351
|
Mao M, Alavi MV, Labelle-Dumais C, Gould DB. Type IV Collagens and Basement Membrane Diseases. CURRENT TOPICS IN MEMBRANES 2015; 76:61-116. [DOI: 10.1016/bs.ctm.2015.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
352
|
Yang Y, Sun T, Xu L, Pi E, Wang S, Wang H, Shen C. Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments. FRONTIERS IN PLANT SCIENCE 2015; 6:459. [PMID: 26150823 PMCID: PMC4472986 DOI: 10.3389/fpls.2015.00459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/08/2015] [Indexed: 05/06/2023]
Abstract
Calmodulin-binding transcription activators (CAMTAs) are well-characterized calmodulin-binding transcription factors in the plant kingdom. Previous work shows that CAMTAs play important roles in various biological processes including disease resistance, herbivore attack response, and abiotic stress tolerance. However, studies that address the function of CAMTAs during the establishment of symbiosis between legumes and rhizobia are still lacking. This study undertook comprehensive identification and analysis of CAMTA genes using the latest updated M. truncatula genome. All the MtCAMTA genes were expressed in a tissues-specific manner and were responsive to environmental stress-related hormones. The expression profiling of MtCAMTA genes during the early phase of Sinorhizobium meliloti infection was also analyzed. Our data showed that the expression of most MtCAMTA genes was suppressed in roots by S. meliloti infection. The responsiveness of MtCAMTAs to S. meliloti infection indicated that they may function as calcium-regulated transcription factors in the early nodulation signaling pathway. In addition, bioinformatics analysis showed that CAMTA binding sites existed in the promoter regions of various early rhizobial infection response genes, suggesting possible MtCAMTAs-regulated downstream candidate genes during the early phase of S. meliloti infection. Taken together, these results provide basic information about MtCAMTAs in the model legume M. truncatula, and the involvement of MtCAMTAs in nodule organogenesis. This information furthers our understanding of MtCAMTA protein functions in M. truncatula and opens new avenues for continued research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chenjia Shen
- *Correspondence: Chenjia Shen, College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xuelin Street, Hangzhou 310036, China
| |
Collapse
|
353
|
Hu Y, Han YT, Wei W, Li YJ, Zhang K, Gao YR, Zhao FL, Feng JY. Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca. FRONTIERS IN PLANT SCIENCE 2015; 6:736. [PMID: 26442049 PMCID: PMC4569975 DOI: 10.3389/fpls.2015.00736] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/29/2015] [Indexed: 05/03/2023]
Abstract
Heat shock transcription factors (Hsfs) are known to play dominant roles in plant responses to heat, as well as other abiotic or biotic stress stimuli. While the strawberry is an economically important fruit plant, little is known about the Hsf family in the strawberry. To explore the functions of strawberry Hsfs in abiotic and biotic stress responses, this study identified 17 Hsf genes (FvHsfs) in a wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) and isolated 14 of these genes. Phylogenetic analysis divided the strawberry FvHsfs genes into three main groups. The evolutionary and structural analyses revealed that the FvHsf family is conserved. The promoter sequences of the FvHsf genes contain upstream regulatory elements corresponding to different stress stimuli. In addition, 14 FvHsf-GFP fusion proteins showed differential subcellular localization in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 17 FvHsf genes in wild diploid woodland strawberries under various conditions, including abiotic stresses (heat, cold, drought, and salt), biotic stress (powdery mildew infection), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). Fifteen of the seventeen FvHsf genes exhibited distinct changes on the transcriptional level during heat treatment. Of these 15 FvHsfs, 8 FvHsfs also exhibited distinct responses to other stimuli on the transcriptional level, indicating versatile roles in the response to abiotic and biotic stresses. Taken together, the present work may provide the basis for further studies to dissect FvHsf function in response to stress stimuli.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of AgricultureYangling, Shaanxi, China
| | - Yong-Tao Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, Shaanxi, China
| | - Wei Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of AgricultureYangling, Shaanxi, China
| | - Ya-Juan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, Shaanxi, China
| | - Kai Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of AgricultureYangling, Shaanxi, China
| | - Yu-Rong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, Shaanxi, China
| | - Feng-Li Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, Shaanxi, China
| | - Jia-Yue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of AgricultureYangling, Shaanxi, China
- *Correspondence: Jia-Yue Feng, College of Horticulture, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
354
|
Everything but the ACD, Functional Conservation of the Non-conserved Terminal Regions in sHSPs. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
355
|
Stewart MJ, Stewart P, Rivera-Posada J. De novo assembly of the transcriptome ofAcanthaster plancitestes. Mol Ecol Resour 2014; 15:953-66. [DOI: 10.1111/1755-0998.12360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Michael James Stewart
- Genecology Research Centre; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Queensland 4558 Australia
| | - Praphaporn Stewart
- Genecology Research Centre; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Queensland 4558 Australia
| | - Jairo Rivera-Posada
- ARC Centre of Excellence for Coral Reefs Studies; James Cook University; Townsville Queensland 4812 Australia
- Australian Institute of Marine Science; PMB No. 3 Townsville Queensland 4810 Australia
| |
Collapse
|
356
|
Malhotra S, Sowdhamini R. Sequence search and analysis of gene products containing RNA recognition motifs in the human genome. BMC Genomics 2014; 15:1159. [PMID: 25534245 PMCID: PMC4367854 DOI: 10.1186/1471-2164-15-1159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/12/2014] [Indexed: 11/25/2022] Open
Abstract
Background Gene expression is tightly regulated at both transcriptional and post-transcriptional levels. RNA-binding proteins are involved in post-transcriptional gene regulation events. They are involved in a variety of functions such as splicing, alternative splicing, nuclear import and export of mRNA, RNA stability and translation. There are several well-characterized RNA-binding motifs present in a whole genome, such as RNA recognition motif (RRM), KH domain, zinc-fingers etc. In the present study, we have investigated human genome for the presence of RRM-containing gene products starting from RRM domains in the Pfam (Protein family database) repository. Results In Pfam, seven families are recorded to contain RRM-containing proteins. We studied these families for their taxonomic representation, sequence features (identity, length, phylogeny) and structural properties (mapping conservation on the structures). We then examined the presence of RRM-containing gene products in Homo sapiens genome and identified 928 RRM-containing gene products. These were studied for their predicted domain architectures, biological processes, involvement in pathways, disease relevance and disorder content. RRM domains were observed to occur multiple times in a single polypeptide. However, there are 56 other co-existing domains involved in different regulatory functions. Further, functional enrichment analysis revealed that RRM-containing gene products are mainly involved in biological functions such as mRNA splicing and its regulation. Conclusions Our sequence analysis identified RRM-containing gene products in the human genome and provides insights into their domain architectures and biological functions. Since mRNA splicing and gene regulation are important in the cellular machinery, this analysis provides an early overview of genes that carry out these functions. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1159) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore 560 065, India.
| |
Collapse
|
357
|
Cañueto J, Bueno E, Rodríguez-Diaz E, Vicente-Díaz MA, Álvarez-Cuesta CC, Gonzalvo-Rodríguez P, González-Sarmiento R. Acral peeling skin syndrome resulting from mutations in TGM5. J Eur Acad Dermatol Venereol 2014; 30:477-80. [PMID: 25510201 DOI: 10.1111/jdv.12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J Cañueto
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain.,IBSAL and IBMCC, University Hospital of Salamanca-University of Salamanca-CSIC, Salamanca, Spain.,Department of Dermatology, University Hospital of Salamanca, Salamanca, Spain
| | - E Bueno
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain.,IBSAL and IBMCC, University Hospital of Salamanca-University of Salamanca-CSIC, Salamanca, Spain
| | | | - M A Vicente-Díaz
- Department of Dermatology, Hospital Infantil San Joan de Déu, Barcelona, Spain
| | | | | | - R González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain.,IBSAL and IBMCC, University Hospital of Salamanca-University of Salamanca-CSIC, Salamanca, Spain
| |
Collapse
|
358
|
Sharma R, Suresh CG. Genome-wide identification and structure-function studies of proteases and protease inhibitors in Cicer arietinum (chickpea). Comput Biol Med 2014; 56:67-81. [PMID: 25464349 DOI: 10.1016/j.compbiomed.2014.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/07/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Proteases are a family of enzymes present in almost all living organisms. In plants they are involved in many biological processes requiring stress response in situations such as water deficiency, pathogen attack, maintaining protein content of the cell, programmed cell death, senescence, reproduction and many more. Similarly, protease inhibitors (PIs) are involved in various important functions like suppression of invasion by pathogenic nematodes, inhibition of spores-germination and mycelium growth of Alternaria alternata and response to wounding and fungal attack. As much as we know, no genome-wide study of proteases together with proteinaceous PIs is reported in any of the sequenced genomes till now. METHODS Phylogenetic studies and domain analysis of proteases were carried out to understand the molecular evolution as well as gene and protein features. Structural analysis was carried out to explore the binding mode and affinity of PIs for cognate proteases and prolyl oligopeptidase protease with inhibitor ligand. RESULTS In the study reported here, a significant number of proteases and PIs were identified in chickpea genome. The gene expression profiles of proteases and PIs in five different plant tissues revealed a differential expression pattern in more than one plant tissue. Molecular dynamics studies revealed the formation of stable complex owing to increased number of protein-ligand and inter and intramolecular protein-protein hydrogen bonds. DISCUSSION The genome-wide identification, characterization, evolutionary understanding, gene expression, and structural analysis of proteases and PIs provide a framework for future analysis when defining their roles in stress response and developing a more stress tolerant variety of chickpea.
Collapse
Affiliation(s)
- Ranu Sharma
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - C G Suresh
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.
| |
Collapse
|
359
|
Yu S, Chen L, Ye L, Fei L, Tang W, Tian Y, Geng Q, Yi X, Xie J. Identification of two missense mutations of ERCC6 in three Chinese sisters with Cockayne syndrome by whole exome sequencing. PLoS One 2014; 9:e113914. [PMID: 25463447 PMCID: PMC4252064 DOI: 10.1371/journal.pone.0113914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/31/2014] [Indexed: 11/18/2022] Open
Abstract
Cockayne syndrome (CS) is a rare autosomal recessive disorder, the primary manifestations of which are poor growth and neurologic abnormality. Mutations of the ERCC6 and ERCC8 genes are the predominant cause of Cockayne syndrome, and the ERCC6 gene mutation is present in approximately 65% of cases. The present report describes a case of Cockayne syndrome in a Chinese family, with the patients carrying two missense mutations (c.1595A>G, p.Asp532Gly and c.1607T>G, p.Leu536Trp) in the ERCC6 gene in an apparently compound heterozygote status, especially, p.Asp532Gly has never been reported. The compound heterozygote mutation was found in three patients in the family using whole exome sequencing. The patients' father and mother carried a heterozygous allele at different locations of the ERCC6 gene, which was confirmed by Sanger DNA sequencing. The two mutations are both located in the highly conserved motif I of ATP-binding helicase and are considered "Damaging," "Probably Damaging," "Disease Causing," and "Conserved", indicating the role of DNA damage in the pathogenetic process of the disease. The results not only enrich the ERCC6 mutations database, but also indicate that whole exome sequencing will be a powerful tool for discovering the disease causing mutations in clinical diagnosis.
Collapse
Affiliation(s)
| | - Liyuan Chen
- Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518048, China
| | - Lili Ye
- BGI-shenzhen, Shenzhen, 518083, China
| | | | - Wei Tang
- BGI-shenzhen, Shenzhen, 518083, China
| | | | - Qian Geng
- Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518048, China
| | - Xin Yi
- BGI-shenzhen, Shenzhen, 518083, China
- * E-mail: (JX); (XY)
| | - Jiansheng Xie
- Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518048, China
- * E-mail: (JX); (XY)
| |
Collapse
|
360
|
López-Falcón B, Meyer-Nava S, Hernández-Rodríguez B, Campos A, Montero D, Rudiño E, Vázquez M, Zurita M, Valadez-Graham V. Characterization of the Drosophila group ortholog to the amino-terminus of the alpha-thalassemia and mental retardation X-Linked (ATRX) vertebrate protein. PLoS One 2014; 9:e113182. [PMID: 25437195 PMCID: PMC4249797 DOI: 10.1371/journal.pone.0113182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
The human ATRX gene encodes hATRX, a chromatin-remodeling protein harboring an helicase/ATPase and ADD domains. The ADD domain has two zinc fingers that bind to histone tails and mediate hATRX binding to chromatin. dAtrx, the putative ATRX homolog in Drosophila melanogaster, has a conserved helicase/ATPase domain but lacks the ADD domain. A bioinformatic search of the Drosophila genome using the human ADD sequence allowed us to identify the CG8290 annotated gene, which encodes three ADD harboring- isoforms generated by alternative splicing. This Drosophila ADD domain is highly similar in structure and in the amino acids which mediate the histone tail contacts to the ADD domain of hATRX as shown by 3D modeling. Very recently the CG8290 annotated gene has been named dadd1. We show through pull-down and CoIP assays that the products of the dadd1 gene interact physically with dAtrxL and HP1a and all of them mainly co-localize in the chromocenter, although euchromatic localization can also be observed through the chromosome arms. We confirm through ChIP analyses that these proteins are present in vivo in the same heterochromatic regions. The three isoforms are expressed throughout development. Flies carrying transheterozygous combinations of the dadd1 and atrx alleles are semi-viable and have different phenotypes including the appearance of melanotic masses. Interestingly, the dAdd1-b and c isoforms have extra domains, such as MADF, which suggest newly acquired functions of these proteins. These results strongly support that, in Drosophila, the atrx gene diverged and that the dadd1-encoded proteins participate with dAtrx in some cellular functions such as heterochromatin maintenance.
Collapse
Affiliation(s)
- Brenda López-Falcón
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Silvia Meyer-Nava
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Benjamín Hernández-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Adam Campos
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Daniel Montero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Rudiño
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Martha Vázquez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (VVG); (MZ)
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (VVG); (MZ)
| |
Collapse
|
361
|
Wang L, Yin X, Cheng C, Wang H, Guo R, Xu X, Zhao J, Zheng Y, Wang X. Evolutionary and expression analysis of a MADS-box gene superfamily involved in ovule development of seeded and seedless grapevines. Mol Genet Genomics 2014; 290:825-46. [DOI: 10.1007/s00438-014-0961-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 11/17/2014] [Indexed: 11/28/2022]
|
362
|
Ogaki K, Fujioka S, Heckman MG, Rayaprolu S, Soto-Ortolaza AI, Labbé C, Walton RL, Lorenzo-Betancor O, Wang X, Asmann Y, Rademakers R, Graff-Radford N, Uitti R, Cheshire WP, Wszolek ZK, Dickson DW, Ross OA. Analysis of COQ2 gene in multiple system atrophy. Mol Neurodegener 2014; 9:44. [PMID: 25373618 PMCID: PMC4233093 DOI: 10.1186/1750-1326-9-44] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background Loss of function COQ2 mutations results in primary CoQ10 deficiency. Recently, recessive mutations of the COQ2 gene have been identified in two unrelated Japanese families with multiple system atrophy (MSA). It has also been proposed that specific heterozygous variants in the COQ2 gene may confer susceptibility to sporadic MSA. To assess the frequency of COQ2 variants in patients with MSA, we sequenced the entire coding region and investigated all exonic copy number variants of the COQ2 gene in 97 pathologically-confirmed and 58 clinically-diagnosed MSA patients from the United States. Results We did not find any homozygous or compound heterozygous pathogenic COQ2 mutations including deletion or multiplication within our series of MSA patients. In two patients, we identified two heterozygous COQ2 variants (p.S54W and c.403 + 10G > T) of unknown significance, which were not observed in 360 control subjects. We also identified one heterozygous carrier of a known loss of function p.S146N substitution in a severe MSA-C pathologically-confirmed patient. Conclusions The COQ2 p.S146N substitution has been previously reported as a pathogenic mutation in primary CoQ10 deficiency (including infantile multisystem disorder) in a recessive manner. This variant is the third primary CoQ10 deficiency mutation observed in an MSA case (p.R387X and p.R197H). Therefore it is possible that in the heterozygous state it may increase susceptibility to MSA. Further studies, including reassessing family history in patients of primary CoQ10 deficiency for the possible occurrence of MSA, are now warranted to resolve the role of COQ2 variation in MSA. Electronic supplementary material The online version of this article (doi:10.1186/1750-1326-9-44) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
363
|
St John FJ, Dietrich D, Crooks C, Pozharski E, González JM, Bales E, Smith K, Hurlbert JC. A novel member of glycoside hydrolase family 30 subfamily 8 with altered substrate specificity. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2950-8. [PMID: 25372685 PMCID: PMC4722856 DOI: 10.1107/s1399004714019531] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/28/2014] [Indexed: 11/10/2022]
Abstract
Endoxylanases classified into glycoside hydrolase family 30 subfamily 8 (GH30-8) are known to hydrolyze the hemicellulosic polysaccharide glucuronoxylan (GX) but not arabinoxylan or neutral xylooligosaccharides. This is owing to the specificity of these enzymes for the α-1,2-linked glucuronate (GA) appendage of GX. Limit hydrolysis of this substrate produces a series of aldouronates each containing a single GA substituted on the xylose penultimate to the reducing terminus. In this work, the structural and biochemical characterization of xylanase 30A from Clostridium papyrosolvens (CpXyn30A) is presented. This xylanase possesses a high degree of amino-acid identity to the canonical GH30-8 enzymes, but lacks the hallmark β8-α8 loop region which in part defines the function of this GH30 subfamily and its role in GA recognition. CpXyn30A is shown to have a similarly low activity on all xylan substrates, while hydrolysis of xylohexaose revealed a competing transglycosylation reaction. These findings are directly compared with the model GH30-8 enzyme from Bacillus subtilis, XynC. Despite its high sequence identity to the GH30-8 enzymes, CpXyn30A does not have any apparent specificity for the GA appendage. These findings confirm that the typically conserved β8-α8 loop region of these enzymes influences xylan substrate specificity but not necessarily β-1,4-xylanase function.
Collapse
Affiliation(s)
- Franz J. St John
- Forest Products Laboratory, USDA Forest Service, Madison, Wisconsin, USA
| | - Diane Dietrich
- Forest Products Laboratory, USDA Forest Service, Madison, Wisconsin, USA
| | - Casey Crooks
- Forest Products Laboratory, USDA Forest Service, Madison, Wisconsin, USA
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland, Maryland, USA
| | - Javier M. González
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Elizabeth Bales
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, South Carolina, USA
| | - Kennon Smith
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, South Carolina, USA
| | - Jason C. Hurlbert
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, South Carolina, USA
| |
Collapse
|
364
|
Xu BY, Dai YN, Zhou K, Liu YT, Sun Q, Ren YM, Chen Y, Zhou CZ. Structure of the gas vesicle protein GvpF from the cyanobacteriumMicrocystis aeruginosa. ACTA ACUST UNITED AC 2014; 70:3013-22. [DOI: 10.1107/s1399004714021312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/25/2014] [Indexed: 11/11/2022]
Abstract
Gas vesicles are gas-filled proteinaceous organelles that provide buoyancy for bacteria and archaea. A gene cluster that is highly conserved in various species encodes about 8–14 proteins (Gvp proteins) that are involved in the formation of gas vesicles. Here, the first crystal structure of the gas vesicle protein GvpF fromMicrocystis aeruginosaPCC 7806 is reported at 2.7 Å resolution. GvpF is composed of two structurally distinct domains (the N-domain and C-domain), both of which display an α+β class overall structure. The N-domain adopts a novel fold, whereas the C-domain has a modified ferredoxin fold with an apparent variation owing to an extension region consisting of three sequential helices. The two domains pack against each otherviainteractions with a C-terminal tail that is conserved among cyanobacteria. Taken together, it is concluded that the overall architecture of GvpF presents a novel fold. Moreover, it is shown that GvpF is most likely to be a structural protein that is localized at the gas-facing surface of the gas vesicle by immunoblotting and immunogold labelling-based tomography.
Collapse
|
365
|
Szczecinska W, Nesteruk D, Wertheim-Tysarowska K, Greenblatt DT, Baty D, Browne F, Liu L, Ozoemena L, Terron-Kwiatkowski A, McGrath JA, Mellerio JE, Morton J, Woźniak K, Kowalewski C, Has C, Moss C. Under-recognition of acral peeling skin syndrome: 59 new cases with 15 novel mutations. Br J Dermatol 2014; 171:1206-10. [PMID: 24628291 DOI: 10.1111/bjd.12964] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Acral peeling skin syndrome (APSS) is a rare skin fragility disorder usually caused by mutations in the transglutaminase 5 gene (TGM5). METHODS We investigated the mutation spectrum of APSS in the U.K., Germany and Poland. RESULTS We identified 59 children with APSS from 52 families. The phenotype was readily recognizable, with some variation in severity both within and between families. Most cases had been misdiagnosed as the localized form of epidermolysis bullosa simplex (EBS-loc). Eighteen different TGM5 mutations were identified, 15 of which were novel. Eight mutations were unique to a single family, nine each occurred in two families, while the common p.Gly113Cys mutation linked to a second missense variant p.Thr109Met occurred in 47 of the 52 families and was homozygous in 28. Most patients were of nonconsanguineous white European origin. CONCLUSIONS We propose that APSS is under-reported and widely misdiagnosed as EBS-loc, with significant counselling implications as APSS is autosomal recessive while EBS-loc is dominant. We recommend screening for TGM5 mutations when EBS-loc is suspected but not confirmed by mutations in KRT5 or KRT14. Our report trebles the number of known TGM5 mutations. It provides further evidence that p.Gly113Cys is a founder mutation in the European population. This is consistent with the striking ethnic distribution of APSS in U.K., where the majority of patients are of nonconsanguineous white European origin, in contrast to the pattern of other recessive skin disorders.
Collapse
Affiliation(s)
- W Szczecinska
- Department of Dermatology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
366
|
Stewart MJ, Favrel P, Rotgans BA, Wang T, Zhao M, Sohail M, O'Connor WA, Elizur A, Henry J, Cummins SF. Neuropeptides encoded by the genomes of the Akoya pearl oyster Pinctata fucata and Pacific oyster Crassostrea gigas: a bioinformatic and peptidomic survey. BMC Genomics 2014; 15:840. [PMID: 25277059 PMCID: PMC4200219 DOI: 10.1186/1471-2164-15-840] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oysters impart significant socio-ecological benefits from primary production of food supply, to estuarine ecosystems via reduction of water column nutrients, plankton and seston biomass. Little though is known at the molecular level of what genes are responsible for how oysters reproduce, filter nutrients, survive stressful physiological events and form reef communities. Neuropeptides represent a diverse class of chemical messengers, instrumental in orchestrating these complex physiological events in other species. RESULTS By a combination of in silico data mining and peptide analysis of ganglia, 74 putative neuropeptide genes were identified from genome and transcriptome databases of the Akoya pearl oyster, Pinctata fucata and the Pacific oyster, Crassostrea gigas, encoding precursors for over 300 predicted bioactive peptide products, including three newly identified neuropeptide precursors PFGx8amide, RxIamide and Wx3Yamide. Our findings also include a gene for the gonadotropin-releasing hormone (GnRH) and two egg-laying hormones (ELH) which were identified from both oysters. Multiple sequence alignments and phylogenetic analysis supports similar global organization of these mature peptides. Computer-based peptide modeling of the molecular tertiary structures of ELH highlights the structural homologies within ELH family, which may facilitate ELH activity leading to the release of gametes. CONCLUSION Our analysis demonstrates that oysters possess conserved molluscan neuropeptide domains and overall precursor organization whilst highlighting many previously unrecognized bivalve idiosyncrasies. This genomic analysis provides a solid foundation from which further studies aimed at the functional characterization of these molluscan neuropeptides can be conducted to further stimulate advances in understanding the ecology and cultivation of oysters.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Scott F Cummins
- School of Science and Education, Genecology Research Center, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| |
Collapse
|
367
|
Kim J, Song I, Jo A, Shin JH, Cho H, Eoff RL, Guengerich FP, Choi JY. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis. Chem Res Toxicol 2014; 27:1837-52. [PMID: 25162224 PMCID: PMC4203391 DOI: 10.1021/tx5002755] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
DNA
polymerase (pol) ι is the most error-prone among the
Y-family polymerases that participate in translesion synthesis (TLS).
Pol ι can bypass various DNA lesions, e.g., N2-ethyl(Et)G, O6-methyl(Me)G,
8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently
with low fidelity. We assessed the biochemical effects of six reported
genetic variations of human pol ι on its TLS properties, using
the recombinant pol ι (residues 1–445) proteins and DNA
templates containing a G, N2-EtG, O6-MeG, 8-oxoG, or abasic site. The Δ1–25
variant, which is the N-terminal truncation of 25
residues resulting from an initiation codon variant (c.3G > A)
and
also is the formerly misassigned wild-type, exhibited considerably
higher polymerase activity than wild-type with Mg2+ (but
not with Mn2+), coinciding with its steady-state kinetic
data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation
opposite templates (only with Mg2+). The R96G variant,
which lacks a R96 residue known to interact with the incoming nucleotide,
lost much of its polymerase activity, consistent with the kinetic
data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation
opposite templates either with Mg2+ or Mn2+,
except for that opposite N2-EtG with Mn2+ (showing a 9-fold increase for dCTP incorporation). The
Δ1–25 variant bound DNA 20- to 29-fold more tightly than
wild-type (with Mg2+), but the R96G variant bound DNA 2-fold
less tightly than wild-type. The DNA-binding affinity of wild-type,
but not of the Δ1–25 variant, was ∼7-fold stronger
with 0.15 mM Mn2+ than with Mg2+. The results
indicate that the R96G variation severely impairs most of the Mg2+- and Mn2+-dependent TLS abilities of pol ι,
whereas the Δ1–25 variation selectively and substantially
enhances the Mg2+-dependent TLS capability of pol ι,
emphasizing the potential translational importance of these pol ι
genetic variations, e.g., individual differences in TLS, mutation,
and cancer susceptibility to genotoxic carcinogens.
Collapse
Affiliation(s)
- Jinsook Kim
- Division of Pharmacology, Department of Molecular Cell Biology, and ‡Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
368
|
Kuo YY, Hou HA, Chen YK, Li LY, Chen PH, Tseng MH, Huang CF, Lee FY, Liu MC, Liu CW, Chou WC, Liu CY, Tang JL, Yao M, Tien HF. The N-terminal CEBPA mutant in acute myeloid leukemia impairs CXCR4 expression. Haematologica 2014; 99:1799-807. [PMID: 25193961 DOI: 10.3324/haematol.2014.107821] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
CXC chemokine receptor 4 (CXCR4) is an essential regulator for homing and maintenance of hematopoietic stem cells within the bone marrow niches. Analysis of clinical implications of bone marrow CXCR4 expression in patients with acute myeloid leukemia showed not only higher CXCR4 expression was an independent poor prognostic factor, irrespective of age, white blood cell counts, cytogenetics, and mutation status of NPM1/FLT3-ITD and CEBPA, but also showed CXCR4 expression was inversely associated with mutations of CEBPA, a gene encoding transcription factor C/EBPα. Patients with wild-type CEBPA had significantly higher CXCR4 expression than those with mutated CEBPA. We hypothesized that CEBPA might influence the expression of CXCR4. To test this hypothesis, we first examined endogenous CXCR4 expression in 293T and K562 cells over-expressing wild-type C/EBPα p42 and demonstrated that CXCR4 levels were increased in these cells, whilst the expression of the N-terminal mutant, C/EBPα p30, diminished CXCR4 transcription. We further showed p42 was bound to the CXCR4 promoter by the chromatin immunoprecipitation assays. Induction of p42 in the inducible K562-C/EBPα cell lines increased the chemotactic migration. Moreover, decreased expression of C/EBPα by RNA interference decreased levels of CXCR4 protein expression in U937 cells, thereby abrogating CXCR4-mediated chemotaxis. Our results provide, for the first time, evidence that C/EBPα indeed regulates the activation of CXCR4, which is critical for the homing and engraftment of acute myeloid leukemia cells, while p30 mutant impairs CXCR4 expression.
Collapse
Affiliation(s)
- Yuan-Yeh Kuo
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei;
| | - Hsin-An Hou
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei; Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Yin-Kai Chen
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Li-Yu Li
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei
| | - Po-Hsuen Chen
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei
| | - Mei-Hsuan Tseng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Chi-Fei Huang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Fen-Yu Lee
- Department of Pathology, National Taiwan University Hospital, Taipei
| | - Ming-Chih Liu
- Department of Pathology, National Taiwan University Hospital, Taipei
| | - Chia-Wen Liu
- Department of Pathology, National Taiwan University Hospital, Taipei
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei
| | - Chieh-Yu Liu
- Biostatistics Consulting Laboratory, Department of Nursing, National Taipei College of Nursing, Taiwan
| | - Jih-Luh Tang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Ming Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei
| |
Collapse
|
369
|
Expression characterization of testicular DMRT1 in both Sertoli cells and spermatogenic cells of polyploid gibel carp. Gene 2014; 548:119-25. [DOI: 10.1016/j.gene.2014.07.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/03/2014] [Accepted: 07/11/2014] [Indexed: 11/19/2022]
|
370
|
Naveed M, Ahmed I, Khalid N, Mumtaz AS. Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66. Braz J Microbiol 2014; 45:603-11. [PMID: 25242947 PMCID: PMC4166288 DOI: 10.1590/s1517-83822014000200031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
Glucose dehydrogenase (GDH; EC 1.1. 5.2) is the member of quinoproteins group that use the redox cofactor pyrroloquinoline quinoine, calcium ions and glucose as substrate for its activity. In present study, Leclercia sp. QAU-66, isolated from rhizosphere of Vigna mungo, was characterized for phosphate solubilization and the role of GDH in plant growth promotion of Phaseolus vulgaris. The strain QAU-66 had ability to solubilize phosphorus and significantly (p ≤ 0.05) promoted the shoot and root lengths of Phaseolus vulgaris. The structural determination of GDH protein was carried out using bioinformatics tools like Pfam, InterProScan, I-TASSER and COFACTOR. These tools predicted the structural based functional homology of pyrroloquinoline quinone domains in GDH. GDH of Leclercia sp. QAU-66 is one of the main factor that involved in plant growth promotion and provides a solid background for further research in plant growth promoting activities.
Collapse
Affiliation(s)
- Muhammad Naveed
- Plant Genomics Lab Department of Plant Sciences Quaid-i-Azam University Islamabad Pakistan Plant Genomics Lab, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iftikhar Ahmed
- National Institute for Genomics & Advanced Biotechnology National Agricultural Research Centre Islamabad Pakistan National Institute for Genomics & Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| | - Nauman Khalid
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Abdul Samad Mumtaz
- Plant Genomics Lab Department of Plant Sciences Quaid-i-Azam University Islamabad Pakistan Plant Genomics Lab, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
371
|
Redpath GMI, Woolger N, Piper AK, Lemckert FA, Lek A, Greer PA, North KN, Cooper ST. Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair. Mol Biol Cell 2014; 25:3037-48. [PMID: 25143396 PMCID: PMC4230592 DOI: 10.1091/mbc.e14-04-0947] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The muscular dystrophy protein dysferlin plays a key role in the calcium-activated vesicle fusion of membrane repair. This study establishes calpains as upstream regulators of dysferlin in the membrane repair cascade and further demonstrates that similar C-terminal modules are enzymatically released from other ferlin family members. Dysferlin and calpain are important mediators of the emergency response to repair plasma membrane injury. Our previous research revealed that membrane injury induces cleavage of dysferlin to release a synaptotagmin-like C-terminal module we termed mini-dysferlinC72. Here we show that injury-activated cleavage of dysferlin is mediated by the ubiquitous calpains via a cleavage motif encoded by alternately spliced exon 40a. An exon 40a–specific antibody recognizing cleaved mini-dysferlinC72 intensely labels the circumference of injury sites, supporting a key role for dysferlinExon40a isoforms in membrane repair and consistent with our evidence suggesting that the calpain-cleaved C-terminal module is the form specifically recruited to injury sites. Calpain cleavage of dysferlin is a ubiquitous response to membrane injury in multiple cell lineages and occurs independently of the membrane repair protein MG53. Our study links calpain and dysferlin in the calcium-activated vesicle fusion of membrane repair, placing calpains as upstream mediators of a membrane repair cascade that elicits cleaved dysferlin as an effector. Of importance, we reveal that myoferlin and otoferlin are also cleaved enzymatically to release similar C-terminal modules, bearing two C2 domains and a transmembrane domain. Evolutionary preservation of this feature highlights its functional importance and suggests that this highly conserved C-terminal region of ferlins represents a functionally specialized vesicle fusion module.
Collapse
Affiliation(s)
- G M I Redpath
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - N Woolger
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - A K Piper
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - F A Lemckert
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - A Lek
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - P A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, ON K7L 3N6, Canada
| | - K N North
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia, and Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC 3010, Australia
| | - S T Cooper
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
372
|
Cao D, Ju Z, Gao C, Mei X, Fu D, Zhu H, Luo Y, Zhu B. Genome-wide identification of cytosine-5 DNA methyltransferases and demethylases in Solanum lycopersicum. Gene 2014; 550:230-7. [PMID: 25149677 DOI: 10.1016/j.gene.2014.08.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 12/29/2022]
Abstract
Recent studies have reported that decreased level of DNA cytosine methylation in the global genome was closely related to the initiation of tomato (Solanum lycopersicum) fruit ripening. However, genome-scale analysis of cytosine-5 DNA methyltransferases (C5-MTases) and demethylases in tomato has not been engaged. In this study, 7 C5-MTases and 3 demethylases were identified in tomato genome, which probably contributed to DNA cytosine methylation level in tomato. The 7 C5-MTases were categorized into 4 subgroups, and the 3 demethylases were classified into 2 subgroups based on phylogenetic analyses. Comprehensive analysis of their structure and genomic localization was also performed in this paper. According to online RNA-seq data, 4 S. lycopersicum C5-MTase (SlC5-MTase) genes (SlMET, SlDRM1L1, SlDRM5, SlMET3L) were expressed higher than others, and one DNA demethylase gene (SlDML) was significantly changed during tomato fruit development and ripening. Furthermore, all these five gene expressions at breaker (BK) stage changed with 1-methylcyclopropene (1-MCP) treatment, indicating that they were regulated by ethylene directly or indirectly in tomato fruit. In addition, subcellular localization analysis indicated that SlDRM1L1 and SlDRM5 located in the nucleus might have responsibility for RNA-directed DNA methylation (RdDM). Collectively, this paper provided a framework for gene discovery and functional characterization of C5-MTases and DNA demethylases in other Solanaceae species.
Collapse
Affiliation(s)
- Dongyan Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zheng Ju
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chao Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaohong Mei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daqi Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
373
|
Smith RC, Colón-López DD, Bosch J. Immunization against a merozoite sheddase promotes multiple invasion of red blood cells and attenuates Plasmodium infection in mice. Malar J 2014; 13:313. [PMID: 25115675 PMCID: PMC4248431 DOI: 10.1186/1475-2875-13-313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/05/2014] [Indexed: 12/31/2022] Open
Abstract
Background Subtilisin-like protease 2 (SUB2) is a conserved serine protease utilized by Plasmodium parasites as a surface sheddase required for successful merozoite invasion of host red blood cells and has been implicated in ookinete invasion of the mosquito midgut. To determine if SUB2 is a suitable vaccine target to interfere with malaria parasite development, the effects of SUB2-immunization on the Plasmodium life cycle were examined in its vertebrate and invertebrate hosts. Methods Swiss Webster mice were immunized with SUB2 peptides conjugated to Keyhole limpet hemocyanin (KLH) or KLH alone, and then challenged with Plasmodium berghei. To determine the effects of immunization on parasite development, infected mice were evaluated by blood film and Giemsa staining. In addition, collected immune sera were used to perform passive immunization experiments in non-immunized, P. berghei-infected mice to determine the potential role of SUB2 in parasite development in the mosquito. Results Following P. berghei challenge, SUB2-immunized mice develop a lower parasitaemia and show improved survival when compared to control immunized mice. Moreover, SUB2 immunization results in an increase in the number of multiply invaded red blood cells, suggesting that SUB2 antibodies interfere with merozoite invasion. Passive immunization experiments imply that SUB2 may not have a major role in ookinete invasion, but this requires further investigation. Conclusion By interfering with red blood cell invasion, immunization against SUB2 limits malaria parasite development and confers protection from severe malaria. Together, these results provide proof-of-principle evidence for future investigation into the use of SUB2 as a vaccine or drug target to interrupt parasite development in more relevant human malaria models. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-313) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
374
|
Qin X, Hao Z, Tian Q, Zhang Z, Zhou C, Xie W. Cocrystal structures of glycyl-tRNA synthetase in complex with tRNA suggest multiple conformational states in glycylation. J Biol Chem 2014; 289:20359-69. [PMID: 24898252 PMCID: PMC4106348 DOI: 10.1074/jbc.m114.557249] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/31/2014] [Indexed: 12/16/2022] Open
Abstract
Aminoacyl-tRNA synthetases are an ancient enzyme family that specifically charges tRNA molecules with cognate amino acids for protein synthesis. Glycyl-tRNA synthetase (GlyRS) is one of the most intriguing aminoacyl-tRNA synthetases due to its divergent quaternary structure and abnormal charging properties. In the past decade, mutations of human GlyRS (hGlyRS) were also found to be associated with Charcot-Marie-Tooth disease. However, the mechanisms of traditional and alternative functions of hGlyRS are poorly understood due to a lack of studies at the molecular basis. In this study we report crystal structures of wild type and mutant hGlyRS in complex with tRNA and with small substrates and describe the molecular details of enzymatic recognition of the key tRNA identity elements in the acceptor stem and the anticodon loop. The cocrystal structures suggest that insertions 1 and 3 work together with the active site in a cooperative manner to facilitate efficient substrate binding. Both the enzyme and tRNA molecules undergo significant conformational changes during glycylation. A working model of multiple conformations for hGlyRS catalysis is proposed based on the crystallographic and biochemical studies. This study provides insights into the catalytic pathway of hGlyRS and may also contribute to our understanding of Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Xiangjing Qin
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, China, Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle, University City, Guangzhou 510006, China, and
| | - Zhitai Hao
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, China, Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle, University City, Guangzhou 510006, China, and
| | - Qingnan Tian
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, China, Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle, University City, Guangzhou 510006, China, and
| | - Zhemin Zhang
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, China, Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle, University City, Guangzhou 510006, China, and
| | - Chun Zhou
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Wei Xie
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, China, Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle, University City, Guangzhou 510006, China, and
| |
Collapse
|
375
|
Cuesta-Astroz Y, Scholte LLS, Pais FSM, Oliveira G, Nahum LA. Evolutionary analysis of the cystatin family in three Schistosoma species. Front Genet 2014; 5:206. [PMID: 25071834 PMCID: PMC4089355 DOI: 10.3389/fgene.2014.00206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/18/2014] [Indexed: 11/13/2022] Open
Abstract
The cystatin family comprises cysteine protease inhibitors distributed in 3 subfamilies (I25A–C). Family members lacking cystatin activity are currently unclassified. Little is known about the evolution of Schistosoma cystatins, their physiological roles, and expression patterns in the parasite life cycle. The present study aimed to identify cystatin homologs in the predicted proteome of three Schistosoma species and other Platyhelminthes. We analyzed the amino acid sequence diversity focused in the identification of protein signatures and to establish evolutionary relationships among Schistosoma and experimentally validated human cystatins. Gene expression patterns were obtained from different developmental stages in Schistosoma mansoni using microarray data. In Schistosoma, only I25A and I25B proteins were identified, reflecting little functional diversification. I25C and unclassified subfamily members were not identified in platyhelminth species here analyzed. The resulting phylogeny placed cystatins in different clades, reflecting their molecular diversity. Our findings suggest that Schistosoma cystatins are very divergent from their human homologs, especially regarding the I25B subfamily. Schistosoma cystatins also differ significantly from other platyhelminth homologs. Finally, transcriptome data publicly available indicated that I25A and I25B genes are constitutively expressed thus could be essential for schistosome life cycle progression. In summary, this study provides insights into the evolution, classification, and functional diversification of cystatins in Schistosoma and other Platyhelminthes, improving our understanding of parasite biology and opening new frontiers in the identification of novel therapeutic targets against helminthiases.
Collapse
Affiliation(s)
- Yesid Cuesta-Astroz
- Grupo de Genômica e Biologia Computacional, Centro de Excelência em Bioinformática, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (Fiocruz) Belo Horizonte, Brazil ; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Larissa L S Scholte
- Grupo de Genômica e Biologia Computacional, Centro de Excelência em Bioinformática, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (Fiocruz) Belo Horizonte, Brazil ; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Fabiano Sviatopolk-Mirsky Pais
- Grupo de Genômica e Biologia Computacional, Centro de Excelência em Bioinformática, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (Fiocruz) Belo Horizonte, Brazil ; Faculdade Infórium de Tecnologia Belo Horizonte, Brazil
| | - Guilherme Oliveira
- Grupo de Genômica e Biologia Computacional, Centro de Excelência em Bioinformática, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (Fiocruz) Belo Horizonte, Brazil
| | - Laila A Nahum
- Grupo de Genômica e Biologia Computacional, Centro de Excelência em Bioinformática, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (Fiocruz) Belo Horizonte, Brazil ; Faculdade Infórium de Tecnologia Belo Horizonte, Brazil
| |
Collapse
|
376
|
Cremona CA, Behrens A. ATM signalling and cancer. Oncogene 2014; 33:3351-60. [PMID: 23851492 DOI: 10.1038/onc.2013.275] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 12/12/2022]
Abstract
ATM, the protein kinase mutated in the rare human disease ataxia telangiectasia (A-T), has been the focus of intense scrutiny over the past two decades. Initially this was because of the unusual radiosensitive phenotype of cells from A-T patients, and latterly because investigating ATM signalling has yielded valuable insights into the DNA damage response, redox signalling and cancer. With the recent explosion in genomic data, ATM alterations have been revealed both in the germline as a predisposing factor for cancer and as somatic changes in tumours themselves. Here we review these findings, as well as advances in the understanding of ATM signalling mechanisms in cancer and ATM inhibition as a strategy for cancer treatment.
Collapse
Affiliation(s)
- C A Cremona
- Mammalian Genetics Lab, Cancer Research UK London Research Institute, London, UK
| | - A Behrens
- Mammalian Genetics Lab, Cancer Research UK London Research Institute, London, UK
| |
Collapse
|
377
|
Tinti M, Dissanayake K, Synowsky S, Albergante L, MacKintosh C. Identification of 2R-ohnologue gene families displaying the same mutation-load skew in multiple cancers. Open Biol 2014; 4:140029. [PMID: 24806839 PMCID: PMC4042849 DOI: 10.1098/rsob.140029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/09/2014] [Indexed: 12/12/2022] Open
Abstract
The complexity of signalling pathways was boosted at the origin of the vertebrates, when two rounds of whole genome duplication (2R-WGD) occurred. Those genes and proteins that have survived from the 2R-WGD-termed 2R-ohnologues-belong to families of two to four members, and are enriched in signalling components relevant to cancer. Here, we find that while only approximately 30% of human transcript-coding genes are 2R-ohnologues, they carry 42-60% of the gene mutations in 30 different cancer types. Across a subset of cancer datasets, including melanoma, breast, lung adenocarcinoma, liver and medulloblastoma, we identified 673 2R-ohnologue families in which one gene carries mutations at multiple positions, while sister genes in the same family are relatively mutation free. Strikingly, in 315 of the 322 2R-ohnologue families displaying such a skew in multiple cancers, the same gene carries the heaviest mutation load in each cancer, and usually the second-ranked gene is also the same in each cancer. Our findings inspire the hypothesis that in certain cancers, heterogeneous combinations of genetic changes impair parts of the 2R-WGD signalling networks and force information flow through a limited set of oncogenic pathways in which specific non-mutated 2R-ohnologues serve as effectors. The non-mutated 2R-ohnologues are therefore potential therapeutic targets. These include proteins linked to growth factor signalling, neurotransmission and ion channels.
Collapse
Affiliation(s)
- Michele Tinti
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kumara Dissanayake
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Silvia Synowsky
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Luca Albergante
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Division of Computational Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Carol MacKintosh
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
378
|
Song I, Kim EJ, Kim IH, Park EM, Lee KE, Shin JH, Guengerich FP, Choi JY. Biochemical characterization of eight genetic variants of human DNA polymerase κ involved in error-free bypass across bulky N(2)-guanyl DNA adducts. Chem Res Toxicol 2014; 27:919-30. [PMID: 24725253 DOI: 10.1021/tx500072m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA polymerase (pol) κ, one of the Y-family polymerases, has been shown to function in error-free translesion DNA synthesis (TLS) opposite the bulky N(2)-guanyl DNA lesions induced by many carcinogens such as polycyclic aromatic hydrocarbons. We analyzed the biochemical properties of eight reported human pol κ variants positioned in the polymerase core domain, using the recombinant pol κ (residues 1-526) protein and the DNA template containing an N(2)-CH2(9-anthracenyl)G (N(2)-AnthG). The truncation R219X was devoid of polymerase activity, and the E419G and Y432S variants showed much lower polymerase activity than wild-type pol κ. In steady-state kinetic analyses, E419G and Y432S displayed 20- to 34-fold decreases in kcat/Km for dCTP insertion opposite G and N(2)-AnthG compared to that of wild-type pol κ. The L21F, I39T, and D189G variants, as well as E419G and Y432S, displayed 6- to 22-fold decreases in kcat/Km for next-base extension from C paired with N(2)-AnthG, compared to that of wild-type pol κ. The defective Y432S variant had 4- to 5-fold lower DNA-binding affinity than wild-type, while a slightly more efficient S423R variant possessed 2- to 3-fold higher DNA-binding affinity. These results suggest that R219X abolishes and the E419G, Y432S, L21F, I39T, and D189G variations substantially impair the TLS ability of pol κ opposite bulky N(2)-G lesions in the insertion step opposite the lesion and/or the subsequent extension step, raising the possibility that certain nonsynonymous pol κ genetic variations translate into individual differences in susceptibility to genotoxic carcinogens.
Collapse
Affiliation(s)
- Insil Song
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
379
|
Genome-wide identification, evolution and expression analysis of the grape (Vitis vinifera L.) zinc finger-homeodomain gene family. Int J Mol Sci 2014; 15:5730-48. [PMID: 24705465 PMCID: PMC4013592 DOI: 10.3390/ijms15045730] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/15/2014] [Accepted: 03/25/2014] [Indexed: 12/30/2022] Open
Abstract
Plant zinc finger-homeodomain (ZHD) genes encode a family of transcription factors that have been demonstrated to play an important role in the regulation of plant growth and development. In this study, we identified a total of 13 ZHD genes (VvZHD) in the grape genome that were further classified into at least seven groups. Genome synteny analysis revealed that a number of VvZHD genes were present in the corresponding syntenic blocks of Arabidopsis, indicating that they arose before the divergence of these two species. Gene expression analysis showed that the identified VvZHD genes displayed distinct spatiotemporal expression patterns, and were differentially regulated under various stress conditions and hormone treatments, suggesting that the grape VvZHDs might be also involved in plant response to a variety of biotic and abiotic insults. Our work provides insightful information and knowledge about the ZHD genes in grape, which provides a framework for further characterization of their roles in regulation of stress tolerance as well as other aspects of grape productivity.
Collapse
|
380
|
Genome wide identification of fruitless targets suggests a role in upregulating genes important for neural circuit formation. Sci Rep 2014; 4:4412. [PMID: 24642956 PMCID: PMC3958720 DOI: 10.1038/srep04412] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/28/2014] [Indexed: 11/09/2022] Open
Abstract
The fruitless gene (fru) encodes a set of transcription factors (Fru) that display sexually dimorphic gene expression in the brain of the fruit-fly; Drosophila melanogaster. Behavioural studies have demonstrated that fru is essential for courtship behaviour in the male fly and is thought to act by directing the development of sex-specific neural circuitry that encodes this innate behavioural response. This study reports the identification of direct regulatory targets of the sexually dimorphic isoforms of the Fru protein using an in vitro model system. Genome wide binding sites were identified for each of the isoforms using Chromatin Immunoprecipitation coupled to deep sequencing (ChIP-Seq). Putative target genes were found to be involved in processes such as neurotransmission, ion-channel signalling and neuron development. All isoforms showed a significant bias towards genes located on the X-chromosome, which may reflect a specific role for Fru in regulating x-linked genes. Taken together with expression analysis carried out in Fru positive neurons specifically isolated from the male fly brain, it appears that the Fru protein acts as a transcriptional activator. Understanding the regulatory cascades induced by Fru will help to shed light on the molecular mechanisms that are important for specification of neural circuitry underlying complex behaviour.
Collapse
|
381
|
Ozturk N, Singh I, Mehta A, Braun T, Barreto G. HMGA proteins as modulators of chromatin structure during transcriptional activation. Front Cell Dev Biol 2014; 2:5. [PMID: 25364713 PMCID: PMC4207033 DOI: 10.3389/fcell.2014.00005] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/07/2014] [Indexed: 01/12/2023] Open
Abstract
High mobility group (HMG) proteins are the most abundant non-histone chromatin associated proteins. HMG proteins bind to DNA and nucleosome and alter the structure of chromatin locally and globally. Accessibility to DNA within chromatin is a central factor that affects DNA-dependent nuclear processes, such as transcription, replication, recombination, and repair. HMG proteins associate with different multi-protein complexes to regulate these processes by mediating accessibility to DNA. HMG proteins can be subdivided into three families: HMGA, HMGB, and HMGN. In this review, we will focus on recent advances in understanding the function of HMGA family members, specifically their role in gene transcription regulation during development and cancer.
Collapse
Affiliation(s)
- Nihan Ozturk
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Indrabahadur Singh
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Aditi Mehta
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Guillermo Barreto
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| |
Collapse
|
382
|
Miller RE, Lu Y, Tortorella MD, Malfait AM. Genetically Engineered Mouse Models Reveal the Importance of Proteases as Osteoarthritis Drug Targets. Curr Rheumatol Rep 2014; 15:350. [PMID: 23926636 DOI: 10.1007/s11926-013-0350-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
More than two decades of research has revealed a combination of proteases that determine cartilage degradation in osteoarthritis. These include metalloproteinases, which degrade the major macromolecules in cartilage, aggrecan and type II collagen, serine proteases, and cysteine proteases, for example cathepsin K. This review summarizes the function of proteases in osteoarthritis progression, as revealed by studies of genetically engineered mouse models. A brief overview of the biochemical characteristics and features of several important proteases is provided, with the objective of increasing understanding of their function. Published data reveal at least three enzymes to be major targets for osteoarthritis drug development: ADAMTS-5, MMP-13, and cathepsin K. In surgical models of osteoarthritis, mice lacking these enzymes are protected from cartilage damage and, to varying degrees, from bone changes. In-vivo studies targeting these proteases with selective small-molecule inhibitors have been performed for a variety of animal models. Mouse models will provide opportunities for future tests of the therapeutic effect of protease inhibitors, both on progression of structural damage to the joint and on associated pain.
Collapse
Affiliation(s)
- Rachel E Miller
- Department of Medicine, Section of Rheumatology, Rush University Medical Center, 1611 W. Harrison St., Suite 510, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
383
|
de Lucas S, Oliveros JC, Chagoyen M, Ortín J. Functional signature for the recognition of specific target mRNAs by human Staufen1 protein. Nucleic Acids Res 2014; 42:4516-26. [PMID: 24470147 PMCID: PMC3985646 DOI: 10.1093/nar/gku073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cellular messenger RNAs (mRNAs) are associated to proteins in the form of ribonucleoprotein particles. The double-stranded RNA-binding (DRB) proteins play important roles in mRNA synthesis, modification, activity and decay. Staufen is a DRB protein involved in the localized translation of specific mRNAs during Drosophila early development. The human Staufen1 (hStau1) forms RNA granules that contain translation regulation proteins as well as cytoskeleton and motor proteins to allow the movement of the granule on microtubules, but the mechanisms of hStau1-RNA recognition are still unclear. Here we used a combination of affinity chromatography, RNAse-protection, deep-sequencing and bioinformatic analyses to identify mRNAs differentially associated to hStau1 or a mutant protein unable to bind RNA and, in this way, defined a collection of mRNAs specifically associated to wt hStau1. A common sequence signature consisting of two opposite-polarity Alu motifs was present in the hStau1-associated mRNAs and was shown to be sufficient for binding to hStau1 and hStau1-dependent stimulation of protein expression. Our results unravel how hStau1 identifies a wide spectrum of cellular target mRNAs to control their localization, expression and fate.
Collapse
Affiliation(s)
- Susana de Lucas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CSIC), C/Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain, Ciber de Enfermedades Respiratorias (ISCIII), Mallorca, Spain, Servicio de Genómica Computacional, Centro Nacional de Biotecnología (CSIC), C/Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain and Bioinformática de Sistemas, Centro Nacional de Biotecnología (CSIC), C/Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
384
|
Xue K, Wang Y, Hou Y, Wang Y, Zhong T, Li L, Zhang H, Wang L. Molecular characterization and expression patterns of the actinin-associated LIM protein (ALP) subfamily genes in porcine skeletal muscle. Gene 2014; 539:111-6. [PMID: 24462755 DOI: 10.1016/j.gene.2014.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
The actinin-associated LIM protein (ALP) subfamily has important functions in cell signal transduction, cell proliferation, and integration of cytoskeletal architecture. To detect their functions in pig skeletal muscle, we cloned and characterized the pig ALP subfamily genes, drew their genomic structure maps, and detected their tissue expression patterns. We identified a new spliced variant of PDLIM3 in pig skeletal muscle and named it as PDLIM3-4, which was only expressed in the heart and skeletal muscle. Our results showed that PDLIM3-4 was expressed in adult pig skeletal muscle with the highest expression level, and both PDLIM3-4 isoform and PDLIM4 had different expression profiles during the prenatal and postnatal stages of skeletal muscle development among the three pig breeds. These studies provide useful information for further research on the functions of pig ALP subfamily genes in skeletal muscle development.
Collapse
Affiliation(s)
- Ke Xue
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yan Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yuguo Hou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yilin Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tao Zhong
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Li Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hongping Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Linjie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| |
Collapse
|
385
|
Pham TT, Angus SP, Johnson GL. MAP3K1: Genomic Alterations in Cancer and Function in Promoting Cell Survival or Apoptosis. Genes Cancer 2014; 4:419-26. [PMID: 24386504 DOI: 10.1177/1947601913513950] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 11/02/2013] [Indexed: 12/15/2022] Open
Abstract
MAP3K1 is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family of serine/threonine kinases. MAP3K1 regulates JNK activation and is unique among human kinases in that it also encodes an E3 ligase domain that ubiquitylates c-Jun and ERK1/2. Full length MAP3K1 regulates cell migration and contributes to pro-survival signaling while its caspase 3-mediated cleavage generates a C-terminal kinase domain that promotes apoptosis. The critical function of MAP3K1 in cell fate decisions suggests that it may be a target for deregulation in cancer. Recent large-scale genomic studies have revealed that MAP3K1 copy number loss and somatic missense or nonsense mutations are observed in a significant number of different cancers, being most prominent in luminal breast cancer. The alteration of MAP3K1 in diverse cancer types demonstrates the importance of defining phenotypes for possible therapeutic targeting of tumor cell vulnerabilities created when MAP3K1 function is lost or gained.
Collapse
Affiliation(s)
- Trang T Pham
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Steven P Angus
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
386
|
Ow JR, Tan YH, Jin Y, Bahirvani AG, Taneja R. Stra13 and Sharp-1, the Non-Grouchy Regulators of Development and Disease. Curr Top Dev Biol 2014; 110:317-38. [DOI: 10.1016/b978-0-12-405943-6.00009-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
387
|
Zhao L, Lu J, Zhang J, Wu PY, Yang S, Wu K. Identification and characterization of histone deacetylases in tomato (Solanum lycopersicum). FRONTIERS IN PLANT SCIENCE 2014; 5:760. [PMID: 25610445 PMCID: PMC4285013 DOI: 10.3389/fpls.2014.00760] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/10/2014] [Indexed: 05/19/2023]
Abstract
Histone acetylation and deacetylation at the N-terminus of histone tails play crucial roles in the regulation of eukaryotic gene activity. Histone acetylation and deacetylation are catalyzed by histone acetyltransferases and histone deacetylases (HDACs), respectively. A growing number of studies have demonstrated the importance of histone deacetylation/acetylation on genome stability, transcriptional regulation, development and response to stress in Arabidopsis. However, the biological functions of HDACs in tomato have not been investigated previously. Fifteen HDACs identified from tomato (Solanum lycopersicum) can be grouped into RPD3/HDA1, SIR2 and HD2 families based on phylogenetic analysis. Meanwhile, 10 members of the RPD3/HDA1 family can be further subdivided into four groups, namely Class I, Class II, Class III, and Class IV. High similarities of protein sequences and conserved domains were identified among SlHDACs and their homologs in Arabidopsis. Most SlHDACs were expressed in all tissues examined with different transcript abundance. Transient expression in Arabidopsis protoplasts showed that SlHDA8, SlHDA1, SlHDA5, SlSRT1 and members of the HD2 family were localized to the nucleus, whereas SlHDA3 and SlHDA4 were localized in both the cytoplasm and nucleus. The difference in the expression patterns and subcellular localization of SlHDACs suggest that they may play distinct functions in tomato. Furthermore, we found that three members of the RPD3/HDA1 family, SlHDA1, SIHDA3 and SlHDA4, interacted with TAG1 (TOMATO AGAMOUS1) and TM29 (TOMATO MADS BOX29), two MADS-box proteins associated with tomato reproductive development, indicating that these HDACs may be involved in gene regulation in reproductive development.
Collapse
Affiliation(s)
- Linmao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Jingxia Lu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Jianxia Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Institute of Plant Biology, National Taiwan UniversityTaipei, Taiwan
| | - Pei-Ying Wu
- Institute of Plant Biology, National Taiwan UniversityTaipei, Taiwan
| | - Songguang Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- *Correspondence: Songguang Yang, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China e-mail:
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan UniversityTaipei, Taiwan
- Keqiang Wu, Institute of Plant Biology, National Taiwan University, Taipei 106, No. 1, Sec. 4, Roosevelt Road, 10617 Taipei, Taiwan e-mail:
| |
Collapse
|
388
|
Cheng C, Xu X, Gao M, Li J, Guo C, Song J, Wang X. Genome-wide analysis of respiratory burst oxidase homologs in grape (Vitis vinifera L.). Int J Mol Sci 2013; 14:24169-86. [PMID: 24351809 PMCID: PMC3876103 DOI: 10.3390/ijms141224169] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/01/2013] [Accepted: 12/06/2013] [Indexed: 11/18/2022] Open
Abstract
Plant respiratory burst oxidase homolog (rboh) genes appear to play crucial roles in plant development, defense reactions and hormone signaling. In this study, a total of seven rboh genes from grape were identified and characterized. Genomic structure and predicted protein sequence analysis indicated that the sequences of plant rboh genes are highly conserved. Synteny analysis demonstrated that several Vvrboh genes were found in corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of the respective lineages. The expression pattern of Vvrboh genes in different tissues was assessed by qRT-PCR and two were constitutively expressed in all tissues tested. The expression profiles were similarly analyzed following exposure to various stresses and hormone treatments. It was shown that the expression levels of VvrbohA, VvrbohB and VvrbohC1 were significantly increased by salt and drought treatments. VvrbohB, VvrbohC2, and VvrbohD exhibited a dramatic up-regulation after powdery mildew (Uncinula necator (Schw.) Burr.) inoculation, while VvrbohH was down-regulated. Finally, salicylic acid treatment strongly stimulated the expression of VvrbohD and VvrbohH, while abscisic acid treatment induced the expression of VvrbohB and VvrbohH. These results demonstrate that the expression patterns of grape rboh genes exhibit diverse and complex stress-response expression signatures.
Collapse
Affiliation(s)
- Chenxia Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaozhao Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junyang Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
389
|
Ma J, Jiang QT, Zhang XW, Lan XJ, Pu ZE, Wei YM, Liu C, Lu ZX, Zheng YL. Structure and expression of barley starch phosphorylase genes. PLANTA 2013; 238:1081-93. [PMID: 24002549 DOI: 10.1007/s00425-013-1953-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/22/2013] [Indexed: 05/26/2023]
Abstract
The function of starch phosphorylase has long been debated on the regulation of starch metabolism during the growth and development of plants. In this study, we isolated starch phosphorylase genes (Pho1 and Pho2) from barley, characterized their gene and protein structures, predicated their promoter's cis-elements and analyzed expression patterns. Multiple alignments of these genes showed that (1) both Pho1 and Pho2 genes possess 15 exons and 14 introns in all but three of the species analyzed, Aegilops tauschii (for Pho1 which contains 16 exons and 15 introns), potato (for Pho1b which contains 14 exons and 13 introns), and Triticum uraru (for Pho2 which contains 15 exons and 14 introns); (2) the exon-intron junctions of Pho1 and Pho2 flanking the ligand-binding sites are more conservative than the other regions. Analysis of protein sequences revealed that Pho1 and Pho2 were highly homologous except for two regions, the N terminal domain and the L78 insertion region. The results of real-time quantitative PCR (RT-qPCR) indicated that Pho2 is mainly expressed in germinating seeds, and the expression of Pho1 is similar to that of starch synthesis genes during seed development in barley. Microarray-based analysis indicated that the accumulation of Pho1 or Pho2 transcripts exhibited uniform pattern both in various tissues and various stages of seed development among species of barley, rice, and Arabidopsis. Pho1 of barley was significantly down-regulated under cold and drought treatments, and up-regulated under stem rust infection. Pho2 exhibited similar expression to Pho1 in barley. However, significant difference in expression was not detected for either Pho1 or Pho2 under any of the investigated abiotic stresses. In Arabidopsis, significant down-regulation was detected for Pho1 (PHS1) under abscisic acid (ABA) and for Pho2 (PHS2) under cold, salt, and ABA. Our results provide valuable information to genetically manipulate phosphorylase genes and to further elucidate their regulatory mechanism in the starch biosynthetic pathway.
Collapse
Affiliation(s)
- Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Qian-Tao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiao-Wei Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiu-Jin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhi-En Pu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu-Ming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chunji Liu
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, QLD, 4067, Australia.
| | - Zhen-Xiang Lu
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, T1J 4B1, Canada
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
390
|
Petrovská B, Jeřábková H, Kohoutová L, Cenklová V, Pochylová Ž, Gelová Z, Kočárová G, Váchová L, Kurejová M, Tomaštíková E, Binarová P. Overexpressed TPX2 causes ectopic formation of microtubular arrays in the nuclei of acentrosomal plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4575-87. [PMID: 24006426 PMCID: PMC3808333 DOI: 10.1093/jxb/ert271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
TPX2 performs multiple roles in microtubule organization. Previously, it was shown that plant AtTPX2 binds AtAurora1 kinase and colocalizes with microtubules in a cell cycle-specific manner. To elucidate the function of TPX2 further, this work analysed Arabidopsis cells overexpressing AtTPX2-GFP. Distinct arrays of bundled microtubules, decorated with AtTPX2-GFP, were formed in the vicinity of the nuclear envelope and in the nuclei of overexpressing cells. The microtubular arrays showed reduced sensitivity to anti-microtubular drugs. TPX2-mediated formation of nuclear/perinuclear microtubular arrays was not specific for the transition to mitosis and occurred independently of Aurora kinase. The fibres were not observed in cells with detectable programmed cell death and, in this respect, they differed from TPX2-dependent microtubular assemblies functioning in mammalian apoptosis. Colocalization and co-purification data confirmed the interaction of importin with AtTPX2-GFP. In cells with nuclear foci of overexpressed AtTPX2-GFP, strong nuclear signals for Ran and importin diminished when microtubular arrays were assembled. This observation suggests that TPX2-mediated microtubule formation might be triggered by a Ran cycle. Collectively, the data suggest that in the acentrosomal plant cell, in conjunction with importin, overexpressed AtTPX2 reinforces microtubule formation in the vicinity of chromatin and the nuclear envelope.
Collapse
Affiliation(s)
- Beáta Petrovská
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
- * These authors contributed equally to this manuscript
| | - Hana Jeřábková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
- * These authors contributed equally to this manuscript
| | - Lucie Kohoutová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- * These authors contributed equally to this manuscript
| | - Věra Cenklová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Žaneta Pochylová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Zuzana Gelová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Gabriela Kočárová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Lenka Váchová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Michaela Kurejová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
| | - Eva Tomaštíková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
| | - Pavla Binarová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
391
|
Li R, Xie DD, Dong JH, Li H, Li KS, Su J, Chen LZ, Xu YF, Wang HM, Gong Z, Cui GY, Yu X, Wang K, Yao W, Xin T, Li MY, Xiao KH, An XF, Huo Y, Xu ZG, Sun JP, Pang Q. Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase. J Neurochem 2013; 128:315-329. [PMID: 24117863 DOI: 10.1111/jnc.12463] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 12/26/2022]
Abstract
Striatal-enriched tyrosine phosphatase (STEP) is an important regulator of neuronal synaptic plasticity, and its abnormal level or activity contributes to cognitive disorders. One crucial downstream effector and direct substrate of STEP is extracellular signal-regulated protein kinase (ERK), which has important functions in spine stabilisation and action potential transmission. The inhibition of STEP activity toward phospho-ERK has the potential to treat neuronal diseases, but the detailed mechanism underlying the dephosphorylation of phospho-ERK by STEP is not known. Therefore, we examined STEP activity toward para-nitrophenyl phosphate, phospho-tyrosine-containing peptides, and the full-length phospho-ERK protein using STEP mutants with different structural features. STEP was found to be a highly efficient ERK tyrosine phosphatase that required both its N-terminal regulatory region and key residues in its active site. Specifically, both kinase interaction motif (KIM) and kinase-specific sequence of STEP were required for ERK interaction. In addition to the N-terminal kinase-specific sequence region, S245, hydrophobic residues L249/L251, and basic residues R242/R243 located in the KIM region were important in controlling STEP activity toward phospho-ERK. Further kinetic experiments revealed subtle structural differences between STEP and HePTP that affected the interactions of their KIMs with ERK. Moreover, STEP recognised specific positions of a phospho-ERK peptide sequence through its active site, and the contact of STEP F311 with phospho-ERK V205 and T207 were crucial interactions. Taken together, our results not only provide the information for interactions between ERK and STEP, but will also help in the development of specific strategies to target STEP-ERK recognition, which could serve as a potential therapy for neurological disorders. Regulation of phospho-ERK by STEP underlies important neuronal activities. A detailed enzymologic characterisation and cellular studies of STEP revealed that specific residues in KIM and active site mediated ERK recognition. Structural differences between the KIM-ERK interfaces and the active site among different ERK phosphatases could be targeted to develop specific STEP inhibitor, which has therapeutic potential for neurological disorders. PKA, protein kinase A & NGF, nerve growth factor.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Di-Dong Xie
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Jun-Hong Dong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China.,Weifang Medical University,Weifang, Shandong, 261042, China
| | - Hui Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Kang-Shuai Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Jing Su
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Lai-Zhong Chen
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yun-Fei Xu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Hong-Mei Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Zheng Gong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Weihai campus, Shandong University, Weihai, Shandong, 264209, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Guo-Ying Cui
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Kai Wang
- Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Wei Yao
- Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Tao Xin
- Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Min-Yong Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Kun-Hong Xiao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiao-Fei An
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Zhi-Gang Xu
- Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China.,Shandong University, School of Life Sciences, Jinan, Shandong, 250021, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China.,Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| | - Qi Pang
- Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250012, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China
| |
Collapse
|
392
|
Liew LC, Singh MB, Bhalla PL. An RNA-seq transcriptome analysis of histone modifiers and RNA silencing genes in soybean during floral initiation process. PLoS One 2013; 8:e77502. [PMID: 24147010 PMCID: PMC3797736 DOI: 10.1371/journal.pone.0077502] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
Epigenetics has been recognised to play vital roles in many plant developmental processes, including floral initiation through the epigenetic regulation of gene expression. The histone modifying proteins that mediate these modifications involve the SET domain-containing histone methyltransferases, JmjC domain-containing demethylase, acetylases and deacetylases. In addition, RNA interference (RNAi)-associated genes are also involved in epigenetic regulation via RNA-directed DNA methylation and post-transcriptional gene silencing. Soybean, a major crop legume, requires a short day to induce flowering. How histone modifications regulate the plant response to external cues that initiate flowering is still largely unknown. Here, we used RNA-seq to address the dynamics of transcripts that are potentially involved in the epigenetic programming and RNAi mediated gene silencing during the floral initiation of soybean. Soybean is a paleopolyploid that has been subjected to at least two rounds of whole genome duplication events. We report that the expanded genomic repertoire of histone modifiers and RNA silencing genes in soybean includes 14 histone acetyltransferases, 24 histone deacetylases, 47 histone methyltransferases, 15 protein arginine methyltransferases, 24 JmjC domain-containing demethylases and 47 RNAi-associated genes. To investigate the role of these histone modifiers and RNA silencing genes during floral initiation, we compared the transcriptional dynamics of the leaf and shoot apical meristem at different time points after a short-day treatment. Our data reveal that the extensive activation of genes that are usually involved in the epigenetic programming and RNAi gene silencing in the soybean shoot apical meristem are reprogrammed for floral development following an exposure to inductive conditions.
Collapse
Affiliation(s)
- Lim Chee Liew
- Plant Molecular Biology and Biotechnology Laboratory, ARC Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, the University of Melbourne, Parkville, Victoria, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, ARC Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, the University of Melbourne, Parkville, Victoria, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, ARC Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
393
|
Li X, Guo R, Li J, Singer SD, Zhang Y, Yin X, Zheng Y, Fan C, Wang X. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:268-82. [PMID: 23978559 DOI: 10.1016/j.plaphy.2013.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/26/2013] [Indexed: 05/01/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance.
Collapse
Affiliation(s)
- Xiaoqin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
394
|
Fernandes AM, Beddows E, Filippi A, Driever W. Orthopedia transcription factor otpa and otpb paralogous genes function during dopaminergic and neuroendocrine cell specification in larval zebrafish. PLoS One 2013; 8:e75002. [PMID: 24073233 PMCID: PMC3779234 DOI: 10.1371/journal.pone.0075002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/08/2013] [Indexed: 11/29/2022] Open
Abstract
The homeodomain transcription factor Orthopedia (Otp) is an important regulator for specification of defined subsets of neuroendocrine cells and dopaminergic neurons in vertebrates. In zebrafish, two paralogous otp genes, otpa and otpb, are present in the genome. Neither complete loss of Otp activity nor differential contributions of Otpa and Otpb to specification of defined neuronal populations have been analyzed in detail. We characterized zebrafish embryos and early larvae mutant for null alleles of otpa, otpb, or both genes to determine their individual contributions to the specification of th expressing dopaminergic neuronal populations as well as of crh, oxt, avp, trh or sst1.1 expressing neuroendocrine cells. otpa mutant larvae show an almost complete reduction of ventral diencephalic dopaminergic neurons, as reported previously. A small reduction in the number of trh cells in the preoptic region is detectable in otpa mutants, but no significant loss of crh, oxt and avp preoptic neuroendocrine cells. otpb single mutant larvae do not display a reduction in dopaminergic neurons or neuroendocrine cells in the otp expressing regions. In contrast, in otpa and otpb double mutant larvae specific groups of dopaminergic neurons as well as of crh, oxt, avp, trh and sst1.1-expressing neuroendocrine cells are completely lost. These observations suggest that the requirement for otpa and otpb function during development of the larval diencephalon is partially redundant. During evolutionary diversification of the paralogous otp genes, otpa maintained the prominent role in ventral diencephalic dopaminergic and neuroendocrine cell specification and is capable of partially compensating otpb loss of function. In addition, we identified a role of Otp in the development of a domain of somatostatin1-expressing cells in the rostral hindbrain, a region with strong otp expression but so far uncharacterized Otp function. Otp may thus be crucial for defined neuronal cell types also in the hindbrain.
Collapse
Affiliation(s)
- António M. Fernandes
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Erin Beddows
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alida Filippi
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
395
|
Kim SJ, Bassham DC. Functional redundancy between trans-Golgi network SNARE family members in Arabidopsis thaliana. BMC BIOCHEMISTRY 2013; 14:22. [PMID: 24021022 PMCID: PMC3848460 DOI: 10.1186/1471-2091-14-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/06/2013] [Indexed: 11/17/2022]
Abstract
Background Vesicle fusion is an essential process for maintaining the structure and function of the endomembrane system. Fusion is mediated by t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) fusion proteins on the target membrane and v-SNAREs on the vesicle membrane; v-and t-SNAREs interact with each other, driving vesicle fusion with the target membrane. The Arabidopsis thaliana trans-Golgi network resident SNAREs SYP41 and VTI12, along with YKT61/62, have been shown to function in vesicle fusion in vitro, consistent with immunoprecipitation results showing their interaction in Arabidopsis cell extracts. Conflicting published results have indicated that SYP4 family members are either functionally redundant or have distinct and essential functions; the reason for this discrepancy is unclear. Results Here we used a proteoliposome fusion assay to demonstrate that SYP42 and SYP43 can substitute for SYP41 in driving lipid mixing, providing support for functional overlap between family members. Previous reports have also suggested that VTI11 and VTI12 SNAREs show partial overlap in function, despite having mostly distinct localizations and binding partners. We show that VTI11 can substitute for VTI12 in in vitro lipid mixing reactions, providing molecular support for the genetic evidence for partial functional redundancy in vivo. Conclusions Our data provide biochemical evidence for functional overlap in membrane fusion between members of the SYP4 or VTI1 SNARE groups, supporting previous genetic data suggesting redundancy.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
396
|
Biallelic nonsense mutations in the otogelin-like gene (OTOGL) in a child affected by mild to moderate hearing impairment. Gene 2013; 527:537-40. [DOI: 10.1016/j.gene.2013.06.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/06/2013] [Accepted: 06/08/2013] [Indexed: 12/17/2022]
|
397
|
Liu S, Melonek J, Boykin LM, Small I, Howell KA. PPR-SMRs: ancient proteins with enigmatic functions. RNA Biol 2013; 10:1501-10. [PMID: 24004908 PMCID: PMC3858433 DOI: 10.4161/rna.26172] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A small subset of the large pentatricopeptide repeat (PPR) protein family in higher plants contain a C-terminal small MutS-related (SMR) domain. Although few in number, they figure prominently in the chloroplast biogenesis and retrograde signaling literature due to their striking mutant phenotypes. In this review, we summarize current knowledge of PPR-SMR proteins focusing on Arabidopsis and maize proteomic and mutant studies. We also examine their occurrence in other organisms and have determined by phylogenetic analysis that, while they are limited to species that contain chloroplasts, their presence in algae and early branching land plant lineages indicates that the coupling of PPR motifs and an SMR domain into a single protein occurred early in the evolution of the Viridiplantae clade. In addition, we discuss their possible function and have examined conservation between SMR domains from Arabidopsis PPR proteins with those from other species that have been shown to possess endonucleolytic activity.
Collapse
Affiliation(s)
- Sheng Liu
- Australian Research Council Centre of Excellence in Plant Energy Biology; The University of Western Australia; Crawley, WA Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology; The University of Western Australia; Crawley, WA Australia
| | - Laura M Boykin
- Centre of Excellence in Computational Systems Biology; The University of Western Australia; Crawley, WA Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology; The University of Western Australia; Crawley, WA Australia; Centre of Excellence in Computational Systems Biology; The University of Western Australia; Crawley, WA Australia
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology; The University of Western Australia; Crawley, WA Australia
| |
Collapse
|
398
|
Guo R, Xu X, Carole B, Li X, Gao M, Zheng Y, Wang X. Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape. BMC Genomics 2013; 14:554. [PMID: 23945092 PMCID: PMC3751884 DOI: 10.1186/1471-2164-14-554] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 08/06/2013] [Indexed: 12/15/2022] Open
Abstract
Background Aspartic proteases (APs) are a large family of proteolytic enzymes found in almost all organisms. In plants, they are involved in many biological processes, such as senescence, stress responses, programmed cell death, and reproduction. Prior to the present study, no grape AP gene(s) had been reported, and their research on woody species was very limited. Results In this study, a total of 50 AP genes (VvAP) were identified in the grape genome, among which 30 contained the complete ASP domain. Synteny analysis within grape indicated that segmental and tandem duplication events contributed to the expansion of the grape AP family. Additional analysis between grape and Arabidopsis demonstrated that several grape AP genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grape and Arabidopsis. Phylogenetic relationships of the 30 VvAPs with the complete ASP domain and their Arabidopsis orthologs, as well as their gene and protein features were analyzed and their cellular localization was predicted. Moreover, expression profiles of VvAP genes in six different tissues were determined, and their transcript abundance under various stresses and hormone treatments were measured. Twenty-seven VvAP genes were expressed in at least one of the six tissues examined; nineteen VvAPs responded to at least one abiotic stress, 12 VvAPs responded to powdery mildew infection, and most of the VvAPs responded to SA and ABA treatments. Furthermore, integrated synteny and phylogenetic analysis identified orthologous AP genes between grape and Arabidopsis, providing a unique starting point for investigating the function of grape AP genes. Conclusions The genome-wide identification, evolutionary and expression analyses of grape AP genes provide a framework for future analysis of AP genes in defining their roles during stress response. Integrated synteny and phylogenetic analyses provide novel insight into the functions of less well-studied genes using information from their better understood orthologs.
Collapse
Affiliation(s)
- Rongrong Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | |
Collapse
|
399
|
Nogueira-Ferreira R, Vitorino R, Ferreira-Pinto MJ, Ferreira R, Henriques-Coelho T. Exploring the role of post-translational modifications on protein-protein interactions with survivin. Arch Biochem Biophys 2013; 538:64-70. [PMID: 23938875 DOI: 10.1016/j.abb.2013.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/17/2013] [Accepted: 07/25/2013] [Indexed: 12/31/2022]
Abstract
Survivin is a member of the inhibitor of apoptosis protein (IAP) family with crucial roles in apoptosis and cell cycle regulation. Post-translational modifications (PTMs) have a ubiquitous role in the regulation of a diverse range of proteins' cellular functions and survivin is not an exception. Phosphorylation, acetylation and ubiquitination seem to regulate survivin anti-apoptotic and mitotic roles and also its nuclear localization. In the present review we explore the role of PTMs on protein-protein interactions focused on survivin to provide new insights into the functions and cell localization of this IAP in pathophysiological conditions, which might help the envisioning of novel targeted therapies for diseases characterized by impaired survivin activity. Protein-protein interaction analysis was performed with bioinformatics tools based on published data aiming to give an integrated perspective of this IAP's role in the cell.
Collapse
Affiliation(s)
- Rita Nogueira-Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
400
|
Qi PF, Chen Q, Ouellet T, Wang Z, Le CX, Wei YM, Lan XJ, Zheng YL. The molecular diversity of α-gliadin genes in the tribe Triticeae. Genetica 2013; 141:303-10. [PMID: 23892918 DOI: 10.1007/s10709-013-9729-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/18/2013] [Indexed: 01/28/2023]
Abstract
Many of the unique properties of wheat flour are derived from seed storage proteins such as the α-gliadins. In this study these α-gliadin genes from diploid Triticeae species were systemically characterized, and divided into 3 classes according to the distinct organization of their protein domains. Our analyses indicated that these α-gliadins varied in the number of cysteine residues they contained. Most of the α-gliadin genes were grouped according to their genomic origins within the phylogenetic tree. As expected, sequence alignments suggested that the repetitive domain and the two polyglutamine regions were responsible for length variations of α-gliadins as were the insertion/deletion of structural domains within the three different classes (I, II, and III) of α-gliadins. A screening of celiac disease toxic epitopes indicated that the α-gliadins of the class II, derived from the Ns genome, contain no epitope, and that some other genomes contain much fewer epitopes than the A, S(B) and D genomes of wheat. Our results suggest that the observed genetic differences in α-gliadins of Triticeae might indicate their use as a fertile ground for the breeding of less CD-toxic wheat varieties.
Collapse
Affiliation(s)
- Peng-Fei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|