351
|
Ma Z, Janmey PA, Sharp KA, Finkel TH. Improved method of preparation of supported planar lipid bilayers as artificial membranes for antigen presentation. Microsc Res Tech 2011; 74:1174-85. [DOI: 10.1002/jemt.21012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 03/06/2011] [Indexed: 11/07/2022]
|
352
|
Larkin A, Imperiali B. The expanding horizons of asparagine-linked glycosylation. Biochemistry 2011; 50:4411-26. [PMID: 21506607 DOI: 10.1021/bi200346n] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asparagine-linked glycosylation involves the sequential assembly of an oligosaccharide onto a polyisoprenyl donor, followed by the en bloc transfer of the glycan to particular asparagine residues within acceptor proteins. These N-linked glycans play a critical role in a wide variety of biological processes, such as protein folding, cellular targeting and motility, and the immune response. In the past decade, research in the field of N-linked glycosylation has achieved major advances, including the discovery of new carbohydrate modifications, the biochemical characterization of the enzymes involved in glycan assembly, and the determination of the biological impact of these glycans on target proteins. It is now firmly established that this enzyme-catalyzed modification occurs in all three domains of life. However, despite similarities in the overall logic of N-linked glycoprotein biosynthesis among the three kingdoms, the structures of the appended glycans are markedly different and thus influence the functions of elaborated proteins in various ways. Though nearly all eukaryotes produce the same nascent tetradecasaccharide (Glc(3)Man(9)GlcNAc(2)), heterogeneity is introduced into this glycan structure after it is transferred to the protein through a complex series of glycosyl trimming and addition steps. In contrast, bacteria and archaea display diversity within their N-linked glycan structures through the use of unique monosaccharide building blocks during the assembly process. In this review, recent progress toward gaining a deeper biochemical understanding of this modification across all three kingdoms will be summarized. In addition, a brief overview of the role of N-linked glycosylation in viruses will also be presented.
Collapse
Affiliation(s)
- Angelyn Larkin
- Department of Chemistry Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
353
|
McHale CM, Zhang L, Lan Q, Vermeulen R, Li G, Hubbard AE, Porter KE, Thomas R, Portier CJ, Shen M, Rappaport SM, Yin S, Smith MT, Rothman N. Global gene expression profiling of a population exposed to a range of benzene levels. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:628-34. [PMID: 21147609 PMCID: PMC3094412 DOI: 10.1289/ehp.1002546] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 12/13/2010] [Indexed: 05/17/2023]
Abstract
BACKGROUND Benzene, an established cause of acute myeloid leukemia (AML), may also cause one or more lymphoid malignancies in humans. Previously, we identified genes and pathways associated with exposure to high (> 10 ppm) levels of benzene through transcriptomic analyses of blood cells from a small number of occupationally exposed workers. OBJECTIVES The goals of this study were to identify potential biomarkers of benzene exposure and/or early effects and to elucidate mechanisms relevant to risk of hematotoxicity, leukemia, and lymphoid malignancy in occupationally exposed individuals, many of whom were exposed to benzene levels < 1 ppm, the current U.S. occupational standard. METHODS We analyzed global gene expression in the peripheral blood mononuclear cells of 125 workers exposed to benzene levels ranging from < 1 ppm to > 10 ppm. Study design and analysis with a mixed-effects model minimized potential confounding and experimental variability. RESULTS We observed highly significant widespread perturbation of gene expression at all exposure levels. The AML pathway was among the pathways most significantly associated with benzene exposure. Immune response pathways were associated with most exposure levels, potentially providing biological plausibility for an association between lymphoma and benzene exposure. We identified a 16-gene expression signature associated with all levels of benzene exposure. CONCLUSIONS Our findings suggest that chronic benzene exposure, even at levels below the current U.S. occupational standard, perturbs many genes, biological processes, and pathways. These findings expand our understanding of the mechanisms by which benzene may induce hematotoxicity, leukemia, and lymphoma and reveal relevant potential biomarkers associated with a range of exposures.
Collapse
Affiliation(s)
- Cliona M McHale
- School of Public Health, University of California-Berkeley, Berkeley, California 64720, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Richichi B, Luzzatto L, Notaro R, Marca GL, Nativi C. Synthesis of the essential core of the human glycosylphosphatidylinositol (GPI) anchor. Bioorg Chem 2011; 39:88-93. [DOI: 10.1016/j.bioorg.2010.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 11/29/2022]
|
355
|
Proinflammatory responses by glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum are mainly mediated through the recognition of TLR2/TLR1. Exp Parasitol 2011; 128:205-11. [PMID: 21439957 DOI: 10.1016/j.exppara.2011.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 03/16/2011] [Accepted: 03/19/2011] [Indexed: 11/22/2022]
Abstract
The glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum have been shown to activate macrophages and produce inflammatory responses. The activation of macrophages by malarial GPIs involves engagement of Toll like receptor 2 (TLR2) resulting in the intracellular signaling and production of cytokines. In the present study, we investigated the requirement of TLR1 and TLR6 for the TLR2 mediated cell signaling and proinflammatory cytokine production by macrophages. The data demonstrate that malarial GPIs, which contain three fatty acid substituents, preferentially engage TLR2-TLR1 dimeric pair than TLR2-TLR6, whereas their derivatives, sn-2 lyso GPIs, that contain two fatty acid substituents recognize TLR2-TLR6 with slightly higher selectivity as compared to TLR2-TLR1 heteromeric pair. These results are analogous to the recognition of triacylated bacterial and diacylated mycoplasmal lipoproteins, respectively, by TLR2-TLR1 and TLR2-TLR6 dimers, suggesting that the lipid portions of the microbial GPI ligands play essential role in determining their TLR recognition specificity.
Collapse
|
356
|
Chang KL, Zulueta MML, Lu XA, Zhong YQ, Hung SC. Regioselective one-pot protection of D-glucosamine. J Org Chem 2011; 75:7424-7. [PMID: 20936861 DOI: 10.1021/jo101320r] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A highly regioselective one-pot transformation of 2-azido-2-deoxy-1,3,4,6-tetra-O-trimethylsilyl-d-glucopyranose via sequential additions of various reagents was systematically studied, yielding the fully protected derivatives and the 1-, 3-, 4-, as well as 6-alcohols, respectively.
Collapse
Affiliation(s)
- Ken-Lien Chang
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
357
|
Malchiodi-Albedi F, Paradisi S, Matteucci A, Frank C, Diociaiuti M. Amyloid oligomer neurotoxicity, calcium dysregulation, and lipid rafts. Int J Alzheimers Dis 2011; 2011:906964. [PMID: 21331330 PMCID: PMC3038657 DOI: 10.4061/2011/906964] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 01/04/2023] Open
Abstract
Amyloid proteins constitute a chemically heterogeneous group of proteins, which share some biophysical and biological characteristics, the principal of which are the high propensity to acquire an incorrect folding and the tendency to aggregate. A number of diseases are associated with misfolding and aggregation of proteins, although only in some of them—most notably Alzheimer's disease (AD) and transmissible spongiform encephalopathies (TSEs)—a pathogenetic link with misfolded proteins is now widely recognized. Lipid rafts (LRs) have been involved in the pathophysiology of diseases associated with protein misfolding at several levels, including aggregation of misfolded proteins, amyloidogenic processing, and neurotoxicity. Among the pathogenic misfolded proteins, the AD-related protein amyloid β (Aβ) is by far the most studied protein, and a large body of evidence has been gathered on the role played by LRs in Aβ pathogenicity. However, significant amount of data has also been collected for several other amyloid proteins, so that their ability to interact with LRs can be considered an additional, shared feature characterizing the amyloid protein family. In this paper, we will review the evidence on the role of LRs in the neurotoxicity of huntingtin, α-synuclein, prion protein, and calcitonin.
Collapse
Affiliation(s)
- Fiorella Malchiodi-Albedi
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
358
|
Abell BM, Mullen RT. Tail-anchored membrane proteins: exploring the complex diversity of tail-anchored-protein targeting in plant cells. PLANT CELL REPORTS 2011; 30:137-51. [PMID: 20878326 DOI: 10.1007/s00299-010-0925-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/14/2010] [Indexed: 05/24/2023]
Abstract
Tail-anchored (TA) proteins are special class of integral membrane proteins that in recent years have received a considerable amount of attention due to their diverse cellular functions and unique targeting and insertion mechanisms. Defined by the presence of a single, hydrophobic membrane-spanning domain at or near their C terminus, TA proteins must be inserted into membranes post-translationally and are orientated such that their larger N-terminal domain (most often the functional domain) faces the cytosol, while their shorter C-terminal domain faces the interior of the organelle. The C-terminal domain of TA proteins also usually contains the information responsible for their selective targeting to the proper subcellular membrane, a process that, based primarily on studies with yeasts and mammals, appears to be highly complex due to the presence of multiple pathways. Within this context, we discuss here the biogenesis of plant TA proteins and the potential for hundreds of new TA proteins identified via bioinformatics screens to contribute to the already remarkable number of roles that this class of membrane proteins participates in throughout plant growth and development.
Collapse
Affiliation(s)
- Ben M Abell
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield, UK.
| | | |
Collapse
|
359
|
Shashidharamurthy R, Bozeman EN, Patel J, Kaur R, Meganathan J, Selvaraj P. Immunotherapeutic strategies for cancer treatment: A novel protein transfer approach for cancer vaccine development. Med Res Rev 2011; 32:1197-219. [DOI: 10.1002/med.20237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Erica N. Bozeman
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta Georgia
| | - Jaina Patel
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta Georgia
| | - Ramneet Kaur
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta Georgia
| | - Jeyandra Meganathan
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta Georgia
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta Georgia
| |
Collapse
|
360
|
Glycosylphosphatidylinositol anchor-dependent stimulation pathway required for generation of baculovirus-derived recombinant scrapie prion protein. J Virol 2011; 85:2582-8. [PMID: 21228241 DOI: 10.1128/jvi.02098-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The pathogenic isoform (PrP(Sc)) of the host-encoded cellular prion protein (PrP(C)) is considered to be an infectious agent of transmissible spongiform encephalopathy (TSE). The detailed mechanism by which the PrP(Sc) seed catalyzes the structural conversion of endogenous PrP(C) into nascent PrP(Sc) in vivo still remains unclear. Recent studies reveal that bacterially derived recombinant PrP (recPrP) can be used as a substrate for the in vitro generation of protease-resistant recPrP (recPrP(res)) by protein-misfolding cyclic amplification (PMCA). These findings imply that PrP modifications with a glycosylphosphatidylinositol (GPI) anchor and asparagine (N)-linked glycosylation are not necessary for the amplification and generation of recPrP(Sc) by PMCA. However, the biological properties of PrP(Sc) obtained by in vivo transmission of recPrP(res) are unique or different from those of PrP(Sc) used as the seed, indicating that the mechanisms mediated by these posttranslational modifications possibly participate in reproductive propagation of PrP(Sc). In the present study, using baculovirus-derived recombinant PrP (Bac-PrP), we demonstrated that Bac-PrP is useful as a PrP(C) substrate for amplification of the mouse scrapie prion strain Chandler, and PrP(Sc) that accumulated in mice inoculated with Bac-PrP(res) had biochemical and pathological properties very similar to those of the PrP(Sc) seed. Since Bac-PrP modified with a GPI anchor and brain homogenate of Prnp knockout mice were both required to generate Bac-PrP(res), the interaction of GPI-anchored PrP with factors in brain homogenates is essential for reproductive propagation of PrP(Sc). Therefore, the Bac-PMCA technique appears to be extremely beneficial for the comprehensive understanding of the GPI anchor-mediated stimulation pathway.
Collapse
|
361
|
Fernández-Messina L, Ashiru O, Agüera-González S, Reyburn HT, Valés-Gómez M. The human NKG2D ligand ULBP2 can be expressed at the cell surface with or without a GPI anchor and both forms can activate NK cells. J Cell Sci 2011; 124:321-7. [PMID: 21224393 DOI: 10.1242/jcs.076042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The activating immune receptor NKG2D binds to several stress-induced ligands that are structurally different. MHC-class-I-related chain (MIC) A/B molecules have a transmembrane domain, whereas most UL16 binding proteins (ULBPs) are glycosylphosphatidylinositol (GPI)-linked molecules. The significance of this variability in membrane anchors is unclear. Here, we demonstrate that ULBP2, but not ULBP1 or ULBP3, can reach the cell surface without the GPI modification. Several proteins are expressed at the cell surface as both transmembrane and GPI-linked molecules, either via alternative splicing or by the expression of linked genes. However, to our knowledge, ULBP2 is the first single mammalian cDNA that can be expressed as either a transmembrane or a GPI-anchored protein. The rate of maturation and the levels of cell surface expression of the non-GPI-linked form were lower than those of the GPI-linked ULBP2. Nonetheless, non-GPI ULBP2 was recognised by NKG2D and triggered NK cell cytotoxicity. These data show that differences in membrane attachment by NKG2D ligands are more important for regulation of their surface expression than for cytotoxic recognition by NKG2D and emphasise that detailed characterisation of the cell biology of individual NKG2D ligands will be necessary to allow targeted modulation of this system.
Collapse
Affiliation(s)
- Lola Fernández-Messina
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB21QP, UK
| | | | | | | | | |
Collapse
|
362
|
Martin DDO, Beauchamp E, Berthiaume LG. Post-translational myristoylation: Fat matters in cellular life and death. Biochimie 2011; 93:18-31. [PMID: 21056615 DOI: 10.1016/j.biochi.2010.10.018] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/23/2010] [Indexed: 01/15/2023]
Abstract
Myristoylation corresponds to the irreversible covalent linkage of the 14-carbon saturated fatty acid, myristic acid, to the N-terminal glycine of many eukaryotic and viral proteins. It is catalyzed by N-myristoyltransferase. Typically, the myristate moiety participates in protein subcellular localization by facilitating protein-membrane interactions as well as protein-protein interactions. Myristoylated proteins are crucial components of a wide variety of functions, which include many signalling pathways, oncogenesis or viral replication. Initially, myristoylation was described as a co-translational reaction that occurs after the removal of the initiator methionine residue. However, it is now well established that myristoylation can also occur post-translationally in apoptotic cells. Indeed, during apoptosis hundreds of proteins are cleaved by caspases and in many cases this cleavage exposes an N-terminal glycine within a cryptic myristoylation consensus sequence, which can be myristoylated. The principal objective of this review is to provide an overview on the implication of myristoylation in health and disease with a special emphasis on post-translational myristoylation. In addition, new advancements in the detection and identification of myristoylated proteins are also briefly reviewed.
Collapse
Affiliation(s)
- Dale D O Martin
- Department of Cell Biology, School of Molecular and Systems Medicine, MSB-5-55, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
363
|
Abstract
Prion diseases in humans and animals are characterized by progressive neurodegeneration and the formation of infectious particles called prions. Both features are intimately linked to a conformational transition of the cellular prion protein (PrP(C)) into aberrantly folded conformers with neurotoxic and self-replicating activities. Interestingly, there is increasing evidence that the infectious and neurotoxic properties of PrP conformers are not necessarily coupled. Transgenic mouse models revealed that some PrP mutants interfere with neuronal function in the absence of infectious prions. Vice versa, propagation of prions can occur without causing neurotoxicity. Consequently, it appears plausible that two partially independent pathways exist, one pathway leading to the propagation of infectious prions and another one that mediates neurotoxic signaling. In this review we will summarize current knowledge of neurotoxic PrP conformers and discuss the role of PrP(C) as a mediator of both stress-protective and neurotoxic signaling cascades.
Collapse
|
364
|
Swarts BM, Guo Z. Chemical synthesis and functionalization of clickable glycosylphosphatidylinositol anchors. Chem Sci 2011; 2:2342-2352. [PMID: 22163072 PMCID: PMC3233219 DOI: 10.1039/c1sc00440a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchorage is a common posttranslational modification of eukaryotic proteins. Chemical synthesis of structurally defined GPIs and GPI derivatives is a necessary step toward understanding the properties and functions of these molecules in biological systems. In this work, the synthesis of several functionalized GPI anchors was accomplished using the para-methoxybenzyl (PMB) group for permanent hydroxyl protection, which allowed the incorporation of functionalities that are incompatible with permanent protecting groups traditionally used in carbohydrate synthesis. A flexible convergent-divergent assembly strategy enabled efficient access to a diverse set of target structures, including "clickable" Alkynyl-GPIs 1 and 2 and Azido-GPI 3. For global deprotection, a one-pot reaction was employed to afford the target GPIs in excellent yields (85-97%). Fully deprotected clickable GPIs 2 and 3 were readily conjugated to imaging and affinity probes via Cu(I)-catalyzed and Cu-free strain-promoted [3+2] cycloaddition, respectively, resulting in GPI-Fluor 4 and GPI-Biotin 5.
Collapse
Affiliation(s)
- Benjamin M. Swarts
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA. Fax: 1-313-577-8822; Tel: 1-313-577-2557
| | - Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA. Fax: 1-313-577-8822; Tel: 1-313-577-2557
| |
Collapse
|
365
|
Manabe S, Ishii K, Ito Y. N-Benzyl-2,3-trans-Carbamate-Bearing Glycosyl Donors for 1,2-cis-Selective Glycosylation Reactions. European J Org Chem 2010. [DOI: 10.1002/ejoc.201001278] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
366
|
Blassberg RA, Garza-Garcia A, Janmohamed A, Gates PB, Brockes JP. Functional convergence of signalling by GPI-anchored and anchorless forms of a salamander protein implicated in limb regeneration. J Cell Sci 2010; 124:47-56. [PMID: 21118959 DOI: 10.1242/jcs.076331] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The GPI-anchor is an established determinant of molecular localisation and various functional roles have been attributed to it. The newt GPI-anchored three-finger protein (TFP) Prod1 is an important regulator of cell behaviour during limb regeneration, but it is unclear how it signals to the interior of the cell. Prod1 was expressed by transfection in cultured newt limb cells and activated transcription and expression of matrix metalloproteinase 9 (MMP9) by a pathway involving ligand-independent activation of epidermal growth factor receptor (EGFR) signalling and phosphorylation of extracellular regulated kinase 1 and 2 (ERK1/2). This was dependent on the presence of the GPI-anchor and critical residues in the α-helical region of the protein. Interestingly, Prod1 in the axolotl, a salamander species that also regenerates its limbs, was shown to activate ERK1/2 signalling and MMP9 transcription despite being anchorless, and both newt and axolotl Prod1 co-immunoprecipitated with the newt EGFR after transfection. The substitution of the axolotl helical region activated a secreted, anchorless version of the newt molecule. The activity of the newt molecule cannot therefore depend on a unique property conferred by the anchor. Prod1 is a salamander-specific TFP and its interaction with the phylogenetically conserved EGFR has implications for our view of regeneration as an evolutionary variable.
Collapse
Affiliation(s)
- Robert A Blassberg
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
367
|
Hořejší V, Otáhal P, Brdička T. LAT - an important raft-associated transmembrane adaptor protein. Delivered on 6 July 2009 at the 34th FEBS Congress in Prague, Czech Republic. FEBS J 2010; 277:4383-97. [DOI: 10.1111/j.1742-4658.2010.07831.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
368
|
Jeong JK, Seol JW, Moon MH, Seo JS, Lee YJ, Kim JS, Park SY. Cellular cholesterol enrichment prevents prion peptide-induced neuron cell damages. Biochem Biophys Res Commun 2010; 401:516-20. [PMID: 20875400 DOI: 10.1016/j.bbrc.2010.09.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/21/2010] [Indexed: 11/29/2022]
Abstract
The prion diseases are neurodegenerative disorders characterized by the conversion of the PrPc (normal cellular prion) to the PrPsc (misfolded isoform). The accumulation of PrPsc within the central nervous system (CNS) leads to neurocytotoxicity by increasing oxidative stress. In addition, many neurodegenerative disorders including prion, Parkinson's and Alzheimer's diseases may be regulated by cholesterol homeostasis. The effects of cholesterol balance on prion protein-mediated neurotoxicity and ROS (reactive oxygen species) generation were the focus of this study. Cholesterol treatment inhibited PrP (106-126)-induced neuronal cell death and ROS generation in SH-SY5Y neuroblastoma cells. In addition, the PrP (106-126)-mediated increase of p53, p-p38, p-ERK and the decrease of Bcl-2 were blocked by cholesterol treatment. These results indicated that cellular cholesterol enrichment is a key regulator of PrP-106-126-mediated oxidative stress and neurotoxicity. Taken together, the results of this study suggest that modulation of cellular cholesterol appears to prevent the neuronal cell death caused by prion peptides.
Collapse
Affiliation(s)
- Jae-Kyo Jeong
- Chonbuk National University, Center for Healthcare Technology Development, Bio-Safety Research Institute, College of Veterinary Medicine, Jeonju, Jeonbuk 561-756, South Korea
| | | | | | | | | | | | | |
Collapse
|
369
|
Mensah EA, Yu F, Nguyen HM. Nickel-Catalyzed Stereoselective Glycosylation with C(2)-N-Substituted Benzylidene d-Glucosamine and Galactosamine Trichloroacetimidates for the Formation of 1,2-cis-2-Amino Glycosides. Applications to the Synthesis of Heparin Disaccharides, GPI Anchor Pseudodisaccharides, and α-GalNAc. J Am Chem Soc 2010; 132:14288-302. [DOI: 10.1021/ja106682m] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Enoch A. Mensah
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Fei Yu
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Hien M. Nguyen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
370
|
John F, Hendrickson TL. Synthesis of truncated analogues for studying the process of glycosyl phosphatidylinositol modification. Org Lett 2010; 12:2080-3. [PMID: 20380381 DOI: 10.1021/ol100575q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many eukaryotic proteins are modified with a glycosylphosphatidylinositol (GPI) anchor at their C-termini. This post-translational modification causes these proteins to be noncovalently tethered to the plasma membrane. The synthesis of truncated GPI anchor analogues is reported; these compounds were designed for use as soluble substrates for GPI transamidase (GPI-T), the enzyme that appends the GPI anchor onto proteins.
Collapse
Affiliation(s)
- Franklin John
- Department of Chemistry, 5101 Cass Avenue, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
371
|
Tromas A, Paponov I, Perrot-Rechenmann C. AUXIN BINDING PROTEIN 1: functional and evolutionary aspects. TRENDS IN PLANT SCIENCE 2010; 15:436-446. [PMID: 20605513 DOI: 10.1016/j.tplants.2010.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 04/26/2010] [Accepted: 05/05/2010] [Indexed: 05/26/2023]
Abstract
In this review, we examine the role of AUXIN BINDING PROTEIN 1 (ABP1) in mediating growth and developmental responses. ABP1 is involved in a broad range of cellular responses to auxin, acting either as the main regulator of the response, such as seen for entry into cell division or, as a fine-tuning device as for the regulation of expression of early auxin response genes. Phylogenetic analysis has revealed that ABP1 is an ancient protein that was already present in various algae and has acquired a motif of retention in the endoplasmic reticulum only recently. An evaluation of the evidence for ABP1 function according to its cellular localization supports the plasma membrane as a starting point for ABP1-mediated auxin signaling.
Collapse
Affiliation(s)
- Alexandre Tromas
- Institut des Sciences du Végétal, CNRS UPR2355, University of Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | | | | |
Collapse
|
372
|
Xue G, von Schubert C, Hermann P, Peyer M, Maushagen R, Schmuckli-Maurer J, Bütikofer P, Langsley G, Dobbelaere DA. Characterisation of gp34, a GPI-anchored protein expressed by schizonts of Theileria parva and T. annulata. Mol Biochem Parasitol 2010; 172:113-20. [PMID: 20381541 PMCID: PMC2880791 DOI: 10.1016/j.molbiopara.2010.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 01/01/2023]
Abstract
Using bioinformatics tools, we searched the predicted Theileria annulata and T. parva proteomes for putative schizont surface proteins. This led to the identification of gp34, a GPI-anchored protein that is stage-specifically expressed by schizonts of both Theileria species and is downregulated upon induction of merogony. Transfection experiments in HeLa cells showed that the gp34 signal peptide and GPI anchor signal are also functional in higher eukaryotes. Epitope-tagged Tp-gp34, but not Ta-gp34, expressed in the cytosol of COS-7 cells was found to localise to the central spindle and midbody. Overexpression of Tp-gp34 and Ta-gp34 induced cytokinetic defects and resulted in accumulation of binucleated cells. These findings suggest that gp34 could contribute to important parasite-host interactions during host cell division.
Collapse
Affiliation(s)
- Gondga Xue
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, CH-3013 Bern, Switzerland
| | - Conrad von Schubert
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, CH-3013 Bern, Switzerland
| | - Pascal Hermann
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, CH-3013 Bern, Switzerland
| | - Martina Peyer
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, CH-3013 Bern, Switzerland
| | - Regina Maushagen
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, CH-3013 Bern, Switzerland
| | - Jacqueline Schmuckli-Maurer
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, CH-3013 Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry & Molecular Medicine, Medical Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - Gordon Langsley
- Laboratory of Comparative Cell Biology of Apicomplexan Parasites, Département de Maladie Infectieuse, Institut Cochin, 75014 Paris, France
| | - Dirk A.E. Dobbelaere
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, CH-3013 Bern, Switzerland
| |
Collapse
|
373
|
Azzouz N, Kamena F, Seeberger PH. Synthetic Glycosylphosphatidylinositol as Tools for Glycoparasitology Research. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:445-54. [DOI: 10.1089/omi.2009.0138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Nahid Azzouz
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Research Campus, Golm, Germany, and Free University Berlin, Berlin, Germany
| | - Faustin Kamena
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Research Campus, Golm, Germany, and Free University Berlin, Berlin, Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Research Campus, Golm, Germany, and Free University Berlin, Berlin, Germany
| |
Collapse
|
374
|
Dagdanova A, Ilchenko S, Notari S, Yang Q, Obrenovich ME, Hatcher K, McAnulty P, Huang L, Zou W, Kong Q, Gambetti P, Chen SG. Characterization of the prion protein in human urine. J Biol Chem 2010; 285:30489-95. [PMID: 20670940 DOI: 10.1074/jbc.m110.161794] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The presence of the prion protein (PrP) in normal human urine is controversial and currently inconclusive. This issue has taken a special relevance because prion infectivity has been demonstrated in urine of animals carrying experimental or naturally occurring prion diseases, but the actual presence and tissue origin of the infectious prion have not been determined. We used immunoprecipitation, one- and two-dimensional electrophoresis, and mass spectrometry to prove definitely the presence of PrP in human urine and its post-translational modifications. We show that urinary PrP (uPrP) is truncated mainly at residue 112 but also at other residues up to 122. This truncation makes uPrP undetectable with some commonly used antibodies to PrP. uPrP is glycosylated and carries an anchor which, at variance with that of cellular PrP, lacks the inositol-associated phospholipid moiety, indicating that uPrP is probably shed from the cell surface. The detailed characterization of uPrP reported here definitely proves the presence of PrP in human urine and will help determine the origin of prion infectivity in urine.
Collapse
Affiliation(s)
- Ayuna Dagdanova
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Nijhof AM, Balk JA, Postigo M, Rhebergen AM, Taoufik A, Jongejan F. Bm86 homologues and novel ATAQ proteins with multiple epidermal growth factor (EGF)-like domains from hard and soft ticks. Int J Parasitol 2010; 40:1587-97. [PMID: 20647015 PMCID: PMC2998001 DOI: 10.1016/j.ijpara.2010.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/04/2010] [Accepted: 06/09/2010] [Indexed: 11/18/2022]
Abstract
Tick control on livestock relies principally on the use of acaricides but the development of acaricide resistance and concerns for environmental pollution underscore the need for alternative control methods, for instance through the use of anti-tick vaccines. Two commercial vaccines based on the recombinant Bm86 protein from Rhipicephalus (Boophilus) microplus ticks were developed. Partial protection of the Bm86 vaccine against other Rhipicephalus (Boophilus) and Hyalomma tick species suggests that the efficacy of a Bm86-based vaccine may be enhanced when based on the orthologous recombinant Bm86 antigen. We therefore identified and analysed the Bm86 homologues from species representing the main argasid and ixodid tick genera, including two from the prostriate Ixodes ricinus tick species. A novel protein from metastriate ticks with multiple epidermal growth factor (EGF)-like domains which is structurally related to Bm86 was identified by using a 3′ rapid amplification of cDNA ends (3′-RACE) method with a degenerate primer based on a highly conserved region of Bm86 and its orthologues. This second protein was named ATAQ after a part of its signature peptide. Quantitative reverse transcriptase-PCR showed that ATAQ proteins are expressed in both midguts and Malpighian tubules, in contrast to Bm86 orthologues which are expressed exclusively in tick midguts. Furthermore, expression of this protein over the life stages of R. microplus and Rhipicephalus appendiculatus was more continuous compared with Bm86. Although a highly effective vaccine antigen, gene silencing of Bm86 by RNA interference (RNAi) produced only a weak phenotype. Similarly the RNAi phenotype of Rhipicephalus evertsi evertsi females in which the expression of Ree86, ReeATAQ or a combination of both genes was silenced by RNAi did not differ from a mock-injected control group. The vaccine potential of ATAQ proteins against tick infestations is yet to be evaluated.
Collapse
Affiliation(s)
- Ard M Nijhof
- Utrecht Centre for Tick-Borne Diseases (UCTD), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
376
|
Robinson PJ, Pinheiro TJT. Phospholipid composition of membranes directs prions down alternative aggregation pathways. Biophys J 2010; 98:1520-8. [PMID: 20409471 DOI: 10.1016/j.bpj.2009.12.4304] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/04/2009] [Accepted: 12/02/2009] [Indexed: 11/16/2022] Open
Abstract
Prion diseases are neurodegenerative disorders of the central nervous system that are associated with the misfolding of the prion protein (PrP). PrP is glycosylphosphatidylinositol-anchored, and therefore the hydrophobic membrane environment may influence the process of prion conversion. This study investigates how the morphology and mechanism of growth of prion aggregates on membranes are influenced by lipid composition. Atomic force microscopy is used to image the aggregation of prions on supported lipid bilayers composed of mixtures of the zwitterionic lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and the anionic lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS). Circular dichroism shows that PrP interactions with POPS membranes result in an increase in beta-sheet structure, whereas interactions with POPC do not influence PrP structure. Prion aggregation is observed on both zwitterionic and anionic membranes, and the morphology of the aggregates formed is dependent on the anionic phospholipid content of the membrane. The aggregates that form on POPC membranes have uniform dimensions and do not disrupt the lipid bilayer. The presence of POPS results in larger aggregates with a distinctive sponge-like morphology that are disruptive to membranes. These data provide detailed information on the aggregation mechanism of PrP on membranes, which can be described by classic models of growth.
Collapse
Affiliation(s)
- Philip J Robinson
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
377
|
Molecular and clinical dissection of CD24 antibody specificity by a comprehensive comparative analysis. J Transl Med 2010; 90:1102-16. [PMID: 20351695 DOI: 10.1038/labinvest.2010.70] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
CD24 is a small, highly glycosylated cell surface protein that is linked to the membrane through a glycosyl-phosphatidylinositol anchor. It is overexpressed in many human carcinomas and its expression is linked to bad prognosis. Lately, lack or low expression of CD24 was used to identify tumor stem cells resulting in conflicting data on the usefulness of this marker. In many immunohistochemical studies, the mAb SN3b was used but the epitope and specificity of this antibody have never been thoroughly investigated. In other studies based mainly on cytofluorographic analysis, the mAb ML-5 was applied. In this study, we compared the epitope of mAb SN3b to the CD24 mAbs SWA-11 and ML-5 that both bind to the core protein of CD24. Using tissue microarrays and affinity-purified CD24 glycoforms, we observed only a partial overlap of SN3b and SWA11 reactivity. The mAb SN3b recognizes sialic acid most likely on O-linked glycans that can occur independently of the CD24 protein backbone. The SN3b epitope was not related to common sialylated cancer-associated glycan structures. Both SN3b epitope positive or negative CD24 glycoforms supported the binding of P-selectin and Siglec-5. In breast cancer, the SN3b reactivity was associated with bad prognosis, whereas SWA11 was not. In renal cell cancer, the SN3b epitope was completely absent but SWA11 reactivity was a prognostic factor. Our results shed new light on the tumorbiological role of CD24 and resolve discrepancies in the literature related to the use of different CD24 mAbs.
Collapse
|
378
|
Schumacher MC, Resenberger U, Seidel RP, Becker CFW, Winklhofer KF, Oesterhelt D, Tatzelt J, Engelhard M. Synthesis of a GPI anchor module suitable for protein post-translational modification. Biopolymers 2010; 94:457-64. [DOI: 10.1002/bip.21380] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
379
|
Bauer CS, Tran-Van-Minh A, Kadurin I, Dolphin AC. A new look at calcium channel α2δ subunits. Curr Opin Neurobiol 2010; 20:563-71. [PMID: 20579869 DOI: 10.1016/j.conb.2010.05.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 12/17/2022]
Abstract
The classical roles of α(2)δ proteins are as accessory calcium channel subunits, enhancing channel trafficking. They were thought to have type-I transmembrane topology, but we find that they can form GPI-anchored proteins. Moreover α(2)δ-1 and α(2)δ-3 have been shown to have novel functions in synaptogenesis, independent of their effect on calcium channels. In neurons, the α(2)δ-1 subunits are present mainly in presynaptic terminals. Peripheral sensory nerve injury results in the up-regulation of α(2)δ-1 in dorsal root ganglion (DRG) neurons, and there is a consequent increase in trafficking of α(2)δ-1 to their terminals. Furthermore, gabapentinoid drugs, which bind to α(2)δ-1 and α(2)δ-2, not only impair their trafficking, but also affect α(2)δ-1-dependent synaptogenesis. These drugs may interfere with α(2)δ function at several different levels.
Collapse
Affiliation(s)
- Claudia S Bauer
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|
380
|
Ytterberg AJ, Jensen ON. Modification-specific proteomics in plant biology. J Proteomics 2010; 73:2249-66. [PMID: 20541636 DOI: 10.1016/j.jprot.2010.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/18/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
Post-translational modifications (PTMs) are involved in the regulation of a wide range of biological processes, and affect e.g. protein structure, activity and stability. Several hundred PTMs have been described in the literature, but relatively few have been studied using mass spectrometry and proteomics. In general, methods for PTM characterization are developed to study yeast and mammalian biology and later adopted to investigate plants. Our point of view is that it is advantageous to enrich for PTMs on the peptide level as part of a quantitative proteomics strategy to not only identify the PTM, but also to determine the functional relevance in the context of regulation, response to abiotic stress etc. Protein phosphorylation is the only PTM that has been studied extensively at the proteome wide level in plants using mass spectrometry based methods. We review phosphoproteomics studies in plants and discuss the redox mediated PTMs (S-nitrosylation, tyrosine nitration and S-glutathionylation), ubiquitylation, SUMOylation, and glycosylation, including GPI anchors, and the quantitative proteomics methods that are used to study these modification in plants. Where appropriate we contrast the methods to those used for mammalian PTM characterization.
Collapse
Affiliation(s)
- A Jimmy Ytterberg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| | | |
Collapse
|
381
|
Swarts BM, Guo Z. Synthesis of a glycosylphosphatidylinositol anchor bearing unsaturated lipid chains. J Am Chem Soc 2010; 132:6648-50. [PMID: 20423078 PMCID: PMC2873617 DOI: 10.1021/ja1009037] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A GPI anchor bearing unsaturated fatty acid lipid chains (1) was synthesized by a highly convergent strategy employing the para-methoxybenzyl group for permanent hydroxyl protection. The final global deprotection was achieved by an efficient three-step, one-pot procedure to give an 81% isolated yield of the target structure.
Collapse
Affiliation(s)
- Benjamin M. Swarts
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| |
Collapse
|
382
|
Residues surrounding the glycosylphosphatidylinositol anchor attachment site of PrP modulate prion infection: insight from the resistance of rabbits to prion disease. J Virol 2010; 84:6678-86. [PMID: 20427543 DOI: 10.1128/jvi.02709-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Prion diseases are a group of transmissible, invariably fatal neurodegenerative diseases that affect both humans and animals. According to the protein-only hypothesis, the infectious agent is a prion (proteinaceous infectious particle) that is composed primarily of PrP(Sc), the disease-associated isoform of the cellular prion protein, PrP. PrP(Sc) arises from the conformational change of the normal, glycosylphosphatidylinositol (GPI)-anchored protein, PrP(C). The mechanism by which this process occurs, however, remains enigmatic. Rabbits are one of a small number of mammalian species reported to be resistant to prion infection. Sequence analysis of rabbit PrP revealed that its C-terminal amino acids differ from those of PrP from other mammals and may affect the anchoring of rabbit PrP through its GPI anchor. Using a cell culture model, this study investigated the effect of the rabbit PrP-specific C-terminal amino acids on the addition of the GPI anchor to PrP(C), PrP(C) localization, and PrP(Sc) formation. The incorporation of rabbit-specific C-terminal PrP residues into mouse PrP did not affect the addition of a GPI anchor or the localization of PrP. However, these residues did inhibit PrP(Sc) formation, suggesting that these rabbit-specific residues interfere with a C-terminal PrP(Sc) interaction site.
Collapse
|
383
|
Murdoch BM, Clawson ML, Laegreid WW, Stothard P, Settles M, McKay S, Prasad A, Wang Z, Moore SS, Williams JL. A 2cM genome-wide scan of European Holstein cattle affected by classical BSE. BMC Genet 2010; 11:20. [PMID: 20350325 PMCID: PMC2853485 DOI: 10.1186/1471-2156-11-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 03/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. Polymorphisms that alter the prion protein of sheep or humans have been associated with variations in transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that non-synonymous mutations in the bovine prion gene (PRNP) are associated with classical BSE disease susceptibility. However, two bovine PRNP insertion/deletion polymorphisms, one within the promoter region and the other in intron 1, have been associated with susceptibility to classical BSE. These associations do not explain the full extent of BSE susceptibility, and loci outside of PRNP appear to be associated with disease incidence in some cattle populations. To test for associations with BSE susceptibility, we conducted a genome wide scan using a panel of 3,072 single nucleotide polymorphism (SNP) markers on 814 animals representing cases and control Holstein cattle from the United Kingdom BSE epidemic. Results Two sets of BSE affected Holstein cattle were analyzed in this study, one set with known family relationships and the second set of paired cases with controls. The family set comprises half-sibling progeny from six sires. The progeny from four of these sires had previously been scanned with microsatellite markers. The results obtained from the current analysis of the family set yielded both some supporting and new results compared with those obtained in the earlier study. The results revealed 27 SNPs representing 18 chromosomes associated with incidence of BSE disease. These results confirm a region previously reported on chromosome 20, and identify additional regions on chromosomes 2, 14, 16, 21 and 28. This study did not identify a significant association near the PRNP in the family sample set. The only association found in the PRNP region was in the case-control sample set and this was not significant after multiple test correction. The genome scan of the case-control animals did not identify any associations that passed a stringent genome-wide significance threshold. Conclusions Several regions of the genome are statistically associated with the incidence of classical BSE in European Holstein cattle. Further investigation of loci on chromosomes 2, 14, 16, 20, 21 and 28 will be required to uncover any biological significance underlying these marker associations.
Collapse
Affiliation(s)
- Brenda M Murdoch
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
384
|
Georgiou E, Layton M, Karadimitris A. Inherited GPI deficiency: a disorder of histone hypoacetylation. ACTA ACUST UNITED AC 2010; 87:327-34. [PMID: 19960552 DOI: 10.1002/bdrc.20166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Co-operative interaction of transcription factors (TF) with epigenetic processes, such as chromatin remodeling and modification (acetylation or methylation), as well as DNA methylation, determine transcriptional activity, activation or repression of a given gene. Mutations disrupting binding of TF to their cognate DNA motifs would be expected to alter the epigenetic landscape of the promoter and selectively affect transcription of the given gene. We review here the transcriptional, epigenetic, biochemical, and clinical consequences of a constitutional mutation in the promoter of PIGM, a housekeeping gene that disrupts binding of the general TF, SP1, thus causing the autosomal recessive disease, inherited glycosylphosphatidylinositol (GPI) deficiency. We suggest that detailed dissection of the function of the mutated PIGM promoter provides important lessons pertinent to the transcriptional and epigenetic control of housekeeping genes as a whole and might have wider therapeutic implications.
Collapse
Affiliation(s)
- Elisabeth Georgiou
- Department of Haematology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, Imperial College London, London, W12 0NN, United Kingdom
| | | | | |
Collapse
|
385
|
|
386
|
Rostagno A, Holton JL, Lashley T, Revesz T, Ghiso J. Cerebral amyloidosis: amyloid subunits, mutants and phenotypes. Cell Mol Life Sci 2010; 67:581-600. [PMID: 19898742 PMCID: PMC3410709 DOI: 10.1007/s00018-009-0182-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
Abstract
Cerebral amyloid diseases are part of a complex group of chronic and progressive entities bracketed together under the common denomination of protein folding disorders and characterized by the intra- and extracellular accumulation of fibrillar aggregates. Of the more than 25 unrelated proteins known to produce amyloidosis in humans only about a third of them are associated with cerebral deposits translating in cognitive deficits, dementia, stroke, cerebellar and extrapyramidal signs, or a combination thereof. The familial forms reviewed herein, although infrequent, provide unique paradigms to examine the role of amyloid in the mechanism of disease pathogenesis and to dissect the link between vascular and parenchymal amyloid deposition and their differential contribution to neurodegeneration.
Collapse
Affiliation(s)
- A Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
387
|
Nett IRE, Mehlert A, Lamont D, Ferguson MAJ. Application of electrospray mass spectrometry to the structural determination of glycosylphosphatidylinositol membrane anchors. Glycobiology 2010; 20:576-85. [PMID: 20100693 PMCID: PMC2850939 DOI: 10.1093/glycob/cwq007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The addition of glycosylphosphatidylinositol (GPI) anchors to proteins is an important posttranslational modification in eukaryotic cells. The complete structural elucidation of GPI anchors is a complex process that requires relatively large amounts of starting material. In this paper, we assess the degree of structural information that can be obtained by applying electrospray mass spectrometry and tandem mass spectrometry to permethylated GPI glycans prepared from a well-characterized GPI-anchored glycoprotein, the variant surface glycoprotein from Trypanosoma brucei. All GPI glycans contain a non-N-acetylated glucosamine residue, and permethylation leads to the formation of a fixed positive charge on the glycans, in the form of a quaternary amine. The permethylated glycans were detected as [M +- Na](2+-) ions, and tandem mass spectrometry of these ions produced substantial, albeit incomplete, structural information on the branching patterns and linkage types for various GPI glycoforms of the variant surface glycoprotein.
Collapse
Affiliation(s)
- Isabelle R E Nett
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | |
Collapse
|
388
|
Best MD, Zhang H, Prestwich GD. Inositol polyphosphates, diphosphoinositol polyphosphates and phosphatidylinositol polyphosphate lipids: Structure, synthesis, and development of probes for studying biological activity. Nat Prod Rep 2010; 27:1403-30. [DOI: 10.1039/b923844c] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
389
|
Maeda Y, Fujita M, Kinoshita T. GPI-Anchor: Update for Biosynthesis and Remodeling. TRENDS GLYCOSCI GLYC 2010. [DOI: 10.4052/tigg.22.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
390
|
Padiyar LT, Wen YS, Hung SC. Metal trifluoromethanesulfonate-catalyzed regioselective acylation of myo-inositol 1,3,5-orthoformate. Chem Commun (Camb) 2010; 46:5524-6. [DOI: 10.1039/c0cc00236d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
391
|
Anderson GL, McIntosh M, Wu L, Barnett M, Goodman G, Thorpe JD, Bergan L, Thornquist MD, Scholler N, Kim N, O'Briant K, Drescher C, Urban N. Assessing lead time of selected ovarian cancer biomarkers: a nested case-control study. J Natl Cancer Inst 2009; 102:26-38. [PMID: 20042715 PMCID: PMC2802285 DOI: 10.1093/jnci/djp438] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background CA125, human epididymis protein 4 (HE4), mesothelin, B7-H4, decoy receptor 3 (DcR3), and spondin-2 have been identified as potential ovarian cancer biomarkers. Except for CA125, their behavior in the prediagnostic period has not been evaluated. Methods Immunoassays were used to determine concentrations of CA125, HE4, mesothelin, B7-H4, DcR3, and spondin-2 proteins in prediagnostic serum specimens (1–11 samples per participant) that were contributed 0–18 years before ovarian cancer diagnosis from 34 patients with ovarian cancer (15 with advanced-stage serous carcinoma) and during a comparable time interval before the reference date from 70 matched control subjects who were participating in the Carotene and Retinol Efficacy Trial. Lowess curves were fit to biomarker levels in cancer patients and control subjects separately to summarize mean levels over time. Receiver operating characteristic curves were plotted, and area-under-the curve (AUC) statistics were computed to summarize the discrimination ability of these biomarkers by time before diagnosis. Results Smoothed mean concentrations of CA125, HE4, and mesothelin (but not of B7-H4, DcR3, and spondin-2) began to increase (visually) in cancer patients relative to control subjects approximately 3 years before diagnosis but reached detectable elevations only within the final year before diagnosis. In descriptive receiver operating characteristic analyses, the discriminatory power of these biomarkers was limited (AUC statistics range = 0.56–0.75) but showed increasing accuracy with time approaching diagnosis (eg, AUC statistics for CA125 were 0.57, 0.68, and 0.74 for ≥4, 2–4, and <2 years before diagnosis, respectively). Conclusion Serum concentrations of CA125, HE4, and mesothelin may provide evidence of ovarian cancer 3 years before clinical diagnosis, but the likely lead time associated with these markers appears to be less than 1 year.
Collapse
Affiliation(s)
- Garnet L Anderson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, PO Box 19024, M3-A410, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
392
|
Hackett JM, Clark DV. Modifiers of Prat, a de novo purine synthesis gene, in Drosophila melanogaster. Genome 2009; 52:957-67. [PMID: 19935919 DOI: 10.1139/g09-070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drosophila melanogaster was used to identify genes with a potential role in genetic regulation of purine biosynthesis. In this study we examine two dominant genetic modifiers of the essential gene Prat, which encodes amidophosphoribosyltransferase (EC 2.4.2.14). We found that Mod(Prat:bw)3-1 enhances Prat expression only in female heads, whereas Mod(Prat:bw)3-5 suppresses Prat in all stages and tissues examined for both sexes. For Mod-3-5, gene expression microarrays were used to identify other genes that are affected by the modifier. Three mapping approaches were used to localize these modifiers. Deficiency and meiotic mapping showed that the complex lethal complementation group previously associated with Mod-3-1 and Mod-3-5 is actually due to shared second-site lethal mutations. Using male recombination mapping, Mod-3-1 was localized to a 21 kilobase region containing nine genes, and Mod-3-5 was localized to a 53 kilobase region containing eight genes.
Collapse
Affiliation(s)
- Joanne M Hackett
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | | |
Collapse
|
393
|
Koyfman AY, Braun GB, Reich NO. Cell-targeted self-assembled DNA nanostructures. J Am Chem Soc 2009; 131:14237-9. [PMID: 19754205 DOI: 10.1021/ja9015638] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present two strategies for attaching self-assembled DNA arrays to the surfaces of cells. Our first approach uses biotin-streptavidin interactions to bind DNA architectures to biotinylated cells. The second approach takes advantage of specific antibody-cell surface interactions, conjugated arrays and the subsequent binding to native epidermal growth factor receptors expressed on cancer cells. DNA array-cell surface interactions were visualized by fluorescence, confocal microscopy, and scanning electron microscopy. This novel application of DNA nanoarrays provides strategies to specifically label cell surfaces with micrometer-sized patches, bind cells onto a designed functionalized DNA scaffold, engineer cell/cell networks into microtissues, and deliver materials to cell surfaces.
Collapse
Affiliation(s)
- Alexey Y Koyfman
- Biomolecular Science and Engineering Program, University of California-Santa Barbara, Santa Barbara, California 93106-9510, USA
| | | | | |
Collapse
|
394
|
Holford M, Auer S, Laqua M, Ibañez-Tallon I. Manipulating neuronal circuits with endogenous and recombinant cell-surface tethered modulators. Front Mol Neurosci 2009; 2:21. [PMID: 19915728 PMCID: PMC2776481 DOI: 10.3389/neuro.02.021.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 10/10/2009] [Indexed: 11/26/2022] Open
Abstract
Neuronal circuits depend on the precise regulation of cell-surface receptors and ion channels. An ongoing challenge in neuroscience research is deciphering the functional contribution of specific receptors and ion channels using engineered modulators. A novel strategy, termed “tethered toxins”, was recently developed to characterize neuronal circuits using the evolutionary derived selectivity of venom peptide toxins and endogenous peptide ligands, such as lynx1 prototoxins. Herein, the discovery and engineering of cell-surface tethered peptides is reviewed, with particular attention given to their cell-autonomy, modular composition, and genetic targeting in different model organisms. The relative ease with which tethered peptides can be engineered, coupled with the increasing number of neuroactive venom toxins and ligand peptides being discovered, imply a multitude of potentially innovative applications for manipulating neuronal circuits and tissue-specific cell networks, including treatment of disorders caused by malfunction of receptors and ion channels.
Collapse
Affiliation(s)
- Mandë Holford
- York College and The Graduate Center, The American Museum of Natural History, The City University of New York New York, NY, USA
| | | | | | | |
Collapse
|
395
|
Ahrens MJ, Li Y, Jiang H, Dudley AT. Convergent extension movements in growth plate chondrocytes require gpi-anchored cell surface proteins. Development 2009; 136:3463-74. [PMID: 19762422 DOI: 10.1242/dev.040592] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteins that are localized to the cell surface via glycosylphosphatidylinositol (gpi) anchors have been proposed to regulate cell signaling and cell adhesion events involved in tissue patterning. Conditional deletion of Piga, which encodes the catalytic subunit of an essential enzyme in the gpi-biosynthetic pathway, in the lateral plate mesoderm results in normally patterned limbs that display chondrodysplasia. Analysis of mutant and mosaic Piga cartilage revealed two independent cell autonomous defects. First, loss of Piga function interferes with signal reception by chondrocytes as evidenced by delayed maturation. Second, the proliferative chondrocytes, although present, fail to flatten and arrange into columns. We present evidence that the abnormal organization of mutant proliferative chondrocytes results from errors in cell intercalation. Collectively, our data suggest that the distinct morphological features of the proliferative chondrocytes result from a convergent extension-like process that is regulated independently of chondrocyte maturation.
Collapse
Affiliation(s)
- Molly J Ahrens
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
396
|
Almeida A, Layton M, Karadimitris A. Inherited glycosylphosphatidyl inositol deficiency: A treatable CDG. Biochim Biophys Acta Mol Basis Dis 2009; 1792:874-80. [DOI: 10.1016/j.bbadis.2008.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/18/2008] [Accepted: 12/30/2008] [Indexed: 01/20/2023]
|
397
|
Brewis IA, Gadella BM. Sperm surface proteomics: from protein lists to biological function. Mol Hum Reprod 2009; 16:68-79. [PMID: 19717474 DOI: 10.1093/molehr/gap077] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proteomics technologies have matured significantly in recent years and proteomics driven research articles in reproductive biology and medicine are increasingly common. The key challenge is to move from lists of identified proteins to informed understanding of biological function. This review introduces the range of proteomics workflows most commonly used for protein identification before focusing on the mammalian sperm cell at fertilization as an exemplar for proteomic studies. We review the work of others on entire cells but then argue that proper subcellular fractionation and proper solubilization strategies offers critical advantages to achieving increased biological understanding. In relation to understanding initial gamete recognition events at fertilization (capacitation, zona binding and acrosomal exocytosis) it is imperative to study the sperm surface proteome by using purified plasma membrane fractions. Although this task is challenging there are now strategies at our disposal to achieve comprehensive coverage of the proteins at the sperm surface. Within this context it is also important to understand the milieu of the sperm cell during transit from the testis to the oviduct as proteins (or other entities) from the genital tract epithelia and fluids may also affect the composition and organization of proteins on the sperm surface. Finally the arguments presented for studying the cell plasma membrane proteome to understand the role of the cell surface equally apply to all cell types with important roles in reproductive function.
Collapse
Affiliation(s)
- Ian A Brewis
- Department of Infection, Immunity and Biochemistry, Henry Wellcome Building, School of Medicine, Heath Park, Cardiff University, Cardiff CF14 4XN, UK.
| | | |
Collapse
|
398
|
Abstract
Tissue patterning during development relies on cell communication by secreted proteins and receptors that engage in complex signaling crosstalk to induce distinct cell behaviors in a context-dependent fashion. Here I summarize recent insights into basic mechanisms that control the distribution and activities of transforming growth factor beta, Wnt, Hedgehog, and Notch proteins, by regulating trafficking decisions during secretion and endocytosis.
Collapse
Affiliation(s)
- Daniel B Constam
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH 1015 Lausanne, Switzerland USA.
| |
Collapse
|
399
|
Pang J, Zeng X, Xiao RP, Lakatta EG, Lin L. Design, generation, and testing of mammalian expression modules that tag membrane proteins. Protein Sci 2009; 18:1261-71. [PMID: 19472344 DOI: 10.1002/pro.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The expression of mammalian membrane proteins in laboratory cell lines allows their biological functions to be characterized and carefully dissected. However, it is often difficult to design and generate effective antibodies for membrane proteins in the desired studies. As a result, expressed membrane proteins cannot be detected or characterized via common biochemical approaches such as western blotting, immunoprecipitation, or immunohistochemical analysis, and their cellular behaviors cannot be sufficiently investigated. To circumvent such roadblocks, we designed and generated two sets of expression modules that consist of sequences encoding for three essential components: (1) a signal peptide from human receptor for advanced glycation end products that targets the intended protein to the endoplasmic reticulum for cell surface expression; (2) an antigenic epitope tag that elicits specific antibody recognition; and (3) a series of restriction sites that facilitate subcloning of the target membrane protein. The modules were designed with the flexibility to change the epitope tag to suit the specific tagging needs. The modules were subcloned into expression vectors, and were successfully tested with both Type I and Type III human membrane proteins: the receptor for advanced glycation end products, the Toll-like receptor 4, and the angiotensin II receptor 1. These expressed membrane proteins are readily detected by western blotting, and are immunoprecipitated by antibodies to their relative epitope tags. Immunohistochemical and biochemical analyses also show that the expressed proteins are located at cell surface, and maintain their modifications and biological functions. Thus, the designed modules serve as an effective tool that facilitates biochemical studies of membrane proteins.
Collapse
Affiliation(s)
- John Pang
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
400
|
Kuyama H, Nakajima C, Nakazawa T, Nishimura O, Tsunasawa S. A new approach for detecting C-terminal amidation of proteins and peptides by mass spectrometry in conjunction with chemical derivatization. Proteomics 2009; 9:4063-70. [DOI: 10.1002/pmic.200900267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|