351
|
Hedrick JA, Morse K, Shan L, Qiao X, Pang L, Wang S, Laz T, Gustafson EL, Bayne M, Monsma FJ. Identification of a human gastrointestinal tract and immune system receptor for the peptide neuromedin U. Mol Pharmacol 2000; 58:870-5. [PMID: 10999960 DOI: 10.1124/mol.58.4.870] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuromedin U (NmU) is a 25 amino acid peptide prominently expressed in the upper gastrointestinal (GI) tract and central nervous system. It is highly conserved throughout evolution and induces smooth muscle contraction in a variety of species. Our understanding of NmU biology has been limited because the identity of its receptor was unknown. Here we demonstrate that GPR66/FM-3 is specifically stimulated by NmU, causing the mobilization of intracellular calcium. This response was dose-dependent (EC(50) = 10 nM) and specific in that none of over 1000 ligands tested, including other neuromedins (NmB, C, L, K, N), induced a calcium flux in GPR66/FM-3-transfected cells. The GPR66/FM-3 mRNA is prominently expressed in the upper GI tract of humans, as is the mRNA for NmU, consistent with role for this receptor-ligand pair in regulating the function of this organ system. In addition, we show that whereas neuromedin U is expressed by monocytes and dendritic cells, GPR66/FM-3 is expressed by T cells and NK cells. These data suggest a previously unrecognized role for NmU as an immunoregulatory molecule.
Collapse
Affiliation(s)
- J A Hedrick
- Human Genome Research, Schering-Plough Research Institute, Kenilworth, New Jersey 07033-1300, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Spier AD, de Lecea L. Cortistatin: a member of the somatostatin neuropeptide family with distinct physiological functions. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:228-41. [PMID: 11011067 DOI: 10.1016/s0165-0173(00)00031-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cortistatin is a recently discovered neuropeptide relative of somatostatin named after its predominantly cortical expression and ability to depress cortical activity. Cortistatin-14 shares 11 of the 14 amino acids of somatostatin-14 yet their nucleotide sequences and chromosomal localization clearly indicate they are products of separate genes. Now cloned from human, mouse and rat sources, cortistatin is known to bind all five cloned somatostatin receptors and share many pharmacological and functional properties with somatostatin including the depression of neuronal activity. However, cortistatin also has many properties distinct from somatostatin including induction of slow-wave sleep, apparently by antagonism of the excitatory effects of acetylcholine on the cortex, reduction of locomotor activity, and activation of cation selective currents not responsive to somatostatin. Expression of mRNA encoding cortistatin follows a circadian rhythm and is upregulated on deprivation of sleep, suggesting cortistatin is a sleep modulatory factor. This review summarizes recent advances in our understanding of the neurobiology of cortistatin, examines the similarities and differences between cortistatin and somatostatin, and asks the question: does cortistatin bind to a cortistatin-specific receptor?
Collapse
Affiliation(s)
- A D Spier
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, 92037, La Jolla, CA, USA
| | | |
Collapse
|
353
|
Harris J, Bird DJ. Supernatants from leucocytes treated with melanin-concentrating hormone (MCH) and alpha-melanocyte stimulating hormone (alpha-MSH) have a stimulatory effect on rainbow trout (Oncorhynchus mykiss) phagocytes in vitro. Vet Immunol Immunopathol 2000; 76:117-24. [PMID: 10973690 DOI: 10.1016/s0165-2427(00)00205-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Melanin-concentrating hormone (MCH) and alpha-melanocyte stimulating hormone (alpha-MSH) are widespread vertebrate neuropeptides. In teleost fish the peptides are involved in the hormonal control of skin pigmentation, but they have also been shown to modulate corticosteroid secretion in both fish and mammals. alpha-MSH has additional potent anti-inflammatory actions in mammals and both peptides stimulate leucocyte phagocytosis in rainbow trout in vitro. The effects of these peptides on phagocytosis and the release of immunomodulatory factors by rainbow trout head kidney leucocytes were investigated in vitro. Neither MCH nor alpha-MSH had any effect on the adherence of phagocytes to glass slides or the activity of isolated phagocytes. When added to mixed leucocyte suspensions, however, MCH (50 and 100nM) and alpha-MSH (1 and 10nM) significantly increased the percentage of cells undergoing phagocytosis and MCH (50nM), but not alpha-MSH, stimulated the phagocytic index. In subsequent experiments, isolated phagocytes were exposed to supernatants derived from mixed leucocyte suspensions exposed to MCH (50 and 100nM) and alpha-MSH (1 and 10nM). Supernatants from leucocytes exposed to all doses of the peptides significantly increased the percentage phagocytosis and those from cells stimulated with MCH (100nM) and alpha-MSH (1 and 10nM) increased the phagocytic index of the phagocytes. The results suggest that cells other than phagocytes are required for MCH and alpha-MSH to exert their stimulatory effects on trout phagocytic cells through the release of one or more macrophage-activating factors.
Collapse
Affiliation(s)
- J Harris
- Faculty of Applied Sciences, University of the West of England, Bristol, BS16 1QY UK.
| | | |
Collapse
|
354
|
Tadayyon M, Welters HJ, Haynes AC, Cluderay JE, Hervieu G. Expression of melanin-concentrating hormone receptors in insulin-producing cells: MCH stimulates insulin release in RINm5F and CRI-G1 cell-lines. Biochem Biophys Res Commun 2000; 275:709-12. [PMID: 10964727 DOI: 10.1006/bbrc.2000.3357] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic orexigenic peptide. Recently, an orphan G-protein-coupled receptor (SLC-1) was identified that binds MCH with high affinity. Here, we demonstrate the mRNA expression of this receptor in insulin-producing cells including CRI-G1 and RINm5F cells, and in rat islets of Langerhans. Immunofluorescence studies in CRI-G1 and RINm5F cell-lines demonstrated cell-surface expression of the receptor. Rat MCH significantly stimulated insulin secretion in both cell-lines. The potency and the efficacy of MCH were significantly increased in the simultaneous presence of forskolin, suggesting that MCH may amplify the insulinotropic effect of cyclic AMP elevating stimuli. Salmon MCH, which differs from rat/human MCH by six amino acids, was less efficacious than rat/human MCH in stimulating insulin release. The data provide evidence for the expression of MCH receptors in insulin producing cells. The insulinotropic effect of MCH may contribute to the regulation of metabolism and energy balance by this peptide.
Collapse
Affiliation(s)
- M Tadayyon
- Department of Vascular Biology, SmithKline Beecham Pharmaceuticals, Harlow, CM19 5AD, United Kingdom.
| | | | | | | | | |
Collapse
|
355
|
Elshourbagy NA, Ames RS, Fitzgerald LR, Foley JJ, Chambers JK, Szekeres PG, Evans NA, Schmidt DB, Buckley PT, Dytko GM, Murdock PR, Milligan G, Groarke DA, Tan KB, Shabon U, Nuthulaganti P, Wang DY, Wilson S, Bergsma DJ, Sarau HM. Receptor for the pain modulatory neuropeptides FF and AF is an orphan G protein-coupled receptor. J Biol Chem 2000; 275:25965-71. [PMID: 10851242 DOI: 10.1074/jbc.m004515200] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Opiate tolerance and dependence are major clinical and social problems. The anti-opiate neuropeptides FF and AF (NPFF and NPAF) have been implicated in pain modulation as well as in opioid tolerance and may play a critical role in this process, although their mechanism of action has remained unknown. Here we describe a cDNA encoding a novel neuropeptide Y-like human orphan G protein-coupled receptor (GPCR), referred to as HLWAR77 for which NPAF and NPFF have high affinity. Cells transiently or stably expressing HLWAR77 bind and respond in a concentration-dependent manner to NPAF and NPFF and are also weakly activated by FMRF-amide (Phe-Met-Arg-Phe-amide) and a variety of related peptides. The high affinity and potency of human NPFF and human NPAF for HLWAR77 strongly suggest that these are the cognate ligands for this receptor. Expression of HLWAR77 was demonstrated in brain regions associated with opiate activity, consistent with the pain-modulating activity of these peptides, whereas the expression in adipose tissue suggests other physiological and pathophysiological activities for FMRF-amide neuropeptides. The discovery that the anti-opiate neuropeptides are the endogenous ligands for HLWAR77 will aid in defining the physiological role(s) of these ligands and facilitate the identification of receptor agonists and antagonists.
Collapse
Affiliation(s)
- N A Elshourbagy
- Departments of Molecular Biology, Renal Pharmacology, Pulmonary Biology, Vascular Biology, and Gene Expression Sciences, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406-0939, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Abstract
High-throughput gene sequencing has revolutionized the process used to identify novel molecular targets for drug discovery. Thousands of new gene sequences have been generated but only a limited number of these can be converted into validated targets likely to be involved in disease. We describe here some of the approaches used at SmithKline Beecham to select and validate novel targets. These include the identification of selective tissue gene product expression, such as for cathepsin K, a novel osteoclast-specific cysteine protease. We also describe the discovery and functional characterization of novel members of the G-protein coupled receptor superfamily and their pairing with natural ligands. Lastly, we discuss the promises of gene microarrays and proteomics, developing technologies that allow the parallel analyses of tissue expression patterns of thousands of genes or proteins, respectively.
Collapse
Affiliation(s)
- C Debouck
- Discovery Chemistry & Platform Technologies, SmithKline Beecham Pharmaceuticals, Research & Development, King of Prussia, Pennsylvania 19406, USA.
| | | |
Collapse
|
357
|
Abstract
New technologies in high-throughput screening have significantly increased throughput and reduced assay volumes. Key advances over the past few years include new fluorescence methods, detection platforms and liquid-handling technologies. Screening 100,000 samples per day in miniaturized assay volumes will soon become routine. Furthermore, new technologies are now being applied to information-rich cell-based assays, and this is beginning to remove one of the key bottlenecks downstream from primary screening.
Collapse
Affiliation(s)
- R P Hertzberg
- Molecular Screening Technologies, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA.
| | | |
Collapse
|
358
|
Lin X, Volkoff H, Narnaware Y, Bernier NJ, Peyon P, Peter RE. Brain regulation of feeding behavior and food intake in fish. Comp Biochem Physiol A Mol Integr Physiol 2000; 126:415-34. [PMID: 10989336 DOI: 10.1016/s1095-6433(00)00230-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In mammals, the orexigenic and anorexigenic neuronal systems are morphologically and functionally connected, forming an interconnected network in the hypothalamus to govern food intake and body weight. However, there are relatively few studies on the brain control of feeding behavior in fish. Recent studies using mammalian neuropeptides or fish homologs of mammalian neuropeptides indicate that brain orexigenic signal molecules include neuropeptide Y, orexins, galanin and beta-endorphin, whereas brain anorexigenic signal molecules include cholecystokinin, bombesin, corticotropin-releasing factor, cocaine- and amphetamine-regulated transcript, and serotonin. Tachykinins may also have an anorectic action in fish. The brain hypothalamic area is associated with regulation of food intake, while sites outside the hypothalamus are also involved in this function. There is correlation between short-term changes in serum growth hormone levels and feeding behavior, although possible mechanisms integrating these functions remain to be defined.
Collapse
Affiliation(s)
- X Lin
- Department of Biological Sciences, University of Alberta, Alta., T6G 2E9, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
359
|
Hosoda H, Kojima M, Matsuo H, Kangawa K. Purification and characterization of rat des-Gln14-Ghrelin, a second endogenous ligand for the growth hormone secretagogue receptor. J Biol Chem 2000; 275:21995-2000. [PMID: 10801861 DOI: 10.1074/jbc.m002784200] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ghrelin, a peptide purified from the stomach, is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R) and potently stimulates growth hormone release from the pituitary. Ghrelin is modified with an n-octanoyl group at Ser(3). This modification is essential for the activity of ghrelin. Previously, it was not known whether other ligands for GHS-R existed. Here, we report the purification of the second endogenous ligand for GHS-R from rat stomach. This ligand, named des-Gln(14)-ghrelin, is a 27-amino acid peptide, whose sequence is identical to ghrelin except for one glutamine. Southern blotting analysis under low hybridization conditions indicates that no homologue for ghrelin exists in rat genomic DNA. Furthermore, genomic sequencing and cDNA analysis indicate that des-Gln(14)-ghrelin is not encoded by a gene distinct from ghrelin but is encoded by an mRNA created by alternative splicing of the ghrelin gene. This is the first example of a novel mechanism that produces peptide multiplicity. Des-Gln(14)-ghrelin has an n-octanoyl modification at Ser(3) like ghrelin, which is also essential for its activity. Des-Gln(14)-ghrelin-stimulated growth hormone releases when injected into rats. Thus, growth hormone release is regulated by two gastric peptides, ghrelin and des-Gln(14)-ghrelin.
Collapse
Affiliation(s)
- H Hosoda
- Department of Biochemistry, National Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | | | | | | |
Collapse
|
360
|
Szekeres PG, Muir AI, Spinage LD, Miller JE, Butler SI, Smith A, Rennie GI, Murdock PR, Fitzgerald LR, Wu HL, McMillan LJ, Guerrera S, Vawter L, Elshourbagy NA, Mooney JL, Bergsma DJ, Wilson S, Chambers JK. Neuromedin U is a potent agonist at the orphan G protein-coupled receptor FM3. J Biol Chem 2000; 275:20247-50. [PMID: 10811630 DOI: 10.1074/jbc.c000244200] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuromedins are a family of peptides best known for their contractile activity on smooth muscle preparations. The biological mechanism of action of neuromedin U remains unknown, despite the fact that the peptide was first isolated in 1985. Here we show that neuromedin U potently activates the orphan G protein-coupled receptor FM3, with subnanomolar potency, when FM3 is transiently expressed in human HEK-293 cells. Neuromedins B, C, K, and N are all inactive at this receptor. Quantitative reverse transcriptase-polymerase chain reaction analysis of neuromedin U expression in a range of human tissues showed that the peptide is highly expressed in the intestine, pituitary, and bone marrow, with lower levels of expression seen in stomach, adipose tissue, lymphocytes, spleen, and the cortex. Similar analysis of FM3 expression showed that the receptor is widely expressed in human tissue with highest levels seen in adipose tissue, intestine, spleen, and lymphocytes, suggesting that neuromedin U may have a wide range of presently undetermined physiological effects. The discovery that neuromedin U is an endogenous agonist for FM3 will significantly aid the study of the full physiological role of this peptide.
Collapse
Affiliation(s)
- P G Szekeres
- Departments of Vascular Biology and Gene Expression Sciences, New Frontiers Science Park, SmithKline Beecham Pharmaceuticals, Third Avenue, Harlow, Essex CM19 5AW, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Landro JA, Taylor IC, Stirtan WG, Osterman DG, Kristie J, Hunnicutt EJ, Rae PM, Sweetnam PM. HTS in the new millennium: the role of pharmacology and flexibility. J Pharmacol Toxicol Methods 2000; 44:273-89. [PMID: 11274895 DOI: 10.1016/s1056-8719(00)00108-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the past decade, high throughput screening (HTS) has become the focal point for discovery programs within the pharmaceutical industry. The role of this discipline has been and remains the rapid and efficient identification of lead chemical matter within chemical libraries for therapeutics development. Recent advances in molecular and computational biology, i.e., genomic sequencing and bioinformatics, have resulted in the announcement of publication of the first draft of the human genome. While much work remains before a complete and accurate genomic map will be available, there can be no doubt that the number of potential therapeutic intervention points will increase dramatically, thereby increasing the workload of early discovery groups. One current drug discovery paradigm integrates genomics, protein biosciences and HTS in establishing what the authors refer to as the "gene-to-screen" process. Adoption of the "gene-to-screen" paradigm results in a dramatic increase in the efficiency of the process of converting a novel gene coding for a putative enzymatic or receptor function into a robust and pharmacologically relevant high throughput screen. This article details aspects of the identification of lead chemical matter from HTS. Topics discussed include portfolio composition (molecular targets amenable to small molecule drug discovery), screening file content, assay formats and plating densities, and the impact of instrumentation on the ability of HTS to identify lead chemical matter.
Collapse
Affiliation(s)
- J A Landro
- Department of Research Technologies, Bayer Pharmaceuticals, 400 Morgan Lane, West Haven, CT 06516, USA.
| | | | | | | | | | | | | | | |
Collapse
|
362
|
Abstract
The pathophysiology of obesity is complex with many different pathways involved. A better understanding of these weight-regulating mechanisms has lead to the identification of new targets for anti-obesity agents. Most attention has been given to the centrally acting neuropeptides regulating food intake. Leptin, playing a key-role, exerts its action through several neuropeptides such as neuropeptide Y, alpha-melanocyte stimulating hormone and agouti related protein. Cocaine- and amphetamine-regulated transcript peptide and the orexins are the latest discovered peptides acting at the level of the hypothalamus. Targets for new drugs acting on peptides secreted from the periphery are cholecystokinin and glucagon-like peptide 1. Another potential target in the treatment of obesity is increasing energy expenditure via beta3 adrenoceptors or uncoupling proteins. These new pharmacological agents in development could be valuable adjuncts to more traditional treatment strategies such as dietary treatment, behavioural/psychological counselling and physical activity.
Collapse
Affiliation(s)
- I L Mertens
- Department of Endocrinology, University Hospital Antwerp, Belgium
| | | |
Collapse
|
363
|
Kokkotou E, Mastaitis JW, Qu D, Hoersch D, Slieker L, Bonter K, Tritos NA, Maratos-Flier E. Characterization of [Phe(13), Tyr(19)]-MCH analog binding activity to the MCH receptor. Neuropeptides 2000; 34:240-7. [PMID: 11021987 DOI: 10.1054/npep.2000.0821] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Melanin concentrating hormone (MCH), a hypothalamic neuropeptide, is an important regulator of energy homeostasis in mammals. Characterization of an MCH specific receptor has been hampered by the lack of a suitable radioligand. The [Phe(13), Tyr(19)]-MCH analog has been shown by different investigators to bind specifically to cell lines of epithelial or pigment cell origin. Recently, using functional assays, the MCH receptor has been characterized as a seven transmembrane G-coupled protein initially identified as SLC-1. In the present study, we used tyrosine iodinated [Phe(13), Tyr(19)]-MCH analog, which stimulates food intake in a manner similar to that of MCH, as well as native MCH to conduct binding studies. Specific binding could not be demonstrated in intact cells of several cell lines, including A431 and B16. Specific binding associated with membranes localized to the microsomal, not the plasma membrane, fraction. Message for SLC-1 was absent in these cell lines, as assessed by Northern blot analysis. We conclude that cells previously reported to express the MCH receptor do not express SLC-1 and that both iodinated MCH and the [Phe(13), Tyr(19)]-MCH have a large component of non-specific binding. These ligands may be useful for binding studies in transfected cells with high levels of SLC-1 expression. However they do not appear to be suitable for screening for the MCH receptor as most cells demonstrate significant low affinity non-specific binding.
Collapse
Affiliation(s)
- E Kokkotou
- Research Division, Joslin Diabetes Center and Harvard Medical School, 1 Joslin Place, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
364
|
Tsukamura H, Thompson RC, Tsukahara S, Ohkura S, Maekawa F, Moriyama R, Niwa Y, Foster DL, Maeda K. Intracerebroventricular administration of melanin-concentrating hormone suppresses pulsatile luteinizing hormone release in the female rat. J Neuroendocrinol 2000; 12:529-34. [PMID: 10844581 DOI: 10.1046/j.1365-2826.2000.00482.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Melanin-concentrating hormone (MCH) has been reported to be involved in the regulation of feeding behaviour in rats and mice. Because many neuropeptides that influence ingestive behaviour also regulate reproductive function, the present study was designed to determine if central administration of MCH changes pulsatile secretion of luteinizing hormone (LH) in the rats. Wistar-Imamichi strain female rats were ovariectomized and implanted with oestradiol to produce a moderate inhibitory feedback effect on LH release. The effects of i. c.v. injections of MCH on LH release were examined in freely moving animals. Blood samples were collected every 6 min for 3 h through an indwelling cannula. After 1 h of sampling, MCH (0.1, 1 or 10 microg/animal) or vehicle (saline) was injected into the third cerebroventricle. Because MCH is also reported to affect the hypothalamo-pituitary-adrenal (HPA) axis, which in turn, can influence reproductive function, plasma corticosterone concentrations were determined in the same animals at 30-min intervals during the first and last hours and every 12 min during the second hour of the 3-h sampling period. When expressed as per cent changes, mean plasma LH concentrations after MCH administration were significantly lower in the animals injected with all doses of the peptide compared with vehicle-treated animals; LH pulse frequency was significantly lowered by 1 microg of MCH. Per cent changes in mean plasma corticosterone levels were not significantly affected by MCH administration. These results in oestradiol-treated ovariectomized rats indicate that central MCH is capable of inhibiting pulsatile LH secretion. We have previously shown that 48-h fasting suppresses pulsatile LH release in the presence of oestrogen. Take together, these results raise the possibility that MCH could play a role in mediating the suppression of LH secretion during periods of reduced nutrition.
Collapse
Affiliation(s)
- H Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, Zhu Y, McLaughlin MM, Murdock P, McMillan L, Trill J, Swift A, Aiyar N, Taylor P, Vawter L, Naheed S, Szekeres P, Hervieu G, Scott C, Watson JM, Murphy AJ, Duzic E, Klein C, Bergsma DJ, Wilson S, Livi GP. A G protein-coupled receptor for UDP-glucose. J Biol Chem 2000; 275:10767-71. [PMID: 10753868 DOI: 10.1074/jbc.275.15.10767] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uridine 5'-diphosphoglucose (UDP-glucose) has a well established biochemical role as a glycosyl donor in the enzymatic biosynthesis of carbohydrates. It is less well known that UDP-glucose may possess pharmacological activity, suggesting that a receptor for this molecule may exist. Here, we show that UDP-glucose, and some closely related molecules, potently activate the orphan G protein-coupled receptor KIAA0001 heterologously expressed in yeast or mammalian cells. Nucleotides known to activate P2Y receptors were inactive, indicating the distinctly novel pharmacology of this receptor. The receptor is expressed in a wide variety of human tissues, including many regions of the brain. These data suggest that some sugar-nucleotides may serve important physiological roles as extracellular signaling molecules in addition to their familiar role in intermediary metabolism.
Collapse
Affiliation(s)
- J K Chambers
- Department of Vascular Biology, New Frontiers Science Park, SmithKline Beecham Pharmaceuticals, Southern Way, Harlow, Essex CM19 5AW, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
366
|
Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000; 404:661-71. [PMID: 10766253 DOI: 10.1038/35007534] [Citation(s) in RCA: 4103] [Impact Index Per Article: 164.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New information regarding neuronal circuits that control food intake and their hormonal regulation has extended our understanding of energy homeostasis, the process whereby energy intake is matched to energy expenditure over time. The profound obesity that results in rodents (and in the rare human case as well) from mutation of key signalling molecules involved in this regulatory system highlights its importance to human health. Although each new signalling pathway discovered in the hypothalamus is a potential target for drug development in the treatment of obesity, the growing number of such signalling molecules indicates that food intake is controlled by a highly complex process. To better understand how energy homeostasis can be achieved, we describe a model that delineates the roles of individual hormonal and neuropeptide signalling pathways in the control of food intake and the means by which obesity can arise from inherited or acquired defects in their function.
Collapse
Affiliation(s)
- M W Schwartz
- Department of Medicine, Harborview Medical Center and VA Puget Sound Health Care System, University of Washington, Seattle 98104-2499, USA
| | | | | | | | | |
Collapse
|
367
|
Abstract
When prevention fails, medicinal treatment of obesity may become a necessity. Any strategic medicinal development must recognize that obesity is a chronic, stigmatized and costly disease that is increasing in prevalence. Because obesity can rarely be cured, treatment strategies are effective only as long as they are used, and combined therapy may be more effective than monotherapy. For a drug to have significant impact on body weight it must ultimately reduce energy intake, increase energy expenditure, or both. Currently approved drugs for long-term treatment of obesity include sibutramine, which inhibits food intake, and orlistat, which blocks fat digestion.
Collapse
Affiliation(s)
- G A Bray
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA.
| | | |
Collapse
|
368
|
Abstract
Obesity is an important health problem. Worldwide epidemiological data show that its frequency is rising steeply, probably because of a reduction in physical activity and bad eating habits. Health risks are most prominent in the central type of obesity, due to the relatively increased lipolytic activity, which leads to a series of events. The overall results of treatment are not satisfactory. Drugs, such as orlistat, fluoxetine, and ephedrine/caffeine, may be useful. The first results with leptin treatment are encouraging, but not yet optimal. Research on various neuropeptides and beta3-agonists is promising. Prevention of obesity is extremely important but difficult.
Collapse
|
369
|
Hervieu GJ, Cluderay JE, Harrison D, Meakin J, Maycox P, Nasir S, Leslie RA. The distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) receptor gene, slc-1, in the central nervous system of the rat. Eur J Neurosci 2000; 12:1194-216. [PMID: 10762350 DOI: 10.1046/j.1460-9568.2000.00008.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Melanin-concentrating hormone (MCH), a 19 amino acid cyclic peptide, is largely expressed in the hypothalamus. It is implicated in the control of general arousal and goal-orientated behaviours in mammals, and appears to be a key messenger in the regulation of food intake. An understanding of the biological actions of MCH has been so far hampered by the lack of information about its receptor(s) and their location in the brain. We recently identified the orphan G-protein-coupled receptor SLC-1 as a receptor for the neuropeptide MCH. We used in situ hybridization histochemistry and immunohistochemistry to determine the distribution of SLC-1 mRNA and its protein product in the rat brain and spinal cord. SLC-1 mRNA and protein were found to be widely and strongly expressed throughout the brain. Immunoreactivity was observed in areas that largely overlapped with regions mapping positive for mRNA. SLC-1 signals were observed in the cerebral cortex, caudate-putamen, hippocampal formation, amygdala, hypothalamus and thalamus, as well as in various nuclei of the mesencephalon and rhombencephalon. The distribution of the receptor mRNA and immunolabelling was in good general agreement with the previously reported distribution of MCH itself. Our data are consistent with the known biological effects of MCH in the brain, e.g. modulation of the stress response, sexual behaviour, anxiety, learning, seizure production, grooming and sensory gating, and with a role for SLC-1 in mediating these physiological actions.
Collapse
Affiliation(s)
- G J Hervieu
- Department of Neuroscience, SmithKline Beecham Pharmaceuticals, Third Avenue, Harlow, Essex, UK.
| | | | | | | | | | | | | |
Collapse
|
370
|
Yu S, Gavrilova O, Chen H, Lee R, Liu J, Pacak K, Parlow AF, Quon MJ, Reitman ML, Weinstein LS. Paternal versus maternal transmission of a stimulatory G-protein alpha subunit knockout produces opposite effects on energy metabolism. J Clin Invest 2000; 105:615-23. [PMID: 10712433 PMCID: PMC289181 DOI: 10.1172/jci8437] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heterozygous disruption of Gnas, the gene encoding the stimulatory G-protein alpha subunit (G(s)alpha), leads to distinct phenotypes depending on whether the maternal (m-/+) or paternal (+/p-) allele is disrupted. G(s)alpha is imprinted, with the maternal allele preferentially expressed in adipose tissue. Hence, expression is decreased in m-/+ mice but normal in +/p- mice. M-/+ mice become obese, with increased lipid per cell in white and brown adipose tissue, whereas +/p- mice are thin, with decreased lipid in adipose tissue. These effects are not due to abnormalities in thyroid hormone status, food intake, or leptin secretion. +/p- mice are hypermetabolic at both ambient temperature (21 degrees C) and thermoneutrality (30 degrees C). In contrast, m-/+ mice are hypometabolic at ambient temperature and eumetabolic at thermoneutrality M-/+ and wild-type mice have similar dose-response curves for metabolic response to a beta(3)-adrenergic agonist, CL316243, indicating normal sensitivity of adipose tissue to sympathetic stimulation. Measurement of urinary catecholamines suggests that +/p- and m-/+ mice have increased and decreased activation of the sympathetic nervous system, respectively. This is to our knowledge the first animal model in which a single genetic defect leads to opposite effects on energy metabolism depending on parental inheritance. This probably results from deficiency of maternal- and paternal-specific Gnas gene products, respectively.
Collapse
Affiliation(s)
- S Yu
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Murray JF, Adan RA, Walker R, Baker BI, Thody AJ, Nijenhuis WA, Yukitake J, Wilson CA. Melanin-concentrating hormone, melanocortin receptors and regulation of luteinizing hormone release. J Neuroendocrinol 2000; 12:217-23. [PMID: 10718917 DOI: 10.1046/j.1365-2826.2000.00440.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide, identified by its ability to either mimic or antagonize the melanin-dispersing action of alpha-melanocyte stimulating hormone (alphaMSH) on skin melanophores. MCH and alphaMSH also have antagonistic actions in the brain affecting feeding behaviour, aggression, anxiety, arousal and reproductive function through the release of luteinizing hormone (LH). It is not clear, however, how they exert their opposite effects in the central nervous system (CNS). One possibility is that they act via a common receptor. In this study we have examined the effect of a number of MC receptor antagonists, with relative selectivity for the MC3, 4 and 5 subtypes, on the actions of MCH on LH release. We confirmed that bilateral administration of MCH (100 and 200 ng/side) into the medial preoptic area of oestrogen-primed (oestradiol benzoate 5 microgram) ovariectomized anaesthetized rats, stimulated the release of LH. This effect was blocked by the concomitant administration into the medial preoptic area of the MC4/5 antagonist ([D-Arg8]ACTH(4-10) and the MC3/5 antagonist ([Ala6]ACTH(4-10)-both at 500 ng/side-but not by the MC3/4 antagonist, SHU9119 (200 ng/side). Furthermore, the MC3 agonist [Nle3]-gamma2 MSH failed to affect LH release. These results indicate that the MC3 and MC4 receptors are not involved in mediating the action of MCH but are consistent with an action via the MC5 subtype. Preputial glands, which express MC5 receptors, were also stimulated by MCH which is in keeping with this idea. In HEK293 cells transfected with the MC5 receptor MCH increased the production of IP3. However, it was much less potent than alphaMSH and unlike alphaMSH, had no effect on the production of cAMP. MCH (10-10 to 10-5 M) also failed to displace I125NDP-MSH from cells transfected with MC5 receptors indicating that it was not acting as a competitive antagonist and its binding site was distinct from that of alphaMSH. Thus while MCH may function as an agonist at the MC5 receptor, its stimulation of LH release is more likely to be mediated via a specific MCH receptor that has common properties with the MC5 receptor.
Collapse
Affiliation(s)
- J F Murray
- Department of Obstetrics and Gynaecology, St George's Hospital Medical School, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
372
|
Salton SR, Hahm S, Mizuno TM. Of mice and MEN: what transgenic models tell us about hypothalamic control of energy balance. Neuron 2000; 25:265-8. [PMID: 10719883 DOI: 10.1016/s0896-6273(00)80892-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- S R Salton
- Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
373
|
Sone M, Takahashi K, Murakami O, Totsune K, Arihara Z, Satoh F, Sasano H, Ito H, Mouri T. Binding sites for melanin-concentrating hormone in the human brain. Peptides 2000; 21:245-50. [PMID: 10764952 DOI: 10.1016/s0196-9781(99)00206-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Binding sites for melanin-concentrating hormone (MCH) in human brain were investigated and characterized by radioligand binding. Specific binding sites for MCH were present in every region of human brain (cerebral cortex, cerebellum, thalamus, hypothalamus, pons, and medulla oblongata) obtained at autopsy. alpha-Melanocyte stimulating hormone or ACTH was a poor inhibitor of (125)I-MCH binding (IC(50) 1 microM) compared with MCH (IC(50) = 0.3 +/- 0.07 nM, mean +/- SEM, n = 3). Scatchard plots of (125)I-MCH binding in human brain (thalamus) gave a dissociation constant of 0.2 +/- 0.06 nM and maximal binding of 5.8 +/- 0.3 fmol/mg protein (n = 3). These findings suggest that specific MCH binding sites that differ from the melanocortin receptors exist in human brain.
Collapse
Affiliation(s)
- M Sone
- Department of Internal Medicine, National Iwate Hospital, Ichinoseki, Iwate, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Abstract
Our understanding of the hypothalamic control of energy homeostasis has increased greatly since the discovery of leptin, the adipose cell derived protein. Recent studies have identified several new hypothalamic neuropeptides that affect food intake and energy balance. By studying these molecules and their neuronal systems, receptors and interactions, we are beginning to unravel the circuitry between peripheral adipogenic signals and hypothalamic effector pathways.
Collapse
Affiliation(s)
- C B Lawrence
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
375
|
Mori M, Sugo T, Abe M, Shimomura Y, Kurihara M, Kitada C, Kikuchi K, Shintani Y, Kurokawa T, Onda H, Nishimura O, Fujino M. Urotensin II is the endogenous ligand of a G-protein-coupled orphan receptor, SENR (GPR14). Biochem Biophys Res Commun 1999; 265:123-9. [PMID: 10548501 DOI: 10.1006/bbrc.1999.1640] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two molecular species of urotensin II (UII) were isolated from porcine spinal cords and identified as the endogenous ligands of a G-protein-coupled orphan receptor, SENR (sensory epithelium neuropeptide-like receptor), which is identical to GPR14. We established a CHO cell line stably expressing the rat SENR and investigated several tissue extracts to evoke the response mediated by the SENR. Extract from porcine spinal cords showed an activity of arachidonic acid metabolites release from SENR-expressing cells and was purified using HPLC. Two active substances were isolated and their sequences were determined as GPTSECFWKYCV and GPPSECFWKYCV, which were revealed to be porcine UII. Synthetic UII peptides caused arachidonic acid metabolites release activity in the rat SENR-expressing cells with an EC(50) value of 1 nM. Three cDNAs encoding the precursor proteins of porcine UII were cloned from a porcine spinal cord cDNA library; 2 consist of 121 amino acid residues and the other, which seemed to be a splicing variant, consist of 85 residues.
Collapse
Affiliation(s)
- M Mori
- Pharmaceutical Discovery Research Division, Takeda Chemical Industries, Ltd., Wadai 10, Tsukuba, Ibaraki, 300-4293, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Fitzgerald LR, Mannan IJ, Dytko GM, Wu HL, Nambi P. Measurement of responses from Gi-, Gs-, or Gq-coupled receptors by a multiple response element/cAMP response element-directed reporter assay. Anal Biochem 1999; 275:54-61. [PMID: 10542109 DOI: 10.1006/abio.1999.4295] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have established a rapid, sensitive, high-throughput assay that requires one assay condition to detect agonist effects from Gi-, Gs-, and Gq-coupled receptors. We utilized a vector containing a promoter with three multiple response elements, the vasoactive intestinal peptide promoter and a cAMP response element controlling the transcription of the luciferase gene. An adrenergic agonist, para-aminoclonidine, inhibited forskolin-stimulated luciferase expression when cells were cotransfected with the Gi-coupled alpha(2)-C adrenergic receptor and the MRE/CRE reporter vector. Further, we demonstrate that gastrin-releasing peptide, which activates a Gq-coupled GRP receptor, isoproterenol, which activates a Gs-coupled beta-adrenergic receptor, calcium ionophores, and phorbol 12-myristate 13-acetate, a stimulator of protein kinase C, can mediate increases in luciferase expression in the presence of forskolin but not in its absence. The effect at Gi-coupled receptor activation correlates with the phosphorylation of the CRE binding protein (CREB); however, the mechanisms mediating the responses to Gq- and Gs-coupled receptors are more complex. We demonstrate that this assay is useful for pharmacological analysis of both agonists and antagonists and has the potential to associate orphan G-protein-coupled receptors with their corresponding ligands.
Collapse
Affiliation(s)
- L R Fitzgerald
- Department of Renal Pharmacology, SmithKline Beecham Pharmaceuticals, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | |
Collapse
|
377
|
Tritos NA, Maratos-Flier E. Two important systems in energy homeostasis: melanocortins and melanin-concentrating hormone. Neuropeptides 1999; 33:339-49. [PMID: 10657511 DOI: 10.1054/npep.1999.0055] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our understanding of the regulation of appetite and energy balance has advanced significantly over the past decade as several peptides, centrally or peripherally expressed, have been characterized and shown to profoundly influence food intake and energy expenditure. (1)The growing number of putative appetite-regulating neuropeptides includes peptides that are orexigenic (appetite-stimulating) signals and anorectic peptides. Neuropeptide Y (NPY), melanin concentrating hormone (MCH), orexins A and B, galanin, and agouti -related peptide (AgRP) all act to stimulate feeding while alpha-melanocyte stimulating hormone (alphaMSH), corticotropin releasing hormone (CRH), cholecystokinin (CCK), cocaine and amphetamine regulated transcript (CART), neurotensin, glucagon-like peptide 1 (GLP 1), and bombesin have anorectic actions.(1) Leptin, expressed in the periphery in white adipose tissue, acts in the CNS to modulate the expression of several of these hypothalamic peptides.(1) This creates a functional link between the adipose tissue and the brain that translates the information on body fat provided by leptin to input into energy balance regulating processes. In the current review we examine the significant role of the melanocortin system (alphaMSH, agouti and AgRP peptides, and their receptors and mahogany protein) and melanin concentrating hormone in the regulation of energy balance.
Collapse
Affiliation(s)
- N A Tritos
- Joslin Diabetes Center, Boston, MA, 02215, USA
| | | |
Collapse
|
378
|
Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar NV, Romanic AM, Louden CS, Foley JJ, Sauermelch CF, Coatney RW, Ao Z, Disa J, Holmes SD, Stadel JM, Martin JD, Liu WS, Glover GI, Wilson S, McNulty DE, Ellis CE, Elshourbagy NA, Shabon U, Trill JJ, Hay DW, Ohlstein EH, Bergsma DJ, Douglas SA. Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 1999; 401:282-6. [PMID: 10499587 DOI: 10.1038/45809] [Citation(s) in RCA: 632] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urotensin-II (U-II) is a vasoactive 'somatostatin-like' cyclic peptide which was originally isolated from fish spinal cords, and which has recently been cloned from man. Here we describe the identification of an orphan human G-protein-coupled receptor homologous to rat GPR14 and expressed predominantly in cardiovascular tissue, which functions as a U-II receptor. Goby and human U-II bind to recombinant human GPR14 with high affinity, and the binding is functionally coupled to calcium mobilization. Human U-II is found within both vascular and cardiac tissue (including coronary atheroma) and effectively constricts isolated arteries from non-human primates. The potency of vasoconstriction of U-II is an order of magnitude greater than that of endothelin-1, making human U-II the most potent mammalian vasoconstrictor identified so far. In vivo, human U-II markedly increases total peripheral resistance in anaesthetized non-human primates, a response associated with profound cardiac contractile dysfunction. Furthermore, as U-II immunoreactivity is also found within central nervous system and endocrine tissues, it may have additional activities.
Collapse
Affiliation(s)
- R S Ames
- Department of Molecular Biology, Smith Kline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406-0939, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Lembo PM, Grazzini E, Cao J, Hubatsch DA, Pelletier M, Hoffert C, St-Onge S, Pou C, Labrecque J, Groblewski T, O'Donnell D, Payza K, Ahmad S, Walker P. The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. Nat Cell Biol 1999; 1:267-71. [PMID: 10559938 DOI: 10.1038/12978] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene-knockout studies of melanin-concentrating hormone (MCH) and its effect on feeding and energy balance have firmly established MCH as an orexigenic (appetite-stimulating) peptide hormone. Here we identify MCH as the ligand for the orphan receptor SLC-1. The rat SLC-1 is activated by nanomolar concentrations of MCH and is coupled to the G protein G alpha i/o. The pattern of SLC-1 messenger RNA expression coincides with the distribution of MCH-containing nerve terminals and is consistent with the known central effects of MCH. Our identification of an MCH receptor could have implications for the development of new anti-obesity therapies.
Collapse
Affiliation(s)
- P M Lembo
- AstraZeneca R&D Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|