351
|
Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, Chuckowree IS, Clarke PA, Depledge P, Eccles SA, Friedman LS, Hayes A, Hancox TC, Kugendradas A, Lensun L, Moore P, Olivero AG, Pang J, Patel S, Pergl-Wilson GH, Raynaud FI, Robson A, Saghir N, Salphati L, Sohal S, Ultsch MH, Valenti M, Wallweber HJA, Wan NC, Wiesmann C, Workman P, Zhyvoloup A, Zvelebil MJ, Shuttleworth SJ. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer . J Med Chem 2008; 51:5522-32. [PMID: 18754654 DOI: 10.1021/jm800295d] [Citation(s) in RCA: 611] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phosphatidylinositol-3-kinase (PI3K) is an important target in cancer due to the deregulation of the PI3K/ Akt signaling pathway in a wide variety of tumors. A series of thieno[3,2-d]pyrimidine derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. The synthesis, biological activity, and further profiling of these compounds are described. This work resulted in the discovery of 17, GDC-0941, which is a potent, selective, orally bioavailable inhibitor of PI3K and is currently being evaluated in human clinical trials for the treatment of cancer.
Collapse
Affiliation(s)
- Adrian J Folkes
- Piramed Pharma, 957 Buckingham Avenue, Slough, Berks SL1 4NL, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Abstract
The PTEN tumor suppressor was discovered by its homozygous deletion and other mutations in cancer. Since then, PTEN has been shown to be a non-redundant, evolutionarily conserved phosphatase whose function affects diverse cellular progresses such as cell cycle progression, cell proliferation, chemotaxis, apoptosis, aging, muscle contractility, DNA damage response, angiogenesis and cell polarity. In accordance with its ability to influence multiple crucial cellular processes, PTEN has a major role in the pathogenesis of numerous diseases such as diabetes, autism and almost every cancer examined. This review will discuss the diverse ways in which PTEN signaling is modified in cancer, and how these changes correlate with and might possibly affect the action of targeted chemotherapy.
Collapse
|
353
|
Oda K, Okada J, Timmerman L, Rodriguez-Viciana P, Stokoe D, Shoji K, Taketani Y, Kuramoto H, Knight ZA, Shokat KM, McCormick F. PIK3CA Cooperates with Other Phosphatidylinositol 3′-Kinase Pathway Mutations to Effect Oncogenic Transformation. Cancer Res 2008; 68:8127-36. [DOI: 10.1158/0008-5472.can-08-0755] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
354
|
Abstract
Deregulation of the PI3K signaling pathway is observed in many human cancers and occurs most frequently through loss of PTEN phosphatase tumor suppressor function or through somatic activating mutations in the Class IA PI3K, PIK3CA. Tumors harboring activated p110alpha, the protein product of PIK3CA, require p110alpha activity for growth and survival and hence are expected to be responsive to inhibitors of its lipid kinase activity. Whether PTEN-deficient cancers similarly depend on p110alpha activity to sustain activation of the PI3K pathway has been unclear. In this study, we used a single-vector lentiviral inducible shRNA system to selectively inactivate the three Class IA PI3Ks, PIK3CA, PIK3CB, and PIK3CD, to determine which PI3K isoforms are responsible for driving the abnormal proliferation of PTEN-deficient cancers. Down-regulation of PIK3CA in colorectal cancer cells harboring mutations in PIK3CA inhibited downstream PI3K signaling and cell growth. Surprisingly, PIK3CA depletion affected neither PI3K signaling nor cell growth in 3 PTEN-deficient cancer cell lines. In contrast, down-regulation of the PIK3CB isoform, which encodes p110beta, resulted in pathway inactivation and subsequent inhibition of growth in both cell-based and in vivo settings. This essential function of PIK3CB in PTEN-deficient cancer cells required its lipid kinase activity. Our findings demonstrate that although p110alpha activation is required to sustain the proliferation of established PIK3CA-mutant tumors, PTEN-deficient tumors are dependent instead on p110beta signaling. This unexpected finding demonstrates the need to tailor therapeutic approaches to the genetic basis of PI3K pathway activation to achieve optimal treatment response.
Collapse
|
355
|
Abstract
Many of the initial examples of the clinical utility of pharmacogenetics were elucidated in the field of oncology. Those examples were largely based on the existence of germline genetic variation that influences the metabolism of cytotoxic drugs. However, with the development of kinase inhibitors, drugs designed to preferentially target altered proteins driving oncogenesis, pharmacogenetics in cancer has shifted to understanding the somatic differences that determine response to these targeted agents. It is becoming increasingly clear that understanding the molecular genetics of cancer will lead to the further development of targeted therapeutics. Therefore, it is imperative that pharmacogenomics researchers understand the motivations and challenges of developing targeted therapies to treat cancer as a paradigm for personalized medicine. However, much of the discussion in the pharmacogenomics community in cancer is still largely focused on the germline variants as predictors of drug toxicity. In light of that fact, this review presents a detailed discussion of the development of commonly used targeted therapies for the treatment of hematological and solid tumors, the somatic mutations that determine response to those therapies, and the mechanisms of drug resistance.
Collapse
|
356
|
Liu Z, Hou P, Ji M, Guan H, Studeman K, Jensen K, Vasko V, El-Naggar AK, Xing M. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab 2008; 93:3106-16. [PMID: 18492751 DOI: 10.1210/jc.2008-0273] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Genetic alterations in receptor tyrosine kinases (RTKs) and phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK pathways have not been fully defined in anaplastic and follicular thyroid cancers [anaplastic thyroid cancer (ATC), follicular thyroid cancer (FTC)]. OBJECTIVE The objective of the study was to explore a wide-range genetic basis for the involvement of these pathways in ATC. DESIGN We examined mutations and copy number gains of a large panel of genes in these pathways and corresponding phosphorylation of ERK (p-ERK) and Akt. RESULTS We found frequent copy gains of RTK genes, including EGFR, PDGFRalpha and -beta, VEGFR1 and 2, KIT, and MET and in PIK3Ca, PIK3Cb, and PDK1 genes in the PI3K/Akt pathway. Mutations of Ras, PIK3Ca, PTEN, and BRAF genes and RET/PTC rearrangements were common, whereas mutations in PDK1, Akt1, Akt2, and RTK genes were uncommon in ATC. Overall, 46 of 48 ATC (95.8%) harbored at least one genetic alteration, and coexistence of two or more was seen in 37 of 48 ATC (77.1%). These genetic alterations were somewhat less common in FTC. Genetic alterations that could activate both the PI3K/Akt and MAPK pathways were found in 39 of 48 ATC (81.3%). RTK gene copy gains were preferentially associated with p-Akt, suggesting their dominant role in activating the PI3K/Akt pathway. The phosphorylation of Akt was far more common than p-ERK in FTC, and both were relatively common and often coexisted in ATC. CONCLUSIONS Genetic alterations in the RTKs and PI3K/Akt and MAPK pathways are extremely prevalent in ATC and FTC, providing a strong genetic basis for an extensive role of these signaling pathways and the development of therapies targeting these pathways for ATC and FTC, particularly the former.
Collapse
Affiliation(s)
- Zhi Liu
- Division of Endocrinology and Metabolism, Department of Pathology, the Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 333, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Hayashi T, Shimamura Y, Saegusa T, Horiuchi A, Kobayashi Y, Hiraoka N, Kanai Y, Aburatani H, Sano K, Konishi I. Molecular mechanisms of uterine leiomyosarcomas: involvement of defect in LMP2 expression. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:297-305. [PMID: 19787091 PMCID: PMC2733082 DOI: 10.4137/grsb.s470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with uterine leiomyosarcoma (LMS) typically present with vaginal bleeding, pain, and a pelvic mass. Typical presentations with hypercalcemia or eosinophilia have been reported. Radiographic evaluation with combined positron emission tomography/computed tomography may assist in the diagnosis and surveillance of women with uterine LMS. A recently developed risk-assessment index is highly predictive of disease-specific survival. Ovarian preservation does not appear to negatively impact outcome, and the addition of adjuvant therapy after surgical treatment does not seem to improve survival. It is noteworthy that LMP2-deficient mice exhibit spontaneous development of uterine LMS with a disease prevalence of ~37% by 12 months of age. The LMP2 gene is transcribed from a promoter containing an interferon (IFN)-γ-response factor element; thus, the IFN-γ-signal strongly induces LMP2 expression. Furthermore, a recent report demonstrated the loss of ability to induce LMP2 expression, which is an interferon (IFN)-γ-inducible factor, in human uterine LMS tissues and cell lines. Analysis of human uterine LMS shows somatic mutations in the IFNγ signalling pathway, thus the loss of LMP2 induction is attributable to a defect in the earliest steps of the IFN-γ signalling pathway. The discovery of an impaired key cell-signalling pathway may provide new targets for diagnostic approaches and therapeutic intervention.
Collapse
Affiliation(s)
- Takuma Hayashi
- Department of Immunology and Infectious Disease, Shinshu University Graduate School of Medicine, Nagano, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Yang L, Hamilton SR, Sood A, Kuwai T, Ellis L, Sanguino A, Lopez-Berestein G, Boyd DD. The previously undescribed ZKSCAN3 (ZNF306) is a novel "driver" of colorectal cancer progression. Cancer Res 2008; 68:4321-30. [PMID: 18519692 DOI: 10.1158/0008-5472.can-08-0407] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A relatively new view of colorectal cancer is that its development/progression reflects the contribution of a large set of altered gene products in varying combinations, each providing a "fitness advantage." In searching for novel contributing gene products using Unigene cluster data mining, we found overrepresentation of expressed sequence tags corresponding to a previously uncharacterized gene (ZKSCAN3) in colorectal tumors. ZKSCAN3 was pursued for several reasons: (a) its sequence similarity with bowl required for Drosophila hindgut development; (b) it lies in a chromosomal region (6p22.1) amplified in colorectal cancer; and (c) its coding sequence predicts tandem C(2)H(2) zinc finger domains present in a class of proteins gaining attention for their role in oncogenesis/tumor progression. Reverse transcription-PCR confirmed overexpression in colorectal tumor tissue compared with adjacent nonmalignant mucosa due in part to gene amplification determined by Southern blotting. Further, immunohistochemistry with an antibody generated to the predicted protein sequence revealed higher ZKSCAN3 expression in invasive compared with noninvasive tumors. Intriguingly, the ZKSCAN3 protein was also expressed in tumors wild-type for genes (APC, p53, K-Ras) commonly targeted in colorectal cancer. ZKSCAN3 knockdown in two independent colon cancer cell lines impaired anchorage-independent growth and orthotopic tumor growth, whereas overexpression in a third cell line had the opposite effect and increased 5-fluorouracil resistance. Liposomal delivery of a ZKSCAN3-targeting small interfering RNA reduced tumorigenicity of orthotopic colon cancer. Thus, the hitherto uncharacterized ZKSCAN3 adds to an expanding set of encoded products contributing to the progression of colorectal cancer.
Collapse
Affiliation(s)
- Lin Yang
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
359
|
Sundvall M, Iljin K, Kilpinen S, Sara H, Kallioniemi OP, Elenius K. Role of ErbB4 in breast cancer. J Mammary Gland Biol Neoplasia 2008; 13:259-68. [PMID: 18454307 DOI: 10.1007/s10911-008-9079-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/02/2008] [Indexed: 11/30/2022] Open
Abstract
Members of the ErbB subfamily of receptor tyrosine kinases are important regulators of normal mammary gland physiology, and aberrations in their signaling have been associated with breast tumorigenesis. Therapeutics targeting epidermal growth factor receptor (EGFR = ErbB1) or ErbB2 in breast cancer have been approved for clinical use. In contrast, relatively little is known about the biological significance of ErbB4 signaling in breast cancer. This review focuses on recent advances in our understanding about the role of ErbB4 in breast carcinogenesis, as well as in the potential clinical relevance of ErbB4 in breast cancer prognostics and therapy.
Collapse
Affiliation(s)
- Maria Sundvall
- Department of Medical Biochemistry and Molecular Biology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | | | | | | | | | | |
Collapse
|
360
|
Abstract
It is widely accepted that cancer is a disease caused by accumulation of mutations in specific genes. These tumor-specific mutations provide clues to the cellular processes underlying tumorigenesis and have proven useful for diagnostic and therapeutic purposes. To date, however, only a small fraction of genes has been analyzed and the number and type of alterations responsible for the development of common tumor types are unknown. The determination of the human genome sequence coupled with improvements in sequencing and bioinformatic approaches have made it possible to examine the cancer cell genome in a comprehensive and unbiased manner. Systematic sequencing studies have been performed on gene families involved in signal transduction in several tumor types, and have now been extended to include the majority of protein-coding genes in breast and colorectal cancers. These analyses have identified new genes and pathways that had not been linked previously to human cancer. One example has been the discovery of genetic alterations in the PIK3CA gene encoding p110alpha phosphatidylinositol 3-kinase and in related pathway genes in >30% of colon and breast cancers. These mutational analyses provide a window into the genetic landscape of human cancer, indicate new targets for personalized diagnostic and therapeutic intervention, and suggest lessons for future large-scale genomic analyses in human tumors.
Collapse
Affiliation(s)
- Victor E Velculescu
- Ludwig Center for Cancer Genetics and Therapeutics, The Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.
| |
Collapse
|
361
|
Do H, Solomon B, Mitchell PL, Fox SB, Dobrovic A. Detection of the transforming AKT1 mutation E17K in non-small cell lung cancer by high resolution melting. BMC Res Notes 2008; 1:14. [PMID: 18611285 PMCID: PMC2442881 DOI: 10.1186/1756-0500-1-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 05/16/2008] [Indexed: 12/29/2022] Open
Abstract
Background A recurrent somatic mutation, E17K, in the pleckstrin homology domain of the AKT1 gene, has been recently described in breast, colorectal, and ovarian cancers. AKT1 is a pivotal mediator of signalling pathways involved in cell survival, proliferation and growth. The E17K mutation stimulates downstream signalling and exhibits transforming activity in vitro and in vivo. Findings We developed a sensitive high resolution melting (HRM) assay to detect the E17K mutation from formalin-fixed paraffin-embedded tumours. We screened 219 non-small cell lung cancer biopsies for the mutation using HRM analysis. Four samples were identified as HRM positive. Subsequent sequencing of those samples confirmed the E17K mutation in one of the cases. A rare single nucleotide polymorphism was detected in each of the remaining three samples. The E17K was found in one of the 14 squamous cell carcinomas. No mutations were found in 141 adenocarcinomas and 39 large cell carcinomas. Conclusion The AKT1 E17K mutation is very rare in lung cancer and might be associated with tumorigenesis in squamous cell carcinoma. HRM represents a rapid cost-effective and robust screening of low frequency mutations such as AKT1 mutations in clinical samples.
Collapse
Affiliation(s)
- Hongdo Do
- Department of Pathology, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, Melbourne, Victoria, 8006, Australia.
| | | | | | | | | |
Collapse
|
362
|
Barault L, Veyrie N, Jooste V, Lecorre D, Chapusot C, Ferraz JM, Lièvre A, Cortet M, Bouvier AM, Rat P, Roignot P, Faivre J, Laurent-Puig P, Piard F. Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of colon cancers. Int J Cancer 2008; 122:2255-9. [PMID: 18224685 DOI: 10.1002/ijc.23388] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The RAS-MAPK, PI (3)K signaling pathways form a network that play a central role in tumorigenesis. The BRAF, KRAS and PI3KCA genes code 3 partners of this network and have been found to be activated by mutation in colorectal cancer; these mutations lead to unrestricted cell growth. We evaluated the clinicopathological features and the prognosis of patients with activated-network colon cancers in a population-based study. A total of 586 colon adenocarcinomas were evaluated using sequencing for mutations of KRAS and PI3KCA, and allelic discrimination for mutation of BRAF. Clinicopathological characteristics were correlated to the risk of bearing a mutation of the network using logistic regression. Three-year survival rates were compared with the Log rank test. A multivariate survival analysis using the Cox model was performed. After adjustment for age and microsatellite instability, activation of the network by mutation of at least 1 of the 3 genes was significantly associated with female sex (p = 0.02) and proximal location (p < 0.001). Lower levels of 3-year survival were associated with activation of the network by mutation of at least 1 of the 3 genes (59.4 and 69.4%, respectively; p = 0.009). These results remained significant in a multivariate analysis adjusted for sex, age, location, stage and microsatellite instability (HR = 1.48; CI CI(95%) = [1.07-2.04]). Our study is the first report to underline the potential role of RAS-MAPK, PI (3)K network mutations on survival in colon cancers. Because of the role of this signaling network on anticancer agents, the evaluation of its mutations could have clinical implications.
Collapse
|
363
|
Jhawer M, Goel S, Wilson AJ, Montagna C, Ling YH, Byun DS, Nasser S, Arango D, Shin J, Klampfer L, Augenlicht LH, Perez-Soler R, Soler RP, Mariadason JM. PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 2008; 68:1953-61. [PMID: 18339877 DOI: 10.1158/0008-5472.can-07-5659] [Citation(s) in RCA: 364] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cetuximab is a monoclonal antibody that targets the human epidermal growth factor receptor (EGFR). Although approved for use in EGFR-overexpressing advanced colorectal cancer, recent studies have shown a lack of association between EGFR overexpression and cetuximab response, requiring the identification of novel biomarkers predictive of response to this agent. To do so, 22 colon cancer cell lines were screened for cetuximab response in vitro and sensitive and resistant lines were identified. In sensitive cell lines, cetuximab induced a G(0)-G(1) arrest without inducing apoptosis. Notably, cetuximab-sensitive but not cetuximab-resistant cell lines were preferentially responsive to EGF-stimulated growth. Whereas neither EGFR protein/mRNA expression nor gene copy number correlated with cetuximab response, examination of the mutation status of signaling components downstream of EGFR showed that cell lines with activating PIK3CA mutations or loss of PTEN expression (PTEN null) were more resistant to cetuximab than PIK3CA wild type (WT)/PTEN-expressing cell lines (14 +/- 5.0% versus 38.5 +/- 6.4% growth inhibition, mean +/- SE; P = 0.008). Consistently, PIK3CA mutant isogenic HCT116 cells showed increased resistance to cetuximab compared with PIK3CA WT controls. Furthermore, cell lines that were PIK3CA mutant/PTEN null and Ras/BRAF mutant were highly resistant to cetuximab compared with those without dual mutations/PTEN loss (10.8 +/- 4.3% versus 38.8 +/- 5.9% growth inhibition, respectively; P = 0.002), indicating that constitutive and simultaneous activation of the Ras and PIK3CA pathways confers maximal resistance to this agent. A priori screening of colon tumors for PTEN expression status and PIK3CA and Ras/BRAF mutation status could help stratify patients likely to benefit from this therapy.
Collapse
Affiliation(s)
- Minaxi Jhawer
- Department of Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY 10467, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Raufman JP, Shant J, Guo CY, Roy S, Cheng K. Deoxycholyltaurine rescues human colon cancer cells from apoptosis by activating EGFR-dependent PI3K/Akt signaling. J Cell Physiol 2008; 215:538-49. [PMID: 18064605 DOI: 10.1002/jcp.21332] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-alpha-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser(473)) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser(21/9)) and BAD (Ser(136)), and nuclear translocation (activation) of NF-kappaB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation.
Collapse
Affiliation(s)
- Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, VA Maryland Health Care System and Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland.
| | | | | | | | | |
Collapse
|
365
|
Degenhardt YY, Wooster R, McCombie RW, Lucito R, Powers S. High-content analysis of cancer genome DNA alterations. Curr Opin Genet Dev 2008; 18:68-72. [PMID: 18339543 DOI: 10.1016/j.gde.2008.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/18/2007] [Accepted: 01/23/2008] [Indexed: 12/15/2022]
Abstract
New technologies as well as concerted brute-force approaches have increased the content (number of genes) that can be characterized for genomic DNA alterations. Recent advances include the detection of activating point mutations in key kinase genes (BRAF, EGFR, and PIK3CA) in multiple cancer types: preliminary insight into the entire repertoire of genes that can be mutated in cancer; the discovery of new oncogenes by high-resolution profiling of DNA copy number alterations; and the bioinformatic-driven discovery of oncogenic gene fusions. High-content promoter methylation detection systems have been used to discover additional methylated genes and have provided evidence for a stem cell origin for certain tumors. Some of these advances have had significant impact on the development and clinical testing of new therapeutics.
Collapse
Affiliation(s)
- Yan Y Degenhardt
- Translational Medicine, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | | | | | | | | |
Collapse
|
366
|
Miyake T, Yoshino K, Enomoto T, Takata T, Ugaki H, Kim A, Fujiwara K, Miyatake T, Fujita M, Kimura T. PIK3CA gene mutations and amplifications in uterine cancers, identified by methods that avoid confounding by PIK3CA pseudogene sequences. Cancer Lett 2008; 261:120-6. [DOI: 10.1016/j.canlet.2007.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 11/06/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022]
|
367
|
Scoville DH, Sato T, He XC, Li L. Current view: intestinal stem cells and signaling. Gastroenterology 2008; 134:849-64. [PMID: 18325394 DOI: 10.1053/j.gastro.2008.01.079] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 12/13/2022]
Abstract
Studies using mice have yielded significant amounts of information regarding signaling pathways, such as Wnt, bone morphogenic protein, PtdIns(3,4,5) kinase, and Notch, involved in intestinal development and homeostasis, including stem cell regulation and lineage specification and maturation. However, attempts to model signals definitively that control intestinal stem cells have been difficult because of a long-standing and recently reenergized debate surrounding their location. Although crypt-based columnar cells have been recently shown to display self-renewal and multipotential capacity, a large body of evidence supports long-term label-retaining cells, located on average at the +4 position just above the Paneth cells, as putative stem cells. Herein, we propose that both these cell types represent true intestinal stem cells maintained in different states (quiescent vs actively cycling), presumably via interactions with different microenvironments. Finally, we review current findings regarding the roles of Wnt, bone morphogenic protein, PtdIns(3,4,5) kinase, and Notch pathways within the intestine.
Collapse
Affiliation(s)
- David H Scoville
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | | | |
Collapse
|
368
|
Systematic analyses of the cancer genome: lessons learned from sequencing most of the annotated human protein-coding genes. Curr Opin Oncol 2008; 20:66-71. [DOI: 10.1097/cco.0b013e3282f31108] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
369
|
Hersey P, Zhang XD, Mhaidat N. Overcoming Resistance to Apoptosis in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 615:105-26. [DOI: 10.1007/978-1-4020-6554-5_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
370
|
Class IA phosphoinositide 3-kinase isoforms and human tumorigenesis: implications for cancer drug discovery and development. Curr Opin Oncol 2008; 20:77-82. [DOI: 10.1097/cco.0b013e3282f3111e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
371
|
O'Shaughnessy RF, Akgũl B, Storey A, Pfister H, Harwood CA, Byrne C. Cutaneous human papillomaviruses down-regulate AKT1, whereas AKT2 up-regulation and activation associates with tumors. Cancer Res 2007; 67:8207-15. [PMID: 17804734 PMCID: PMC2426757 DOI: 10.1158/0008-5472.can-07-0755] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial tumorigenesis has been linked to AKT up-regulation. Human papillomaviruses (HPV) cause anogenital cancers and anogenital HPV infection up-regulates AKT activity. Mounting evidence points to a role for cutaneous HPVs as etiologic factors in skin tumorigenesis. High-risk cutaneous beta HPVs have been linked to carcinogenesis in immunosuppressed patients, and high-risk cutaneous HPV8 genes enhance tumorigenesis in transgenic mice. We find that, in contrast to anogenital HPVs, cutaneous HPV8 early genes down-regulate epidermal AKT activity by down-regulating AKT1 isoform levels. This down-regulation occurs before papilloma formation or tumorigenesis and leads to cutaneous differentiation changes that may weaken the epidermal squame for viral release. We find that, in viral warts (papillomas) and HPV gene-induced epidermal tumors, AKT activity can be activated focally by up-regulation and phosphorylation of the AKT2 isoform. In squamous cell carcinomas (SCC), AKT1 down-regulation is also common, consistent with a viral influence, whereas AKT2 up-regulation is widespread. Activation of up-regulated AKT2 by serine phosphorylation associates with high-grade tumors. Our data suggest that AKT2 up-regulation is characteristic of SCC and that coincident AKT2 activation through serine phosphorylation correlates with malignancy. These findings highlight differences between the effects of anogenital and cutaneous HPV on epithelial AKT activity and furthermore show that AKT isoforms can behave differently during epidermal tumorigenesis. These findings also suggest AKT2 as a possible therapeutic tumor target in SCC.
Collapse
Affiliation(s)
- Ryan F.L. O'Shaughnessy
- Institute of Cell and Molecular Science, Centre for Cutaneous Research, Barts and The London, Queen Mary School of Medicine and Dentistry, University of London, London, United Kingdom
| | - Baki Akgũl
- Institute of Cell and Molecular Science, Centre for Cutaneous Research, Barts and The London, Queen Mary School of Medicine and Dentistry, University of London, London, United Kingdom
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Alan Storey
- Institute of Cell and Molecular Science, Centre for Cutaneous Research, Barts and The London, Queen Mary School of Medicine and Dentistry, University of London, London, United Kingdom
- Cancer Research UK Skin Tumour Laboratory, Barts and The London, Queen Mary School of Medicine and Dentistry, University of London, London, United Kingdom
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Catherine A. Harwood
- Institute of Cell and Molecular Science, Centre for Cutaneous Research, Barts and The London, Queen Mary School of Medicine and Dentistry, University of London, London, United Kingdom
- Cancer Research UK Skin Tumour Laboratory, Barts and The London, Queen Mary School of Medicine and Dentistry, University of London, London, United Kingdom
| | - Carolyn Byrne
- Institute of Cell and Molecular Science, Centre for Cutaneous Research, Barts and The London, Queen Mary School of Medicine and Dentistry, University of London, London, United Kingdom
- Cancer Research UK Skin Tumour Laboratory, Barts and The London, Queen Mary School of Medicine and Dentistry, University of London, London, United Kingdom
| |
Collapse
|
372
|
Jagani Z, Singh A, Khosravi-Far R. FoxO tumor suppressors and BCR-ABL-induced leukemia: a matter of evasion of apoptosis. Biochim Biophys Acta Rev Cancer 2007; 1785:63-84. [PMID: 17980712 DOI: 10.1016/j.bbcan.2007.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/04/2007] [Accepted: 10/06/2007] [Indexed: 12/14/2022]
Abstract
Numerous studies have revealed that the BCR-ABL oncoprotein abnormally engages a multitude of signaling pathways, some of which may be important for its leukemogenic properties. Central to this has been the determination that the tyrosine kinase function of BCR-ABL is mainly responsible for its transforming potential, and can be targeted with small molecule inhibitors, such as imatinib mesylate (Gleevec, STI-571). Despite this apparent success, the development of clinical resistance to imatinib therapy, and the inability of imatinib to eradicate BCR-ABL-positive malignant hematopoietic progenitors demand detailed investigations of additional effector pathways that can be targeted for CML treatment. The promotion of cellular survival via the suppression of apoptotic pathways is a fundamental characteristic of tumor cells that enables resistance to anti-cancer therapies. As substrates of survival kinases such as Akt, the FoxO family of transcription factors, particularly FoxO3a, has emerged as playing an important role in the cell cycle arrest and apoptosis of hematopoietic cells. This review will discuss our current understanding of BCR-ABL signaling with a focus on apoptotic suppressive mechanisms and alternative approaches to CML therapy, as well as the potential for FoxO transcription factors as novel therapeutic targets.
Collapse
Affiliation(s)
- Zainab Jagani
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | |
Collapse
|
373
|
Abstract
The AKT protein kinase transduces signals from growth factors and oncogenes to downstream targets that control crucial elements in tumor development. The AKT pathway is one of the most frequently hyperactivated signaling pathways in human cancers. Available data are reviewed herein to support targeting the AKT kinase for cancer prevention. This review will present data to show that AKT is up-regulated in preneoplastic lesions across a broad range of target tissues, briefly describe drug development efforts in this area, and present evidence that down-regulation of AKT signaling may be a viable strategy to prevent cancer.
Collapse
Affiliation(s)
- James A Crowell
- Division of Cancer Prevention, National Cancer Institute, NIH, Executive Plaza North, Room 2117, 900 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
374
|
Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JKV, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PVK, Ballinger DG, Sparks AB, Hartigan J, Smith DR, Suh E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu VE, Vogelstein B. The genomic landscapes of human breast and colorectal cancers. Science 2007; 318:1108-13. [PMID: 17932254 DOI: 10.1126/science.1145720] [Citation(s) in RCA: 2246] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene "mountains" and a much larger number of gene "hills" that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Laura D Wood
- Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
de Leng WWJ, Jansen M, Carvalho R, Polak M, Musler AR, Milne ANA, Keller JJ, Menko FH, de Rooij FWM, Iacobuzio-Donahue CA, Giardiello FM, Weterman MAJ, Offerhaus GJA. Genetic defects underlying Peutz-Jeghers syndrome (PJS) and exclusion of the polarity-associated MARK/Par1 gene family as potential PJS candidates. Clin Genet 2007; 72:568-73. [PMID: 17924967 DOI: 10.1111/j.1399-0004.2007.00907.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
LKB1/STK11 germline inactivations are identified in the majority (66-94%) of Peutz-Jeghers syndrome (PJS) patients. Therefore, defects in other genes or so far unidentified ways of LKB1 inactivation may cause PJS. The genes encoding the MARK proteins, homologues of the Par1 polarity protein that associates with Par4/Lkb1, were analyzed in this study because of their link to LKB1 and cell polarity. The genetic defect underlying PJS was determined through analysis of both LKB1 and all four MARK genes. LKB1 point mutations and small deletions were identified in 18 of 23 PJS families using direct sequencing and multiplex ligation-dependent probe amplification analysis identified exon deletions in 3 of 23 families. In total, 91% of the studied families showed LKB1 inactivation. Furthermore, a MARK1, MARK2, MARK3 and MARK4 mutation analysis and an MARK4 quantitative multiplex polymerase chain reaction analysis to identify exon deletions on another eight PJS families without identified LKB1 germline mutation did not identify mutations in the MARK genes. LKB1 defects are the major cause of PJS and genes of the MARK family do not represent alternative PJS genes. Other mechanisms of inactivation of LKB1 may cause PJS in the remaining families.
Collapse
Affiliation(s)
- W W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Abstract
Advanced gastric cancer and its palliative treatment have a long and interesting history. Today, gastric adenocarcinoma is the second leading cause of cancer death worldwide. Unfortunately, many cases are not diagnosed until late stages of disease, which underscores the importance of the palliative treatment of gastric cancer. Palliative care is best defined as the active total care of patients whose disease is not responsive to curative treatment. Although endoscopy is the most useful method for securing the diagnosis of gastric adenocarcinoma, computed tomography may be useful to assess local and distant disease. The main indication for the institution of palliative care is the presence of advanced gastric cancer for which curative treatment is deemed inappropriate. The primary goal of palliative therapy of gastric cancer patients is to improve quality, not necessarily length, of life. Four main modalities of palliative therapy for advanced gastric cancer are discussed: resection, bypass, stenting, and chemotherapy. The choice of modality depends on a variety of factors, including individual patient prognosis and goals, and should be made on case-by-case basis. Future directions include the discovery and development of serum or stool tumor markers aimed at prevention, improving prognostication and stratification, and increasing awareness and education.
Collapse
Affiliation(s)
- Steven C Cunningham
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
377
|
Costa C, Barberis L, Ambrogio C, Manazza AD, Patrucco E, Azzolino O, Neilsen PO, Ciraolo E, Altruda F, Prestwich GD, Chiarle R, Wymann M, Ridley A, Hirsch E. Negative feedback regulation of Rac in leukocytes from mice expressing a constitutively active phosphatidylinositol 3-kinase gamma. Proc Natl Acad Sci U S A 2007; 104:14354-9. [PMID: 17720808 PMCID: PMC1952139 DOI: 10.1073/pnas.0703175104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Polarization of chemotaxing cells depends on positive feedback loops that amplify shallow gradients of chemoattractants into sharp intracellular responses. In particular, reciprocal activation of phosphatidylinositol 3-kinases (PI3Ks) and small GTPases like Rac leads to accumulation, at the leading edge, of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP3). Mice carrying a "knockin" allele of the G protein-coupled receptor (GPCR)-activated PI3Kgamma, encoding a plasma membrane-targeted protein appeared normal, but their leukocytes showed GPCR-uncoupled PIP3 accumulation. In vivo, the mutation increased proliferation and decreased apoptosis, leading to leukocytosis and delayed resolution of inflammation in wound healing. Mutant leukocytes showed significantly impaired directional cell migration in response to chemoattractants. Stimulated mutant macrophages did not polarize PIP3 and showed a shortened Rac activation because of enhanced PI3K-dependent activation of RacGAPs. Together with the finding that chemoattractants stimulate a PIP3-dependent GAP activation in wild-type macrophages, these results identify a molecular mechanism involving PI3K- and RacGAP-dependent negative control of Rac that limits and fine-tunes feedback loops promoting cell polarization and directional motility.
Collapse
Affiliation(s)
- Carlotta Costa
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Laura Barberis
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Chiara Ambrogio
- Department of Biomedical Sciences and Human Oncology and Research Center on Experimental Medicine (CeRMS), University of Torino, Via Santena 7, 10126 Torino, Italy
| | - Andrea D. Manazza
- Department of Biomedical Sciences and Human Oncology and Research Center on Experimental Medicine (CeRMS), University of Torino, Via Santena 7, 10126 Torino, Italy
| | - Enrico Patrucco
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Ornella Azzolino
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Paul O. Neilsen
- Echelon Biosciences Incorporated, 675 Arapeen Drive, Suite 302, Salt Lake City, UT 84108
| | - Elisa Ciraolo
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Fiorella Altruda
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108
| | - Roberto Chiarle
- Department of Biomedical Sciences and Human Oncology and Research Center on Experimental Medicine (CeRMS), University of Torino, Via Santena 7, 10126 Torino, Italy
| | - Matthias Wymann
- Institute of Biochemistry and Genetics, Department of Clinical and Biological Sciences, Centre of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; and
| | - Anne Ridley
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, 91 Riding House Street, London W1W 7BS, United Kingdom
| | - Emilio Hirsch
- *Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Department of Biomedical Sciences and Human Oncology and Research Center on Experimental Medicine (CeRMS), University of Torino, Via Santena 7, 10126 Torino, Italy
- **To whom correspondence should be addressed: E-mail:
| |
Collapse
|
378
|
Abstract
Pancreatic cancer is the fourth most common cause of cancer death in the United States. There is a great need for better diagnostic markers of pancreatic neoplasia. Better markers would improve the early diagnosis of pancreatic cancer and allow more patients to undergo curative surgical resection. Identifying individuals at high risk of developing pancreatic cancer and applying markers that could identify precancerous lesions of the pancreas in these individuals could allow such lesions to be resected before the development of pancreatic cancer. As we continue to characterize the genetic, epigenetic, and proteomics alterations that occur in pancreatic cancers and their percursors, better diagnostic markers of pancreatic cancer are expected to follow.
Collapse
Affiliation(s)
- Michael Goggins
- Department of Pathology, Medicine, and Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA.
| |
Collapse
|
379
|
Parcellier A, Tintignac LA, Zhuravleva E, Hemmings BA. PKB and the mitochondria: AKTing on apoptosis. Cell Signal 2007; 20:21-30. [PMID: 17716864 DOI: 10.1016/j.cellsig.2007.07.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
Cellular homeostasis depends upon the strict regulation of responses to external stimuli, such as signalling cascades triggered by nutrients and growth factors, and upon cellular metabolism. One of the major molecules coordinating complex signalling pathways is protein kinase B (PKB), a serine/threonine kinase also known as Akt. The number of substrates known to be phosphorylated by PKB and its interacting partners, as well as our broad understanding of how PKB is implicated in responses to growth factors, metabolic pathways, proliferation, and cell death via apoptosis is constantly increasing. Activated by the insulin/growth factor-phosphatidylinositol 3-kinase (PI3K) cascade, PKB triggers events that promote cell survival and prevent apoptosis. It is also now widely accepted that mitochondria are not just suppliers of ATP, but that they participate in regulatory and signalling events, responding to multiple physiological inputs and genetic stresses, and regulate both cell proliferation and death. Thus, mitochondria are recognized as important players in apoptotic events and it is logical to predict some form of interplay with PKB. In this review, we will summarize mechanisms by which PKB mediates its anti-apoptotic activities in cells and survey recent developments in understanding mitochondrial dynamics and their role during apoptosis.
Collapse
Affiliation(s)
- Arnaud Parcellier
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
380
|
Buffin-Meyer B, Crassous PA, Delage C, Denis C, Schaak S, Paris H. EGF receptor transactivation and PI3-kinase mediate stimulation of ERK by alpha(2A)-adrenoreceptor in intestinal epithelial cells: a role in wound healing. Eur J Pharmacol 2007; 574:85-93. [PMID: 17655843 DOI: 10.1016/j.ejphar.2007.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 07/02/2007] [Accepted: 07/05/2007] [Indexed: 12/11/2022]
Abstract
Intestinal cells express alpha(2A)-adrenoreceptors that stimulate sodium and peptide absorption and promote cell proliferation. Involved mechanisms are poorly understood and are not fully related to inhibition of cAMP production. Previous study using a clone of CaCo2 cells expressing the human alpha(2A)-adrenoreceptor (CaCo2-3B) showed that alpha(2)-adrenoreceptor agonists cause extracellular signal-regulated kinase (ERK) phosphorylation. Present work examines the signaling pathway triggering ERK activation and investigates the consequence of alpha(2A)-adrenoreceptor stimulation on cell migration. Treatment of CaCo2-3B with the alpha(2)-adrenoreceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino) quinoxaline (UK14304) induces not only ERK, but also Akt phosphorylation. Both effects are strongly attenuated by inhibition or desensitization of epidermal growth factor (EGF) receptor, matrix metalloproteinase (MMP) blockade, heparin-binding-EGF neutralization or phosphatidylinositol 3-kinase (PI3-kinase) inhibitors. Conditioned medium from UK14304-treated CaCo2-3B stimulates ERK in parental CaCo2 by a mechanism sensitive to EGF receptor and PI3-kinase inhibitors. Exposure of CaCo2-3B to UK14304 accelerates the wound healing. This effect is abolished by heparin-binding-EGF neutralization but not by mitomycin C, indicating that it results probably from increased cell spreading and/or migration. In conclusion, alpha(2A)-adrenoreceptor activates ERK and Akt in intestinal cells by a common pathway which depends on PI3-kinase activation and results from EGF receptor transactivation, via an autocrine/paracrine pathway implying MMP activation and heparin-binding-EGF shedding. Therefore, alpha(2A)-adrenoreceptor could have a positive role in intestinal regeneration in vivo.
Collapse
Affiliation(s)
- Bénédicte Buffin-Meyer
- INSERM, U858/I2MR, Department of Renal and Cardiac remodelling, team #5, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France.
| | | | | | | | | | | |
Collapse
|
381
|
Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai MHT, Blanchard KL, Thomas JE. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 2007; 448:439-44. [PMID: 17611497 DOI: 10.1038/nature05933] [Citation(s) in RCA: 969] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 05/11/2007] [Indexed: 11/09/2022]
Abstract
Although AKT1 (v-akt murine thymoma viral oncogene homologue 1) kinase is a central member of possibly the most frequently activated proliferation and survival pathway in cancer, mutation of AKT1 has not been widely reported. Here we report the identification of a somatic mutation in human breast, colorectal and ovarian cancers that results in a glutamic acid to lysine substitution at amino acid 17 (E17K) in the lipid-binding pocket of AKT1. Lys 17 alters the electrostatic interactions of the pocket and forms new hydrogen bonds with a phosphoinositide ligand. This mutation activates AKT1 by means of pathological localization to the plasma membrane, stimulates downstream signalling, transforms cells and induces leukaemia in mice. This mechanism indicates a direct role of AKT1 in human cancer, and adds to the known genetic alterations that promote oncogenesis through the phosphatidylinositol-3-OH kinase/AKT pathway. Furthermore, the E17K substitution decreases the sensitivity to an allosteric kinase inhibitor, so this mutation may have important clinical utility for AKT drug development.
Collapse
Affiliation(s)
- John D Carpten
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, Arizona 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
382
|
Nevins JR, Potti A. Mining gene expression profiles: expression signatures as cancer phenotypes. Nat Rev Genet 2007; 8:601-9. [PMID: 17607306 DOI: 10.1038/nrg2137] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many examples highlight the power of gene expression profiles, or signatures, to inform an understanding of biological phenotypes. This is perhaps best seen in the context of cancer, where expression signatures have tremendous power to identify new subtypes and to predict clinical outcomes. Although the ability to interpret the meaning of the individual genes in these signatures remains a challenge, this does not diminish the power of the signature to characterize biological states. The use of these signatures as surrogate phenotypes has been particularly important, linking diverse experimental systems that dissect the complexity of biological systems with the in vivo setting in a way that was not previously feasible.
Collapse
Affiliation(s)
- Joseph R Nevins
- Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
383
|
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/AKT constitute an important pathway regulating the signaling of multiple biological processes such as apoptosis, metabolism, cell proliferation and cell growth. PTEN is a dual protein/lipid phosphatase and its main substrate phosphatidyl-inositol 3,4,5 triphosphate (PIP3) is the product of PI3K. Increase in PIP3 recruits AKT to the membrane where is activated by other kinases also dependent on PIP3. Many components of this pathway have been described as causal forces in cancer. PTEN activity is lost by mutations, deletions or promoter methylation silencing at high frequency in many primary and metastatic human cancers. Germ line mutations of PTEN are found in several familial cancer predisposition syndromes. Recently, many activating mutations in the PI3KCA gene (coding for the p110alpha catalytic subunit of PI3K) have been described in human tumors. Activation of PI3K and AKT are reported to occur in breast, ovarian, pancreatic, esophageal and other cancers. Genetically modified mice confirm these PTEN activities. Tissue-specific deletions of PTEN usually provoke cancer. Moreover, an absence of PTEN cooperates with an absence of p53 to promote cancer. However, we have observed very different results with the expression of activated versions of AKT in several tissues. Activated AKT transgenic lines do not develop tumors in breast or prostate tissues and do not cooperate with an absence of p53. This data suggest that an AKT-independent mechanism contributes to PTEN tumorigenesis. Crosses with transgenic mice expressing possible PTEN targets indicate that neither cyclin D1 nor p53 are these AKT-independent targets. However, AKT is more than a passive bridge toward PTEN tumorigenesis, since its expression not only allows but also enforces and accelerates the tumorigenic process in combination with other oncogenes.
Collapse
Affiliation(s)
- Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), C/Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
384
|
Puig PL, Lièvre A. [Predictive factors in the response of antiplatelet anti EFGR in gastro-intestinal tumor]. Therapie 2007; 62:95-8. [PMID: 17582308 DOI: 10.2515/therapie:2007026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Pierre-Laurent Puig
- INSERM UMR-S775 Bases Moléculaires de la Réponse aux Xénobiotiques, Université Paris 5, Paris, France.
| | | |
Collapse
|
385
|
Mathew R, White E. Why sick cells produce tumors: the protective role of autophagy. Autophagy 2007; 3:502-5. [PMID: 17611387 PMCID: PMC2866178 DOI: 10.4161/auto.4605] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cells exploit autophagy for survival to metabolic stress in vitro as well as in tumors where it localizes to regions of metabolic stress suggesting its role as a survival pathway. Consistent with this survival function, deficiency in autophagy impairs cell survival, but also promotes tumor growth, creating a paradox that the loss of a survival pathway leads to tumorigenesis. There is evidence that autophagy is a homeostatic process functioning to limit the accumulation of poly-ubiquitinated proteins and mutant protein aggregates associated with neuronal degeneration. Interestingly, we found that deficiency in autophagy caused by monoallelic loss of beclin1 or deletion of atg5 leads to accelerated DNA damage and chromosomal instability demonstrating a mutator phenotype. These cells also exhibit enhanced chromosomal gains or losses suggesting that autophagy functions as a tumor suppressor by limiting chromosomal instability. Thus the impairment of survival to metabolic stress due to deficiency in autophagy may be compensated by an enhanced mutation rate thereby promoting tumorigenesis. The protective role of autophagy may be exploited in developing novel autophagy modulators as rational chemotherapeutic as well as chemopreventive agents.
Collapse
Affiliation(s)
- Robin Mathew
- University of Medicine and Dentistry of New Jersey; Robert Wood Johnson Medical School; Piscataway, New Jersey USA
- Center for Advanced Biotechnology and Medicine; Rutgers University; Piscataway, New Jersey USA
| | - Eileen White
- University of Medicine and Dentistry of New Jersey; Robert Wood Johnson Medical School; Piscataway, New Jersey USA
- Center for Advanced Biotechnology and Medicine; Rutgers University; Piscataway, New Jersey USA
- Department of Molecular Biology and Biochemistry; Rutgers University; Piscataway, New Jersey USA
- The Cancer Institute of New Jersey; New Brunswick, New Jersey USA
- Correspondence to: Eileen White; Center for Advanced Biotechnology and Medicine; 679 Hoes Lane; Piscataway, New Jersey 08854 USA; Tel.: 732.235.5329; Fax: 732.235.5795;
| |
Collapse
|
386
|
Ballou LM, Selinger ES, Choi JY, Drueckhammer DG, Lin RZ. Inhibition of mammalian target of rapamycin signaling by 2-(morpholin-1-yl)pyrimido[2,1-alpha]isoquinolin-4-one. J Biol Chem 2007; 282:24463-70. [PMID: 17562705 DOI: 10.1074/jbc.m704741200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Signaling through the mammalian target of rapamycin (mTOR) is hyperactivated in many human tumors, including hamartomas associated with tuberous sclerosis complex (TSC). Several small molecules such as LY294002 inhibit mTOR kinase activity, but they also inhibit phosphatidylinositol 3-kinase (PI3K) at similar concentrations. Compound 401 is a synthetic inhibitor of DNA-dependent protein kinase (DNA-PK) that also targets mTOR but not PI3K in vitro (Griffin, R. J., Fontana, G., Golding, B. T., Guiard, S., Hardcastle, I. R., Leahy, J. J., Martin, N., Richardson, C., Rigoreau, L., Stockley, M., and Smith, G. C. (2005) J. Med. Chem. 48, 569-585). We used 401 to test the cellular effect of mTOR inhibition without the complicating side effects on PI3K. Treatment of cells with 401 blocked the phosphorylation of sites modified by mTOR-Raptor and mTOR-Rictor complexes (ribosomal protein S6 kinase 1 Thr(389) and Akt Ser(473), respectively). By contrast, there was no direct inhibition of Akt Thr(308) phosphorylation, which is dependent on PI3K. Similar effects were also observed in cells that lack DNA-PK. The proliferation of TSC1-/- fibroblasts was inhibited in the presence of 401, but TSC1+/+ cells were resistant. In contrast to rapamycin, long-term treatment of TSC1-/- cells with 401 did not up-regulate phospho-Akt Ser(473). Because increased Akt activity promotes survival, this may explain why the level of apoptosis was increased in the presence of 401 but not rapamycin. These results suggest that mTOR kinase inhibitors might be more effective than rapamycins in controlling the growth of TSC hamartomas and other tumors that depend on elevated mTOR activity.
Collapse
Affiliation(s)
- Lisa M Ballou
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794, USA.
| | | | | | | | | |
Collapse
|
387
|
Quintero E, Parra-Blanco A. Noninvasive diagnostic tools in colorectal cancer mass screening. CURRENT COLORECTAL CANCER REPORTS 2007. [DOI: 10.1007/s11888-007-0013-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
388
|
Kaminker JS, Zhang Y, Watanabe C, Zhang Z. CanPredict: a computational tool for predicting cancer-associated missense mutations. Nucleic Acids Res 2007; 35:W595-8. [PMID: 17537827 PMCID: PMC1933186 DOI: 10.1093/nar/gkm405] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Various cancer genome projects are underway to identify novel mutations that drive tumorigenesis. While these screens will generate large data sets, the majority of identified missense changes are likely to be innocuous passenger mutations or polymorphisms. As a result, it has become increasingly important to develop computational methods for distinguishing functionally relevant mutations from other variations. We previously developed an algorithm, and now present the web application, CanPredict (http://www.canpredict.org/ or http://www.cgl.ucsf.edu/Research/genentech/canpredict/), to allow users to determine if particular changes are likely to be cancer-associated. The impact of each change is measured using two known methods: Sorting Intolerant From Tolerant (SIFT) and the Pfam-based LogR.E-value metric. A third method, the Gene Ontology Similarity Score (GOSS), provides an indication of how closely the gene in which the variant resides resembles other known cancer-causing genes. Scores from these three algorithms are analyzed by a random forest classifier which then predicts whether a change is likely to be cancer-associated. CanPredict fills an important need in cancer biology and will enable a large audience of biologists to determine which mutations are the most relevant for further study.
Collapse
Affiliation(s)
| | | | | | - Zemin Zhang
- *To whom correspondence should be addressed. 650-225-4293650-225-5389
| |
Collapse
|
389
|
Dahl F, Stenberg J, Fredriksson S, Welch K, Zhang M, Nilsson M, Bicknell D, Bodmer WF, Davis RW, Ji H. Multigene amplification and massively parallel sequencing for cancer mutation discovery. Proc Natl Acad Sci U S A 2007; 104:9387-92. [PMID: 17517648 PMCID: PMC1871563 DOI: 10.1073/pnas.0702165104] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have developed a procedure for massively parallel resequencing of multiple human genes by combining a highly multiplexed and target-specific amplification process with a high-throughput parallel sequencing technology. The amplification process is based on oligonucleotide constructs, called selectors, that guide the circularization of specific DNA target regions. Subsequently, the circularized target sequences are amplified in multiplex and analyzed by using a highly parallel sequencing-by-synthesis technology. As a proof-of-concept study, we demonstrate parallel resequencing of 10 cancer genes covering 177 exons with average sequence coverage per sample of 93%. Seven cancer cell lines and one normal genomic DNA sample were studied with multiple mutations and polymorphisms identified among the 10 genes. Mutations and polymorphisms in the TP53 gene were confirmed by traditional sequencing.
Collapse
Affiliation(s)
- Fredrik Dahl
- *Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304
- To whom correspondence may be addressed. E-mail: , , or
| | - Johan Stenberg
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Clark Center W300, 318 Campus Drive, Stanford, CA 94305-5440
| | - Simon Fredriksson
- *Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304
| | - Katrina Welch
- *Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304
| | - Michael Zhang
- *Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304
| | - Mats Nilsson
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; and
| | - David Bicknell
- Cancer Research UK Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Walter F. Bodmer
- Cancer Research UK Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Ronald W. Davis
- *Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304
- To whom correspondence may be addressed. E-mail: , , or
| | - Hanlee Ji
- *Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Clark Center W300, 318 Campus Drive, Stanford, CA 94305-5440
- To whom correspondence may be addressed. E-mail: , , or
| |
Collapse
|
390
|
Abstract
It is known that cancer is caused by an accumulation of mutations in DNA. Many genes have been associated with tumour progression either through germline or somatic mutations, but mutations in these genes by no means account for all instances of the disease. The availability of the completed human genome sequence and reduced costs of sequencing have allowed large-scale screens to uncover genes that are somatically mutated in cancer. In this issue, Chanock and colleagues present a screen of 91 breast cancers for somatic variants in a set of 21 genes.
Collapse
Affiliation(s)
- Gillian L Dalgliesh
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - P Andrew Futreal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
391
|
Efroni S, Schaefer CF, Buetow KH. Identification of key processes underlying cancer phenotypes using biologic pathway analysis. PLoS One 2007; 2:e425. [PMID: 17487280 PMCID: PMC1855990 DOI: 10.1371/journal.pone.0000425] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 03/29/2007] [Indexed: 11/19/2022] Open
Abstract
Cancer is recognized to be a family of gene-based diseases whose causes are to be found in disruptions of basic biologic processes. An increasingly deep catalogue of canonical networks details the specific molecular interaction of genes and their products. However, mapping of disease phenotypes to alterations of these networks of interactions is accomplished indirectly and non-systematically. Here we objectively identify pathways associated with malignancy, staging, and outcome in cancer through application of an analytic approach that systematically evaluates differences in the activity and consistency of interactions within canonical biologic processes. Using large collections of publicly accessible genome-wide gene expression, we identify small, common sets of pathways – Trka Receptor, Apoptosis response to DNA Damage, Ceramide, Telomerase, CD40L and Calcineurin – whose differences robustly distinguish diverse tumor types from corresponding normal samples, predict tumor grade, and distinguish phenotypes such as estrogen receptor status and p53 mutation state. Pathways identified through this analysis perform as well or better than phenotypes used in the original studies in predicting cancer outcome. This approach provides a means to use genome-wide characterizations to map key biological processes to important clinical features in disease.
Collapse
Affiliation(s)
- Sol Efroni
- National Cancer Institute Center for Bioinformatics, Rockville, Maryland, United States of America
| | - Carl F. Schaefer
- National Cancer Institute Center for Bioinformatics, Rockville, Maryland, United States of America
| | - Kenneth H. Buetow
- National Cancer Institute Center for Bioinformatics, Rockville, Maryland, United States of America
- Laboratory of Population Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
392
|
Hauge C, Antal TL, Hirschberg D, Doehn U, Thorup K, Idrissova L, Hansen K, Jensen ON, Jørgensen TJ, Biondi RM, Frödin M. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation. EMBO J 2007; 26:2251-61. [PMID: 17446865 PMCID: PMC1864980 DOI: 10.1038/sj.emboj.7601682] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 03/19/2007] [Indexed: 01/02/2023] Open
Abstract
The growth factor/insulin-stimulated AGC kinases share an activation mechanism based on three phosphorylation sites. Of these, only the role of the activation loop phosphate in the kinase domain and the hydrophobic motif (HM) phosphate in a C-terminal tail region are well characterized. We investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC kinases PKB, S6K, RSK, MSK, PRK and PKC. We report cooperative action of the HM phosphate and the turn motif phosphate, because it binds a phosphoSer/Thr-binding site above the glycine-rich loop within the kinase domain, promoting zipper-like association of the tail with the kinase domain, serving to stabilize the HM in its kinase-activating binding site. We present a molecular model for allosteric activation of AGC kinases by the turn motif phosphate via HM-mediated stabilization of the alphaC helix. In S6K and MSK, the turn motif phosphate thereby also protects the HM from dephosphorylation. Our results suggest that the mechanism described is a key feature in activation of upto 26 human AGC kinases.
Collapse
Affiliation(s)
- Camilla Hauge
- Biotech Research and Innovation Centre, Ole Maaløes vej, Copenhagen N, Denmark
| | - Torben L Antal
- Biotech Research and Innovation Centre, Ole Maaløes vej, Copenhagen N, Denmark
| | - Daniel Hirschberg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej, Odense, Denmark
| | - Ulrik Doehn
- Biotech Research and Innovation Centre, Ole Maaløes vej, Copenhagen N, Denmark
| | - Katrine Thorup
- Biotech Research and Innovation Centre, Ole Maaløes vej, Copenhagen N, Denmark
| | - Leila Idrissova
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | - Klaus Hansen
- Biotech Research and Innovation Centre, Ole Maaløes vej, Copenhagen N, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej, Odense, Denmark
| | - Thomas J Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej, Odense, Denmark
| | - Ricardo M Biondi
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | - Morten Frödin
- Biotech Research and Innovation Centre, Ole Maaløes vej, Copenhagen N, Denmark
- The Kinase Signalling Group, Biotech Research and Innovation Centre, Ole Maaløes vej 5, Copenhagen N 2200, Denmark. Tel.: +45 35 32 56 54; Fax: +45 35 32 56 69; E-mail:
| |
Collapse
|
393
|
Okada T, You L, Giancotti FG. Shedding light on Merlin's wizardry. Trends Cell Biol 2007; 17:222-9. [PMID: 17442573 DOI: 10.1016/j.tcb.2007.03.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/14/2007] [Accepted: 03/23/2007] [Indexed: 12/21/2022]
Abstract
Inactivation of the tumor suppressor Merlin, encoded by the NF2 (Neurofibromatosis type 2) gene, contributes to malignant conversion in many cell types. Merlin is an Ezrin-Radixin-Moesin protein and localizes underneath the plasma membrane at cell-cell junctions and other actin-rich sites. Recent studies indicate that Merlin mediates contact inhibition of proliferation by blocking recruitment of Rac to the plasma membrane. In mitogen-stimulated cells, p21-activated kinase phosphorylates Ser518 in the C-terminus of Merlin, inactivating the growth suppressive function of the protein. Furthermore, the myosin phosphatase MYPT1-PP1delta, has been identified as a direct activator of Merlin and its inhibition has been linked to malignant transformation. Finally, studies in the fruit fly Drosophila melanogaster have revealed that Merlin functions together with the band 4.1 protein Expanded to promote [corrected] the endocytosis of many signaling receptors, limiting [corrected] their accumulation at the plasma membrane, and to activate [corrected] the Hippo signaling pathway. Here, we review these recent findings and their relevance to the tumor suppressor function of Merlin.
Collapse
Affiliation(s)
- Tomoyo Okada
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
394
|
Highlights of the first BSPR London Regional Meeting and Fifth Imperial Proteomics Day. Proteomics Clin Appl 2007; 1:348-51. [DOI: 10.1002/prca.200700129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Indexed: 11/07/2022]
|
395
|
Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446:153-8. [PMID: 17344846 PMCID: PMC2712719 DOI: 10.1038/nature05610] [Citation(s) in RCA: 2272] [Impact Index Per Article: 126.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 01/18/2007] [Indexed: 11/09/2022]
Abstract
Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.
Collapse
Affiliation(s)
- Christopher Greenman
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Kaminker JS, Zhang Y, Waugh A, Haverty PM, Peters B, Sebisanovic D, Stinson J, Forrest WF, Bazan JF, Seshagiri S, Zhang Z. Distinguishing cancer-associated missense mutations from common polymorphisms. Cancer Res 2007; 67:465-73. [PMID: 17234753 DOI: 10.1158/0008-5472.can-06-1736] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Missense variants are commonly identified in genomic sequence but only a small fraction directly contribute to oncogenesis. The ability to distinguish those missense changes that contribute to cancer progression from those that do not is a difficult problem usually only accomplished through functional in vivo analyses. Using two computational algorithms, Sorting Intolerant from Tolerant (SIFT) and the Pfam-based LogR.E-value method, we have identified features that distinguish cancer-associated missense mutations from other classes of missense change. Our data reveal that cancer mutants behave similarly to Mendelian disease mutations, but are clearly distinct from either complex disease mutations or common single-nucleotide polymorphisms. We show that both activating and inactivating oncogenic mutations are predicted to be deleterious, although activating changes are likely to increase protein activity. Using the Gene Ontology and data from the SIFT and LogR.E-value metrics, a classifier was built that predicts cancer-associated missense mutations with a very low false-positive rate. The classifier does remarkably well in a number of different experiments designed to distinguish polymorphisms from true cancer-associated mutations. We also show that recurrently observed mutations are much more likely to be predicted to be cancer-associated than rare mutations, suggesting that our classifier will be useful in distinguishing causal from passenger mutations. In addition, from an expressed sequence tag-based screen, we identified a previously unknown germ line change (P1104A) in tumor tissues that is predicted to disrupt the function of the TYK2 protein. The data presented here show that this novel bioinformatics approach to classifying cancer-associated variants is robust and can be used for large-scale analyses.
Collapse
Affiliation(s)
- Joshua S Kaminker
- Department of Bioinformatics, Genentech, Inc., South San Francisco, California 94404, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
397
|
Hayakawa M, Kaizawa H, Moritomo H, Koizumi T, Ohishi T, Yamano M, Okada M, Ohta M, Tsukamoto SI, Raynaud FI, Workman P, Waterfield MD, Parker P. Synthesis and biological evaluation of pyrido[3',2':4,5]furo[3,2-d]pyrimidine derivatives as novel PI3 kinase p110alpha inhibitors. Bioorg Med Chem Lett 2007; 17:2438-42. [PMID: 17339109 DOI: 10.1016/j.bmcl.2007.02.032] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/07/2007] [Accepted: 02/13/2007] [Indexed: 11/27/2022]
Abstract
4-Morpholin-4-ylpyrido[3',2':4,5]thieno[3,2-d]pyrimidine 2a was discovered in our chemical library as a novel p110alpha inhibitor with an IC(50) of 1.4 microM. By structural modification of 2a, the 2-aryl-4-morpholinopyrido[3',2':4,5]furo[3,2-d]pyrimidine derivative 10e was discovered as a p110alpha inhibitor with approximately 400-fold greater potency than 2a. Evaluation of isoform selectivity showed that 10e is a potent inhibitor of p110beta. Furthermore, 10e showed anti-proliferative activity in various cell lines, including multi-drug resistant MCF7/ADR-res cells, and was effective against HeLa human cervical tumor xenografts in nude mice.
Collapse
Affiliation(s)
- Masahiko Hayakawa
- Drug Discovery Research, Astellas Pharma Inc., 5-2-3 Tokodai, Tsukuba, Ibaraki 300-2698, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
398
|
Toyota M, Suzuki H, Yamamoto E, Imai K, Shinomura Y. [Gene mutation and DNA methylation in non-hereditary colon neoplasms]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2007; 96:226-30. [PMID: 17370586 DOI: 10.2169/naika.96.226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
|
399
|
Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL, Griffin JD, Kwiatkowski DJ. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 2007; 117:730-8. [PMID: 17290308 PMCID: PMC1784000 DOI: 10.1172/jci28984] [Citation(s) in RCA: 310] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 12/12/2006] [Indexed: 11/17/2022] Open
Abstract
The receptor tyrosine kinase/PI3K/Akt/mammalian target of rapamycin (RTK/PI3K/Akt/mTOR) pathway is frequently altered in tumors. Inactivating mutations of either the TSC1 or the TSC2 tumor-suppressor genes cause tuberous sclerosis complex (TSC), a benign tumor syndrome in which there is both hyperactivation of mTOR and inhibition of RTK/PI3K/Akt signaling, partially due to reduced PDGFR expression. We report here that activation of PI3K or Akt, or deletion of phosphatase and tensin homolog (PTEN) in mouse embryonic fibroblasts (MEFs) also suppresses PDGFR expression. This was a direct effect of mTOR activation, since rapamycin restored PDGFR expression and PDGF-sensitive Akt activation in Tsc1-/- and Tsc2-/- cells. Akt activation in response to EGF in Tsc2-/- cells was also reduced. Furthermore, Akt activation in response to each of EGF, IGF, and PMA was reduced in cells lacking both PDGFRalpha and PDGFRbeta, implying a role for PDGFR in transmission of growth signals downstream of these stimuli. Consistent with the reduction in PI3K/Akt signaling, in a nude mouse model both Tsc1-/- and Tsc2-/- cells had reduced tumorigenic potential in comparison to control cells, which was enhanced by expression of either active Akt or PDGFRbeta. In conclusion, PDGFR is a major target of negative feedback regulation in cells with activated mTOR, which limits the growth potential of TSC tumors.
Collapse
Affiliation(s)
- Hongbing Zhang
- Department of Physiology, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
400
|
Abstract
This review focuses on remarkable recent findings concerning the mechanism by which the LKB1 protein kinase that is mutated in Peutz-Jeghers cancer syndrome operates as a tumor suppressor. We discuss evidence that the cellular localization and activity of LKB1 is controlled through its interaction with a catalytically inactive protein resembling a protein kinase, termed STRAD, and an armadillo repeat-containing protein, named mouse protein 25 (MO25). The data suggest that LKB1 functions as a tumor suppressor by not only inhibiting proliferation, but also by exerting profound effects on cell polarity and, most unexpectedly, on the ability of a cell to detect and respond to low cellular energy levels. Genetic and biochemical findings indicate that LKB1 exerts its effects by phosphorylating and activating 14 protein kinases, all related to the AMP-activated protein kinase. The work described in this review shows how a study of an obscure cancer syndrome can uncover new and important regulatory pathways, relevant to the understanding of multiple human diseases.
Collapse
Affiliation(s)
- Dario R Alessi
- Medical Research Council, Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland.
| | | | | |
Collapse
|