351
|
Wada Y, Ohya H, Yamaguchi Y, Koizumi N, Sano H. Preferential de novo methylation of cytosine residues in non-CpG sequences by a domains rearranged DNA methyltransferase from tobacco plants. J Biol Chem 2003; 278:42386-93. [PMID: 12917429 DOI: 10.1074/jbc.m303892200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plant DNA, cytosines in symmetric CpG and CpNpG (N is A, T, or C) are thought to be methylated by DNA methyltransferases, MET1 and CMT3, respectively. Cytosines in asymmetric CpNpN are also methylated, and genetic analysis has suggested the responsible enzyme to be domains rearranged methyltransferase (DRM). We cloned a tobacco cDNA, encoding a novel protein consisting of 608 amino acids, that resembled DRMs found in maize and Arabidopsis and designated this as NtDRM1. The protein could be shown to be localized exclusively in the nucleus and exhibit methylation activity toward unmethylated synthetic as well as native DNA samples upon expression in Sf9 insect cells. It also methylated hemimethylated DNA, but the activity was lower than that for unmethylated substrates. Methylation mapping of a 962-bp DNA, treated with NtDRM1 in vitro, directly demonstrated methylation of approximately 70% of the cytosines in methylatable CpNpN and CpNpG sequences but only 10% in CpG. Further analyses indicated that the enzyme apparently non-selectively methylates any cytosines except in CpG, regardless of the adjacent nucleotide at both 5' and 3' ends. Transcripts of NtDRM1 ubiquitously accumulated in all tissues and during the cell cycle in tobacco cultured BY2 cells. These results indicate that NtDRM1 is a de novo cytosine methyltransferase, which actively excludes CpG substrate.
Collapse
Affiliation(s)
- Yuko Wada
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
352
|
Nakamura A, Okazaki Y, Sugimoto J, Oda T, Jinno Y. Human endogenous retroviruses with transcriptional potential in the brain. J Hum Genet 2003; 48:575-81. [PMID: 14564540 DOI: 10.1007/s10038-003-0081-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 09/05/2003] [Indexed: 12/23/2022]
Abstract
Genetic studies of neuropsychiatric disorders have often produced conflicting results, which might partly result from the involvement of epigenetic modifications. We intended to explore the possible implication of DNA methylation and human endogenous retroviruses (HERVs) in neuropsychiatric disorders. In the present study, we identified two HERV loci that are expected to retain the transcriptional activity in the brain. One was located on chromosome 1q21-q22 and the other on 22q12. Interestingly, these regions were overlapped with or included in those of schizophrenia-susceptible loci, SCZD9 and SCZD4, respectively. Particularly, the HERV on 22q12 was located in the opposite direction 4 kb downstream of the Synapsin III gene. These HERV loci could afford clear targets for methylation and expression analyses in postmortem brains of patients with psychiatric disorders such as schizophrenia. In addition, we confirmed our previous finding that only a few of particular HERV-K loci were activated among a number of highly homologous loci in teratocarcinoma cell lines. These activated loci included ones common to all teratocarcinoma cell lines analyzed and depending on their male or female origin.
Collapse
Affiliation(s)
- Akifumi Nakamura
- Department of Molecular Biology, Ryukyu University School of Medicine, 207 Nishihara, Okinawa 903-0215, Japan
| | | | | | | | | |
Collapse
|
353
|
Slotkin RK, Freeling M, Lisch D. Mu killer Causes the Heritable Inactivation of the Mutator Family of Transposable Elements in Zea mays. Genetics 2003; 165:781-97. [PMID: 14573488 PMCID: PMC1462800 DOI: 10.1093/genetics/165.2.781] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Mutations in a number of genes responsible for the maintenance of transposon silencing have been reported. However, the initiation of epigenetic silencing of transposable elements is poorly characterized. Here, we report the identification of a single dominant locus, Mu killer (Muk), that acts to silence MuDR, the autonomous regulatory transposon of the Mutator family of transposable elements in maize. Muk results in the methylation of MuDR TIRs and is competent to silence one or several active MuDR elements. Silencing by Muk is not dependent on the position of the MuDR element and occurs gradually during plant development. Transcript levels of the MuDR transposase, mudrA, decrease substantially when Muk is present. The other transcript encoded by MuDR, mudrB, also fails to accumulate in the poly(A) RNA fraction when MuDR and Muk are combined. Additionally, plants undergoing MuDR silencing produce small, mudrA-homologous ∼26-nt RNAs, suggesting a role for RNA-directed DNA methylation in MuDR silencing. MuDR elements silenced by Muk remain silenced even in plants that do not inherit Muk, suggesting that Muk is required for the initiation of MuDR silencing but not for its maintenance.
Collapse
Affiliation(s)
- R Keith Slotkin
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
354
|
Wang GD, Tian PF, Cheng ZK, Wu G, Jiang JM, Li DB, Li Q, He ZH. Genomic characterization of Rim2/Hipa elements reveals a CACTA-like transposon superfamily with unique features in the rice genome. Mol Genet Genomics 2003; 270:234-42. [PMID: 14513364 DOI: 10.1007/s00438-003-0918-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 08/12/2003] [Indexed: 10/26/2022]
Abstract
The availability of huge amounts of rice genome sequence now permits large-scale analysis of the structure and molecular characteristics of the previously identified transposase-encoding Rim2 (also called Hipa) element, which is transcriptionally activated by infection with the fungal pathogen Magnaporthe grisea and by treatment with the corresponding fungal elicitor. Based on genomic cloning and data mining from 230 Mb of rice genome sequence, 347 Rim2 elements, with an average size of 5.8 kb, were identified. This indicates that an estimated total of 600-700 Rim2 elements are present in the whole genome. Rim2 insertions occur non-randomly on the chromosomes, as visualized by fluorescence in situ hybridization. The elements harbor 16-bp terminal inverted repeats with the core sequence CACTG, 16-bp sub-terminal repeats, internal variable regions, 3-bp target sequence duplications in the flanking regions, and genes coding for Rim2 proteins (the putative transposase) and hydroxyproline-rich glycoproteins. High levels of insertion into genic regions are observed for members of this family, and the transposition history of the family can be deduced from the high level of shared sequences and analysis of repeat target sites of the elements. Phylogenetic analysis indicates that the putative RIM2 proteins fall into a subgroup distinct from the TNP2-like subgroup of transposases. Southern hybridization with genomic DNA from monocotyledonous and dicotyledonous plants demonstrates that the RIM2-coding sequence is unique to the Oryza genome. Our results demonstrate that the Rim2 elements from rice belong to a distinct superfamily of CACTA-like elements with evolutionary diversity.
Collapse
Affiliation(s)
- G-D Wang
- SHARF and National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
355
|
Luo S, Preuss D. Strand-biased DNA methylation associated with centromeric regions in Arabidopsis. Proc Natl Acad Sci U S A 2003; 100:11133-8. [PMID: 12960391 PMCID: PMC196939 DOI: 10.1073/pnas.1831011100] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arabidopsis genome project assembled 15 megabases of heterochromatic sequence, facilitating investigations of heterochromatin assembly, maintenance, and structure. In many species, large quantities of methylcytosine decorate heterochromatin; these modifications are typically maintained by methyltransferases that recognize newly replicated hemimethylated DNA. We assessed the extent and patterns of Arabidopsis heterochromatin methylation by amplifying and sequencing genomic DNA treated with bisulfite, which converts cytosine, but not methylcytosine, to uracil. This survey revealed unexpected asymmetries in methylation patterns, with one helix strand often exhibiting higher levels of methylation. We confirmed these observations both by immunoprecipitating methylated DNA strands and by restriction enzyme digestion of amplified, bisulfite-treated DNA. We also developed a primer-extension assay that can monitor the methylation status of an entire chromosome, demonstrating that strand-specific methylation occurs predominantly in the centromeric regions. Conventional models for methylation maintenance do not explain these unusual patterns; instead, new models that allow for strand specificity are required. The abundance of Arabidopsis strand-specific modifications points to their importance, perhaps as epigenetic signals that mark the heterochromatic regions that confer centromere activity.
Collapse
Affiliation(s)
- Song Luo
- Howard Hughes Medical Institute and Department of Molecular Genetics and Cell Biology, University of Chicago, 1103 East 57th Street, Chicago, IL 60637, USA
| | | |
Collapse
|
356
|
Schramke V, Allshire R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 2003; 301:1069-74. [PMID: 12869699 DOI: 10.1126/science.1086870] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The expression of short hairpin RNAs in several organisms silences gene expression by targeted mRNA degradation. This RNA interference (RNAi) pathway can also affect the genome, as DNA methylation arises at loci homologous to the target RNA in plants. We demonstrate in fission yeast that expression of a synthetic hairpin RNA is sufficient to silence the homologous locus in trans and causes the assembly of a patch of silent Swi6 chromatin with cohesin. This requires components of the RNAi machinery and Clr4 histone methyltransferase for small interfering RNA generation. A similar process represses several meiotic genes through nearby retrotransposon long terminal repeats (LTRs). These analyses directly implicate interspersed LTRs in regulating gene expression during cellular differentiation.
Collapse
Affiliation(s)
- Vera Schramke
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
357
|
Melquist S, Bender J. Transcription from an upstream promoter controls methylation signaling from an inverted repeat of endogenous genes in Arabidopsis. Genes Dev 2003; 17:2036-47. [PMID: 12893775 PMCID: PMC196257 DOI: 10.1101/gad.1081603] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In plants, replication of RNA viruses and RNA from highly transcribed transgenes can trigger DNA methylation. These systems accumulate diced small RNA(smRNA) products of double-stranded RNA(dsRNA) precursors, but it is not known which RNA species directs methylation. The methylated PAI tryptophan biosynthetic genes in Arabidopsis allow the study of methylation signals for endogenous genes with lower expression levels. The PAI genes are arranged as a tandem inverted repeat plus two singlet genes at unlinked loci. Here we show that the predominant PAI transcript initiates at a novel unmethylated promoter that lies upstream of one of the inverted repeat PAI genes. Suppressed transcription from the upstream promoter using transgene-directed silencing reduces methylation on the singlet PAI genes, but not on the inverted repeat, consistent with an RNA methylation signal. RNA gel blots detect normal PAI transcripts and dsRNA read-through species, but not diced smRNAs, suggesting that either precursor dsRNAs or subdetectable levels of smRNAs, below the threshold to effectively degrade PAI transcripts, serve as the PAI methylation signal. Thus, the lower expression endogenous gene system allows dissection of a RNA-directed methylation pathway distinct from RNA degradation pathways.
Collapse
MESH Headings
- Arabidopsis/genetics
- DNA Methylation
- Gene Expression Regulation, Plant
- Gene Silencing
- Genes, Plant
- Genes, Reporter
- Mutation
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Signal Transduction
- Transcription, Genetic/genetics
- Transgenes
Collapse
Affiliation(s)
- Stacey Melquist
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
358
|
Vastenhouw NL, Fischer SEJ, Robert VJP, Thijssen KL, Fraser AG, Kamath RS, Ahringer J, Plasterk RHA. A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr Biol 2003; 13:1311-6. [PMID: 12906791 DOI: 10.1016/s0960-9822(03)00539-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transposon jumps are a major cause of genome instability. In the C. elegans strain Bristol N2, transposons are active in somatic cells, but they are silenced in the germline, presumably to protect the germline from mutations. Interestingly, the transposon-silencing mechanism shares factors with the RNAi machinery. To better understand the mechanism of transposon silencing, we performed a genome-wide RNAi screen for genes that, when silenced, cause transposition of Tc1 in the C. elegans germline. We identified 27 such genes, among which are mut-16, a mutator that was previously found but not identified at the molecular level, ppw-2, a member of the argonaute family, and several factors that indicate a role for chromatin structure in the regulation of transposition. Some of the newly identified genes are also required for cosuppression and therefore represent the shared components of the two pathways. Since most of the newly identified genes have clear homologs in other species, and since transposons are found from protozoa to human, it seems likely that they also protect other genomes against transposon activity in the germline.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Hubrecht Laboratory and Center for Biomedical Genetics, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
359
|
Weissmann F, Lyko F. Cooperative interactions between epigenetic modifications and their function in the regulation of chromosome architecture. Bioessays 2003; 25:792-7. [PMID: 12879449 DOI: 10.1002/bies.10314] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epigenetic information is encoded by DNA methylation and by covalent modifications of histone tails. While defined epigenetic modification patterns have been frequently correlated with particular states of gene activity, very little is known about the integration level of epigenetic signals. Recent experiments have resulted in the characterization of several epigenetic adaptors that mediate interactions between distinct modifications. These adaptors include methyl-DNA binding proteins, chromatin remodelling enzymes and siRNAs. Complex interactions between epigenetic modifiers and adaptors provide the foundation for the stability of epigenetic inheritance. In addition, they also provide an explanation for the long-range effects of epigenetic mechanisms. We propose that a major aspect of epigenetic regulation lies in the modification of chromosome architecture and that local changes in gene expression would be secondary consequences. This view is consistent with many results from recent genomic analyses.
Collapse
Affiliation(s)
- Frank Weissmann
- Research Group Epigenetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | |
Collapse
|
360
|
|
361
|
Casacuberta JM, Santiago N. Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 2003; 311:1-11. [PMID: 12853133 DOI: 10.1016/s0378-1119(03)00557-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transposons are genetic elements that can move, and sometimes spread, within genomes, and that constitute an important fraction of eukaryote genomes. Two types of transposons, long terminal repeat (LTR)-retrotransposons and miniature inverted-repeat transposable elements (MITEs), are highly represented in plant genomes, and can account for as much as 50-80% of the total DNA content. In the last few years it has been shown that, in spite of their mutagenic capacity, both LTR-retrotransposons and MITEs can be found associated to genes, suggesting that their activity has influenced the evolution of plant genes. In this review we will summarise recent data on the control of the activity and the impact of both LTR-retrotransposons and MITEs on the evolution of plant genes and genomes.
Collapse
Affiliation(s)
- Josep M Casacuberta
- Department of Molecular Genetics, IBMB-CSIC, Jordi Girona 18, 08034 Barcelona, Spain.
| | | |
Collapse
|
362
|
Abstract
Chromatin remodeling in plants has usually been discussed in relation to aspects of genome defense such as transgene silencing and the resetting of transposon activity. The role of remodeling in controlling development has been less emphasized, although well established in animal systems. This is because cell fate in plants is often held to be entirely specified on the basis of position, apparently excluding any significant role for cell ancestry and chromatin remodeling. We argue that chromatin remodeling is used to confer mitotically heritable cell fates at late stages in pattern formation. Several examples in which chromatin remodeling factors are used to confer a memory of transient events in plant development are discussed. Because the precise biochemical functions of most remodeling factors are obscure, and little is known of plant chromatin structure, the underlying mechanisms remain poorly understood.
Collapse
Affiliation(s)
- Justin Goodrich
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, United Kingdom.
| | | |
Collapse
|
363
|
Saze H, Mittelsten Scheid O, Paszkowski J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet 2003; 34:65-9. [PMID: 12669067 DOI: 10.1038/ng1138] [Citation(s) in RCA: 339] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 03/07/2003] [Indexed: 12/12/2022]
Abstract
In mammals, the DNA methyltransferase 1 (Dnmt1) faithfully copies the pattern of cytosine methylation at CpG sites to the newly synthesized strand, and this is essential for epigenetic inheritance. In Arabidopsis thaliana, several DNA methyltransferases or chromatin modifiers coupled to methylation changes have been characterized, and mutations that cause loss of their function are recessive. This is surprising because plant gametogenesis includes postmeiotic DNA replication in haploid nuclei before fertilization. Therefore, the recessive character of the mutations excludes the affected components from a regulatory role in postmeiotic maintenance or modification of epigenetic states. Here we show, however, that depletion of A. thaliana MET1, a homolog of mammalian Dnmt1 (ref. 8), results in immense epigenetic diversification of gametes. This diversity seems to be a consequence of passive postmeiotic demethylation, leading to gametes with fully demethylated and hemidemethylated DNA, followed by remethylation of hemimethylated templates once MET1 is again supplied in a zygote.
Collapse
Affiliation(s)
- Hidetoshi Saze
- Friedrich Miescher Institute for Biomedical Research, P.O. Box 2543, CH-4002 Basel, Switzerland.
| | | | | |
Collapse
|
364
|
Wicker T, Guyot R, Yahiaoui N, Keller B. CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. PLANT PHYSIOLOGY 2003; 132:52-63. [PMID: 12746511 PMCID: PMC166951 DOI: 10.1104/pp.102.015743] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Revised: 11/30/2002] [Accepted: 01/30/2003] [Indexed: 05/18/2023]
Abstract
In comparison with retrotransposons, which comprise the majority of the Triticeae genomes, very few class 2 transposons have been described in these genomes. Based on the recent discovery of a local accumulation of CACTA elements at the Glu-A3 loci in the two wheat species Triticum monococcum and Triticum durum, we performed a database search for additional such elements in Triticeae spp. A combination of BLAST search and dot-plot analysis of publicly available Triticeae sequences led to the identification of 41 CACTA elements. Only seven of them encode a protein similar to known transposases, whereas the other 34 are considered to be deletion derivatives. A detailed characterization of the identified elements allowed a further classification into seven subgroups. The major subgroup, designated the "Caspar " family, was shown by hybridization to be present in at least 3,000 copies in the T. monococcum genome. The close association of numerous CACTA elements with genes and the identification of several similar elements in sorghum (Sorghum bicolor) and rice (Oryza sativa) led to the conclusion that CACTA elements contribute significantly to genome size and to organization and evolution of grass genomes.
Collapse
Affiliation(s)
- Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, Switzerland
| | | | | | | |
Collapse
|
365
|
Selker EU, Tountas NA, Cross SH, Margolin BS, Murphy JG, Bird AP, Freitag M. The methylated component of the Neurospora crassa genome. Nature 2003; 422:893-7. [PMID: 12712205 DOI: 10.1038/nature01564] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2002] [Accepted: 03/14/2003] [Indexed: 11/09/2022]
Abstract
Cytosine methylation is common, but not ubiquitous, in eukaryotes. Mammals and the fungus Neurospora crassa have about 2-3% of cytosines methylated. In mammals, methylation is almost exclusively in the under-represented CpG dinucleotides, and most CpGs are methylated whereas in Neurospora, methylation is not preferentially in CpG dinucleotides and the bulk of the genome is unmethylated. DNA methylation is essential in mammals but is dispensable in Neurospora, making this simple eukaryote a favoured organism in which to study methylation. Recent studies indicate that DNA methylation in Neurospora depends on one DNA methyltransferase, DIM-2 (ref. 6), directed by a histone H3 methyltransferase, DIM-5 (ref. 7), but little is known about its cellular and evolutionary functions. As only four methylated sequences have been reported previously in N. crassa, we used methyl-binding-domain agarose chromatography to isolate the methylated component of the genome. DNA sequence analysis shows that the methylated component of the genome consists almost exclusively of relics of transposons that were subject to repeat-induced point mutation--a genome defence system that mutates duplicated sequences.
Collapse
Affiliation(s)
- Eric U Selker
- Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | | | | | | | | | | | |
Collapse
|
366
|
Weissmann F, Muyrers-Chen I, Musch T, Stach D, Wiessler M, Paro R, Lyko F. DNA hypermethylation in Drosophila melanogaster causes irregular chromosome condensation and dysregulation of epigenetic histone modifications. Mol Cell Biol 2003; 23:2577-86. [PMID: 12640138 PMCID: PMC150732 DOI: 10.1128/mcb.23.7.2577-2586.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The level of genomic DNA methylation plays an important role in development and disease. In order to establish an experimental system for the functional analysis of genome-wide hypermethylation, we overexpressed the mouse de novo methyltransferase Dnmt3a in Drosophila melanogaster. These flies showed severe developmental defects that could be linked to reduced rates of cell cycle progression and irregular chromosome condensation. In addition, hypermethylated chromosomes revealed elevated rates of histone H3-K9 methylation and a more restricted pattern of H3-S10 phosphorylation. The developmental and chromosomal defects induced by DNA hypermethylation could be rescued by mutant alleles of the histone H3-K9 methyltransferase gene Su(var)3-9. This mutation also resulted in a significantly decreased level of genomic DNA methylation. Our results thus uncover the molecular consequences of genomic hypermethylation and demonstrate a mutual interaction between DNA methylation and histone methylation.
Collapse
Affiliation(s)
- Frank Weissmann
- Research Group Epigenetics, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
367
|
Rabinowicz PD, McCombie WR, Martienssen RA. Gene enrichment in plant genomic shotgun libraries. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:150-156. [PMID: 12667872 DOI: 10.1016/s1369-5266(03)00008-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Arabidopsis genome (about 130 Mbp) has been completely sequenced; whereas a draft sequence of the rice genome (about 430 Mbp) is now available and the sequencing of this genome will be completed in the near future. The much larger genomes of several important crop species, such as wheat (about 16,000 Mbp) or maize (about 2500 Mbp), may not be fully sequenced with current technology. Instead, sequencing-analysis strategies are being developed to obtain sequencing and mapping information selectively for the genic fraction (gene space) of complex plant genomes.
Collapse
Affiliation(s)
- Pablo D Rabinowicz
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| | | | | |
Collapse
|
368
|
Abstract
Gene silencing has evolved in a broad range of organisms probably as defense mechanisms against invasive nucleic acids. Two major strategies are utilized. Transcriptional gene silencing (TGS) acts to prevent RNA synthesis and posttranscriptional gene silencing (PTGS) acts to degrade existing RNA. Although the final effects are similar, the mechanisms of TGS and PTGS are species specific. In most eukaryotes, gene silencing is associated with de novo DNA methylation. However, Caenorhabditis elegans shows an efficient PTGS-like mechanism but lacks a DNA methylation system. Additionally, key enzymes involved in plant and nematode PTGS, the cellular RNA-directed RNA polymerases, appear to be missing in Drosophila melanogaster. In this review, we discuss common features of TGS and PTGS that have been identified across species but for TGS we will concentrate only on methylation-mediated gene inactivation. This effort is complicated by the vague borders between gene silencing and normal gene regulation. Mechanisms that are involved in gene silencing are also used to regulate controlled expression of endogenous genes. To outline the general aspects, gene silencing will be defined as narrowly as possible. The intention behind this review is to stimulate discussion and we seek to facilitate this by introducing speculative concepts that could lead to some reappraisal of the literature.
Collapse
Affiliation(s)
- Michael Wassenegger
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Martinsried, Germany
| |
Collapse
|
369
|
Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol 2003; 13:421-6. [PMID: 12620192 DOI: 10.1016/s0960-9822(03)00106-4] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylation of cytosine residues in eukaryotic genomes is often associated with repeated sequences including transposons and their derivatives. Methylation has been implicated in control of two potential deleterious effects of these repeats: (1) uncontrolled transcription, which often disturbs proper expression of nearby host genes, and (2) changes in genome structure by transposition and ectopic recombination. Arabidopsis thaliana provides a genetically tractable system to examine these possibilities, since viable mutants in DNA methyltransferases are available. Arabidopsis MET1 (METHYLTRANSFERASE1, ortholog of mammalian DNA methyltransferase Dnmt1) is necessary for maintaining genomic cytosine methylation at 5'-CG-3' sites. Arabidopsis additionally methylates non-CG sites using CHROMOMETHYLASE3 (CMT3). We examined the mobility of endogenous CACTA transposons in met1, cmt3, and cmt3-met1 mutants. High-frequency transposition of CACTA elements was detected in cmt3-met1 double mutants. Single mutants in either met1 or cmt3 were much less effective in mobilization, despite significant induction of CACTA transcript accumulation. These results lead us to conclude that CG and non-CG methylation systems redundantly function for immobilization of transposons. Non-CG methylation in plants may have evolved as an additional epigenetic tag dedicated to transposon control. This view is consistent with the recent finding that CMT3 preferentially methylates transposon-related sequences.
Collapse
Affiliation(s)
- Masaomi Kato
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
370
|
Rudenko GN, Ono A, Walbot V. Initiation of silencing of maize MuDR/Mu transposable elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:1013-25. [PMID: 12631326 DOI: 10.1046/j.1365-313x.2003.01683.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Homology-dependent gene silencing contributes to genomic stability through suppression of transposable elements. Co-ordinate epigenetic silencing is the main regulatory mechanism controlling dispersed, multicopy MuDR/Mu elements responsible for Mutator activity in maize. Silencing eliminates transposition and proceeds through transcriptional inactivation of MuDR genes and DNA methylation of the terminal inverted repeats (TIRs) in both the regulatory MuDR and non-autonomous Mu elements. In plants with active MuDR/Mu elements, initiation of silencing coincides with nuclear retention of non-polyadenylated RNA derived from MuDR and recently described MuDR homologs (hMuDR elements). Nuclear accumulation of MuDR/hMuDR RNA is developmentally progressive, paralleling loss of Mutator activity and is predictive of loss of Mu somatic excision in the progeny. A high ratio of nuclear to cytoplasmic RNA is the earliest molecular marker for MuDR silencing suggesting that the nuclear RNA may trigger transcriptional silencing. We also demonstrate the constitutive presence of small transposon-specific RNAs of 21-26 nucleotides in all maize lines tested, independent of the Mutator activity. The role of the small RNAs in transposon silencing and translational regulation of transposon-encoded proteins is discussed.
Collapse
Affiliation(s)
- George N Rudenko
- Department of Biological Sciences, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020, USA.
| | | | | |
Collapse
|
371
|
Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA. Understanding mechanisms of novel gene expression in polyploids. Trends Genet 2003; 19:141-7. [PMID: 12615008 DOI: 10.1016/s0168-9525(03)00015-5] [Citation(s) in RCA: 532] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyploidy has long been recognized as a prominent force shaping the evolution of eukaryotes, especially flowering plants. New phenotypes often arise with polyploid formation and can contribute to the success of polyploids in nature or their selection for use in agriculture. Although the causes of novel variation in polyploids are not well understood, they could involve changes in gene expression through increased variation in dosage-regulated gene expression, altered regulatory interactions, and rapid genetic and epigenetic changes. New research approaches are being used to study these mechanisms and the results should provide a more complete understanding of polyploidy.
Collapse
Affiliation(s)
- Thomas C Osborn
- Dept of Agronomy, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 2003; 163:1109-22. [PMID: 12663548 PMCID: PMC1462485 DOI: 10.1093/genetics/163.3.1109] [Citation(s) in RCA: 417] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe the isolation and characterization of two missense mutations in the cytosine-DNA-methyltransferase gene, MET1, from the flowering plant Arabidopsis thaliana. Both missense mutations, which affect the catalytic domain of the protein, led to a global reduction of cytosine methylation throughout the genome. Surprisingly, the met1-2 allele, with the weaker DNA hypomethylation phenotype, alters a well-conserved residue in methyltransferase signature motif I. The stronger met1-1 allele caused late flowering and a heterochronic delay in the juvenile-to-adult rosette leaf transition. The distribution of late-flowering phenotypes in a mapping population segregating met1-1 indicates that the flowering-time phenotype is caused by the accumulation of inherited defects at loci unlinked to the met1 mutation. The delay in flowering time is due in part to the formation and inheritance of hypomethylated fwa epialleles, but inherited defects at other loci are likely to contribute as well. Centromeric repeat arrays hypomethylated in met1-1 mutants are partially remethylated when introduced into a wild-type background, in contrast to genomic sequences hypomethylated in ddm1 mutants. ddm1 met1 double mutants were constructed to further our understanding of the mechanism of DDM1 action and the interaction between two major genetic loci affecting global cytosine methylation levels in Arabidopsis.
Collapse
Affiliation(s)
- Mark W Kankel
- Department of Biology, Washington University, St Louis, Missouri 63130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Brzeski J, Jerzmanowski A. Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors. J Biol Chem 2003; 278:823-8. [PMID: 12403775 DOI: 10.1074/jbc.m209260200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficient in DNA Methylation 1 (DDM1) protein is required to maintain the DNA methylation status of Arabidopsis thaliana. DDM1 is a member of the broad SWI2/SNF2 protein family. Because of its phylogenetic position, DDM1 has been speculated to act as a chromatin-remodeling factor. Here we used a purified recombinant DDM1 protein to investigate whether it can remodel chromatin in vitro. We show that DDM1 is an ATPase stimulated by both naked and nucleosomal DNA. DDM1 binds to the nucleosome and promotes chromatin remodeling in an ATP-dependent manner. Specifically, it induces nucleosome repositioning on a short DNA fragment. The enzymatic activity of DDM1 is not affected by DNA methylation. The relevance of these findings to the in vivo role of DDM1 is discussed.
Collapse
Affiliation(s)
- Jan Brzeski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | | |
Collapse
|
374
|
Soppe WJJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, Jacobsen SE, Schubert I, Fransz PF. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 2002; 21:6549-59. [PMID: 12456661 PMCID: PMC136960 DOI: 10.1093/emboj/cdf657] [Citation(s) in RCA: 366] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Revised: 10/15/2002] [Accepted: 10/17/2002] [Indexed: 11/14/2022] Open
Abstract
We propose a model for heterochromatin assembly that links DNA methylation with histone methylation and DNA replication. The hypomethylated Arabidopsis mutants ddm1 and met1 were used to investigate the relationship between DNA methylation and chromatin organization. Both mutants show a reduction of heterochromatin due to dispersion of pericentromeric low-copy sequences away from heterochromatic chromocenters. DDM1 and MET1 control heterochromatin assembly at chromocenters by their influence on DNA maintenance (CpG) methylation and subsequent methylation of histone H3 lysine 9. In addition, DDM1 is required for deacetylation of histone H4 lysine 16. Analysis of F(1) hybrids between wild-type and hypomethylated mutants revealed that DNA methylation is epigenetically inherited and represents the genomic imprint that is required to maintain pericentromeric heterochromatin.
Collapse
Affiliation(s)
- Wim J J Soppe
- Department of Cytogenetics, Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Shapiro JA. Genome organization and reorganization in evolution: formatting for computation and function. Ann N Y Acad Sci 2002; 981:111-34. [PMID: 12547677 DOI: 10.1111/j.1749-6632.2002.tb04915.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This volume deals with the role of epigenetics in life and evolution. The most dynamic forms of functional genome formatting involve DNA interacting with cellular complexes that do not alter sequence information. Such important epigenetic phenomena are the main subjects of other articles in this volume. This article focuses on the long-lived form of genome formatting that lies within the DNA sequence itself. I argue for a computational view of genome function as the long-term information storage organelle of each cell. Structural formatting consists of organizing various signals and coding sequences into computationally ready systems facilitating genome expression and genome transmission. The basic features of genome organization can be understood by examining the E. coli lac operon as a paradigmatic genomic system. Multiple systems are connected through distributed signals and repetitive DNA to form higher-order genome system architectures. Molecular discoveries about mechanisms of DNA restructuring show that cells possess the natural genetic engineering functions necessary for evolutionary change by rearranging genomic components and reorganizing system architectures. The concepts of cellular computation and decision-making, genome system architecture, and natural genetic engineering combine to provide a new way of framing evolutionary theories and understanding genome sequence information.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
376
|
Ohta Y, Noma K, Tsuchimoto S, Ohtsubo E, Ohtsubo H. Expression of Arabidopsis LINEs from two promoters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:809-818. [PMID: 12472695 DOI: 10.1046/j.1365-313x.2002.01466.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most Arabidopsis long interspersed elements (LINEs, called ATLNs) have two open reading frames, orf1 and orf2. In the 5' untranslated regions (UTRs) located upstream of orf1, the most proximal segments of tens of base pairs long are not homologous even in two ATLN members with almost identical sequences. In this study, we first show that RT-PCR products from ATLN39, a member of ATLN, can be detected only in total RNA from the hypomethylation mutant ddm1 or from suspension-cultured cells treated with a DNA methylation inhibitor 5-azacytidine, indicating that the expression of ATLN39 is negatively regulated by DNA methylation. We then show that orf1 fused in frame with the luciferase (luc) gene is expressed in suspension-cultured cells of A. thaliana when the 5' UTR is present in the region upstream of orf1. Analysis of deletion in the 5' UTR revealed that the 5' UTR has two promoters, designated here as P1 and P2. Analysis of transcripts by 5' RACE showed that their 5' ends were located at sites immediately upstream of the P1 region or at sites downstream of the P2 region. This observation and the fact that the P1 region contains no TATA sequence indicate that P1 is an internal promoter that initiates transcription from sites upstream of the promoter. A sequence containing GGCGA with a CpG methylatable site is conserved in the P1 regions in members closely related to ATLN39. The P2 region, however, contains the TATA sequence as well as another sequence with a CpG site. The TATA sequence is conserved in members closely related to ATLN39 but not in the other ATLN members, suggesting that P2 is the promoter uniquely present in the ATLN39-related members. Transcripts from promoter P1 can be used as templates to give new copies proficient in retroposition, but those from promoter P2 cannot because of the lack of the proximal half region of the 5' UTR sequence. Transcripts from promoter P2, as well as those from promoter P1 can, however, be used for the production of a sufficient amount of proteins for retroposition. Only a short sequence of the non-homologous region is present at the 5' ends of transcripts from promoter P1, thus suggesting that the non-homologous regions seen in the most proximal regions in ATLN elements are not generated in transcription.
Collapse
Affiliation(s)
- Yoshizu Ohta
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | |
Collapse
|
377
|
Reyes JC, Hennig L, Gruissem W. Chromatin-remodeling and memory factors. New regulators of plant development. PLANT PHYSIOLOGY 2002; 130:1090-101. [PMID: 12427976 PMCID: PMC1540260 DOI: 10.1104/pp.006791] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- José C Reyes
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Isla de la Cartuja, Avenida Américo Vespucio s/n, 41092 Sevilla, Spain
| | | | | |
Collapse
|
378
|
Abstract
Mutator (Mu) element insertion has become the main way of mutating and cloning maize genes, but we are only beginning to understand how this transposon system is regulated. Mu elements are under tight developmental control and are subject to a form of epigenetic regulation that shares some features with the regulation of paramutable maize genes. Mu-like elements (MULEs) are widespread among angiosperms, and multiple diverged functional variants appear to have coexisted in genomes for long periods. In addition to its utility, the means by which this widespread and highly mutagenic system is held in check should help us to address fundamental issues concerning the stability of genomes.
Collapse
Affiliation(s)
- Damon Lisch
- Dept Plant and Microbial Biology, 111 Koshland Hall, University of California at Berkeley, 94720, USA.
| |
Collapse
|
379
|
Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 2002; 277:37741-6. [PMID: 12124387 DOI: 10.1074/jbc.m204050200] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
When maize seedlings were exposed to cold stress, a genome-wide demethylation occurred in root tissues. Screening of genomic DNA identified one particular fragment that was demethylated during chilling. This 1.8-kb fragment, designated ZmMI1, contained part of the coding region of a putative protein and part of a retrotransposon-like sequence. ZmMI1 was transcribed only under cold stress. Direct methylation mapping revealed that hypomethylated regions spanning 150 bases alternated with hypermethylated regions spanning 50 bases. Analysis of nuclear DNA digested with micrococcal nuclease indicated that these regions corresponded to nucleosome cores and linkers, respectively. Cold stress induced severe demethylation in core regions but left linker regions relatively intact. Thus, methylation and demethylation were periodic in nucleosomes. The following biological significance is conceivable. First, because DNA methylation in nucleosomes induces alteration of gene expression by changing chromatin structures, vast demethylation may serve as a common switch for many genes that are simultaneously controlled upon environmental cues. Second, because artificial demethylation induces heritable changes in plant phenotype (Sano, H., Kamada, I., Youssefian, S., Katsumi, M., and Wabilko, H. (1990) Mol. Gen. Genet. 220, 441-447), altered DNA methylation may result in epigenetic inheritance, in which gene expression is modified without changing the nucleotide sequence.
Collapse
Affiliation(s)
- Nicolas Steward
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
380
|
Kakutani T. Epi-alleles in plants: inheritance of epigenetic information over generations. PLANT & CELL PHYSIOLOGY 2002; 43:1106-11. [PMID: 12407189 DOI: 10.1093/pcp/pcf131] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Epigenetic modification of plant gene and transposon activity, which correlates with their methylation, is often heritable over many generations. Such heritable properties allow conventional genetic linkage analysis to identify the sequences affected in epigenetic variants. Machinery controlling the establishment of the epigenetic state and role of the epigenetic controls in plant development are also discussed.
Collapse
Affiliation(s)
- Tetsuji Kakutani
- National Institute of Genetics, Mishima, Shizuoka, 411-8540 Japan.
| |
Collapse
|
381
|
Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation?how does it all fit together? J Cell Biochem 2002; 87:117-25. [PMID: 12244565 DOI: 10.1002/jcb.10286] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA methylation is important in the control of gene transcription and chromatin structure. The complexities of this process are just beginning to be elucidated in relationship to other epigenetic mechanisms. Exciting new research in the areas of histone methylation and chromatin remodeling make it clear just how important the connections between these various mechanisms and DNA methylation are for the control of chromosome structure and gene expression. Emerging evidence suggests that chromatin remodeling enzymes and histone methylation are essential for proper DNA methylation patterns. Other histone modifications, such as acetylation and phosphorylation, in turn, affect histone methylation and histone methylation also appears to be highly reliant on chromatin remodeling enzymes. This review will summarize what is likely only the beginning of a flood of new information that will ultimately link all epigenetic modifications of the mammalian genome. A model will also be put forth to account for how chromatin modifications lead to genomic DNA methylation patterns.
Collapse
Affiliation(s)
- Theresa M Geiman
- Epigenetic Gene Regulation and Cancer Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
382
|
Gendrel AV, Lippman Z, Yordan C, Colot V, Martienssen RA. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 2002; 297:1871-3. [PMID: 12077425 DOI: 10.1126/science.1074950] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Arabidopsis gene DDM1 is required to maintain DNA methylation levels and is responsible for transposon and transgene silencing. However, rather than encoding a DNA methyltransferase, DDM1 has similarity to the SWI/SNF family of adenosine triphosphate-dependent chromatin remodeling genes, suggesting an indirect role in DNA methylation. Here we show that DDM1 is also required to maintain histone H3 methylation patterns. In wild-type heterochromatin, transposons and silent genes are associated with histone H3 methylated at lysine 9, whereas known genes are preferentially associated with methylated lysine 4. In ddm1 heterochromatin, DNA methylation is lost, and methylation of lysine 9 is largely replaced by methylation of lysine 4. Because DNA methylation has recently been shown to depend on histone H3 lysine 9 methylation, our results suggest that transposon methylation may be guided by histone H3 methylation in plant genomes. This would account for the epigenetic inheritance of hypomethylated DNA once histone H3 methylation patterns are altered.
Collapse
|
383
|
Abstract
DNA methyltransferases catalyze the transfer of a methyl group from S-adenosyl-L-methionine to cytosine or adenine bases in DNA. These enzymes challenge the Watson/Crick dogma in two instances: 1) They attach inheritable information to the DNA that is not encoded in the nucleotide sequence. This so-called epigenetic information has many important biological functions. In prokaryotes, DNA methylation is used to coordinate DNA replication and the cell cycle, to direct postreplicative mismatch repair, and to distinguish self and nonself DNA. In eukaryotes, DNA methylation contributes to the control of gene expression, the protection of the genome against selfish DNA, maintenance of genome integrity, parental imprinting, X-chromosome inactivation in mammals, and regulation of development. 2) The enzymatic mechanism of DNA methyltransferases is unusual, because these enzymes flip their target base out of the DNA helix and, thereby, locally disrupt the B-DNA helix. This review describes the biological functions of DNA methylation in bacteria, fungi, plants, and mammals. In addition, the structures and mechanisms of the DNA methyltransferases, which enable them to specifically recognize their DNA targets and to induce such large conformational changes of the DNA, are discussed.
Collapse
Affiliation(s)
- Albert Jeltsch
- Institut für Biochemie, FB 8, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.
| |
Collapse
|
384
|
Hamilton A, Voinnet O, Chappell L, Baulcombe D. Two classes of short interfering RNA in RNA silencing. EMBO J 2002; 21:4671-9. [PMID: 12198169 PMCID: PMC125409 DOI: 10.1093/emboj/cdf464] [Citation(s) in RCA: 676] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2002] [Revised: 07/05/2002] [Accepted: 07/16/2002] [Indexed: 11/14/2022] Open
Abstract
RNA silencing is a eukaryotic genome defence system that involves processing of double-stranded RNA (dsRNA) into 21-26 nt, short interfering RNA (siRNA). The siRNA mediates suppression of genes corresponding to the dsRNA through targeted RNA degradation. In some plant systems there are additional silencing processes, involving systemic spread of silencing and RNA-directed methylation/transcriptional suppression of homologous genomic DNA. We show here that siRNAs produced in plants from a green fluorescent protein (GFP) transgene are in short (21-22 nt) and long (24-26 nt) size classes, whereas those from endogenous retroelements are only in the long class. Viral suppressors of RNA silencing and mutations in Arabidopsis indicate that these classes of siRNA have different roles. The long siRNA is dispensable for sequence-specific mRNA degradation, but correlates with systemic silencing and methylation of homologous DNA. Conversely, the short siRNA class correlates with mRNA degradation but not with systemic signalling or methylation. These findings reveal an unexpected level of complexity in the RNA silencing pathway in plants that may also apply in animals.
Collapse
MESH Headings
- Adaptation, Physiological
- Agrobacterium tumefaciens/genetics
- Arabidopsis/genetics
- Caulimovirus/genetics
- Gene Silencing
- Genes, Reporter
- Genes, Viral
- Green Fluorescent Proteins
- Luminescent Proteins/biosynthesis
- Plant Leaves/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic
- RNA, Double-Stranded/genetics
- RNA, Plant/classification
- RNA, Plant/physiology
- RNA, Small Interfering
- RNA, Untranslated/classification
- RNA, Untranslated/physiology
- RNA, Viral/genetics
- Recombinant Fusion Proteins/biosynthesis
- Retroelements/genetics
- Nicotiana/genetics
- Transgenes
Collapse
Affiliation(s)
- Andrew Hamilton
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
Present address: Department of Pathology, Glasgow University, Western Infirmary, Glasgow G11 6NT, UK Corresponding author e-mail: A.Hamilton and O.Voinnet contributed equally to this work
| | | | | | - David Baulcombe
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
Present address: Department of Pathology, Glasgow University, Western Infirmary, Glasgow G11 6NT, UK Corresponding author e-mail: A.Hamilton and O.Voinnet contributed equally to this work
| |
Collapse
|
385
|
Mette MF, van der Winden J, Matzke M, Matzke AJM. Short RNAs can identify new candidate transposable element families in Arabidopsis. PLANT PHYSIOLOGY 2002; 130:6-9. [PMID: 12226481 PMCID: PMC1540252 DOI: 10.1104/pp.007047] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- M Florian Mette
- Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria
| | | | | | | |
Collapse
|
386
|
Abstract
Abstract
We explore the extent and sources of epigenetic variation in cytosine methylation in natural accessions of the flowering plant, Arabidopsis thaliana, by focusing on the methylation of the major rRNA gene repeats at the two nucleolus organizer regions (NOR). Our findings indicate that natural variation in NOR methylation results from a combination of genetic and epigenetic mechanisms. Genetic variation in rRNA gene copy number and trans-acting modifier loci account for some of the natural variation in NOR methylation. Our results also suggest that divergence and inheritance of epigenetic information, independent of changes in underlying nucleotide sequence, may play an important role in maintaining natural variation in cytosine methylation.
Collapse
Affiliation(s)
- Nicole C Riddle
- Department of Biology, Washington University, Saint Louis, Missouri 63130, USA
| | | |
Collapse
|
387
|
Abstract
Methylation of cytosines within the CpG dinucleotide by DNA methyltransferases is involved in regulating transcription and chromatin structure, controlling the spread of parasitic elements, maintaining genome stability in the face of vast amounts of repetitive DNA, and X chromosome inactivation. Cellular DNA methylation is highly compartmentalized over the mammalian genome and this compartmentalization is essential for embryonic development. When the complicated mechanisms that control which DNA sequences become methylated go awry, a number of inherited genetic diseases and cancer may result. Much new information has recently come to light regarding how cellular DNA methylation patterns may be established during development and maintained in somatic cells. Emerging evidence indicates that various chromatin states such as histone modifications (acetylation and methylation) and nucleosome positioning (modulated by ATP-dependent chromatin remodeling machines) determine DNA methylation patterning. Additionally, various regulatory factors interacting with the DNA methyltransferases may direct them to specific DNA sequences, regulate their enzymatic activity, and allow their use as transcriptional repressors. Continued studies of the connections between DNA methylation and chromatin structure and the DNA methyltransferase-associated proteins, will likely reveal that many, if not all, epigenetic modifications of the genome are directly connected. Such studies should also yield new insights into treating diseases involving aberrant DNA methylation.
Collapse
Affiliation(s)
- Keith D Robertson
- Epigenetic Gene Regulation and Cancer Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, MD 20892, USA.
| |
Collapse
|
388
|
Abstract
During the past 5 years, it has become increasingly apparent that deregulated transcriptional control is a root cause of hematologic malignancy. Chromosomal translocations yield novel fusion transcription factors that in turn either activate genes critical for cell growth or repress genes important for normal cellular differentiation. Many of the fusion proteins of myeloid leukemia are aberrant transcriptional repressors and share the property of recruiting histone deacetylases (HDACs) to target genes. HDACs, by acting on chromatin and on transcription factors themselves, can modulate gene regulation. HDACs also play major roles in the function of well-characterized tumor suppressors such as p53 and Rb. Thus, HDACs are a compelling therapeutic target for cancer therapy. Several classes of HDAC inhibitors induce differentiation and cell death in myeloid and lymphoid model systems. Some of these are now in clinical trials for hematologic malignancies. The nature of HDAC function, the classes of inhibitors available, and recent experimental and clinical data will be reviewed.
Collapse
Affiliation(s)
- Ari Melnick
- Division of Hematology, Department of Medicine, Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
389
|
Crompton NEA, Shi YQ, Wuergler F, Blattmann H. A single low dose of X-rays induces high frequencies of genetic instability (aneuploidy) and heritable damage (apoptosis), dependent on cell type and p53 status. Mutat Res 2002; 517:173-86. [PMID: 12034319 DOI: 10.1016/s1383-5718(02)00068-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We harvested and analyzed cells from four different non-transformed cell lines surviving a single X-ray exposure. Evidence of radiation-induced karyotype instability was observed in 100% of C3H 10T1/2 fibroblast clones and 11.3% of V79 fibroblast clones. Heritable damage: predisposition to apoptosis, but not karyotype instability, was induced in TK6 (p53(wt/wt)) and WTK1 (p53(mut/mut)) human B-lymphoblastoid cell clones. The studies indicate: (1) genetic instability and/or heritable damage are induced in cells exposed to radiation at a high frequency, and induction of genetic instability is not limited to morphologically transformed cells [Radiat. Res. 138 (1994) S105; Radiat. Environ. Biophys. 36 (1998) 255]; (2) sensitivity to genetic instability and heritable damage depend on cell type; (3) checkpoint stringency and p53 status significantly influence the frequency of radiation-induced genetic instability and heritable damage; (4) in some cell lines, damage induced by low doses of radiation (below 2 Gy) leads to heritable cytotoxic and genotoxic effects in 100% of cells exposed. The data suggest that mammalian cells misinterpret damage induced by ionizing radiation as if it were a physiological cell signal. This contrasts strongly with the response of mammalian cells to damage induced by other types of DNA-toxic agents where damage-specific repair mechanisms are activated.
Collapse
Affiliation(s)
- Nigel E A Crompton
- Division of Radiation Medicine, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland.
| | | | | | | |
Collapse
|
390
|
Feschotte C, Jiang N, Wessler SR. Plant transposable elements: where genetics meets genomics. Nat Rev Genet 2002; 3:329-41. [PMID: 11988759 DOI: 10.1038/nrg793] [Citation(s) in RCA: 604] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transposable elements are the single largest component of the genetic material of most eukaryotes. The recent availability of large quantities of genomic sequence has led to a shift from the genetic characterization of single elements to genome-wide analysis of enormous transposable-element populations. Nowhere is this shift more evident than in plants, in which transposable elements were first discovered and where they are still actively reshaping genomes.
Collapse
Affiliation(s)
- Cédric Feschotte
- Departments of Plant Biology and Genetics, The University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
391
|
Lisch D, Carey CC, Dorweiler JE, Chandler VL. A mutation that prevents paramutation in maize also reverses Mutator transposon methylation and silencing. Proc Natl Acad Sci U S A 2002; 99:6130-5. [PMID: 11959901 PMCID: PMC122914 DOI: 10.1073/pnas.052152199] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2002] [Accepted: 03/13/2002] [Indexed: 11/18/2022] Open
Abstract
Both paramutation and Mutator (Mu) transposon inactivation involve heritable changes in gene expression without concomitant changes in DNA sequence. The mechanisms by which these shifts in gene activity are achieved are unknown. Here we present evidence that these two phenomena are linked mechanistically. We show that mutation of a gene, modifier of paramutation 1 (mop1), which prevents paramutation at three different loci in maize, can reverse methylation of Mutator elements reliably. In mop1 mutant backgrounds, methylation of nonautonomous Mu elements can be reversed even in the absence of the regulatory MuDR element. Previously silenced MuDR elements are reactivated sporadically after multiple generations of exposure to mop1 mutations. MuDR methylation is separable from MuDR silencing, because removal of methylation does not cause immediate reactivation. The mop1 mutation does not alter the methylation of certain other transposable elements including those just upstream of a paramutable b1 gene. Our results suggest that the mop1 gene acts on a subset of epigenetically regulated sequences in the maize genome and paramutation and Mu element methylation require a common factor, which we hypothesize influences chromatin structure.
Collapse
Affiliation(s)
- Damon Lisch
- Department of Plant Sciences, 303 Forbes Hall, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
392
|
Riechmann JL. Transcriptional regulation: a genomic overview. THE ARABIDOPSIS BOOK 2002; 1:e0085. [PMID: 22303220 PMCID: PMC3243377 DOI: 10.1199/tab.0085] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription.
Collapse
Affiliation(s)
- José Luis Riechmann
- Mendel Biotechnology, 21375 Cabot Blvd., Hayward, CA 94545, USA
- California Institute of Technology, Division of Biology 156-29, Pasadena, CA 91125
| |
Collapse
|
393
|
Abstract
DNA methyltransferases catalyze the transfer of a methyl group from S-adenosyl-L-methionine to cytosine or adenine bases in DNA. These enzymes challenge the Watson/Crick dogma in two instances: 1) They attach inheritable information to the DNA that is not encoded in the nucleotide sequence. This so-called epigenetic information has many important biological functions. In prokaryotes, DNA methylation is used to coordinate DNA replication and the cell cycle, to direct postreplicative mismatch repair, and to distinguish self and nonself DNA. In eukaryotes, DNA methylation contributes to the control of gene expression, the protection of the genome against selfish DNA, maintenance of genome integrity, parental imprinting, X-chromosome inactivation in mammals, and regulation of development. 2) The enzymatic mechanism of DNA methyltransferases is unusual, because these enzymes flip their target base out of the DNA helix and, thereby, locally disrupt the B-DNA helix. This review describes the biological functions of DNA methylation in bacteria, fungi, plants, and mammals. In addition, the structures and mechanisms of the DNA methyltransferases, which enable them to specifically recognize their DNA targets and to induce such large conformational changes of the DNA, are discussed.
Collapse
Affiliation(s)
- Albert Jeltsch
- Institut für Biochemie, FB 8, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.
| |
Collapse
|
394
|
Abstract
It is increasingly clear that chromatin is not just a device for packing DNA within the nucleus but also a dynamic material that changes as cellular environments alter. The precise control of chromatin modification in response to developmental and environmental cues determines the correct spatial and temporal expression of genes. Here, we review exciting discoveries that reveal chromatin participation in many facets of plant development. These include: chromatin modification from embryonic and meristematic development to flowering and seed formation, the involvement of DNA methylation and chromatin in controlling invasive DNA and in maintenance of epigenetic states, and the function of chromatin modifying and remodeling complexes such as SWI/SNF and histone acetylases and deacetylases in gene control. Given the role chromatin structure plays in every facet of plant development, chromatin research will undoubtedly be integral in both basic and applied plant biology.
Collapse
Affiliation(s)
- Guofu Li
- Sangamo Biosciences Inc, Point Richmond Tech Center, Richmond, CA 94804, USA.
| | | | | |
Collapse
|
395
|
Jeong Br BR, Wu-Scharf D, Zhang C, Cerutti H. Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc Natl Acad Sci U S A 2002; 99:1076-81. [PMID: 11782532 PMCID: PMC117432 DOI: 10.1073/pnas.022392999] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the unicellular green alga Chlamydomonas reinhardtii, the epigenetic silencing of transgenes occurs, as in land plants, at both the transcriptional and posttranscriptional levels. In the case of single-copy transgenes, transcriptional silencing takes place without detectable cytosine methylation of the introduced DNA. We have isolated two mutant strains, Mut-9 and Mut-11, that reactivate expression of a transcriptionally silenced single-copy transgene. These suppressors are deficient in the repression of a DNA transposon and a retrotransposon-like element. In addition, the mutants show enhanced sensitivity to DNA-damaging agents, particularly radiomimetic chemicals inducing DNA double-strand breaks. All of these phenotypes are much more prominent in a double mutant strain. These observations suggest that multiple partly redundant epigenetic mechanisms are involved in the repression of transgenes and transposons in eukaryotes, presumably as components of a system that evolved to preserve genomic stability. Our results also raise the possibility of mechanistic connections between epigenetic transcriptional silencing and DNA double-strand break repair.
Collapse
Affiliation(s)
- Byeong-ryool Jeong Br
- School of Biological Sciences and Plant Science Initiative, University of Nebraska, E211 Beadle Center, Post Office Box 880666, Lincoln, NE 68588-0666, USA
| | | | | | | |
Collapse
|
396
|
Abstract
Plant pathogen resistance is mediated by a large repertoire of resistance (R) genes, which are often clustered in the genome and show a high degree of genetic variation. Here, we show that an Arabidopsis thaliana R-gene cluster is also subject to epigenetic variation. We describe a heritable but metastable epigenetic variant bal that overexpresses the R-like gene At4g16890 from a gene cluster on Chromosome 4. The bal variant and Arabidopsis transgenics overexpressing the At4g16890 gene are dwarfed and constitutively activate the salicylic acid (SA)-dependent defense response pathway. Overexpression of a related R-like gene also occurs in the ssi1 (suppressor of SA insensitivity 1) background, suggesting that ssi1 is mechanistically related to bal.
Collapse
Affiliation(s)
- Trevor L Stokes
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
397
|
Wright DA, Voytas DF. Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res 2002; 12:122-31. [PMID: 11779837 PMCID: PMC155253 DOI: 10.1101/gr.196001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2001] [Accepted: 07/15/2001] [Indexed: 11/24/2022]
Abstract
The Athila retroelements of Arabidopsis thaliana encode a putative envelope gene, suggesting that they are infectious retroviruses. Because most insertions are highly degenerate, we undertook a comprehensive analysis of the A. thaliana genome sequence to discern their conserved features. One family (Athila4) was identified whose members are largely intact and share >94% nucleotide identity. As a basis for comparison, related elements (the Calypso elements) were characterized from soybean. Consensus Calypso and Athila4 elements are 12-14 kb in length and have long terminal repeats of 1.3-1.8 kb. Gag and Pol are encoded on a single open reading frame (ORF) of 1801 (Calypso) and 1911 (Athila4) amino acids. Following the Gag-Pol ORF are noncoding regions of ~0.7 and 2 kb, which, respectively, flank the env-like gene. The env-like ORF begins with a putative splice acceptor site and encodes a protein with a predicted central transmembrane domain, similar to retroviral env genes. RNA of Athila elements was detected in an A. thaliana strain with decreased DNA methylation (ddm1). Additionally, a PCR survey identified related reverse transcriptases in diverse angiosperm genomes. Their ubiquitous nature and the potential for horizontal transfer by infection implicates these endogenous retroviruses as important vehicles for plant genome evolution.
Collapse
Affiliation(s)
- David A Wright
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
398
|
Abstract
In the past two years, a variety of forward genetic screens have revealed predicted plant chromatin remodeling components that are involved in either differential histone acetylation or ATP-dependent SWI2/SNF2-related complexes. Combined with the results of recent reverse genetic studies, these findings have begun to provide the groundwork for determining the function of chromatin-based control in plants.
Collapse
Affiliation(s)
- M L Verbsky
- Department of Biology, Washington University, One Brookings Drive, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
399
|
Abstract
Plant genomes contain many transposable elements, most of which are inactivated or 'silenced'. Recent studies have brought significant new insights into the regulation of transposable elements. In Caenorhabditis elegans, they are silenced post-transcriptionally, whereas transposable elements in Arabidopsis are silenced by a chromatin-remodelling factor, one of the components of transcriptional gene silencing. These observations provide the functional correlation between gene silencing and the suppression of transposable elements, and have major implications for our understanding of the maintenance of genomic integrity.
Collapse
Affiliation(s)
- H Okamoto
- Molecular Genetics Dept, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Tsukuba, Japan.
| | | |
Collapse
|
400
|
Abstract
Post-transcriptional gene silencing (PTGS) in plants is an RNA-degradation mechanism that shows similarities to RNA interference (RNAi) in animals. Indeed, both involve double-stranded RNA (dsRNA), spread within the organism from a localised initiating area, correlate with the accumulation of small interfering RNA (siRNA) and require putative RNA-dependent RNA polymerases, RNA helicases and proteins of unknown functions containing PAZ and Piwi domains. However, some differences are evident. First, PTGS in plants requires at least two genes – SGS3 (which encodes a protein of unknown function containing a coil-coiled domain) and MET1 (which encodes a DNA-methyltransferase) – that are absent in C. elegans and thus are not required for RNAi. Second, all Arabidopsis mutants that exhibit impaired PTGS are hypersusceptible to infection by the cucumovirus CMV, indicating that PTGS participates in a mechanism for plant resistance to viruses. Interestingly, many viruses have developed strategies to counteract PTGS and successfully infect plants – for example, by potentiating endogenous suppressors of PTGS. Whether viruses can counteract RNAi in animals and whether endogenous suppressors of RNAi exist in animals is still unknown.
Collapse
Affiliation(s)
- H Vaucheret
- Laboratoire de Biologie Cellulaire, INRA, Versailles 78026, France.
| | | | | |
Collapse
|