jbc.m404909200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we report the functional characterization of Pwp2, an evolutionary conserved component of the 90 S pre-ribosome. Conditional depletion of the Pwp2 protein in yeast specifically impairs pre-rRNA proccessing at sites A(0), A(1), and A(2), leading to a strong decrease in 18 S rRNA and 40 S ribosomal subunit levels. Pre-ribosomal particle sedimentation analysis indicated that these defects are caused by a block in the formation of 90 S pre-ribosomes. We demonstrate that in Pwp2-depleted cells the U3 small nucleolar ribonucleoprotein is not able to interact with the 35 S pre-rRNA and accumulates as a free complex. Similarly, other 90 S particle components such as Imp3 and Imp4 do not associate with the pre-rRNA precursor in the absence of Pwp2. In addition, we have found that after blocking U3 ribonucleoprotein assembly, Pwp2 predominantly accumulates as a complex in association with five proteins: Dip2, Utp6, Utp13, Utp18, and Utp21. Immunoprecipitation and gradient sedimentation analysis revealed that this Pwp2 small subcomplex is capable of interacting directly with the 35 S pre-rRNA 5' end. Taken together, these results indicate that Pwp2 forms part of a stable particle subunit independent of the U3 small nucleolar ribonucleoprotein that is essential for the initial assembly steps of the 90 S pre-ribosome.
Collapse
Affiliation(s)
- Mercedes Dosil
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, University of Salamanca-CSIC, Campus Unamuno, E-37007 Salamanca, Spain.
| | | |
Collapse
|
365
|
Steiner-Mosonyi M, Mangroo D. The nuclear tRNA aminoacylation-dependent pathway may be the principal route used to export tRNA from the nucleus in Saccharomyces cerevisiae. Biochem J 2004; 378:809-16. [PMID: 14640976 PMCID: PMC1224000 DOI: 10.1042/bj20031306] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 11/05/2003] [Accepted: 11/28/2003] [Indexed: 11/17/2022]
Abstract
Nuclear tRNA export in Saccharomyces cerevisiae has been proposed to involve three pathways, designated Los1p-dependent, Los1p-independent nuclear aminoacylation-dependent, and Los1p- and nuclear aminoacylation-independent. Here, a comprehensive biochemical analysis was performed to identify tRNAs exported by the aminoacylation-dependent and -independent pathways of S. cerevisiae. Interestingly, the major tRNA species of at least 19 families were found in the aminoacylated form in the nucleus. tRNAs known to be exported by the export receptor Los1p were also aminoacylated in the nucleus of both wild-type and mutant Los1p strains. FISH (fluorescence in situ hybridization) analyses showed that tRNA(Tyr) co-localizes with the U18 small nucleolar RNA in the nucleolus of a tyrosyl-tRNA synthetase mutant strain defective in nuclear tRNA(Tyr) export because of a block in nuclear tRNA(Tyr) aminoacylation. tRNA(Tyr) was also found in the nucleolus of a utp8 mutant strain defective in nuclear tRNA export but not nuclear tRNA aminoacylation. These results strongly suggest that the nuclear aminoacylation-dependent pathway is principally responsible for tRNA export in S. cerevisiae and that Los1p is an export receptor of this pathway. It is also likely that in mammalian cells tRNAs are mainly exported from the nucleus by the nuclear aminoacylation-dependent pathway. In addition, the data are consistent with the idea that nuclear aminoacylation is used as a quality control mechanism for ensuring nuclear export of only mature and functional tRNAs, and that this quality assurance step occurs in the nucleolus.
Collapse
Affiliation(s)
- Marta Steiner-Mosonyi
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
366
|
Miyoshi K, Shirai C, Horigome C, Takenami K, Kawasaki J, Mizuta K. Rrs1p, a ribosomal protein L11-binding protein, is required for nuclear export of the 60S pre-ribosomal subunit in Saccharomyces cerevisiae. FEBS Lett 2004; 565:106-10. [PMID: 15135061 DOI: 10.1016/j.febslet.2004.03.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 03/18/2004] [Indexed: 10/26/2022]
Abstract
Rrs1p is a ribosomal protein L11-binding protein in Saccharomyces cerevisiae. We have obtained temperature-sensitive rrs1 mutants by random PCR mutagenesis. [(3)H]Methionine pulse-chase analysis reveals that the rrs1 mutations cause a defect in maturation of 25S rRNA. Ribosomal protein L25-enhanced green fluorescent protein, a reporter of the 60S ribosomal subunit, concentrates in the nucleus with enrichment in the nucleolus when the rrs1 mutants are shifted to the restrictive temperature. These results suggest that Rrs1p stays on the pre-60S particle from the early stage to very late stage of the large-subunit maturation and is required for export of 60S subunits from the nucleolus to the cytoplasm.
Collapse
Affiliation(s)
- Keita Miyoshi
- Department of Bioresource Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | | | |
Collapse
|
367
|
Jakovljevic J, de Mayolo PA, Miles TD, Nguyen TML, Léger-Silvestre I, Gas N, Woolford JL. The carboxy-terminal extension of yeast ribosomal protein S14 is necessary for maturation of 43S preribosomes. Mol Cell 2004; 14:331-42. [PMID: 15125836 DOI: 10.1016/s1097-2765(04)00215-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/17/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
Eukaryotic ribosomal proteins are required for production of stable ribosome assembly intermediates and mature ribosomes, but more specific roles for these proteins in biogenesis of ribosomes are not known. Here we demonstrate a particular function for yeast ribosomal protein rpS14 in late steps of 40S ribosomal subunit maturation and pre-rRNA processing. Extraordinary amounts of 43S preribosomes containing 20S pre-rRNA accumulate in the cytoplasm of certain rps14 mutants. These mutations not only reveal a more precise function for rpS14 in ribosome biogenesis but also uncover a role in ribosome assembly for the extended tails found in many ribosomal proteins. These studies are one of the first to relate the structure of eukaryotic ribosomes to their assembly pathway-the carboxy-terminal extension of rpS14 is located in the 40S subunit near the 3' end of 18S rRNA, consistent with a role for rpS14 in 3' end processing of 20S pre-rRNA.
Collapse
Affiliation(s)
- Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
368
|
Léger-Silvestre I, Milkereit P, Ferreira-Cerca S, Saveanu C, Rousselle JC, Choesmel V, Guinefoleau C, Gas N, Gleizes PE. The ribosomal protein Rps15p is required for nuclear exit of the 40S subunit precursors in yeast. EMBO J 2004; 23:2336-47. [PMID: 15167894 PMCID: PMC423291 DOI: 10.1038/sj.emboj.7600252] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 05/04/2004] [Indexed: 11/09/2022] Open
Abstract
We have conducted a genetic screen in order to identify ribosomal proteins of Saccharomyces cerevisiae involved in nuclear export of the small subunit precursors. This has led us to distinguish Rps15p as a protein dispensable for maturation of the pre-40S particles, but whose assembly into the pre-ribosomes is a prerequisite to their nuclear exit. Upon depletion of Rps15p, 20S pre-rRNA is released from the nucleolus and retained in the nucleus, without alteration of the pre-rRNA early cleavages. In contrast, Rps18p, which contacts Rps15p in the small subunit, is required upstream for pre-rRNA processing at site A2. Most pre-40S specific factors are correctly associated with the intermediate particles accumulating in the nucleus upon Rps15p depletion, except the late-binding proteins Tsr1p and Rio2p. Here we show that these two proteins are dispensable for nuclear exit; instead, they participate in 20S pre-rRNA processing in the cytoplasm. We conclude that, during the final maturation steps in the nucleus, incorporation of the ribosomal protein Rps15p is specifically required to render the pre-40S particles competent for translocation to the cytoplasm.
Collapse
Affiliation(s)
- Isabelle Léger-Silvestre
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS and Université Paul Sabatier, Toulouse, France
| | - Philipp Milkereit
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS and Université Paul Sabatier, Toulouse, France
| | - Sébastien Ferreira-Cerca
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS and Université Paul Sabatier, Toulouse, France
| | - Cosmin Saveanu
- Génétique des Interactions Macromoléculaires, Institut Pasteur, Paris, France
| | | | - Valérie Choesmel
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS and Université Paul Sabatier, Toulouse, France
| | - Cécile Guinefoleau
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS and Université Paul Sabatier, Toulouse, France
| | - Nicole Gas
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS and Université Paul Sabatier, Toulouse, France
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS and Université Paul Sabatier, Toulouse, France
| |
Collapse
|
369
|
Horsey EW, Jakovljevic J, Miles TD, Harnpicharnchai P, Woolford JL. Role of the yeast Rrp1 protein in the dynamics of pre-ribosome maturation. RNA (NEW YORK, N.Y.) 2004; 10:813-27. [PMID: 15100437 PMCID: PMC1370572 DOI: 10.1261/rna.5255804] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 02/02/2004] [Indexed: 05/19/2023]
Abstract
The Saccharomyces cerevisiae gene RRP1 encodes an essential, evolutionarily conserved protein necessary for biogenesis of 60S ribosomal subunits. Processing of 27S pre-ribosomal RNA to mature 25S rRNA is blocked and 60S subunits are deficient in the temperature-sensitive rrp1-1 mutant. We have used recent advances in proteomic analysis to examine in more detail the function of Rrp1p in ribosome biogenesis. We show that Rrp1p is a nucleolar protein associated with several distinct 66S pre-ribosomal particles. These pre-ribosomes contain ribosomal proteins plus at least 28 nonribosomal proteins necessary for production of 60S ribosomal subunits. Inactivation of Rrp1p inhibits processing of 27SA(3) to 27SB(S) pre-rRNA and of 27SB pre-rRNA to 7S plus 25.5S pre-rRNA. Thus, in the rrp1-1 mutant, 66S pre-ribosomal particles accumulate that contain 27SA(3) and 27SB(L) pre-ribosomal RNAs.
Collapse
Affiliation(s)
- Edward W Horsey
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
370
|
Shirai C, Takai T, Nariai M, Horigome C, Mizuta K. Ebp2p, the yeast homolog of Epstein-Barr virus nuclear antigen 1-binding protein 2, interacts with factors of both the 60 S and the 40 s ribosomal subunit assembly. J Biol Chem 2004; 279:25353-8. [PMID: 15078877 DOI: 10.1074/jbc.m403338200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ebp2p, the yeast homolog of human Epstein-Barr virus nuclear antigen 1-binding protein 2, is essential for biogenesis of the 60 S ribosomal subunit. Two-hybrid screening exhibited that, in addition to factors necessary for assembly of the 60 S subunit, Ebp2p interacts with Rps16p, ribosomal protein S16, and the 40 S ribosomal subunit assembly factor, Utp11p, as well as Yil019w, the function of which was previously uncharacterized. Depletion of Yil019w resulted in reduction in levels of both of 18 S rRNA and 40 S ribosomal subunit without affecting levels of 25 S rRNA and 60 S ribosomal subunits. 35 S pre-rRNA and aberrant 23 S RNA accumulated, indicating that pre-rRNA processing at sites A(0)-A(2) is inhibited when Yil019w is depleted. Each combination from Yil019w, Utp11p, and Rps16p showed two-hybrid interaction.
Collapse
Affiliation(s)
- Chiharu Shirai
- Department of Bioresource Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan
| | | | | | | | | |
Collapse
|
371
|
Vanrobays E, Gélugne JP, Caizergues-Ferrer M, Lafontaine DLJ. Dim2p, a KH-domain protein required for small ribosomal subunit synthesis. RNA (NEW YORK, N.Y.) 2004; 10:645-56. [PMID: 15037774 PMCID: PMC1370555 DOI: 10.1261/rna.5162204] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 12/26/2003] [Indexed: 05/05/2023]
Abstract
Recent proteomic analyses are revealing the dynamics of preribosome assembly. Following cleavage at processing site A(2), which generates the 20S pre-rRNA (the immediate precursor to the 18S rRNA), early RRPs (ribosomal RNA processing factors) are released in bulk from the preribosomes, and the resulting pre-40S subunits are left associated with a limited set of proteins that we refer to as the SSU RRP complex. Dim2p, a core constituent of the SSU RRP complex and conserved KH-domain containing protein, is required for pre-rRNA processing and is associated with early nucleolar and late cytoplasmic pre-rRNA species. Consistently, Dim2p shuttles between the nucle(ol)us and the cytoplasm, a trafficking that is tightly regulated by growth. The association of Dim2p with the 18S rRNA dimethyltransferase Dim1p, as well as its requirement for pre-rRNA processing at cleavage sites A(1) and A(2) and for 18S rRNA dimethylation, suggest that Dim2p may recruit Dim1p to nucleolar pre-rRNAs through its KH domain.
Collapse
Affiliation(s)
- Emmanuel Vanrobays
- F.N.R.S., Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Charleroi-Gosselies, Belgium. LBME du CNRS, 31062 Toulouse cedex 04, France
| | | | | | | |
Collapse
|
372
|
Dlakić M, Tollervey D. The Noc proteins involved in ribosome synthesis and export contain divergent HEAT repeats. RNA (NEW YORK, N.Y.) 2004; 10:351-4. [PMID: 14970380 PMCID: PMC1370930 DOI: 10.1261/rna.5184704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Noc1-4p proteins were previously reported to be involved in intranuclear and nucleocytoplasmic transport of pre-ribosomes. Using fold recognition and structural modeling, we show that Noc1-4p are largely comprised of alpha-helical repeats similar to HEAT repeats. Because other HEAT-repeat proteins play key roles in transport processes, this finding provides a plausible mechanistic explanation for the function of the Noc proteins.
Collapse
|
373
|
Blackwell C, Russell CL, Argimon S, Brown AJP, Brown JD. Protein A-tagging for purification of native macromolecular complexes from Candida albicans. Yeast 2004; 20:1235-41. [PMID: 14618561 DOI: 10.1002/yea.1036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein A-tagging has become an important tool in characterization of protein-protein interactions in many systems, allowing purification of multicomponent complexes under native conditions. Here we provide a set of vectors that allow protein A-tagging in Candida albicans, through addition of the tag to open reading frames. These vectors were successfully used to generate stably tagged proteins that were functional, shown to be localized appropriately or assembled into complexes. These new vectors comprise a useful addition to the C. albicans molecular toolbox.
Collapse
Affiliation(s)
- Chris Blackwell
- School of Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
374
|
Lin B, Thayer DA, Maddock JR. The Caulobacter crescentus CgtAC protein cosediments with the free 50S ribosomal subunit. J Bacteriol 2004; 186:481-9. [PMID: 14702318 PMCID: PMC305748 DOI: 10.1128/jb.186.2.481-489.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Obg family of GTPases is widely conserved and predicted to play an as-yet-unknown role in translation. Recent reports provide circumstantial evidence that both eukaryotic and prokaryotic Obg proteins are associated with the large ribosomal subunit. Here we provide direct evidence that the Caulobacter crescentus CgtA(C) protein is associated with the free large (50S) ribosomal subunit but not with 70S monosomes or with translating ribosomes. In contrast to the Bacillus subtilis and Escherichia coli proteins, CgtA(C) does not fractionate in a large complex by gel filtration, indicating a moderately weak association with the 50S subunit. Moreover, binding of CgtA(C) to the 50S particle is sensitive to salt concentration and buffer composition but not guanine nucleotide occupancy of CgtA(C). Assays of epitope-tagged wild-type and mutant variants of CgtA(C) indicate that the C terminus of CgtA(C) is critical for 50S association. Interestingly, the addition of a C-terminal epitope tag also affected the ability of various cgtA(C) alleles to function in vivo. Depletion of CgtA(C) led to perturbations in the polysome profile, raising the possibility that CgtA(C) is involved in ribosome assembly or stability.
Collapse
Affiliation(s)
- Bin Lin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
375
|
Eilbracht J, Reichenzeller M, Hergt M, Schnölzer M, Heid H, Stöhr M, Franke WW, Schmidt-Zachmann MS. NO66, a highly conserved dual location protein in the nucleolus and in a special type of synchronously replicating chromatin. Mol Biol Cell 2004; 15:1816-32. [PMID: 14742713 PMCID: PMC379278 DOI: 10.1091/mbc.e03-08-0623] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has recently become clear that the nucleolus, the most prominent nuclear subcompartment, harbors diverse functions beyond its classic role in ribosome biogenesis. To gain insight into nucleolar functions, we have purified amplified nucleoli from Xenopus laevis oocytes using a novel approach involving fluorescence-activated cell sorting techniques. The resulting protein fraction was analyzed by mass spectrometry and used for the generation of monoclonal antibodies directed against nucleolar components. Here, we report the identification and molecular characterization of a novel, ubiquitous protein, which in most cell types appears to be a constitutive nucleolar component. Immunolocalization studies have revealed that this protein, termed NO66, is highly conserved during evolution and shows in most cells analyzed a dual localization pattern, i.e., a strong enrichment in the granular part of nucleoli and in distinct nucleoplasmic entities. Colocalizations with proteins Ki-67, HP1alpha, and PCNA, respectively, have further shown that the staining pattern of NO66 overlaps with certain clusters of late replicating chromatin. Biochemical experiments have revealed that protein NO66 cofractionates with large preribosomal particles but is absent from cytoplasmic ribosomes. We propose that in addition to its role in ribosome biogenesis protein NO66 has functions in the replication or remodeling of certain heterochromatic regions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Nucleolus/metabolism
- Cell Nucleus/metabolism
- Cell Separation
- Cells, Cultured
- Centrifugation, Density Gradient
- Chromatin/chemistry
- Chromatin/metabolism
- Chromatography, Gel
- Chromobox Protein Homolog 5
- Chromosomal Proteins, Non-Histone/biosynthesis
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/physiology
- Conserved Sequence
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Dioxygenases
- Flow Cytometry
- HeLa Cells
- Heterochromatin/chemistry
- Histone Demethylases
- Humans
- Ki-67 Antigen/biosynthesis
- Microscopy, Electron
- Microscopy, Fluorescence
- Molecular Sequence Data
- Peptides/chemistry
- Precipitin Tests
- Proliferating Cell Nuclear Antigen/biosynthesis
- Protein Biosynthesis
- RNA/metabolism
- Ribosomes/metabolism
- Sequence Homology, Amino Acid
- Sucrose/pharmacology
- Time Factors
- Transcription, Genetic
- Xenopus Proteins/biosynthesis
- Xenopus Proteins/physiology
- Xenopus laevis/metabolism
Collapse
Affiliation(s)
- Jens Eilbracht
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
376
|
Leung AKL, Andersen JS, Mann M, Lamond AI. Bioinformatic analysis of the nucleolus. Biochem J 2004; 376:553-69. [PMID: 14531731 PMCID: PMC1223824 DOI: 10.1042/bj20031169] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 10/08/2003] [Indexed: 02/02/2023]
Abstract
The nucleolus is a plurifunctional, nuclear organelle, which is responsible for ribosome biogenesis and many other functions in eukaryotes, including RNA processing, viral replication and tumour suppression. Our knowledge of the human nucleolar proteome has been expanded dramatically by the two recent MS studies on isolated nucleoli from HeLa cells [Andersen, Lyon, Fox, Leung, Lam, Steen, Mann and Lamond (2002) Curr. Biol. 12, 1-11; Scherl, Coute, Deon, Calle, Kindbeiter, Sanchez, Greco, Hochstrasser and Diaz (2002) Mol. Biol. Cell 13, 4100-4109]. Nearly 400 proteins were identified within the nucleolar proteome so far in humans. Approx. 12% of the identified proteins were previously shown to be nucleolar in human cells and, as expected, nearly all of the known housekeeping proteins required for ribosome biogenesis were identified in these analyses. Surprisingly, approx. 30% represented either novel or uncharacterized proteins. This review focuses on how to apply the derived knowledge of this newly recognized nucleolar proteome, such as their amino acid/peptide composition and their homologies across species, to explore the function and dynamics of the nucleolus, and suggests ways to identify, in silico, possible functions of the novel/uncharacterized proteins and potential interaction networks within the human nucleolus, or between the nucleolus and other nuclear organelles, by drawing resources from the public domain.
Collapse
Affiliation(s)
- Anthony K L Leung
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Scotland, UK.
| | | | | | | |
Collapse
|
377
|
Dimario PJ. Cell and Molecular Biology of Nucleolar Assembly and Disassembly. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 239:99-178. [PMID: 15464853 DOI: 10.1016/s0074-7696(04)39003-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleoli disassemble in prophase of the metazoan mitotic cycle, and they begin their reassembly (nucleologenesis) in late anaphase?early telophase. Nucleolar disassembly and reassembly were obvious to the early cytologists of the eighteenth and nineteenth centuries, and although this has lead to a plethora of literature describing these events, our understanding of the molecular mechanisms regulating nucleolar assembly and disassembly has expanded immensely just within the last 10-15 years. We briefly survey the findings of nineteenth-century cytologists on nucleolar assembly and disassembly, followed by the work of Heitz and McClintock on nucleolar organizers. A primer review of nucleolar structure and functions precedes detailed descriptions of modern molecular and microscopic studies of nucleolar assembly and disassembly. Nucleologenesis is concurrent with the reinitiation of rDNA transcription in telophase. The perichromosomal sheath, prenucleolar bodies, and nucleolar-derived foci serve as repositories for nucleolar processing components used in the previous interphase. Disassembly of the perichromosomal sheath along with the dynamic movements and compositional changes of the prenucleolar bodies and nucleolus-derived foci coincide with reactivation of rDNA synthesis within the chromosomal nucleolar organizers during telophase. Nucleologenesis is considered in various model organisms to provide breadth to our understanding. Nucleolar disassembly occurs at the onset of mitosis primarily as a result of the mitosis-specific phosphorylation of Pol I transcription factors and processing components. Although we have learned much regarding nucleolar assembly and disassembly, many questions still remain, and these questions are as vibrant for us today as early questions were for nineteenth- and early twentieth-century cytologists.
Collapse
Affiliation(s)
- Patrick J Dimario
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803-1715, USA
| |
Collapse
|
378
|
Neumann S, Petfalski E, Brügger B, Großhans H, Wieland F, Tollervey D, Hurt E. Formation and nuclear export of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p. EMBO Rep 2003; 4:1156-62. [PMID: 14608372 PMCID: PMC1326418 DOI: 10.1038/sj.embor.7400026] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 09/15/2003] [Accepted: 09/22/2003] [Indexed: 11/08/2022] Open
Abstract
The yeast ubiquitin-protein ligase Rsp5p regulates processes as diverse as polII transcription and endocytosis. Here, we identify Rsp5p in a screen for tRNA export (tex) mutants. The tex23-1/rsp5-3 mutant, which is complemented by RSP5, not only shows a strong nuclear accumulation of tRNAs at the restrictive temperature, but also is severely impaired in the nuclear export of mRNAs and 60S pre-ribosomal subunits. In contrast, nuclear localization sequence (NLS)-mediated nuclear protein import is unaffected in this mutant. Strikingly, the nuclear RNA export defects seen in the rsp5-3 strain are accompanied by a dramatic inhibition of both rRNA and tRNA processing, a combination of phenotypes that has not been reported for any previously characterized mutation in yeast. These data implicate ubiquitination as a mechanism coordinating the major nuclear RNA biogenesis pathways.
Collapse
Affiliation(s)
- Silvia Neumann
- Biochemie-Zentrum Heidelberg (BZH),
Im Neuenheimer Feld 328, D-69120
Heidelberg, Germany
| | - Elisabeth Petfalski
- Wellcome Trust Centre for Cell Biology,
University of Edinburgh, Edinburgh EH9 3JR,
UK
| | - Britta Brügger
- Biochemie-Zentrum Heidelberg (BZH),
Im Neuenheimer Feld 328, D-69120
Heidelberg, Germany
| | - Helge Großhans
- Biochemie-Zentrum Heidelberg (BZH),
Im Neuenheimer Feld 328, D-69120
Heidelberg, Germany
| | - Felix Wieland
- Biochemie-Zentrum Heidelberg (BZH),
Im Neuenheimer Feld 328, D-69120
Heidelberg, Germany
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology,
University of Edinburgh, Edinburgh EH9 3JR,
UK
| | - Ed Hurt
- Biochemie-Zentrum Heidelberg (BZH),
Im Neuenheimer Feld 328, D-69120
Heidelberg, Germany
| |
Collapse
|
379
|
Luz JS, Georg RC, Gomes CH, Machado-Santelli GM, Oliveira CC. Sdo1p, the yeast orthologue of Shwachman-Bodian-Diamond syndrome protein, binds RNA and interacts with nuclear rRNA-processing factors. Yeast 1990; 26:287-98. [DOI: 10.1002/yea.1668] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|