351
|
Weber M, Wey-Fabrizius AR, Podsiadlowski L, Witek A, Schill RO, Sugár L, Herlyn H, Hankeln T. Phylogenetic analyses of endoparasitic Acanthocephala based on mitochondrial genomes suggest secondary loss of sensory organs. Mol Phylogenet Evol 2012; 66:182-9. [PMID: 23044398 DOI: 10.1016/j.ympev.2012.09.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 11/27/2022]
Abstract
The metazoan taxon Syndermata (Monogononta, Bdelloidea, Seisonidea, Acanthocephala) comprises species with vastly different lifestyles. The focus of this study is on the phylogeny within the syndermatan subtaxon Acanthocephala (thorny-headed worms, obligate endoparasites). In order to investigate the controversially discussed phylogenetic relationships of acanthocephalan subtaxa we have sequenced the mitochondrial (mt) genomes of Echinorhynchus truttae (Palaeacanthocephala), Paratenuisentis ambiguus (Eoacanthocephala), Macracanthorhynchus hirudinaceus (Archiacanthocephala), and Philodina citrina (Bdelloidea). In doing so, we present the largest molecular phylogenetic dataset so far for this question comprising all major subgroups of Acanthocephala. Alongside with publicly available mt genome data of four additional syndermatans as well as 18 other lophotrochozoan (spiralian) taxa and one outgroup representative, the derived protein-coding sequences were used for Maximum Likelihood as well as Bayesian phylogenetic analyses. We achieved entirely congruent results, whereupon monophyletic Archiacanthocephala represent the sister taxon of a clade comprising Eoacanthocephala and monophyletic Palaeacanthocephala (Echinorhynchida). This topology suggests the secondary loss of lateral sensory organs (sensory pores) within Palaeacanthocephala and is further in line with the emergence of apical sensory organs in the stem lineage of Archiacanthocephala.
Collapse
Affiliation(s)
- Mathias Weber
- Institute of Molecular Genetics, Johannes Gutenberg-University Mainz, J-J Becherweg 30a, D-55099 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Li H, Liu H, Song F, Shi A, Zhou X, Cai W. Comparative mitogenomic analysis of damsel bugs representing three tribes in the family Nabidae (Insecta: Hemiptera). PLoS One 2012; 7:e45925. [PMID: 23029320 PMCID: PMC3461043 DOI: 10.1371/journal.pone.0045925] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Nabidae, a family of predatory heteropterans, includes two subfamilies and five tribes. We previously reported the complete mitogenome of Alloeorhynchus bakeri, a representative of the tribe Prostemmatini in the subfamily Prostemmatinae. To gain a better understanding of architecture and evolution of mitogenome in Nabidae, mitogenomes of five species representing two tribes (Gorpini and Nabini) in the subfamily Nabinae were sequenced, and a comparative mitogenomic analysis of three nabid tribes in two subfamilies was carried out. METHODOLOGY/PRINCIPAL FINDINGS Nabid mitogenomes share a similar nucleotide composition and base bias, except for the control region, where differences are observed at the subfamily level. In addition, the pattern of codon usage is influenced by the GC content and consistent with the standard invertebrate mitochondrial genetic code and the preference for A+T-rich codons. The comparison among orthologous protein-coding genes shows that different genes have been subject to different rates of molecular evolution correlated with the GC content. The stems and anticodon loops of tRNAs are extremely conserved, and the nucleotide substitutions are largely restricted to TψC and DHU loops and extra arms, with insertion-deletion polymorphisms. Comparative analysis shows similar rates of substitution between the two rRNAs. Long non-coding regions are observed in most Gorpini and Nabini mtDNAs in-between trnI-trnQ and/or trnS2-nad1. The lone exception, Nabis apicalis, however, has lost three tRNAs. Overall, phylogenetic analysis using mitogenomic data is consistent with phylogenies constructed mainly form morphological traits. CONCLUSIONS/SIGNIFICANCE This comparative mitogenomic analysis sheds light on the architecture and evolution of mitogenomes in the family Nabidae. Nucleotide diversity and mitogenomic traits are phylogenetically informative at subfamily level. Furthermore, inclusion of a broader range of samples representing various taxonomic levels is critical for the understanding of mitogenomic evolution in damsel bugs.
Collapse
Affiliation(s)
- Hu Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Haiyu Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Fan Song
- Department of Entomology, China Agricultural University, Beijing, China
| | - Aimin Shi
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wanzhi Cai
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
353
|
Hall JB, Cobb VA, Cahoon AB. The complete mitochondrial DNA sequence of Crotalus horridus (timber rattlesnake). ACTA ACUST UNITED AC 2012; 24:94-6. [PMID: 22994371 DOI: 10.3109/19401736.2012.722999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitogenome of the timber rattlesnake (Crotalus horridus) was completed using Sanger sequencing. It is 17,260 bp with 13 protein-coding genes, 21 tRNAs, two rRNAs and two control regions. Gene synteny is consistent with other snakes with the exception of a missing redundant tRNA (Ser) . This mitogenome should prove to be a useful addition of a well-known member of the Viperidae snake family.
Collapse
Affiliation(s)
- Jacob B Hall
- Department of Biology, Box 60, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | | | | |
Collapse
|
354
|
Brockman SA, McFadden CS. The mitochondrial genome of Paraminabea aldersladei (Cnidaria: Anthozoa: Octocorallia) supports intramolecular recombination as the primary mechanism of gene rearrangement in octocoral mitochondrial genomes. Genome Biol Evol 2012; 4:994-1006. [PMID: 22975720 PMCID: PMC3468961 DOI: 10.1093/gbe/evs074] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sequencing of the complete mitochondrial genome of the soft coral Paraminabea aldersladei (Alcyoniidae) revealed a unique gene order, the fifth mt gene arrangement now known within the cnidarian subclass Octocorallia. At 19,886 bp, the mt genome of P. aldersladei is the second largest known for octocorals; its gene content and nucleotide composition are, however, identical to most other octocorals, and the additional length is due to the presence of two large, noncoding intergenic regions. Relative to the presumed ancestral octocoral gene order, in P. aldersladei a block of three protein-coding genes (nad6–nad3–nad4l) has been translocated and inverted. Mapping the distribution of mt gene arrangements onto a taxonomically comprehensive phylogeny of Octocorallia suggests that all of the known octocoral gene orders have evolved by successive inversions of one or more evolutionarily conserved blocks of protein-coding genes. This mode of genome evolution is unique among Metazoa, and contrasts strongly with that observed in Hexacorallia, in which extreme gene shuffling has occurred among taxonomic orders. Two of the four conserved gene blocks found in Octocorallia are, however, also conserved in the linear mt genomes of Medusozoa and in one group of Demospongiae. We speculate that the rate and mechanism of gene rearrangement in octocorals may be influenced by the presence in their mt genomes of mtMutS, a putatively active DNA mismatch repair protein that may also play a role in mediating intramolecular recombination.
Collapse
|
355
|
Lin Q, Cui P, Ding F, Hu S, Yu J. Replication-Associated Mutational Pressure (RMP) Governs Strand-Biased Compositional Asymmetry (SCA) and Gene Organization in Animal Mitochondrial Genomes. Curr Genomics 2012; 13:28-36. [PMID: 22942673 PMCID: PMC3269014 DOI: 10.2174/138920212799034811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 11/30/2022] Open
Abstract
The nucleotide composition of the light (L-) and heavy (H-) strands of animal mitochondrial genomes is known to exhibit strand-biased compositional asymmetry (SCA). One of the possibilities is the existence of a replication-associated mutational pressure (RMP) that may introduce characteristic nucleotide changes among mitochondrial genomes of different animal lineages. Here, we discuss the influence of RMP on nucleotide and amino acid compositions as well as gene organization. Among animal mitochondrial genomes, RMP may represent the major force that compels the evolution of mitochondrial protein-coding genes, coupled with other process-based selective pressures, such as on components of translation machinery— tRNAs and their anticodons. Through comparative analyses of sequenced mitochondrial genomes among diverse animal lineages and literature reviews, we suggest a strong RMP effect, observed among invertebrate mitochondrial genes as compared to those of vertebrates, that is either a result of positive selection on the invertebrate or a relaxed selective pressure on the vertebrate mitochondrial genes.
Collapse
Affiliation(s)
- Qiang Lin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100029 Beijing, China
| | | | | | | | | |
Collapse
|
356
|
Nardi F, Carapelli A, Frati F. Repeated regions in mitochondrial genomes: Distribution, origin and evolutionary significance. Mitochondrion 2012; 12:483-91. [DOI: 10.1016/j.mito.2012.07.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 04/05/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
|
357
|
Wu X, Li X, Li L, Yu Z. A unique tRNA gene family and a novel, highly expressed ORF in the mitochondrial genome of the silver-lip pearl oyster, Pinctada maxima (Bivalvia: Pteriidae). Gene 2012; 510:22-31. [PMID: 22960401 DOI: 10.1016/j.gene.2012.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/29/2022]
Abstract
Characteristics of mitochondrial (mt) DNA such as gene content and arrangement, as well as mt tRNA secondary structure, are frequently used in comparative genomic analyses because they provide valuable phylogenetic information. However, most analyses do not characterize the relationship of tRNA genes from the same mt genome and, in some cases, analyses overlook possible novel open reading frames (ORFs) when the 13 expected protein-coding genes are already annotated. In this study, we describe the sequence and characterization of the complete mt genome of the silver-lip pearl oyster, Pinctada maxima. The 16,994-bp mt genome contains the same 13 protein-coding genes (PCGs) and two ribosomal RNA genes typical of metazoans. The gene arrangement, however, is completely distinct from that of all other available bivalve mt genomes, and a unique tRNA gene family is observed in this genome. The unique tRNA gene family includes two trnS(-AGY) and trnQ genes, a trnM isomerism, but it lacks trnS(-CUN). We also report the first clear evidence of alloacceptor tRNA gene recruitment (trnP→trnS(-AGY)) in mollusks. In addition, a novel ORF (orfUR1) expressed at high levels is present in the mt genome of this pearl oyster. This gene contains a conserved domain, "Oxidored_q1_N", which is a member of Complex I and thus may play an important role in key biological functions. Because orfUR1 has a very similar nucleotide composition and codon bias to that of other genes in this genome, we hypothesize that this gene may have been moved to the mt genome via gene transfer from the nuclear genome at an early stage of speciation of P. maxima, or it may have evolved as a result of gene duplication, followed by rapid sequence divergence. Lastly, a 319-bp region was identified as the possible control region (CR) even though it does not correspond to the longest non-coding region in the genome. Unlike other studies of mt genomes, this study compares the evolutionary patterns of all available bivalve mt tRNA and atp8 genes.
Collapse
Affiliation(s)
- Xiangyun Wu
- Key Laboratory of Marine Bio-resource Sustainable Utilization, Chinese Academy of Sciences, Guangdong Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | | | | |
Collapse
|
358
|
New features of Asian Crassostrea oyster mitochondrial genomes: a novel alloacceptor tRNA gene recruitment and two novel ORFs. Gene 2012; 507:112-8. [PMID: 22846367 DOI: 10.1016/j.gene.2012.07.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/18/2012] [Accepted: 07/18/2012] [Indexed: 01/29/2023]
Abstract
A feasible way to perform evolutionary analyses is to compare characters divergent enough to observe significant differences, but sufficiently similar to exclude saturation of the differences that occurred. Thus, comparisons of invertebrate mitochondrial (mt) genomes at low taxonomic levels can be extremely helpful in investigating patterns of variation and evolutionary dynamics of genomes, as intermediate stages of the process may be identified. Fortunately, in this study, we newly sequenced the mt genome of the eighth member of Asian Crassostrea oysters which can provide necessary intermediate characters for us to believe that the variation of Crassostrea mt genomes is considerably greater than previously acknowledged. Several new features of Asian Crassostrea oyster mitochondrial genomes were revealed, and our results are particularly significant as they 1) suggest a novel model of alloacceptor tRNA gene recruitment, namely "vertical" tRNA gene recruitment, which can be successfully used to explain the origination of the unusually additional trnK and trnQ genes (annotated as trnK(2) and trnQ(2) respectively) in the mt genomes of the five Asian oysters, and we speculate that this recruitment progress may be a common phenomenon in the evolution of the tRNA multigene family; 2) reveal the existence of two additional, lineage-specific, mtDNA-encoded genes that may originate from duplication of nad2 followed by rapid evolutionary change. Each of these two genes encodes a unique amino terminal signal peptide, thus each might possess an unknown function; and 3) identify for the first time the atp8 gene in oysters. The present study thus gives further credence to the comparison of congeneric bivalves as a meaningful strategy to investigate mt genomic evolutionary trends in genome organization, tRNA multigene family, and gene loss and/or duplication that are difficult to undertake at higher taxonomic levels. In particular, our study provides new evidence for the identification and characterization of ORFs in the "non-coding region" of animal mt genomes.
Collapse
|
359
|
Dong Y, Xu JJ, Hao SJ, Sun HY. The complete mitochondrial genome of the giant pill millipede, Sphaerotheriidae sp. (Myriapoda: Diplopoda: Sphaerotheriida). MITOCHONDRIAL DNA 2012; 23:333-5. [PMID: 22775426 DOI: 10.3109/19401736.2012.683184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genome (mitogenome) of the millipede Sphaerotheriidae sp. has been studied. The genome is 14,970 bp long and contains the typical complement of 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. Gene order in Sphaerotheriidae sp. mitogenome is assumed to represent the myriapod ground pattern, which is shared by myriapod-chelicerate clade.
Collapse
Affiliation(s)
- Yan Dong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Wenyuan Road 1, Nanjing 210046, People's Republic of China
| | | | | | | |
Collapse
|
360
|
Li X, Wu X, Yu Z. Complete mitochondrial genome of the Asian green musselPerna viridis(Bivalvia, Mytilidae). ACTA ACUST UNITED AC 2012; 23:358-60. [DOI: 10.3109/19401736.2012.690756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
361
|
Kang S, Kim J, Lee J, Kim S, Min GS, Park JK. The complete mitochondrial genome of an ectoparasitic monopisthocotylean fluke Benedenia hoshinai (Monogenea: Platyhelminthes). ACTA ACUST UNITED AC 2012; 23:176-8. [PMID: 22545965 DOI: 10.3109/19401736.2012.668900] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An exponential growth of mitochondrial genome information has brought significant progress in understanding the organismal phylogeny and mitochondrial genome evolution for many metazoans including platyhelminth groups. In this study, we determined the complete mitochondrial genome sequence for Benedenia hoshinai, an ectoparasitic monogenean species, and compared it with its congener Benedenia seriolae. The complete mitochondrial genome is 13,554 bp in length and contains 12 protein-coding genes (lacking the atp8 gene), 2 rRNA genes, and 22 tRNA genes, all encoded in the same direction as found in all other platyhelminth species sequenced to date. The gene arrangement of B. hoshinai mtDNA is almost identical to B. seriolae, differing only by the translocation of trnT between cox1 and rrnL. It is unclear whether the shared position of trnT between B. hoshinai and Gyrodactylus represents evidence for their phylogenetic affinity; testing this hypothesis requires further mitogenomic evidence.
Collapse
Affiliation(s)
- Seokha Kang
- Department of Biotechnology and Bioinformatics, College of Science & Technology, Korea University, Chungnam, Republic of Korea
| | | | | | | | | | | |
Collapse
|
362
|
Liu GH, Li C, Li JY, Zhou DH, Xiong RC, Lin RQ, Zou FC, Zhu XQ. Characterization of the complete mitochondrial genome sequence of Spirometra erinaceieuropaei (Cestoda: Diphyllobothriidae) from China. Int J Biol Sci 2012; 8:640-9. [PMID: 22553464 PMCID: PMC3341605 DOI: 10.7150/ijbs.4096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 04/20/2012] [Indexed: 12/17/2022] Open
Abstract
Sparganosis, caused by the plerocercoid larvae of members of the genus Spirometra, can cause significant public health problem and considerable economic losses. In the present study, the complete mitochondrial DNA (mtDNA) sequence of Spirometra erinaceieuropaei from China was determined, characterized and compared with that of S. erinaceieuropaei from Japan. The gene arrangement in the mt genome sequences of S. erinaceieuropaei from China and Japan is identical. The identity of the mt genomes was 99.1% between S. erinaceieuropaei from China and Japan, and the complete mtDNA sequence of S. erinaceieuropaei from China is slightly shorter (2 bp) than that from Japan. Phylogenetic analysis of S. erinaceieuropaei with other representative cestodes using two different computational algorithms [Bayesian inference (BI) and maximum likelihood (ML)] based on concatenated amino acid sequences of 12 protein-coding genes, revealed that S. erinaceieuropaei is closely related to Diphyllobothrium spp., supporting classification based on morphological features. The present study determined the complete mtDNA sequences of S. erinaceieuropaei from China that provides novel genetic markers for studying the population genetics and molecular epidemiology of S. erinaceieuropaei in humans and animals.
Collapse
Affiliation(s)
- Guo-Hua Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | | | | | | | | | | | | | | |
Collapse
|
363
|
Kilpert F, Held C, Podsiadlowski L. Multiple rearrangements in mitochondrial genomes of Isopoda and phylogenetic implications. Mol Phylogenet Evol 2012; 64:106-17. [PMID: 22491068 DOI: 10.1016/j.ympev.2012.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
In this study, we analyse the evolutionary dynamics and phylogenetic implications of gene order rearrangements in five newly sequenced mitochondrial (mt) genomes and four published mt genomes of isopod crustaceans. The sequence coverage is nearly complete for four of the five newly sequenced species, with only the control region and some tRNA genes missing, while in Janira maculosa only two thirds of the genome could be determined. Mitochondrial gene order in isopods seems to be more plastic than that in other crustacean lineages, making all nine known mt gene orders different. Especially the asellote Janira is characterized by many autapomorphies. The following inferred ancestral isopod mt gene order exists slightly modified in modern isopods: nad1, tnrL1, rrnS, control region, trnS1, cob, trnT, nad5, trnF. We consider the inferred gene translocation events leading to gene rearrangements as valuable characters in phylogenetic analyses. In this first study covering major isopod lineages, potential apomorphies were identified, e.g., a shared relative position of trnR in Valvifera. We also report one of the first findings of homoplasy in mitochondrial gene order, namely a shared relative position of trnV in unrelated isopod lineages. In addition to increased taxon sampling secondary structure, modification in tRNAs and GC-skew inversion may be potentially fruitful subjects for future mt genome studies in a phylogenetic context.
Collapse
Affiliation(s)
- Fabian Kilpert
- Institute of Evolutionary Biology and Ecology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | | | | |
Collapse
|
364
|
Wang G, Peng Q, Wu L, Wang T, Peng R, Li L, Zeng X, Zou F. Nuclear and mitochondrial DNA reveals significant intraspecific genetic differentiation of tokay gecko in southern China and northern Vietnam. J Zool (1987) 2012. [DOI: 10.1111/j.1469-7998.2012.00906.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife; Key Laboratory of Bio-resources and Eco-environment (Ministry of Education); College of Life Sciences; Sichuan University; Chengdu; China
| | - Q. Peng
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife; Key Laboratory of Bio-resources and Eco-environment (Ministry of Education); College of Life Sciences; Sichuan University; Chengdu; China
| | - L. Wu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife; Key Laboratory of Bio-resources and Eco-environment (Ministry of Education); College of Life Sciences; Sichuan University; Chengdu; China
| | - T. Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife; Key Laboratory of Bio-resources and Eco-environment (Ministry of Education); College of Life Sciences; Sichuan University; Chengdu; China
| | - R. Peng
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife; Key Laboratory of Bio-resources and Eco-environment (Ministry of Education); College of Life Sciences; Sichuan University; Chengdu; China
| | - L. Li
- Guangxi Medicinal Herb Garden; Guangxi Zhuang Autonomous Region; Nanning; China
| | - X. Zeng
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu; China
| | - F. Zou
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife; Key Laboratory of Bio-resources and Eco-environment (Ministry of Education); College of Life Sciences; Sichuan University; Chengdu; China
| |
Collapse
|
365
|
Ovchinnikov S, Masta SE. Pseudoscorpion mitochondria show rearranged genes and genome-wide reductions of RNA gene sizes and inferred structures, yet typical nucleotide composition bias. BMC Evol Biol 2012; 12:31. [PMID: 22409411 PMCID: PMC3325882 DOI: 10.1186/1471-2148-12-31] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 03/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudoscorpions are chelicerates and have historically been viewed as being most closely related to solifuges, harvestmen, and scorpions. No mitochondrial genomes of pseudoscorpions have been published, but the mitochondrial genomes of some lineages of Chelicerata possess unusual features, including short rRNA genes and tRNA genes that lack sequence to encode arms of the canonical cloverleaf-shaped tRNA. Additionally, some chelicerates possess an atypical guanine-thymine nucleotide bias on the major coding strand of their mitochondrial genomes. RESULTS We sequenced the mitochondrial genomes of two divergent taxa from the chelicerate order Pseudoscorpiones. We find that these genomes possess unusually short tRNA genes that do not encode cloverleaf-shaped tRNA structures. Indeed, in one genome, all 22 tRNA genes lack sequence to encode canonical cloverleaf structures. We also find that the large ribosomal RNA genes are substantially shorter than those of most arthropods. We inferred secondary structures of the LSU rRNAs from both pseudoscorpions, and find that they have lost multiple helices. Based on comparisons with the crystal structure of the bacterial ribosome, two of these helices were likely contact points with tRNA T-arms or D-arms as they pass through the ribosome during protein synthesis.The mitochondrial gene arrangements of both pseudoscorpions differ from the ancestral chelicerate gene arrangement. One genome is rearranged with respect to the location of protein-coding genes, the small rRNA gene, and at least 8 tRNA genes. The other genome contains 6 tRNA genes in novel locations. Most chelicerates with rearranged mitochondrial genes show a genome-wide reversal of the CA nucleotide bias typical for arthropods on their major coding strand, and instead possess a GT bias. Yet despite their extensive rearrangement, these pseudoscorpion mitochondrial genomes possess a CA bias on the major coding strand. Phylogenetic analyses of all 13 mitochondrial protein-coding gene sequences consistently yield trees that place pseudoscorpions as sister to acariform mites. CONCLUSION The well-supported phylogenetic placement of pseudoscorpions as sister to Acariformes differs from some previous analyses based on morphology. However, these two lineages share multiple molecular evolutionary traits, including substantial mitochondrial genome rearrangements, extensive nucleotide substitution, and loss of helices in their inferred tRNA and rRNA structures.
Collapse
Affiliation(s)
- Sergey Ovchinnikov
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, USA
| | - Susan E Masta
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, USA
| |
Collapse
|
366
|
Keski˙n E, Atar HH. Genetic structuring of European anchovy (Engraulis encrasicolus) populations through mitochondrial DNA sequences. ACTA ACUST UNITED AC 2012; 23:62-9. [DOI: 10.3109/19401736.2011.653798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
367
|
Kômoto N, Yukuhiro K, Tomita S. Novel gene rearrangements in the mitochondrial genome of a webspinner, Aposthonia japonica (Insecta: Embioptera). Genome 2012; 55:222-33. [DOI: 10.1139/g2012-007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Webspinners (order Embioptera) are polyneopteran insects characterized by enlarged foretarsi with silk glands, whose silk is used to produce galleries in which the insects live gregariously. The phylogenetic position of webspinners has been debated. In the present study, an almost complete mitochondrial DNA (mtDNA) sequence of Embioptera is reported for the first time. The mtDNA of a webspinner, Aposthonia japonica , has the 13 protein-coding genes (PCGs) generally found in metazoan mtDNA sequences. There is a translocation of a large region including atp6, atp8, cox3, nad3, and nad5 as well as a duplication of the 12S rRNA gene. The rearrangement does not seem to affect nucleotide composition, although amino acid composition in some parts of the mtDNA is biased compared with other Polyneoptera species. Based on phylogenetic analyses using nucleotide sequences of all PCGs concatenated with two rRNA genes and the amino acid sequences of all PCGs, A. japonica is sister to Verophasmatodea, a suborder of typical stick and leaf insects.
Collapse
Affiliation(s)
- Natuo Kômoto
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Kenji Yukuhiro
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Shuichiro Tomita
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
368
|
Doublet V, Raimond R, Grandjean F, Lafitte A, Souty-Grosset C, Marcadé I. Widespread atypical mitochondrial DNA structure in isopods (Crustacea, Peracarida) related to a constitutive heteroplasmy in terrestrial species. Genome 2012; 55:234-44. [PMID: 22376074 DOI: 10.1139/g2012-008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metazoan mitochondrial DNA (mtDNA) is generally composed of circular monomeric molecules. However, a few exceptions do exist and among them two terrestrial isopods Armadillidium vulgare and Porcellionides pruinosus have an atypical mtDNA composed of linear monomers associated with circular "head-to-head" dimers: a very unusual structure for animal mtDNA genome. To assess the distribution of this atypical mtDNA among isopods, we performed RFLP and Southern blot analyses on mtDNA of 16 terrestrial (Oniscidea family) and two aquatic isopod species: the marine Sphaeroma serratum (suborder Flabellifera, sister group of Oniscidea) and the freshwater Asellus aquaticus (Asellota, early derived taxon of isopod). The atypical mtDNA structure was observed in 15 terrestrial isopod species and A. aquaticus, suggesting a wide distribution of atypical mtDNA among isopods. However, a typical metazoan mtDNA structure was detected in the marine isopod S. serratum and the Oniscidea Ligia oceanica . Our results suggest two possible scenarios: an early origin of the atypical mtDNA in isopods followed by reversion to the typical ancestral mtDNA structure for several species, or a convergent appearance of the atypical mtDNA structure in two isopod suborders. We compare this distribution of the atypical mtDNA structure with the presence of a heteroplasmy also observed in the mtDNA of several terrestrial isopod species. We discuss if this transmitted heteroplasmy is vectored by the atypical mtDNA and its impact on the maintenance of the atypical mtDNA in isopods.
Collapse
Affiliation(s)
- Vincent Doublet
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 40 Avenue du Recteur Pineau, 86022 Poitiers CEDEX, France.
| | | | | | | | | | | |
Collapse
|
369
|
Arabi J, Judson MLI, Deharveng L, Lourenço WR, Cruaud C, Hassanin A. Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements. J Mol Evol 2012; 74:81-95. [PMID: 22362465 DOI: 10.1007/s00239-012-9490-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/02/2012] [Indexed: 11/26/2022]
Abstract
Here we study the evolution of nucleotide composition in third codon-positions of CO1 sequences of Chelicerata, using a phylogenetic framework, based on 180 taxa and three markers (CO1, 18S, and 28S rRNA; 5,218 nt). The analyses of nucleotide composition were also extended to all CO1 sequences of Chelicerata found in GenBank (1,701 taxa). The results show that most species of Chelicerata have a positive strand bias in CO1, i.e., in favor of C nucleotides, including all Amblypygi, Palpigradi, Ricinulei, Solifugae, Uropygi, and Xiphosura. However, several taxa show a negative strand bias, i.e., in favor of G nucleotides: all Scorpiones, Opisthothelae spiders and several taxa within Acari, Opiliones, Pseudoscorpiones, and Pycnogonida. Several reversals of strand-specific bias can be attributed to either a rearrangement of the control region or an inversion of a fragment containing the CO1 gene. Key taxa for which sequencing of complete mitochondrial genomes will be necessary to determine the origin and nature of mtDNA rearrangements involved in the reversals are identified. Acari, Opiliones, Pseudoscorpiones, and Pycnogonida were found to show a strong variability in nucleotide composition. In addition, both mitochondrial and nuclear genomes have been affected by higher substitution rates in Acari and Pseudoscorpiones. The results therefore indicate that these two orders are more liable to fix mutations of all types, including base substitutions, indels, and genomic rearrangements.
Collapse
Affiliation(s)
- Juliette Arabi
- Département Systématique et Evolution, UMR 7205, Origine, Structure et Evolution de la Biodiversité, Muséum national d'Histoire naturelle, 57, Rue Cuvier, 75005, Paris, France
| | | | | | | | | | | |
Collapse
|
370
|
Yuan Y, Li Q, Yu H, Kong L. The complete mitochondrial genomes of six heterodont bivalves (Tellinoidea and Solenoidea): variable gene arrangements and phylogenetic implications. PLoS One 2012; 7:e32353. [PMID: 22384227 PMCID: PMC3285693 DOI: 10.1371/journal.pone.0032353] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/25/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Taxonomy and phylogeny of subclass Heterodonta including Tellinoidea are long-debated issues and a complete agreement has not been reached yet. Mitochondrial (mt) genomes have been proved to be a powerful tool in resolving phylogenetic relationship. However, to date, only ten complete mitochondrial genomes of Heterodonta, which is by far the most diverse major group of Bivalvia, have been determined. In this paper, we newly sequenced the complete mt genomes of six species belonging to Heterodonta in order to resolve some problematical relationships among this subclass. PRINCIPAL FINDINGS The complete mt genomes of six species vary in size from 16,352 bp to 18,182. Hairpin-like secondary structures are found in the largest non-coding regions of six freshly sequenced mt genomes, five of which contain tandem repeats. It is noteworthy that two species belonging to the same genus show different gene arrangements with three translocations. The phylogenetic analysis of Heterodonta indicates that Sinonovacula constricta, distant from the Solecurtidae belonging to Tellinoidea, is as a sister group with Solen grandis of family Solenidae. Besides, all five species of Tellinoidea cluster together, while Sanguinolaria diphos has closer relationship with Solecurtus divaricatus, Moerella iridescens and Semele scaba rather than with Sanguinolaria olivacea. CONCLUSIONS/SIGNIFICANCE By comparative study of gene order rearrangements and phylogenetic relationships of the five species belonging to Tellinoidea, our results support that comparisons of mt gene order rearrangements, to some extent, are a useful tool for phylogenetic studies. Based on phylogenetic analyses of multiple protein-coding genes, we prefer classifying the genus Sinonovacula within the superfamily Solenoidea and not the superfamily Tellinoidea. Besides, both gene order and sequence data agree that Sanguinolaria (Psammobiidae) is not monophyletic. Nevertheless, more studies based on more mt genomes via combination of gene order and phylogenetic analysis are needed to further understand the phylogenetic relationships in subclass Heterodonta.
Collapse
Affiliation(s)
| | - Qi Li
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | | | | |
Collapse
|
371
|
Xiao B, Chen AH, Zhang YY, Jiang GF, Hu CC, Zhu CD. Complete mitochondrial genomes of two cockroaches, Blattella germanica and Periplaneta americana, and the phylogenetic position of termites. Curr Genet 2012; 58:65-77. [PMID: 22311390 DOI: 10.1007/s00294-012-0365-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/14/2012] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
Abstract
The mitochondrial genomes are one of the most information-rich markers in phylogenetics. The relationships within superorder Dictyoptera have been debated in the literature. However, the closely related termites (Isoptera) are retained as unranked taxon within the order Blattaria (cockroaches). In this work, we sequenced the complete mitogenomes of two cockroaches, reconstructed the molecular phylogeny and attempted to infer the phylogenetic position of termites in Blattaria more reliably. The complete mtDNA nucleotide sequences of the peridomestic American cockroach (Periplaneta americana L.) and the domestic German cockroach (Blattella germanica L.) are 15,025 and 15,584 bp in size, respectively. The genome shares the gene order and orientation with previously known Blattaria mitogenomes. Most tRNAs could be folded into the typical cloverleaf secondary structure, but the tRNA-Ser (AGN) of P. americana appears to be missing the dihydrouridine arm. Using nucleotide and amino acid sequences as phylogenetic markers, we proposed that termites should be treated as a superfamily (Termitoidea) of cockroaches. We suggested that Polyphagoidea was the sister group of Termitoidea in Blattaria and supported that the suborder Caelifera is more closely related to the Phasmatodea than to the suborder Ensifera of Orthoptera.
Collapse
Affiliation(s)
- Bo Xiao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Wenyuan Road 1, Nanjing 210046, China
| | | | | | | | | | | |
Collapse
|
372
|
Xu X, Wu X, Yu Z. Comparative studies of the complete mitochondrial genomes of four Paphia clams and reconsideration of subgenus Neotapes (Bivalvia: Veneridae). Gene 2012; 494:17-23. [DOI: 10.1016/j.gene.2011.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/09/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
|
373
|
Lv S, Zhang Y, Zhang L, Liu Q, Liu HX, Hu L, Wei FR, Steinmann P, Graeff-Teixeira C, Zhou XN, Utzinger J. The complete mitochondrial genome of the rodent intra-arterial nematodes Angiostrongylus cantonensis and Angiostrongylus costaricensis. Parasitol Res 2012; 111:115-23. [PMID: 22246368 DOI: 10.1007/s00436-011-2807-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 12/23/2011] [Indexed: 01/11/2023]
Abstract
The two rodent intra-arterial nematodes, Angiostrongylus cantonensis and Angiostrongylus costaricensis, can cause human ill-health. The present study aimed to characterize and compare the mitochondrial (mt) genomes of these two species, and clarify their phylogenetic relationship and the position in the phylum Nematoda. The complete mt genomes of A. cantonensis and A. costaricensis are 13,497 and 13,585 bp in length, respectively. Hence, they are the smallest in the class of Chromadorea characterized thus far. Like many nematode species in the class of Chromadorea, they encode 12 proteins, 22 transfer RNAs, and two ribosomal RNAs. All genes are located on the same strand. Nucleotide identity of the two mt genomes is 81.6%, ranging from 77.7% to 87.1% in individual gene pairs. Our mt genome-wide analysis identified three major gene arrangement patterns (II-1, II-2, and II-3) from 48 nematode mt genomes. Both patterns II-1 and II-2 are distinct from pattern II-3, which covers the Spirurida, supporting a closer relationship between Ascaridida and Strongylida rather than Spirurida. Thymine (T) was highly concentrated on coding strands in Chromadorea, but balanced between the two strands in Enoplea, probably due to the gene arrangement pattern. Interestingly, the gene arrangement pattern of mt genomes and phylogenetic analysis based on concatenated amino acids indicated a closer relationship between the order Ascaridida and Rhabditida rather than Spirurida as indicated in previous studies. These discrepancies call for new research, reassessing the position of the order of Ascaridida in the phylogenetic tree. Once consolidated, the findings are important for population genetic studies and target identification.
Collapse
Affiliation(s)
- Shan Lv
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Li H, Liu H, Shi A, Štys P, Zhou X, Cai W. The complete mitochondrial genome and novel gene arrangement of the unique-headed bug Stenopirates sp. (Hemiptera: Enicocephalidae). PLoS One 2012; 7:e29419. [PMID: 22235294 PMCID: PMC3250431 DOI: 10.1371/journal.pone.0029419] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/28/2011] [Indexed: 11/26/2022] Open
Abstract
Many of true bugs are important insect pests to cultivated crops and some are important vectors of human diseases, but few cladistic analyses have addressed relationships among the seven infraorders of Heteroptera. The Enicocephalomorpha and Nepomorpha are consider the basal groups of Heteroptera, but the basal-most lineage remains unresolved. Here we report the mitochondrial genome of the unique-headed bug Stenopirates sp., the first mitochondrial genome sequenced from Enicocephalomorpha. The Stenopirates sp. mitochondrial genome is a typical circular DNA molecule of 15, 384 bp in length, and contains 37 genes and a large non-coding fragment. The gene order differs substantially from other known insect mitochondrial genomes, with rearrangements of both tRNA genes and protein-coding genes. The overall AT content (82.5%) of Stenopirates sp. is the highest among all the known heteropteran mitochondrial genomes. The strand bias is consistent with other true bugs with negative GC-skew and positive AT-skew for the J-strand. The heteropteran mitochondrial atp8 exhibits the highest evolutionary rate, whereas cox1 appears to have the lowest rate. Furthermore, a negative correlation was observed between the variation of nucleotide substitutions and the GC content of each protein-coding gene. A microsatellite was identified in the putative control region. Finally, phylogenetic reconstruction suggests that Enicocephalomorpha is the sister group to all the remaining Heteroptera.
Collapse
Affiliation(s)
- Hu Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Hui Liu
- Entomological Laboratory, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Aimin Shi
- Department of Entomology, China Agricultural University, Beijing, China
| | - Pavel Štys
- Department of Zoology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wanzhi Cai
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
375
|
Hafez M, Iranpour M, Mullineux ST, Sethuraman J, Wosnitza KM, Lehn P, Kroeker J, Loewen PC, Reid J, Hausner G. Identification of group I introns within the SSU rDNA gene in species of Ceratocystiopsis and related taxa. Fungal Biol 2012; 116:98-111. [DOI: 10.1016/j.funbio.2011.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 11/28/2022]
|
376
|
Lloyd AH, Rousseau-Gueutin M, Timmis JN, Sheppard AE, Ayliffe MA. Promiscuous Organellar DNA. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
377
|
Park E, Hwang DS, Lee JS, Song JI, Seo TK, Won YJ. Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. Mol Phylogenet Evol 2012; 62:329-45. [DOI: 10.1016/j.ympev.2011.10.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 01/18/2023]
|
378
|
Meganathan P, Pagan HJ, McCulloch ES, Stevens RD, Ray DA. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera. Gene 2012; 492:121-9. [DOI: 10.1016/j.gene.2011.10.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 10/14/2011] [Accepted: 10/15/2011] [Indexed: 11/26/2022]
|
379
|
Gazi M, Sultana T, Min GS, Park YC, García-Varela M, Nadler SA, Park JK. The complete mitochondrial genome sequence of Oncicola luehei (Acanthocephala: Archiacanthocephala) and its phylogenetic position within Syndermata. Parasitol Int 2011; 61:307-16. [PMID: 22198415 DOI: 10.1016/j.parint.2011.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 12/02/2011] [Accepted: 12/07/2011] [Indexed: 11/29/2022]
Abstract
In the present study, we determined the complete mitochondrial genome sequence of Oncicola luehei (14,281bp), the first archiacanthocephalan representative and the second complete sequence from the phylum Acanthocephala. The complete genome contains 36 genes including 12 protein coding genes, 22 transfer RNA (tRNA) genes and 2 ribosomal RNA genes (rrnL and rrnS) as reported for other syndermatan species. All genes are encoded on the same strand. The overall nucleotide composition of O. luehei mtDNA is 37.7% T, 29.6% G, 22.5% A, and 10.2% C. The overall A+T content (60.2%) is much lower, compared to other syndermatan species reported so far, due to the high frequency (18.3%) of valine encoded by GTN in its protein-coding genes. Results from phylogenetic analyses of amino acid sequences for 10 protein-coding genes from 41 representatives of major metazoan groups including O. luehei supported monophyly of the phylum Acanthocephala and of the clade Syndermata (Acanthocephala+Rotifera), and the paraphyly of the clade Eurotatoria (classes Bdelloidea+Monogononta from phylum Rotifera). Considering the position of the acanthocephalan species within Syndermata, it is inferred that obligatory parasitism characteristic of acanthocephalans was acquired after the common ancestor of acanthocephalans diverged from its sister group, Bdelloidea. Additional comparison of complete mtDNA sequences from unsampled acanthocephalan lineages, especially classes Polyacanthocephala and Eoacanthocephala, is required to test if mtDNA provides reliable information for the evolutionary relationships and pattern of life history diversification found in the syndermatan groups.
Collapse
Affiliation(s)
- Mohiuddin Gazi
- Graduate Program in Cell Biology and Genetics and Department of Parasitology, College of Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
380
|
D'Onorio de Meo P, D'Antonio M, Griggio F, Lupi R, Borsani M, Pavesi G, Castrignanò T, Pesole G, Gissi C. MitoZoa 2.0: a database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa. Nucleic Acids Res 2011; 40:D1168-72. [PMID: 22123747 PMCID: PMC3245153 DOI: 10.1093/nar/gkr1144] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The MITOchondrial genome database of metaZOAns (MitoZoa) is a public resource for comparative analyses of metazoan mitochondrial genomes (mtDNA) at both the sequence and genomic organizational levels. The main characteristics of the MitoZoa database are the careful revision of mtDNA entry annotations and the possibility of retrieving gene order and non-coding region (NCR) data in appropriate formats. The MitoZoa retrieval system enables basic and complex queries at various taxonomic levels using different search menus. MitoZoa 2.0 has been enhanced in several aspects, including: a re-annotation pipeline to check the correctness of protein-coding gene predictions; a standardized annotation of introns and of precursor ORFs whose functionality is post-transcriptionally recovered by RNA editing or programmed translational frameshifting; updates of taxon-related fields and a BLAST sequence similarity search tool. Database novelties and the definition of standard mtDNA annotation rules, together with the user-friendly retrieval system and the BLAST service, make MitoZoa a valuable resource for comparative and evolutionary analyses as well as a reference database to assist in the annotation of novel mtDNA sequences. MitoZoa is freely accessible at http://www.caspur.it/mitozoa.
Collapse
Affiliation(s)
- Paolo D'Onorio de Meo
- CASPUR, Consorzio interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Kayal E, Bentlage B, Collins AG, Kayal M, Pirro S, Lavrov DV. Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol Evol 2011; 4:1-12. [PMID: 22113796 PMCID: PMC3267393 DOI: 10.1093/gbe/evr123] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In nearly all animals, mitochondrial DNA (mtDNA) consists of a single circular molecule that encodes several subunits of the protein complexes involved in oxidative phosphorylation as well as part of the machinery for their expression. By contrast, mtDNA in species belonging to Medusozoa (one of the two major lineages in the phylum Cnidaria) comprises one to several linear molecules. Many questions remain on the ubiquity of linear mtDNA in medusozoans and the mechanisms responsible for its evolution, replication, and transcription. To address some of these questions, we determined the sequences of nearly complete linear mtDNA from 24 species representing all four medusozoan classes: Cubozoa, Hydrozoa, Scyphozoa, and Staurozoa. All newly determined medusozoan mitochondrial genomes harbor the 17 genes typical for cnidarians and map as linear molecules with a high degree of gene order conservation relative to the anthozoans. In addition, two open reading frames (ORFs), polB and ORF314, are identified in cubozoan, schyphozoan, staurozoan, and trachyline hydrozoan mtDNA. polB belongs to the B-type DNA polymerase gene family, while the product of ORF314 may act as a terminal protein that binds telomeres. We posit that these two ORFs are remnants of a linear plasmid that invaded the mitochondrial genomes of the last common ancestor of Medusozoa and are responsible for its linearity. Hydroidolinan hydrozoans have lost the two ORFs and instead have duplicated cox1 at each end of their mitochondrial chromosome(s). Fragmentation of mtDNA occurred independently in Cubozoa and Hydridae (Hydrozoa, Hydroidolina). Our broad sampling allows us to reconstruct the evolutionary history of linear mtDNA in medusozoans.
Collapse
Affiliation(s)
- Ehsan Kayal
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, USA.
| | | | | | | | | | | |
Collapse
|
382
|
Faure E, Delaye L, Tribolo S, Levasseur A, Seligmann H, Barthélémy RM. Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene. Biol Direct 2011; 6:56. [PMID: 22024028 PMCID: PMC3214167 DOI: 10.1186/1745-6150-6-56] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 10/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondria mediate most of the energy production that occurs in the majority of eukaryotic organisms. These subcellular organelles contain a genome that differs from the nuclear genome and is referred to as mitochondrial DNA (mtDNA). Despite a disparity in gene content, all mtDNAs encode at least two components of the mitochondrial electron transport chain, including cytochrome c oxidase I (Cox1). PRESENTATION OF THE HYPOTHESIS A positionally conserved ORF has been found on the complementary strand of the cox1 genes of both eukaryotic mitochondria (protist, plant, fungal and animal) and alpha-proteobacteria. This putative gene has been named gau for gene antisense ubiquitous in mtDNAs. The length of the deduced protein is approximately 100 amino acids. In vertebrates, several stop codons have been found in the mt gau region, and potentially functional gau regions have been found in nuclear genomes. However, a recent bioinformatics study showed that several hypothetical overlapping mt genes could be predicted, including gau; this involves the possible import of the cytosolic AGR tRNA into the mitochondria and/or the expression of mt antisense tRNAs with anticodons recognizing AGR codons according to an alternative genetic code that is induced by the presence of suppressor tRNAs. Despite an evolutionary distance of at least 1.5 to 2.0 billion years, the deduced Gau proteins share some conserved amino acid signatures and structure, which suggests a possible conserved function. Moreover, BLAST analysis identified rare, sense-oriented ESTs with poly(A) tails that include the entire gau region. Immunohistochemical analyses using an anti-Gau monoclonal antibody revealed strict co-localization of Gau proteins and a mitochondrial marker. TESTING THE HYPOTHESIS This hypothesis could be tested by purifying the gau gene product and determining its sequence. Cell biological experiments are needed to determine the physiological role of this protein. IMPLICATIONS OF THE HYPOTHESIS Studies of the gau ORF will shed light on the origin of novel genes and their functions in organelles and could also have medical implications for human diseases that are caused by mitochondrial dysfunction. Moreover, this strengthens evidence for mitochondrial genes coded according to an overlapping genetic code.
Collapse
Affiliation(s)
- Eric Faure
- Université de Provence, Marseille cedex 3, France.
| | | | | | | | | | | |
Collapse
|
383
|
Danic-Tchaleu G, Heurtebise S, Morga B, Lapègue S. Complete mitochondrial DNA sequence of the European flat oyster Ostrea edulis confirms Ostreidae classification. BMC Res Notes 2011; 4:400. [PMID: 21989403 PMCID: PMC3214155 DOI: 10.1186/1756-0500-4-400] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/12/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Because of its typical architecture, inheritance and small size, mitochondrial (mt) DNA is widely used for phylogenetic studies. Gene order is generally conserved in most taxa although some groups show considerable variation. This is particularly true in the phylum Mollusca, especially in the Bivalvia. During the last few years, there have been significant increases in the number of complete mitochondrial sequences available. For bivalves, 35 complete mitochondrial genomes are now available in GenBank, a number that has more than doubled in the last three years, representing 6 families and 23 genera. In the current study, we determined the complete mtDNA sequence of O. edulis, the European flat oyster. We present an analysis of features of its gene content and genome organization in comparison with other Ostrea, Saccostrea and Crassostrea species. RESULTS The Ostrea edulis mt genome is 16 320 bp in length and codes for 37 genes (12 protein-coding genes, 2 rRNAs and 23 tRNAs) on the same strand. As in other Ostreidae, O. edulis mt genome contains a split of the rrnL gene and a duplication of trnM. The tRNA gene set of O. edulis, Ostrea denselamellosa and Crassostrea virginica are identical in having 23 tRNA genes, in contrast to Asian oysters, which have 25 tRNA genes (except for C. ariakensis with 24). O. edulis and O. denselamellosa share the same gene order, but differ from other Ostreidae and are closer to Crassostrea than to Saccostrea. Phylogenetic analyses reinforce the taxonomic classification of the 3 families Ostreidae, Mytilidae and Pectinidae. Within the Ostreidae family the results also reveal a closer relationship between Ostrea and Saccostrea than between Ostrea and Crassostrea. CONCLUSIONS Ostrea edulis mitogenomic analyses show a high level of conservation within the genus Ostrea, whereas they show a high level of variation within the Ostreidae family. These features provide useful information for further evolutionary analysis of oyster mitogenomes.
Collapse
|
384
|
Passamonti M, Ricci A, Milani L, Ghiselli F. Mitochondrial genomes and Doubly Uniparental Inheritance: new insights from Musculista senhousia sex-linked mitochondrial DNAs (Bivalvia Mytilidae). BMC Genomics 2011; 12:442. [PMID: 21896183 PMCID: PMC3176263 DOI: 10.1186/1471-2164-12-442] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doubly Uniparental Inheritance (DUI) is a fascinating exception to matrilinear inheritance of mitochondrial DNA (mtDNA). Species with DUI are characterized by two distinct mtDNAs that are inherited either through females (F-mtDNA) or through males (M-mtDNA). DUI sex-linked mitochondrial genomes share several unusual features, such as additional protein coding genes and unusual gene duplications/structures, which have been related to the functionality of DUI. Recently, new evidence for DUI was found in the mytilid bivalve Musculista senhousia. This paper describes the complete sex-linked mitochondrial genomes of this species. RESULTS Our analysis highlights that both M and F mtDNAs share roughly the same gene content and order, but with some remarkable differences. The Musculista sex-linked mtDNAs have differently organized putative control regions (CR), which include repeats and palindromic motifs, thought to provide sites for DNA-binding proteins involved in the transcriptional machinery. Moreover, in male mtDNA, two cox2 genes were found, one (M-cox2b) 123bp longer. CONCLUSIONS The complete mtDNA genome characterization of DUI bivalves is the first step to unravel the complex genetic signals allowing Doubly Uniparental Inheritance, and the evolutionary implications of such an unusual transmission route in mitochondrial genome evolution in Bivalvia. The observed redundancy of the palindromic motifs in Musculista M-mtDNA may have a role on the process by which sperm mtDNA becomes dominant or exclusive of the male germline of DUI species. Moreover, the duplicated M-COX2b gene may have a different, still unknown, function related to DUI, in accordance to what has been already proposed for other DUI species in which a similar cox2 extension has been hypothesized to be a tag for male mitochondria.
Collapse
Affiliation(s)
- Marco Passamonti
- Department of Biologia Evoluzionistica Sperimentale, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
385
|
Park E, Song JI, Won YJ. The complete mitochondrial genome of Calicogorgia granulosa (Anthozoa: Octocorallia): potential gene novelty in unidentified ORFs formed by repeat expansion and segmental duplication. Gene 2011; 486:81-7. [PMID: 21798322 DOI: 10.1016/j.gene.2011.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 01/24/2023]
Abstract
Mitochondrial genomes of many nonbilaterian animals show high diversity of genome size and gene content, revealing many intergenic regions (IGRs), diverse repeats and additional genes. Here we present a new complete mitogenome of the cnidarian sea fan species, Calicogorgia granulosa (Anthozoa: Octocorallia) and its novel genomic features. The 20,246 bp of the complete mitogenome, which is the largest among the nine octocorals sequenced to date, contains 13 protein coding genes, 2 rRNAs and a tRNA within its circular form of mitochondrial DNA. We found an identical segmental duplication (S1 and S2, 913 bp) composed of an ORF (672 bp) coding for a hypothetical protein within which Direct Variant Repeat (DVR) expansions reside in-frame to the coding sequence. Additionally, the duplicated segmental DNA showed no variation in nucleotide sequences both between S1 and S2 and across multiple individual samples. Upon these observations, we discuss plausible causes for the intramitochondrial segmental duplication and the absence of sequence variation, and a need for further investigation of the novel ORF as well. In conclusion the present mitogenome of C. granulosa adds more information to our understanding of the diversity and evolution of mitogenomes of nonbilaterian animals.
Collapse
Affiliation(s)
- Eunji Park
- Division of EcoScience, Ewha Womans University, Sodaemun-Gu, Seoul, Republic of Korea
| | | | | |
Collapse
|
386
|
Li H, Gao J, Liu H, Liu H, Liang A, Zhou X, Cai W. The architecture and complete sequence of mitochondrial genome of an assassin bug Agriosphodrus dohrni (Hemiptera: Reduviidae). Int J Biol Sci 2011; 7:792-804. [PMID: 21750648 PMCID: PMC3133887 DOI: 10.7150/ijbs.7.792] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 06/18/2011] [Indexed: 11/05/2022] Open
Abstract
The 16, 470 bp nucleotide sequence of the mitochondrial genome (mitogenome) of an assassin bug from the reduviid subfamily Harpactorinae, Agriosphodrus dohrni, has been revealed. The entire genome encodes for two ribosomal RNA genes (rrnL and rrnS), 22 transfer RNA (tRNA) genes, 13 protein-coding genes, and a control region. The nucleotide composition is biased toward adenine and thymine (A+T = 72.2%). Comparative analysis with two other reduviid species Triatoma dimidiata and Valentia hoffmanni, exhibited highly conserved genome architectures including genome contents, gene order, nucleotide composition, codon usage, amino acid composition, as well as genome asymmetry. All protein-coding genes use standard mitochondrial initiation codons (methionine and isoleucine), except that nad1 starts with GTG. All tRNAs have the classic clover-leaf structure, except that the dihydrouridine (DHU) arm of tRNA(Ser(AGN)) forms a simple loop. Secondary structure comparisons of the two mitochondrial ribosomal subunits among sequenced assassin bugs show that the sequence and structure of rrnL is more conservative than that of rrnS. The presence of structural elements in the control region is also discussed, with emphasis on their implications in the regulation of replication and/or transcription of the reduviid mitogenome. The phylogenetic analyses indicated that within Reduviidae, Harpactorinae is a sister group to the Salyavatinae + Triatominae clade.
Collapse
Affiliation(s)
- Hu Li
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jianyu Gao
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Haiyu Liu
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Hui Liu
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Aiping Liang
- 2. Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuguo Zhou
- 3. Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Wanzhi Cai
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
387
|
Cárdenas L, Sánchez R, Gomez D, Fuenzalida G, Gallardo-Escárate C, Tanguy A. Transcriptome analysis in Concholepas concholepas (Gastropoda, Muricidae): mining and characterization of new genomic and molecular markers. Mar Genomics 2011; 4:197-205. [PMID: 21867972 DOI: 10.1016/j.margen.2011.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 01/11/2023]
Abstract
The marine gastropod Concholepas concholepas, locally known as the "loco", is the main target species of the benthonic Chilean fisheries. Genetic and genomic tools are necessary to study the genome of this species in order to understand the molecular basis of its development, growth, and other key traits to improve the management strategies and to identify local adaptation to prevent loss of biodiversity. Here, we use pyrosequencing technologies to generate the first transcriptomic database from adult specimens of the loco. After trimming, a total of 140,756 Expressed Sequence Tag sequences were achieved. Clustering and assembly analysis identified 19,219 contigs and 105,435 singleton sequences. BlastN analysis showed a significant identity with Expressed Sequence Tags of different gastropod species available in public databases. Similarly, BlastX results showed that only 895 out of the total 124,654 had significant hits and may represent novel genes for marine gastropods. From this database, simple sequence repeat motifs were also identified and a total of 38 primer pairs were designed and tested to assess their potential as informative markers and to investigate their cross-species amplification in different related gastropod species. This dataset represents the first publicly available 454 data for a marine gastropod endemic to the southeastern Pacific coast, providing a valuable transcriptomic resource for future efforts of gene discovery and development of functional markers in other marine gastropods.
Collapse
Affiliation(s)
- Leyla Cárdenas
- Instituto de Ecología y Evolución, Universidad Austral de Chile, Casilla 567, Isla Teja, Valdivia, Chile.
| | | | | | | | | | | |
Collapse
|
388
|
Fujii S, Toda T, Kikuchi S, Suzuki R, Yokoyama K, Tsuchida H, Yano K, Toriyama K. Transcriptome map of plant mitochondria reveals islands of unexpected transcribed regions. BMC Genomics 2011; 12:279. [PMID: 21627843 PMCID: PMC3121727 DOI: 10.1186/1471-2164-12-279] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 06/01/2011] [Indexed: 11/30/2022] Open
Abstract
Background Plant mitochondria contain a relatively large amount of genetic information, suggesting that their functional regulation may not be as straightforward as that of metazoans. We used a genomic tiling array to draw a transcriptomic atlas of Oryza sativa japonica (rice) mitochondria, which was predicted to be approximately 490-kb long. Results Whereas statistical analysis verified the transcription of all previously known functional genes such as the ones related to oxidative phosphorylation, a similar extent of RNA expression was frequently observed in the inter-genic regions where none of the previously annotated genes are located. The newly identified open reading frames (ORFs) predicted in these transcribed inter-genic regions were generally not conserved among flowering plant species, suggesting that these ORFs did not play a role in mitochondrial principal functions. We also identified two partial fragments of retrotransposon sequences as being transcribed in rice mitochondria. Conclusion The present study indicated the previously unexpected complexity of plant mitochondrial RNA metabolism. Our transcriptomic data (Oryza sativa Mitochondrial rna Expression Server: OsMES) is publicly accessible at [http://bioinf.mind.meiji.ac.jp/cgi-bin/gbrowse/OsMes/#search].
Collapse
Affiliation(s)
- Sota Fujii
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
389
|
Meganathan P, Dubey B, Batzer MA, Ray DA, Haque I. Complete mitochondrial genome sequences of three Crocodylus species and their comparison within the Order Crocodylia. Gene 2011; 478:35-41. [DOI: 10.1016/j.gene.2011.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 02/07/2023]
|
390
|
Breton S, Ghiselli F, Passamonti M, Milani L, Stewart DT, Hoeh WR. Evidence for a fourteenth mtDNA-encoded protein in the female-transmitted mtDNA of marine Mussels (Bivalvia: Mytilidae). PLoS One 2011; 6:e19365. [PMID: 21556327 PMCID: PMC3083442 DOI: 10.1371/journal.pone.0019365] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/02/2011] [Indexed: 11/30/2022] Open
Abstract
Background A novel feature for animal mitochondrial genomes has been recently established: i.e., the presence of additional, lineage-specific, mtDNA-encoded proteins with functional significance. This feature has been observed in freshwater mussels with doubly uniparental inheritance of mtDNA (DUI). The latter unique system of mtDNA transmission, which also exists in some marine mussels and marine clams, is characterized by one mt genome inherited from the female parent (F mtDNA) and one mt genome inherited from the male parent (M mtDNA). In freshwater mussels, the novel mtDNA-encoded proteins have been shown to be mt genome-specific (i.e., one novel protein for F genomes and one novel protein for M genomes). It has been hypothesized that these novel, F- and M-specific, mtDNA-encoded proteins (and/or other F- and/or M-specific mtDNA sequences) could be responsible for the different modes of mtDNA transmission in bivalves but this remains to be demonstrated. Methodology/Principal Findings We investigated all complete (or nearly complete) female- and male-transmitted marine mussel mtDNAs previously sequenced for the presence of ORFs that could have functional importance in these bivalves. Our results confirm the presence of a novel F genome-specific mt ORF, of significant length (>100aa) and located in the control region, that most likely has functional significance in marine mussels. The identification of this ORF in five Mytilus species suggests that it has been maintained in the mytilid lineage (subfamily Mytilinae) for ∼13 million years. Furthermore, this ORF likely has a homologue in the F mt genome of Musculista senhousia, a DUI-containing mytilid species in the subfamily Crenellinae. We present evidence supporting the functionality of this F-specific ORF at the transcriptional, amino acid and nucleotide levels. Conclusions/Significance Our results offer support for the hypothesis that “novel F genome-specific mitochondrial genes” are involved in key biological functions in bivalve species with DUI.
Collapse
Affiliation(s)
- Sophie Breton
- Kent State University, Kent, Ohio, United States of America.
| | | | | | | | | | | |
Collapse
|
391
|
Characteristics of mitochondrial DNA of unionid bivalves (Mollusca: Bivalvia: Unionidae). I. Detection and characteristics of doubly uniparental inheritance (DUI) of unionid mitochondrial DNA. FOLIA MALACOLOGICA 2011. [DOI: 10.2478/v10125-010-0015-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
392
|
Characteristics of mitochondrial DNA of unionid bivalves (Mollusca: Bivalvia: Unionidae). II. Comparison of complete sequences of maternally inherited mitochondrial genomes of Sinanodonta woodiana and Unio pictorum. FOLIA MALACOLOGICA 2011. [DOI: 10.2478/v10125-010-0016-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
393
|
Chateigner-Boutin AL, Small I. Organellar RNA editing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:493-506. [PMID: 21957039 DOI: 10.1002/wrna.72] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA editing is a term used for a number of mechanistically different processes that alter the nucleotide sequence of RNA molecules to differ from the gene sequence. RNA editing occurs in a wide variety of organisms and is particularly frequent in organelle transcripts of eukaryotes. The discontiguous phylogenetic distribution of mRNA editing, the mechanistic differences observed in different organisms, and the nonhomologous editing machinery described in different taxonomic groups all suggest that RNA editing has appeared independently several times. This raises questions about the selection pressures acting to maintain editing that are yet to be completely resolved. Editing tends to be frequent in organisms with atypical organelle genomes and acts to correct the effect of DNA mutations that would otherwise compromise the synthesis of functional proteins. Additional functions of editing in generating protein diversity or regulating gene expression have been proposed but so far lack widespread experimental evidence, at least in organelles.
Collapse
|
394
|
QIAN GUANGHUI, ZHAO QIANG, WANG AN, ZHU LIN, ZHOU KAIYA, SUN HONGYING. Two new decapod (Crustacea, Malacostraca) complete mitochondrial genomes: bearings on the phylogenetic relationships within the Decapoda. Zool J Linn Soc 2011. [DOI: 10.1111/j.1096-3642.2010.00686.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
395
|
Yu H, Li Q. Mutation and selection on the wobble nucleotide in tRNA anticodons in marine bivalve mitochondrial genomes. PLoS One 2011; 6:e16147. [PMID: 21267462 PMCID: PMC3022732 DOI: 10.1371/journal.pone.0016147] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/07/2010] [Indexed: 11/19/2022] Open
Abstract
Background Animal mitochondrial genomes typically encode one tRNA for each synonymous codon family, so that each tRNA anticodon essentially has to wobble to recognize two or four synonymous codons. Several factors have been hypothesized to determine the nucleotide at the wobble site of a tRNA anticodon in mitochondrial genomes, such as the codon-anticodon adaptation hypothesis, the wobble versatility hypothesis, the translation initiation and elongation conflict hypothesis, and the wobble cost hypothesis. Principal Findings In this study, we analyzed codon usage and tRNA anticodon wobble sites of 29 marine bivalve mitochondrial genomes to evaluate features of the wobble nucleotides in tRNA anticodons. The strand-specific mutation bias favors G and T on the H strand in all the 29 marine bivalve mitochondrial genomes. A bias favoring G and T is also visible in the third codon positions of protein-coding genes and the wobble sites of anticodons, rejecting that codon usage bias drives the wobble sites of tRNA anticodons or tRNA anticodon bias drives the evolution of codon usage. Almost all codon families (98.9%) from marine bivalve mitogenomes support the wobble versatility hypothesis. There are a few interesting exceptions involving tRNATrp with an anticodon CCA fixed in Pectinoida species, tRNASer with a GCU anticodon fixed in Mytiloida mitogenomes, and the uniform anticodon CAU of tRNAMet translating the AUR codon family. Conclusions/Significance These results demonstrate that most of the nucleotides at the wobble sites of tRNA anticodons in marine bivalve mitogenomes are determined by wobble versatility. Other factors such as the translation initiation and elongation conflict, and the cost of wobble translation may contribute to the determination of the wobble nucleotide in tRNA anticodons. The finding presented here provides valuable insights into the previous hypotheses of the wobble nucleotide in tRNA anticodons by adding some new evidence.
Collapse
Affiliation(s)
- Hong Yu
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | - Qi Li
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
396
|
Krzywinski J, Li C, Morris M, Conn JE, Lima JB, Povoa MM, Wilkerson RC. Analysis of the evolutionary forces shaping mitochondrial genomes of a Neotropical malaria vector complex. Mol Phylogenet Evol 2011; 58:469-77. [PMID: 21241811 DOI: 10.1016/j.ympev.2011.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/22/2010] [Accepted: 01/11/2011] [Indexed: 01/06/2023]
Abstract
Many vectors of human malaria belong to complexes of morphologically indistinguishable cryptic species. Here we report the analysis of the newly sequenced complete mitochondrial DNA molecules from six recognized or putative species of one such group, the Neotropical Anopheles albitarsis complex. The molecular evolution of these genomes had been driven by purifying selection, particularly strongly acting on the RNA genes. Directional mutation pressure associated with the strand-asynchronous asymmetric mtDNA replication mechanism may have shaped a pronounced DNA strand asymmetry in the nucleotide composition in these and other Anopheles species. The distribution of sequence polymorphism, coupled with the conflicting phylogenetic trees inferred from the mitochondrial DNA and from the published white gene fragment sequences, indicates that the evolution of the complex may have involved ancient mtDNA introgression. Six protein coding genes (nad5, nad4, cox3, atp6, cox1 and nad2) have high levels of sequence divergence and are likely informative for population genetics studies. Finally, the extent of the mitochondrial DNA variation within the complex supports the notion that the complex consists of a larger number of species than until recently believed.
Collapse
|
397
|
Dietz L, Mayer C, Arango CP, Leese F. The mitochondrial genome of Colossendeis megalonyx supports a basal position of Colossendeidae within the Pycnogonida. Mol Phylogenet Evol 2010; 58:553-8. [PMID: 21195785 DOI: 10.1016/j.ympev.2010.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 12/26/2010] [Accepted: 12/27/2010] [Indexed: 11/29/2022]
Abstract
We present the almost complete (16,007 bp) mitochondrial genome of a Colossendeis megalonyx specimen from the Southern Ocean and discuss gene order and tRNA structure in a comparative phylogenetic context. Our data suggest a basal position of the colossendeid lineage corroborating earlier phylogenetic studies but disagreeing with results of a recently published study that supported a highly derived sister-group relationship of Colossendeidae and Nymphonidae. Our results, together with BLAST searches and phylogenetic comparisons, indicate that the specimen presented as Colossendeis sp. in a series of recent studies had been misidentified. It has now been identified as a nymphonid species.
Collapse
Affiliation(s)
- Lars Dietz
- Ruhr Universität Bochum, Evolutionsökologie und Biodiversität der Tiere, Bochum, Germany
| | | | | | | |
Collapse
|
398
|
Breton S, Stewart DT, Shepardson S, Trdan RJ, Bogan AE, Chapman EG, Ruminas AJ, Piontkivska H, Hoeh WR. Novel protein genes in animal mtDNA: a new sex determination system in freshwater mussels (Bivalvia: Unionoida)? Mol Biol Evol 2010; 28:1645-59. [PMID: 21172831 DOI: 10.1093/molbev/msq345] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial (mt) function depends critically on optimal interactions between components encoded by mt and nuclear DNAs. mitochondrial DNA (mtDNA) inheritance (SMI) is thought to have evolved in animal species to maintain mito-nuclear complementarity by preventing the spread of selfish mt elements thus typically rendering mtDNA heteroplasmy evolutionarily ephemeral. Here, we show that mtDNA intraorganismal heteroplasmy can have deterministic underpinnings and persist for hundreds of millions of years. We demonstrate that the only exception to SMI in the animal kingdom, that is, the doubly uniparental mtDNA inheritance system in bivalves, with its three-way interactions among egg mt-, sperm mt- and nucleus-encoded gene products, is tightly associated with the maintenance of separate male and female sexes (dioecy) in freshwater mussels. Specifically, this mother-through-daughter and father-through-son mtDNA inheritance system, containing highly differentiated mt genomes, is found in all dioecious freshwater mussel species. Conversely, all hermaphroditic species lack the paternally transmitted mtDNA (=possess SMI) and have heterogeneous macromutations in the recently discovered, novel protein-coding gene (F-orf) in their maternally transmitted mt genomes. Using immunoelectron microscopy, we have localized the F-open reading frame (ORF) protein, likely involved in specifying separate sexes, in mitochondria and in the nucleus. Our results support the hypothesis that proteins coded by the highly divergent maternally and paternally transmitted mt genomes could be directly involved in sex determination in freshwater mussels. Concomitantly, our study demonstrates novel features for animal mt genomes: the existence of additional, lineage-specific, mtDNA-encoded proteins with functional significance and the involvement of mtDNA-encoded proteins in extra-mt functions. Our results open new avenues for the identification, characterization, and functional analyses of ORFs in the intergenic regions, previously defined as "noncoding," found in a large proportion of animal mt genomes.
Collapse
Affiliation(s)
- Sophie Breton
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Rampant gene rearrangement and haplotype hypervariation among nematode mitochondrial genomes. Genetica 2010; 139:611-5. [PMID: 21136141 PMCID: PMC3089818 DOI: 10.1007/s10709-010-9531-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/18/2010] [Indexed: 11/21/2022]
Abstract
Rare syntenic conservation, sequence duplication, and the use of both DNA strands to encode genes are signature architectural features defining mitochondrial genomes of enoplean nematodes. These characteristics stand in contrast to the more conserved mitochondrial genome sizes and transcriptional organizations of mitochondrial DNAs (mtDNAs) derived from chromadorean nematodes. To address the frequency of gene rearrangement within nematode mitochondrial DNA (mtDNA), mitochondrial genome variation has been characterized within a more confined enoplean taxonomic unit, the family Mermithidae. The complete nucleotide sequences of the mosquito parasitic nematodes Romanomermis culicivorax, R. nielseni, and R. iyengari mtDNA have been determined. Duplicated expanses encompassing different regions of the mitochondrial genomes were found in each of these congeners. These mtDNA shared few rRNA and protein gene junctions, indicating extensive gene rearrangement within the Romanomermis lineage. Rapid structural changes are also observed at the conspecific level where no two individual nematodes carry the same haplotype. Rolling circle amplification was used to isolate complete mitochondrial genomes from individuals in local populations of Thaumamermis cosgrovei, a parasite of terrestrial isopods. Mitochondrial DNA length variants ranging from 19 to 34 kb are observed, but haplotypes are not shared between any two individuals. The complete nucleotide sequences of three haplotypes have been determined, revealing a constant region encoding most mitochondrial genes and a hypervariable segment that contains intact and pseudogene copies of several mitochondrial genes, duplicated to different copy numbers, resulting in mtDNA size variation. Constant rearrangement generates new T. cosgrovei mtDNA forms.
Collapse
|
400
|
Complete mtDNA of Meretrix lusoria (Bivalvia: Veneridae) reveals the presence of an atp8 gene, length variation and heteroplasmy in the control region. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 5:256-64. [DOI: 10.1016/j.cbd.2010.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 11/22/2022]
|