351
|
Grumont RJ, Strasser A, Gerondakis S. B cell growth is controlled by phosphatidylinosotol 3-kinase-dependent induction of Rel/NF-kappaB regulated c-myc transcription. Mol Cell 2002; 10:1283-94. [PMID: 12504005 DOI: 10.1016/s1097-2765(02)00779-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rel/NF-kappaB transcription factors regulate the division and survival of B lymphocytes. Here we show that B cells lacking NF-kappaB1 and c-Rel fail to increase in size upon mitogenic stimulation due to a reduction in induced c-myc expression. Mitogen-induced B cell growth, although not markedly impaired by FRAP/mTOR or MEK inhibitors, required phosphatidylinositol 3-kinase (PI3K) activity. Inhibition of PI3K-dependent growth coincided with a block in the nuclear import of NF-kappaB1/c-Rel dimers and a failure to upregulate c-myc. In addition, PI3K was shown to be necessary for a transcription-independent increase in c-Myc protein levels that accompanies mitogenic activation. Collectively, these findings establish a role for Rel/NF-kappaB signaling in the mitogen-induced growth of mammalian cells, which in B lymphocytes requires a PI3K/c-myc-dependent pathway.
Collapse
Affiliation(s)
- Raelene J Grumont
- The Walter and Eliza Hall Institute of Medical Research, P.O. Box The Royal Melbourne Hospital, 3050, Victoria, Australia
| | | | | |
Collapse
|
352
|
Eberhardy SR, Farnham PJ. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J Biol Chem 2002; 277:40156-62. [PMID: 12177005 DOI: 10.1074/jbc.m207441200] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-Myc protein is up-regulated in many different types of cancer, suggesting that a detailed understanding of Myc function is an important goal. Our previous studies have focused on determining the mechanism by which Myc activates transcription using the target gene cad as an experimental model. Previously, we found that Myc activates cad transcription at a post-RNA polymerase II recruitment step and that the Myc transactivation domain interacts with a number of cdk-cyclin complexes. We now extend these studies to determine the role of these cyclin-cdk complexes in Myc-mediated transactivation. We have found that cyclin T1 binding to Myc localizes to the highly conserved Myc Box I, whereas cdk8 binding localizes to the amino-terminal 41 amino acids of the Myc transactivation domain. We showed that recruitment of cdk8 is sufficient for activation of a synthetic promoter construct. In contrast, the ability of Myc to activate transcription of the cad promoter correlates with binding of cyclin T1. Furthermore, recruitment of cyclin T1 to the cad promoter via a Gal4 fusion protein or through protein-protein interaction with the HIV-1 Tat protein can also activate cad transcription. These results suggest that Myc activates transcription by stimulating elongation and that P-TEFb is a key mediator of this process.
Collapse
Affiliation(s)
- Scott R Eberhardy
- University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
353
|
Abstract
Cell cycle activation is coordinated by D-type cyclins which are rate limiting and essential for the progression through the G1 phase of the cell cycle. D-type cyclins bind to and activate the cyclin-dependent kinases Cdk4 and Cdk6, which in turn phosphorylate their downstream target, the retinoblastoma protein Rb. Upon Rb phosphorylation, the E2F transcription factors activate the expression of S-phase genes and thereby induce cell cycle progression. The raise of cyclin D levels in early G1 also serves to titrate Kip/Cip proteins away from cyclinE/Cdk2 complexes, further accelerating cell cycle progression. Therefore, cyclin D plays essential roles in the response to mitogens, transmitting their signal to the Rb/E2F pathway. Surprisingly, cyclin D1-deficient animals are viable and have developmental abnormalities limited to restricted tissues, such as retina, the nervous system and breast epithelium. This observation, combined with several other studies, have raised the possibility that cyclin D1 may have new activities that are unrelated to its function as a cdk regulatory subunit and as regulator of Rb. Effectively, cyclin D has been reported to have transcriptional functions since it interacts with several transcription factors to regulate their activity. Most often, this effect does not rely on the kinase function of Cdk4, indicating that this function is probably independent of cell cycle progression. Further extending its role in gene regulation, cyclin D interacts with histone acetylases such as P/CAF or NcoA/SRC1a but also with components of the transcriptional machinery such as TAF(II)250. Therefore, these studies suggest that the functions of cyclin D might need to be reevaluated. They have established a new cdk-independent role of cyclin D1 as a transcriptional regulator, indicating that cyclin D1 can act via two different mechanisms, as a cdk activator it regulates cell cycle progression and as a transcriptional regulator, it modulates the activity of transcription factors.
Collapse
Affiliation(s)
- Olivier Coqueret
- INSERM U564, 4 rue Larrey, CHU Angers, 49033 Angers Cedex, France.
| |
Collapse
|
354
|
Kobor MS, Greenblatt J. Regulation of transcription elongation by phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:261-275. [PMID: 12213657 DOI: 10.1016/s0167-4781(02)00457-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis of mRNA by RNA polymerase II (RNAPII) is a multistep process that is regulated by different mechanisms. One important aspect of transcriptional regulation is phosphorylation of components of the transcription apparatus. The phosphorylation state of RNAPII carboxy-terminal domain (CTD) is controlled by a variety of protein kinases and at least one protein phosphatase. We discuss emerging genetic and biochemical evidence that points to a role of these factors not only in transcription initiation but also in elongation and possibly termination. In addition, we review phosphorylation events involving some of the general transcription factors (GTFs) and other regulatory proteins. As an interesting example, we describe the modulation of transcription associated kinases and phosphatase by the HIV Tat protein. We focus on bringing together recent findings and propose a revised model for the RNAPII phosphorylation cycle.
Collapse
Affiliation(s)
- Michael S Kobor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
355
|
Amini S, Clavo A, Nadraga Y, Giordano A, Khalili K, Sawaya BE. Interplay between cdk9 and NF-kappaB factors determines the level of HIV-1 gene transcription in astrocytic cells. Oncogene 2002; 21:5797-803. [PMID: 12173051 DOI: 10.1038/sj.onc.1205754] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2001] [Revised: 04/26/2002] [Accepted: 06/07/2002] [Indexed: 11/09/2022]
Abstract
Basal transcription of the HIV-1 genome is controlled by a variety of ubiquitous and inducible regulatory factors, some with the ability to associate with the viral DNA sequences within the promoter spanning the long terminal repeat (LTR). In this report we demonstrate that activation of the HIV-1 promoter through the inducible DNA binding NF-kappaB transcription factors can be affected by cdk9 in human astrocytic cells. Our results show that ectopic expression of cdk9, but not its mutant variant which lacks the domain responsible for its kinase activity, augments transcription of the LTR. Moreover, we demonstrate that induction of the NF-kappaB pathway by PMA, or overexpression of its subunits including p50/p65 have a negative effect on the ability of cdk9 to stimulate viral gene transcription in these cells. Results from band-shift experiments demonstrated significant suppression of p50/p65 association to its DNA target motif by cdk9. Further, data from GST pull-down and combined immunoprecipitation/Western blot analysis of the protein extracts from cells expressing cdk9, p50 and p65 have revealed the interaction of cdk9 with both p50 and p65 in the absence of DNA containing the kappaB motif. All of these observations led us to conclude that the interaction of cdk9 with the NF-kappaB factors can determine the ability of NF-kappaB to modulate HIV-1 gene transcription.
Collapse
Affiliation(s)
- Shohreh Amini
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, 1900 North 12th Street, 015-96, Room 203, Philadelphia, Pennsylvania, PA 19122, USA
| | | | | | | | | | | |
Collapse
|
356
|
Shim EY, Walker AK, Shi Y, Blackwell TK. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Genes Dev 2002; 16:2135-46. [PMID: 12183367 PMCID: PMC186450 DOI: 10.1101/gad.999002] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The metazoan transcription elongation factor P-TEFb (CDK-9/cyclin T) is essential for HIV transcription, and is recruited by some cellular activators. P-TEFb promotes elongation in vitro by overcoming pausing that requires the SPT-4/SPT-5 complex, but considerable evidence indicates that SPT-4/SPT-5 facilitates elongation in vivo. Here we used RNA interference to investigate P-TEFb functions in vivo, in the Caenorhabditis elegans embryo. We found that P-TEFb is broadly essential for expression of early embryonic genes. P-TEFb is required for phosphorylation of Ser 2 of the RNA Polymerase II C-terminal domain (CTD) repeat, but not for most CTD Ser 5 phosphorylation, supporting the model that P-TEFb phosphorylates CTD Ser 2 during elongation. Remarkably, although heat shock genes are cdk-9-dependent, they can be activated when spt-4 and spt-5 expression is inhibited along with cdk-9. This observation suggests that SPT-4/SPT-5 has an inhibitory function in vivo, and that mutually opposing influences of P-TEFb and SPT-4/SPT-5 may combine to facilitate elongation, or insure fidelity of mRNA production. Other genes are not expressed when cdk-9, spt-4, and spt-5 are inhibited simultaneously, suggesting that these genes require P-TEFb in an additional mechanism, and that they and heat shock genes are regulated through different P-TEFb-dependent elongation pathways.
Collapse
Affiliation(s)
- Eun Yong Shim
- Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
357
|
Greene WC, Peterlin BM. Charting HIV's remarkable voyage through the cell: Basic science as a passport to future therapy. Nat Med 2002; 8:673-80. [PMID: 12091904 DOI: 10.1038/nm0702-673] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adequate control of HIV requires impairing the infection, replication and spread of the virus, no small task given the extraordinary capacity of HIV to exploit the cell's molecular machinery in the course of infection. Understanding the dynamic interplay of host cell and virus is essential to the effort to eradicate HIV.
Collapse
Affiliation(s)
- Warner C Greene
- Gladstone Institute of Virology and Immunology, Department of Medicine, University of California at San Francisco, San Francisco, California, USA.
| | | |
Collapse
|
358
|
Takehana K, Konishi A, Oonuki A, Noguchi M, Fujita K, Iino Y, Kobayashi T. APC0576, a novel inhibitor of NF-kappaB-dependent gene activation, prevents pro-inflammatory cytokine-induced chemokine production in human endothelial cells. Biochem Biophys Res Commun 2002; 293:945-52. [PMID: 12051750 DOI: 10.1016/s0006-291x(02)00322-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial cells participate in the inflammatory and immune reactions. Endothelial cell activation is a recurrent phenomenon linked to the pathogenesis of diverse human diseases, such as acute and chronic inflammation and cardiovascular disorders. Pro-inflammatory cytokines (e.g., IL-1, TNF) are well-known activators of endothelial cells, since they strongly induce production of chemokines (e.g., IL-8, MCP-1) and cell adhesion molecules, resulting in an activation of inflammatory transcription factors such as NF-kappaB. We have established a cell-based reporter assay for the NF-kappaB-dependent gene activation in HUVEC. Using this assay system, we have identified a novel synthetic small molecule, APC0576, 5-(((S)-2,2-dimethylcyclopropanecarbonyl)amino)-2-(4-(((S)-2,2-dimethylcyclopropanecarbonyl)amino)phenoxy)pyridine, as an inhibitor of IL-1-induced NF-kappaB-dependent gene activation without any adverse effects on the cell viability. APC0576 represses the IL-1-induced release of chemokines (e.g., IL-8, MCP-1) in HUVEC. This inhibitory effect occurred at the level of mRNA expression. Despite having a strong inhibitory effect on the NF-kappaB-dependent transcriptional activation, APC0576 does not inhibit the IL-1-induced DNA binding of NF-kappaB, degradation of I-kappaB-alpha, or phosphorylation of RelA (p65). Although its molecular mechanism of action is not yet clear, APC0576 is a promising therapeutic candidate for diverse diseases involved in the pathogenic endothelial activation.
Collapse
Affiliation(s)
- Kenji Takehana
- Discovery Research Laboratories, Pharmaceutical Research Laboratories, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan.
| | | | | | | | | | | | | |
Collapse
|
359
|
Lin X, Taube R, Fujinaga K, Peterlin BM. P-TEFb containing cyclin K and Cdk9 can activate transcription via RNA. J Biol Chem 2002; 277:16873-8. [PMID: 11884399 DOI: 10.1074/jbc.m200117200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Different positive transcription elongation factor b (P-TEFb) complexes isolated from mammalian cells contain a common catalytic subunit (Cdk9) and the unique regulatory cyclins CycT1, CycT2a, CycT2b, or CycK. The role of CycK as a transcriptional cyclin was demonstrated in this study. First, CycK activated transcription when tethered heterologously to RNA, which required the kinase activity of Cdk9. Although this P-TEFb could phosphorylate the C-terminal domain (CTD) of RNA polymerase II (RNAPII) in vitro, in contrast to CycT1 and CycT2, CycK did not activate transcription when tethered to DNA. Interestingly, when the C termini of CycT1 and CycT2 or only the histidine-rich stretch from positions 481 to 551 in CycT1 were added to CycK, the extended chimeras activated transcription equivalently via DNA. Moreover, these transcriptional effects required the CTD of RNAPII in cells. Thus, CycK functions as P-TEFb only via RNA, which suggests the presence of cellular RNA-bound activators that require CycK for their transcriptional activity.
Collapse
Affiliation(s)
- Xin Lin
- Department of Medicine, University of California at San Francisco, California 94143-0703, USA
| | | | | | | |
Collapse
|
360
|
Abstract
Gene expression in eukaryotes requires several multi-component cellular machines. Each machine carries out a separate step in the gene expression pathway, which includes transcription, several pre-messenger RNA processing steps and the export of mature mRNA to the cytoplasm. Recent studies lead to the view that, in contrast to a simple linear assembly line, a complex and extensively coupled network has evolved to coordinate the activities of the gene expression machines. The extensive coupling is consistent with a model in which the machines are tethered to each other to form 'gene expression factories' that maximize the efficiency and specificity of each step in gene expression.
Collapse
Affiliation(s)
- Tom Maniatis
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
361
|
Prelich G. RNA polymerase II carboxy-terminal domain kinases: emerging clues to their function. EUKARYOTIC CELL 2002; 1:153-62. [PMID: 12455950 PMCID: PMC118035 DOI: 10.1128/ec.1.2.153-162.2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Gregory Prelich
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
362
|
Bensaude O, Michels AA, Nguyen VT. Les ARN modulent la transcription. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/2002183274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
363
|
Abstract
The human genome has been called "the blueprint for life." This master plan is realized through the process of gene expression. Recent progress has revealed that many of the steps in the pathway from gene sequence to active protein are connected, suggesting a unified theory of gene expression.
Collapse
Affiliation(s)
- George Orphanides
- Syngenta Central Toxicology Laboratory, Alderley Park, Cheshire SK10 4TJ, United Kingdom
| | | |
Collapse
|
364
|
Taube R, Lin X, Irwin D, Fujinaga K, Peterlin BM. Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes. Mol Cell Biol 2002; 22:321-31. [PMID: 11739744 PMCID: PMC134214 DOI: 10.1128/mcb.22.1.321-331.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional elongation by RNA polymerase II (RNAPII) is regulated by the positive transcription elongation factor b (P-TEFb). P-TEFb is composed of Cdk9 and C-type cyclin T1 (CycT1), CycT2a, CycT2b, or CycK. The role of the C-terminal region of CycT1 and CycT2 remains unknown. In this report, we demonstrate that these sequences are essential for the activation of transcription by P-TEFb via DNA, i.e., when CycT1 is tethered upstream or downstream of promoters and coding sequences. A histidine-rich stretch, which is conserved between CycT1 and CycT2 in this region, bound the C-terminal domain of RNAPII. This binding was required for the subsequent expression of full-length transcripts from target genes. Thus, P-TEFb could mediate effects of enhancers on the elongation of transcription.
Collapse
Affiliation(s)
- Ran Taube
- Howard Hughes Medical Institute, Department of Medicine, University of California at San Francisco, San Francisco, California 94143-0703, USA
| | | | | | | | | |
Collapse
|
365
|
Eberhardy SR, Farnham PJ. c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J Biol Chem 2001; 276:48562-71. [PMID: 11673469 DOI: 10.1074/jbc.m109014200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The c-Myc protein is a site-specific DNA-binding transcription factor that is up-regulated in a number of different cancers. We have previously shown that binding of Myc correlates with increased transcription of the cad promoter. We have now further investigated the mechanism by which Myc mediates transcriptional activation of the cad gene. Using a chromatin immunoprecipitation assay, we found high levels of RNA polymerase II bound to the cad promoter in quiescent NIH 3T3 cells and in differentiated U937 cells, even though the promoter is inactive. However, chromatin immunoprecipitation with an antibody that recognizes the hyperphosphorylated form of the RNA polymerase II carboxyl-terminal domain (CTD) revealed that phosphorylation of the CTD does correlate with c-Myc binding and cad transcription. We have also found that the c-Myc transactivation domain interacts with cdk9 and cyclin T1, components of the CTD kinase P-TEFb. Furthermore, activator bypass experiments have shown that direct recruitment of cyclin T1 to the cad promoter can substitute for c-Myc to activate the promoter. In summary, our results suggest that c-Myc activates transcription of cad by stimulating promoter clearance and elongation, perhaps via recruitment of P-TEFb.
Collapse
Affiliation(s)
- S R Eberhardy
- University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|