351
|
Abstract
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations.
Collapse
|
352
|
Deng X, Berletch JB, Nguyen DK, Disteche CM. X chromosome regulation: diverse patterns in development, tissues and disease. Nat Rev Genet 2014. [PMID: 24733023 DOI: 10.1038/nrg3687,+10.1038/nrn3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations.
Collapse
Affiliation(s)
- Xinxian Deng
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Joel B Berletch
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Di K Nguyen
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Christine M Disteche
- 1] Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA. [2] Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| |
Collapse
|
353
|
Abstract
The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function.
Collapse
Affiliation(s)
- Megan E. Aldrup-MacDonald
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; E-Mail:
- Division of Human Genetics, Duke University, Durham, NC 27710, USA
| | - Beth A. Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; E-Mail:
- Division of Human Genetics, Duke University, Durham, NC 27710, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-919-684-9038
| |
Collapse
|
354
|
Konsta OD, Thabet Y, Le Dantec C, Brooks WH, Tzioufas AG, Pers JO, Renaudineau Y. The contribution of epigenetics in Sjögren's Syndrome. Front Genet 2014; 5:71. [PMID: 24765104 PMCID: PMC3982050 DOI: 10.3389/fgene.2014.00071] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/17/2014] [Indexed: 12/17/2022] Open
Abstract
Sjögren’s syndrome (SS) is a chronic autoimmune epithelitis that combines exocrine gland dysfunctions and lymphocytic infiltrations. While the pathogenesis of SS remains unclear, its etiology is multifunctional and includes a combination of genetic predispositions, environmental factors, and epigenetic factors. Recently, interest has grown in the involvement of epigenetics in autoimmune diseases. Epigenetics is defined as changes in gene expression, that are inheritable and that do not entail changes in the DNA sequence. In SS, several epigenetic mechanisms are defective including DNA demethylation that predominates in epithelial cells, an abnormal expression of microRNAs, and abnormal chromatin positioning-associated with autoantibody production. Last but not least, epigenetic modifications are reversible as observed in minor salivary glands from SS patients after B cell depletion using rituximab. Thus epigenetic findings in SS open new perspectives for therapeutic approaches as well as the possible identification of new biomarkers.
Collapse
Affiliation(s)
- Orsia D Konsta
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France ; Department of Pathophysiology, School of Medicine, National University of Athens Athens, Greece
| | - Yosra Thabet
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France
| | - Christelle Le Dantec
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France
| | - Wesley H Brooks
- Department of Chemistry, University of South Florida Tampa, FL, USA
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National University of Athens Athens, Greece
| | - Jacques-Olivier Pers
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France
| | - Yves Renaudineau
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France ; Laboratory of Immunology and Immunotherapy, Hôpital Morvan - Brest University Medical School Brest France
| |
Collapse
|
355
|
Zhang J, Boualem A, Bendahmane A, Ming R. Genomics of sex determination. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:110-6. [PMID: 24682067 DOI: 10.1016/j.pbi.2014.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 05/23/2023]
Abstract
Sex determination is a major switch in the evolutionary history of angiosperm, resulting 11% monoecious and dioecious species. The genomic sequences of papaya sex chromosomes unveiled the molecular basis of recombination suppression in the sex determination region, and candidate genes for sex determination. Identification and analyses of sex determination genes in cucurbits and maize demonstrated conservation of sex determination mechanism in one lineage and divergence between the two systems. Epigenetic control and hormonal influence of sex determination were elucidated in both plants and animals. Intensive investigation of potential sex determination genes in model species will improve our understanding of sex determination gene network. Such network will in turn accelerate the identification of sex determination genes in dioecious species with sex chromosomes, which are burdensome due to no recombination in sex determining regions. The sex determination genes in dioecious species are crucial for understanding the origin of dioecy and sex chromosomes, particularly in their early stage of evolution.
Collapse
Affiliation(s)
- Jisen Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Adnane Boualem
- INRA-CNRS-UEVE, UMR1165, ERL8196, Unité de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, Evry F-91057, France
| | - Abdelhafid Bendahmane
- INRA-CNRS-UEVE, UMR1165, ERL8196, Unité de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, Evry F-91057, France.
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
356
|
Chapman KB, Prendes MJ, Kidd JL, Sternberg H, West MD, Wagner J. Elevated expression of cancer/testis antigen FSIP1 in ER-positive breast tumors. Biomark Med 2014; 7:601-11. [PMID: 23905897 DOI: 10.2217/bmm.13.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIM The study aimed to identify and characterize highly specific breast tumor biomarkers. METHODS A microarray data set comprised of 513 diverse normal and tumor mRNA samples was analyzed to identify breast tumor biomarkers with minimal expression in normal tissues. RESULTS FSIP1 was identified as a breast tumor biomarker with elevated mRNA expression in breast tumors and minimal expression in most normal tissues except the testis. Quantitative real-time PCR confirmed the elevated expression of FSIP1 mRNA in breast tumors and revealed a significant correlation with ER-positive status. Immunofluorescence staining of breast tumor sections showed that the majority of breast tumors examined in this study (20 out of 22) expressed detectable FSIP1 protein, with significantly higher than average expression in ER-positive versus ER-negative breast tumors. CONCLUSION The prevalence and uniformity of FSIP1 expression in breast tumors, taken together with the highly restricted expression in normal tissues, suggests that FSIP1 may be an attractive target for breast cancer immunotherapy.
Collapse
Affiliation(s)
- Karen B Chapman
- OncoCyte Corporation, 1301 Harbor Bay Parkway, Alameda, CA 94502, USA.
| | | | | | | | | | | |
Collapse
|
357
|
Hewitt J, Chou EMH, Brown LA, Smith VC, Yong SL, Wadsworth LD, Wu JK, Macgillivray RTA. Molecular characterization of a 4,409,480 bp deletion of the human X chromosome in a patient with haemophilia B. Haemophilia 2014; 20:e230-4. [PMID: 24589221 DOI: 10.1111/hae.12395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2014] [Indexed: 11/26/2022]
Affiliation(s)
- J Hewitt
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
358
|
Dai R, Ahmed SA. Sexual dimorphism of miRNA expression: a new perspective in understanding the sex bias of autoimmune diseases. Ther Clin Risk Manag 2014; 10:151-63. [PMID: 24623979 PMCID: PMC3949753 DOI: 10.2147/tcrm.s33517] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Autoimmune diseases encompass a diverse group of diseases which emanate from a dysregulated immune system that launches a damaging attack on its own tissues. Autoimmune attacks on self tissues can occur in any organ or body system. A notable feature of autoimmune disease is that a majority of these disorders occur predominantly in females. The precise basis of sex bias in autoimmune diseases is complex and potentially involves sex chromosomes, sex hormones, and sex-specific gene regulation in response to internal and external stimuli. Epigenetic regulation of genes, especially by microRNAs (miRNAs), is now attracting significant attention. miRNAs are small, non-protein-coding RNAs that are predicted to regulate a majority of human genes, including those involved in immune regulation. Therefore, it is not surprising that dysregulated miRNAs are evident in many diseases, including autoimmune diseases. Because there are marked sex differences in the incidence of autoimmune diseases, this review focuses on the role of sex factors on miRNA expression in the context of autoimmune diseases, an aspect not addressed thus far. Here, we initially review miRNA biogenesis and miRNA regulation of immunity and autoimmunity. We then summarize the recent findings of sexual dimorphism of miRNA expression in diverse tissues, which imply a critical role of miRNA in sex differentiation and in sex-specific regulation of tissue development and/or function. We also discuss the important contribution of the X chromosome and sex hormones to the sexual dimorphism of miRNA expression. Understanding sexually dimorphic miRNA expression in sex-biased autoimmune diseases not only offers us new insight into the mechanism of sex bias of the disease but will also aid us in developing new sex-based therapeutic strategies for the efficient treatment of these diseases with a sex bias.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
359
|
Samplaski MK, Lo KC, Grober ED, Millar A, Dimitromanolakis A, Jarvi KA. Phenotypic differences in mosaic Klinefelter patients as compared with non-mosaic Klinefelter patients. Fertil Steril 2014; 101:950-5. [PMID: 24502895 DOI: 10.1016/j.fertnstert.2013.12.051] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/04/2013] [Accepted: 12/29/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine whether men with Klinefelter syndrome (KS) have the same phenotype as men with mosaic KS. DESIGN Subject identification via prospectively collected database. SETTING Male infertility specialty clinic. PATIENT(S) Men undergoing a fertility evaluation from 2005 to 2012 at a single male infertility specialty clinic and having a karyotype demonstrating KS (mosaic or non-mosaic). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Testicular size, and semen and hormone parameters, genetic evaluation, and signs of testosterone (T) deficiency using validated questionnaires. RESULT(S) Of 86 men identified with KS, 6 (6.7%) were mosaic KS, and 80 (93.3%) were non-mosaic KS. Men with mosaic KS had lower baseline luteinizing hormone (LH) levels (10.31 IU/L ± 5.52 vs. 19.89 IU/L ± 6.93), lower estradiol levels (58.71 ± 31.10 pmol/L vs. 108.57 ± 43.45 pmol/L), larger mean testicular volumes (11 ± 7.3 mL vs. 6.35 ± 3.69 mL), and a higher mean total sperm count (4.43 ± 9.86 M/mL vs. 0.18 ± 1.17 M/mL). A higher proportion of men with mosaic KS had sperm in the ejaculate: 3 (50%) of 6 versus 3 (3.75%) of 80. The Sexual Health Inventory for Men (SHIM) and Androgen Deficiency in the Aging Male (ADAM) questionnaire scores were not different between groups. CONCLUSION(S) Men with mosaic KS seem to be more well androgenized than their non-mosaic KS counterparts, both with respect to hormones and sperm in the ejaculate.
Collapse
Affiliation(s)
- Mary K Samplaski
- Division of Urology, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Kirk C Lo
- Division of Urology, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ethan D Grober
- Division of Urology, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adam Millar
- Division of Endocrinology and Metabolism, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Apostolos Dimitromanolakis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Keith A Jarvi
- Division of Urology, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Lunenfeld Tannenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
360
|
Yu H, Pask AJ, Hu Y, Shaw G, Renfree MB. ARX/Arx is expressed in germ cells during spermatogenesis in both marsupial and mouse. Reproduction 2014; 147:279-89. [PMID: 24307230 DOI: 10.1530/rep-13-0361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The X-linked aristaless gene, ARX, is essential for the development of the gonads, forebrain, olfactory bulb, pancreas, and skeletal muscle in mice and humans. Mutations cause neurological diseases, often accompanied by ambiguous genitalia. There are a disproportionately high number of testis and brain genes on the human and mouse X chromosomes. It is still unknown whether the X chromosome accrued these genes during its evolution or whether genes that find themselves on the X chromosome evolve such roles. ARX was originally autosomal in mammals and remains so in marsupials, whereas in eutherian mammals it translocated to the X chromosome. In this study, we examined autosomal ARX in tammars and compared it with the X-linked Arx in mice. We detected ARX mRNA in the neural cells of the forebrain, midbrain and hindbrain, and olfactory bulbs in developing tammars, consistent with the expression in mice. ARX was detected by RT-PCR and mRNA in situ hybridization in the developing tammar wallaby gonads of both sexes, suggestive of a role in sexual development as in mice. We also detected ARX/Arx mRNA in the adult testis in both tammars and mice, suggesting a potential novel role for ARX/Arx in spermiogenesis. ARX transcripts were predominantly observed in round spermatids. Arx mRNA localization distributions in the mouse adult testis suggest that it escaped meiotic sex chromosome inactivation during spermatogenesis. Our findings suggest that ARX in the therian mammal ancestor already played a role in male reproduction before it was recruited to the X chromosome in eutherians.
Collapse
Affiliation(s)
- Hongshi Yu
- ARC Centre of Excellence for Kangaroo Genomics
| | | | | | | | | |
Collapse
|
361
|
Deng Q, Li KY, Chen H, Dai JH, Zhai YY, Wang Q, Li N, Wang YP, Han ZG. RNA interference against cancer/testis genes identifies dual specificity phosphatase 21 as a potential therapeutic target in human hepatocellular carcinoma. Hepatology 2014; 59:518-30. [PMID: 23929653 DOI: 10.1002/hep.26665] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/29/2013] [Indexed: 01/03/2023]
Abstract
UNLABELLED Cancer/testis (CT) antigens have been considered therapeutic targets for treating cancers. However, a central question is whether their expression contributes to tumorigenesis or if they are functionally irrelevant by-products derived from the process of cellular transformation. In any case, these CT antigens are essential for cancer cell survival and may serve as potential therapeutic targets. Recently, the cell-based RNA interference (RNAi) screen has proven to be a powerful approach for identifying potential therapeutic targets. In this study we sought to identify new CT antigens as potential therapeutic targets for human hepatocellular carcinoma (HCC), and 179 potential CT genes on the X chromosome were screened through a bioinformatics analysis of gene expression profiles. Then an RNAi screen against these potential CT genes identified nine that were required for sustaining the survival of Focus and PLC/PRF/5 cells. Among the nine genes, the physiologically testis-restricted dual specificity phosphatase 21 (DUSP21) encoding a dual specificity phosphatase was up-regulated in 39 (33%) of 118 human HCC specimens. Ectopic DUSP21 had no obvious impact on proliferation and colony formation in HCC cells. However, DUSP21 silencing significantly suppressed cell proliferation, colony formation, and in vivo tumorigenicity in HCC cells. The administration of adenovirus-mediated RNAi and an atelocollagen/siRNA mixture against endogenous DUSP21 significantly suppressed xenograft HCC tumors in mice. Further investigations showed that DUSP21 knockdown led to arrest of the cell cycle in G1 phase, cell senescence, and expression changes of some factors with functions in the cell cycle and/or senescence. Furthermore, the antiproliferative role of DUSP21 knockdown is through activation of p38 mitogen-activated protein kinase in HCC. CONCLUSION DUSP21 plays an important role in sustaining HCC cell proliferation and may thus act as a potential therapeutic target in HCC treatment.
Collapse
Affiliation(s)
- Qing Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education) of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Viana J, Pidsley R, Troakes C, Spiers H, Wong CC, Al-Sarraj S, Craig I, Schalkwyk L, Mill J. Epigenomic and transcriptomic signatures of a Klinefelter syndrome (47,XXY) karyotype in the brain. Epigenetics 2014; 9:587-99. [PMID: 24476718 PMCID: PMC4121369 DOI: 10.4161/epi.27806] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Klinefelter syndrome (KS) is the most common sex-chromosome aneuploidy in humans. Most affected individuals carry one extra X-chromosome (47,XXY karyotype) and the condition presents with a heterogeneous mix of reproductive, physical and psychiatric phenotypes. Although the mechanism(s) by which the supernumerary X-chromosome determines these features of KS are poorly understood, skewed X-chromosome inactivation (XCI), gene-dosage dysregulation, and the parental origin of the extra X-chromosome have all been implicated, suggesting an important role for epigenetic processes. We assessed genomic, methylomic and transcriptomic variation in matched prefrontal cortex and cerebellum samples identifying an individual with a 47,XXY karyotype who was comorbid for schizophrenia and had a notably reduced cerebellum mass compared with other individuals in the study (n = 49). We examined methylomic and transcriptomic differences in this individual relative to female and male samples with 46,XX or 46,XY karyotypes, respectively, and identified numerous locus-specific differences in DNA methylation and gene expression, with many differences being autosomal and tissue-specific. Furthermore, global DNA methylation, assessed via the interrogation of LINE-1 and Alu repetitive elements, was significantly altered in the 47,XXY patient in a tissue-specific manner with extreme hypomethylation detected in the prefrontal cortex and extreme hypermethylation in the cerebellum. This study provides the first detailed molecular characterization of the prefrontal cortex and cerebellum from an individual with a 47,XXY karyotype, identifying widespread tissue-specific epigenomic and transcriptomic alterations in the brain.
Collapse
Affiliation(s)
- Joana Viana
- University of Exeter Medical School; Exeter University; Exeter, UK
| | - Ruth Pidsley
- Institute of Psychiatry; King's College London; London, UK; Garvan Institute of Medical Research; Sydney, NSW Australia
| | - Claire Troakes
- Institute of Psychiatry; King's College London; London, UK
| | - Helen Spiers
- Institute of Psychiatry; King's College London; London, UK
| | - Chloe Cy Wong
- Institute of Psychiatry; King's College London; London, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry; King's College London; London, UK
| | - Ian Craig
- Institute of Psychiatry; King's College London; London, UK
| | | | - Jonathan Mill
- University of Exeter Medical School; Exeter University; Exeter, UK; Institute of Psychiatry; King's College London; London, UK
| |
Collapse
|
363
|
Abstract
The gene order on the X chromosome of eutherians is generally highly conserved, although an increase in the rate of rearrangement has been reported in the rodent lineage. Conservation of the X chromosome is thought to be caused by selection related to maintenance of dosage compensation. However, we herein reveal that the cattle (Btau4.0) lineage has experienced a strong increase in the rate of X-chromosome rearrangement, much stronger than that previously reported for rodents. We also show that this increase is not matched by a similar increase on the autosomes and cannot be explained by assembly errors. Furthermore, we compared the difference in two cattle genome assemblies: Btau4.0 and Btau6.0 (Bos taurus UMD3.1). The results showed a discrepancy between Btau4.0 and Btau6.0 cattle assembly version data, and we believe that Btau6.0 cattle assembly version data are not more reliable than Btau4.0. [BMB Reports 2013; 46(6): 310-315]
Collapse
Affiliation(s)
- Woncheoul Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
364
|
Shah K, McCormack CE, Bradbury NA. Do you know the sex of your cells? Am J Physiol Cell Physiol 2014; 306:C3-18. [PMID: 24196532 PMCID: PMC3919971 DOI: 10.1152/ajpcell.00281.2013] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/31/2013] [Indexed: 11/22/2022]
Abstract
Do you know the sex of your cells? Not a question that is frequently heard around the lab bench, yet thanks to recent research is probably one that should be asked. It is self-evident that cervical epithelial cells would be derived from female tissue and prostate cells from a male subject (exemplified by HeLa and LnCaP, respectively), yet beyond these obvious examples, it would be true to say that the sex of cell lines derived from non-reproductive tissue, such as lung, intestine, kidney, for example, is given minimal if any thought. After all, what possible impact could the presence of a Y chromosome have on the biochemistry and cell biology of tissues such as the exocrine pancreatic acini? Intriguingly, recent evidence has suggested that far from being irrelevant, genes expressed on the sex chromosomes can have a marked impact on the biology of such diverse tissues as neurons and renal cells. It is also policy of AJP-Cell Physiology that the source of all cells utilized (species, sex, etc.) should be clearly indicated when submitting an article for publication, an instruction that is rarely followed (http://www.the-aps.org/mm/Publications/Info-For-Authors/Composition). In this review we discuss recent data arguing that the sex of cells being used in experiments can impact the cell's biology, and we provide a table outlining the sex of cell lines that have appeared in AJP-Cell Physiology over the past decade.
Collapse
Affiliation(s)
- Kalpit Shah
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | | |
Collapse
|
365
|
de Castro F, Esteban PF, Bribián A, Murcia-Belmonte V, García-González D, Clemente D. The Adhesion Molecule Anosmin-1 in Neurology: Kallmann Syndrome and Beyond. ADVANCES IN NEUROBIOLOGY 2014; 8:273-92. [DOI: 10.1007/978-1-4614-8090-7_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
366
|
Roscioli E, Hamon R, Ruffin RE, Zalewski P, Grant J, Lester S. X-linked inhibitor of apoptosis single nucleotide polymorphisms and copy number variation are not risk factors for asthma. Respirology 2013; 18:697-703. [PMID: 23418891 DOI: 10.1111/resp.12065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/19/2012] [Accepted: 11/26/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Aberrant apoptosis in asthma contributes to airway inflammation. Early apoptosis and fragility of airway epithelial cells and delayed apoptosis of inflammatory lymphocytes can cooperate to increase airway inflammation. In this study, single nucleotide polymorphisms (SNPs) and copy number variation (CNV) in the Baculoviral inhibitor of apoptosis protein repeat-containing 4 (BIRC4) gene (which encodes X-linked inhibitor of apoptosis protein) were evaluated for associations with asthma. METHODS Asthma cases (n = 203) were identified from Caucasian cohort participants in the North West Adelaide Health Study and matched with 198 controls. Asthma status was defined using self-report of doctor-diagnosed asthma, in conjunction with spirometry and bronchodilator response. Seven SNPs, which spanned the entire BIRC4 gene, were selected for the study on the basis of a haplotype tagging approach. SNPs genotyping was performed on the SEQUENOM MassARRAY iPLEX Gold platform, and genotyping success rate was > 98%. BIRC4 gene CNV was measured using a duplex Taqman qPCR assay, with RNAseP as the reference gene. Alleles and haplotype associations were analysed by logistic regression, assuming an additive genetic model, and adjusted for gender and atopy. RESULTS BIRC4 gene copy number was determined entirely by gender. All SNPs were in Hardy-Weinberg equilibrium for both case and control females. BIRC4 allele and haplotype frequencies were comparable between asthma cases and controls. CONCLUSIONS There is no evidence of CNV in BIRC4, and BIRC4 is not a susceptibility gene for asthma.
Collapse
Affiliation(s)
- Eugene Roscioli
- Discipline of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011, Australia
| | | | | | | | | | | |
Collapse
|
367
|
Jiang JH, Gao Q, Shen XZ, Yu Y, Gu FM, Yan J, Pan JF, Jin F, Fan J, Zhou J, Huang XW. An X-chromosomal association study identifies a susceptibility locus at Xq22.1 for hepatitis B virus-related hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2013; 37:586-95. [PMID: 24209690 DOI: 10.1016/j.clinre.2013.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/01/2013] [Accepted: 09/17/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Genetic epidemiological data in hepatocellular carcinoma (HCC) pedigrees indicate a pattern of X-linked recessive inheritance of HCC susceptibility genes. This study is designed to test the hypothesis that there are genes conferring susceptibility to HCC located on the X-chromosome. METHODS An X-chromosomal association study was conducted among Chinese men recruited from an area with a high prevalence of HCC. The candidate gene was further investigated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS By analyzing 5454 X-chromosome single nucleotide polymorphisms (SNPs) in 50 HCC patients and 50 controls, we found two promising regions in which the associated SNPs clustered, located at Xq22.1 and Xq26.2. We further selected 35 tag SNPs (tSNPs) from these two regions for additional genotyping analysis in another independent set of 290 cases and 242 controls. Notably, SNP rs5945919 at Xq22.1 exhibited a significant association with HBV-related HCC (odds ratio [OR]=2.22, 95% confidence interval [CI]=1.15-4.30, P=0.016). The expressions of the three genes near the rs5945919 locus, RAB40AL, BEX1, and NXF3, were analyzed by qRT-PCR between another 24 HCC tissues and paired peritumoral liver tissues. The results indicated that NXF3, rather than RAB40AL and BEX1, mRNA level was found to be more abundant in HCC tissue than in peritumoral liver tissue. CONCLUSIONS Our findings implicated Xq22.1 as a novel susceptibility locus for HCC and NXF3 as a candidate risk factor for relevant HCC.
Collapse
Affiliation(s)
- Jia-Hao Jiang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Crow TJ. The XY gene hypothesis of psychosis: origins and current status. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:800-24. [PMID: 24123874 PMCID: PMC4065359 DOI: 10.1002/ajmg.b.32202] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 08/19/2013] [Indexed: 11/10/2022]
Abstract
Sex differences in psychosis and their interaction with laterality (systematic departures from 50:50 left-right symmetry across the antero-posterior neural axis) are reviewed in the context of the X-Y gene hypothesis. Aspects of laterality (handedness/cerebral asymmetry/the torque) predict (1) verbal and non-verbal ability in childhood and across adult life and (2) anatomical, physiological, and linguistic variation relating to psychosis. Neuropsychological and MRI evidence from individuals with sex chromosome aneuploidies indicates that laterality is associated with an X-Y homologous gene pair. Within each mammalian species the complement of such X-Y gene pairs reflects their potential to account for taxon-specific sexual dimorphisms. As a consequence of the mechanism of meiotic suppression of unpaired chromosomes such X-Y gene pairs generate epigenetic variation around a species defining motif that is carried to the zygote with potential to initiate embryonic gene expression in XX or XY format. The Protocadherin11XY (PCDH11XY) gene pair in Xq21.3/Yp11.2 in probable coordination with a gene or genes within PAR2 (the second pseudo-autosomal region) is the prime candidate in relation to cerebral asymmetry and psychosis in Homo sapiens. The lately-described pattern of sequence variation associated with psychosis on the autosomes may reflect a component of the human genome's adjustment to selective pressures generated by the sexually dimorphic mate recognition system.
Collapse
Affiliation(s)
- Timothy J Crow
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of OxfordOxford, UK
| |
Collapse
|
369
|
Carvalho AB, Clark AG. Efficient identification of Y chromosome sequences in the human and Drosophila genomes. Genome Res 2013; 23:1894-907. [PMID: 23921660 PMCID: PMC3814889 DOI: 10.1101/gr.156034.113] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/25/2013] [Indexed: 12/25/2022]
Abstract
Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes.
Collapse
Affiliation(s)
- Antonio Bernardo Carvalho
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Caixa Postal 68011, CEP 21941-971, Rio de Janeiro, Brazil
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
370
|
Cotton AM, Chen CY, Lam LL, Wasserman WW, Kobor MS, Brown CJ. Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains. Hum Mol Genet 2013; 23:1211-23. [PMID: 24158853 PMCID: PMC4051349 DOI: 10.1093/hmg/ddt513] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
X-chromosome inactivation results in dosage equivalence between the X chromosome in males and females; however, over 15% of human X-linked genes escape silencing and these genes are enriched on the evolutionarily younger short arm of the X chromosome. The spread of inactivation onto translocated autosomal material allows the study of inactivation without the confounding evolutionary history of the X chromosome. The heterogeneity and reduced extent of silencing on autosomes are evidence for the importance of DNA elements underlying the spread of silencing. We have assessed DNA methylation in six unbalanced X-autosome translocations using the Illumina Infinium HumanMethylation450 array. Two to 42% of translocated autosomal genes showed this mark of silencing, with the highest degree of inactivation observed for trisomic autosomal regions. Generally, the extent of silencing was greatest close to the translocation breakpoint; however, silencing was detected well over 100 kb into the autosomal DNA. Alu elements were found to be enriched at autosomal genes that escaped from inactivation while L1s were enriched at subject genes. In cells without the translocation, there was enrichment of heterochromatic features such as EZH2 and H3K27me3 for those genes that become silenced when translocated, suggesting that underlying chromatin structure predisposes genes towards silencing. Additionally, the analysis of topological domains indicated physical clustering of autosomal genes of common inactivation status. Overall, our analysis indicated a complex interaction between DNA sequence, chromatin features and the three-dimensional structure of the chromosome.
Collapse
|
371
|
Tanaka Y, Kim KY, Zhong M, Pan X, Weissman SM, Park IH. Transcriptional regulation in pluripotent stem cells by methyl CpG-binding protein 2 (MeCP2). Hum Mol Genet 2013; 23:1045-55. [PMID: 24129406 DOI: 10.1093/hmg/ddt500] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rett syndrome (RTT) is one of the most prevalent female mental disorders. De novo mutations in methyl CpG-binding protein 2 (MeCP2) are a major cause of RTT. MeCP2 regulates gene expression as a transcription regulator as well as through long-range chromatin interaction. Because MeCP2 is present on the X chromosome, RTT is manifested in an X-linked dominant manner. Investigation using murine MeCP2 null models and post-mortem human brain tissues has contributed to understanding the molecular and physiological function of MeCP2. In addition, RTT models using human induced pluripotent stem cells derived from RTT patients (RTT-iPSCs) provide novel resources to elucidate the regulatory mechanism of MeCP2. Previously, we obtained clones of female RTT-iPSCs that express either wild-type or mutant MECP2 due to the inactivation of one X chromosome. Reactivation of the X chromosome also allowed us to have RTT-iPSCs that express both wild-type and mutant MECP2. Using these unique pluripotent stem cells, we investigated the regulation of gene expression by MeCP2 in pluripotent stem cells by transcriptome analysis. We found that MeCP2 regulates genes encoding mitochondrial membrane proteins. In addition, loss of function in MeCP2 results in de-repression of genes on the inactive X chromosome. Furthermore, we showed that each mutation in MECP2 affects a partly different set of genes. These studies suggest that fundamental cellular physiology is affected by mutations in MECP2 from early development, and that a therapeutic approach targeting to unique forms of mutant MeCP2 is needed.
Collapse
|
372
|
Cocozza S, Scala G, Miele G, Castaldo I, Monticelli A. A distinct group of CpG islands shows differential DNA methylation between replicas of the same cell line in vitro. BMC Genomics 2013; 14:692. [PMID: 24106769 PMCID: PMC4008136 DOI: 10.1186/1471-2164-14-692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CpG dinucleotide-rich genomic DNA regions, known as CpG islands (CGIs), can be methylated at their cytosine residues as an epigenetic mark that is stably inherited during cell mitosis. Differentially methylated regions (DMRs) are genomic regions showing different degrees of DNA methylation in multiple samples. In this study, we focused our attention on CGIs showing different DNA methylation between two culture replicas of the same cell line. RESULTS We used methylation data of 35 cell lines from the Encyclopedia of DNA Elements (ENCODE) consortium to identify CpG islands that were differentially methylated between replicas of the same cell line and denoted them Inter Replicas Differentially Methylated CpG islands (IRDM-CGIs). We identified a group of IRDM-CGIs that was consistently shared by different cell lines, and denoted it common IRDM-CGIs. X chromosome CGIs were overrepresented among common IRDM-CGIs. Autosomal IRDM-CGIs were preferentially located in gene bodies and intergenic regions had a lower G + C content, a smaller mean length, and a reduced CpG percentage. Functional analysis of the genes associated with autosomal IRDM-CGIs showed that many of them are involved in DNA binding and development. CONCLUSIONS Our results show that several specific functional and structural features characterize common IRDM-CGIs. They may represent a specific subset of CGIs that are more prone to being differentially methylated for their intrinsic characteristics.
Collapse
Affiliation(s)
- Sergio Cocozza
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", Naples, Italy.
| | | | | | | | | |
Collapse
|
373
|
Abstract
In eukaryotic cells, genomic DNA replicates in a defined temporal order. The inactive X chromosome (Xi), the most extensive instance of facultative heterochromatin in mammals, replicates later than the active X chromosome (Xa), but the replication dynamics of inactive chromatin are not known. By profiling human DNA replication in an allele-specific, chromosomally phased manner, we determined for the first time the replication timing along the active and inactive chromosomes (Xa and Xi) separately. Replication of the Xi was different from that of the Xa, varied among individuals, and resembled a random, unstructured process. The Xi replicated rapidly and at a time largely separable from that of the euchromatic genome. Late-replicating, transcriptionally inactive regions on the autosomes also replicated in an unstructured manner, similar to the Xi. We conclude that DNA replication follows two strategies: slow, ordered replication associated with transcriptional activity, and rapid, random replication of silent chromatin. The two strategies coexist in the same cell, yet are segregated in space and time.
Collapse
Affiliation(s)
- Amnon Koren
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
374
|
Independent specialization of the human and mouse X chromosomes for the male germ line. Nat Genet 2013; 45:1083-7. [PMID: 23872635 PMCID: PMC3758364 DOI: 10.1038/ng.2705] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/20/2013] [Indexed: 12/15/2022]
Abstract
We compared the human and mouse X chromosomes to systematically test Ohno’s law, which states that the gene content of X chromosomes is conserved across placental mammals1. First, we improved the accuracy of the human X-chromosome reference sequence through single-haplotype sequencing of ampliconic regions. This closed gaps in the reference sequence, corrected previously misassembled regions, and identified new palindromic amplicons. Our subsequent analysis led us to conclude that the evolution of human and mouse X chromosomes was bimodal. In accord with Ohno’s law, 94–95% of X-linked single-copy genes are shared between human and mouse; most are expressed in both sexes. Strikingly, most X-ampliconic genes are exceptions to Ohno’s law: only 31% of human and 22% of mouse X-ampliconic genes share orthologs. X-ampliconic genes are expressed predominantly in testicular germ cells, and many were independently acquired since the common ancestor of humans and mice, specializing portions of their X chromosomes for sperm production.
Collapse
|
375
|
Bergero R, Qiu S, Forrest A, Borthwick H, Charlesworth D. Expansion of the pseudo-autosomal region and ongoing recombination suppression in the Silene latifolia sex chromosomes. Genetics 2013; 194:673-86. [PMID: 23733786 PMCID: PMC3697972 DOI: 10.1534/genetics.113.150755] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/20/2013] [Indexed: 11/18/2022] Open
Abstract
There are two very interesting aspects to the evolution of sex chromosomes: what happens after recombination between these chromosome pairs stops and why suppressed recombination evolves. The former question has been intensively studied in a diversity of organisms, but the latter has been studied largely theoretically. To obtain empirical data, we used codominant genic markers in genetic mapping of the dioecious plant Silene latifolia, together with comparative mapping of S. latifolia sex-linked genes in S. vulgaris (a related hermaphrodite species without sex chromosomes). We mapped 29 S. latifolia fully sex-linked genes (including 21 newly discovered from transcriptome sequencing), plus 6 genes in a recombining pseudo-autosomal region (PAR) whose genetic map length is ∼25 cM in both male and female meiosis, suggesting that the PAR may contain many genes. Our comparative mapping shows that most fully sex-linked genes in S. latifolia are located on a single S. vulgaris linkage group and were probably inherited from a single autosome of an ancestor. However, unexpectedly, our maps suggest that the S. latifolia PAR region expanded through translocation events. Some genes in these regions still recombine in S. latifolia, but some genes from both addition events are now fully sex-linked. Recombination suppression is therefore still ongoing in S. latifolia, and multiple recombination suppression events have occurred in a timescale of few million years, much shorter than the timescale of formation of the most recent evolutionary strata of mammal and bird sex chromosomes.
Collapse
Affiliation(s)
- Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab, Edinburgh EH9 3JT, United Kingdom
| | - Suo Qiu
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab, Edinburgh EH9 3JT, United Kingdom
| | | | - Helen Borthwick
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab, Edinburgh EH9 3JT, United Kingdom
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
376
|
Alves JM, Lopes AM, Chikhi L, Amorim A. On the structural plasticity of the human genome: chromosomal inversions revisited. Curr Genomics 2013; 13:623-32. [PMID: 23730202 PMCID: PMC3492802 DOI: 10.2174/138920212803759703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 09/23/2012] [Accepted: 09/24/2012] [Indexed: 01/02/2023] Open
Abstract
With the aid of novel and powerful molecular biology techniques, recent years have witnessed a dramatic increase in the number of studies reporting the involvement of complex structural variants in several genomic disorders. In fact, with the discovery of Copy Number Variants (CNVs) and other forms of unbalanced structural variation, much attention has been directed to the detection and characterization of such rearrangements, as well as the identification of the mechanisms involved in their formation. However, it has long been appreciated that chromosomes can undergo other forms of structural changes - balanced rearrangements - that do not involve quantitative variation of genetic material. Indeed, a particular subtype of balanced rearrangement – inversions – was recently found to be far more common than had been predicted from traditional cytogenetics. Chromosomal inversions alter the orientation of a specific genomic sequence and, unless involving breaks in coding or regulatory regions (and, disregarding complex trans effects, in their close vicinity), appear to be phenotypically silent. Such a surprising finding, which is difficult to reconcile with the classical interpretation of inversions as a mechanism causing subfertility (and ultimately reproductive isolation), motivated a new series of theoretical and empirical studies dedicated to understand their role in human genome evolution and to explore their possible association to complex genetic disorders. With this review, we attempt to describe the latest methodological improvements to inversions detection at a genome wide level, while exploring some of the possible implications of inversion rearrangements on the evolution of the human genome.
Collapse
Affiliation(s)
- Joao M Alves
- Doctoral Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Portugal ; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal ; Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | | | | | | |
Collapse
|
377
|
Das PJ, Mishra DK, Ghosh S, Avila F, Johnson GA, Chowdhary BP, Raudsepp T. Comparative organization and gene expression profiles of the porcine pseudoautosomal region. Cytogenet Genome Res 2013; 141:26-36. [PMID: 23735614 DOI: 10.1159/000351310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
The pseudoautosomal region (PAR) has important biological functions in spermatogenesis, male fertility and early development. Even though pig (Sus scrofa, SSC) is an agriculturally and biomedically important species, and its genome is sequenced, current knowledge about the porcine PAR is sparse. Here we defined the PAR in SSCXp/Yp by demarcating the sequence of the pseudoautosomal boundary at X:6,743,567 bp in intron 3-4 of SHROOM2 and showed that SHROOM2 is truncated in SSCY. Cytogenetic mapping of 20 BAC clones containing 15 PAR and X-specific genes revealed that the pig PAR is largely collinear with other mammalian PARs or Xp terminal regions. The results improved the current SSCX sequence assembly and facilitated distinction between the PAR and X-specific genes to study their expression in adult and embryonic tissues. A pilot analysis showed that the PAR genes are expressed at higher levels than X-specific genes during early development, whereas the expression of PAR genes was higher at day 60 compared to day 26, and higher in embryonic tissues compared to placenta. The findings advance the knowledge about the comparative organization of the PAR in mammals and suggest that the region might have important functions in early development in pigs.
Collapse
Affiliation(s)
- P J Das
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| | | | | | | | | | | | | |
Collapse
|
378
|
Veerappa AM, Padakannaya P, Ramachandra NB. Copy number variation-based polymorphism in a new pseudoautosomal region 3 (PAR3) of a human X-chromosome-transposed region (XTR) in the Y chromosome. Funct Integr Genomics 2013; 13:285-93. [PMID: 23708688 DOI: 10.1007/s10142-013-0323-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 11/26/2022]
Abstract
A 3.5-Mb region of the X chromosome underwent duplication and transposition to the Y chromosome ~5-6 Mya. This X-transposed-region (XTR) originated at Xq21.3 and was inserted at Yp11.2. The two locations have 98.78 % homology and a high concentration of tandem repeats. In whole-genome scans of ten large families with dyslexic members, we identified transposed blocks comprising >102 kb of the Yp11.2 region in its homologous region at Xq21.3 in three females from three different families. Although recombination is known to be limited only to the pseudoautosomal regions (PARs) of the X and Y chromosomes, we report allelic unequal recombination between the XTR region Yp11.2 and Xq21.3, indicating the presence of a new PAR, which we named PAR3. This PAR3 region was also found in 2 % of the general population. An additional layer of justification could be provided from six other dyslexic cases which harbored duplications and deletions in the same Xq21.3 and Yp11.2 regions through allelic unequal recombination.
Collapse
Affiliation(s)
- Avinash M Veerappa
- Genomics Laboratory, DOS in Zoology, University of Mysore, Mysore-06, Karnataka, India
| | | | | |
Collapse
|
379
|
The novelty of human cancer/testis antigen encoding genes in evolution. Int J Genomics 2013; 2013:105108. [PMID: 23691492 PMCID: PMC3652184 DOI: 10.1155/2013/105108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/16/2013] [Accepted: 02/13/2013] [Indexed: 01/10/2023] Open
Abstract
In order to be inherited in progeny generations, novel genes should originate in germ cells. Here, we suggest that the testes may play a special “catalyst” role in the birth and evolution of new genes. Cancer/testis antigen encoding genes (CT genes) are predominantly expressed both in testes and in a variety of tumors. By the criteria of evolutionary novelty, the CT genes are, indeed, novel genes. We performed homology searches for sequences similar to human CT in various animals and established that most of the CT genes are either found in humans only or are relatively recent in their origin. A majority of all human CT genes originated during or after the origin of Eutheria. These results suggest relatively recent origin of human CT genes and align with the hypothesis of the special role of the testes in the evolution of the gene families.
Collapse
|
380
|
Brooks WH. Increased polyamines alter chromatin and stabilize autoantigens in autoimmune diseases. Front Immunol 2013; 4:91. [PMID: 23616785 PMCID: PMC3627976 DOI: 10.3389/fimmu.2013.00091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/04/2013] [Indexed: 11/13/2022] Open
Abstract
Polyamines are small cations with unique combinations of charge and length that give them many putative interactions in cells. Polyamines are essential since they are involved in replication, transcription, translation, and stabilization of macro-molecular complexes. However, polyamine synthesis competes with cellular methylation for S-adenosylmethionine, the methyl donor. Also, polyamine degradation can generate reactive molecules like acrolein. Therefore, polyamine levels are tightly controlled. This control may be compromised in autoimmune diseases since elevated polyamine levels are seen in autoimmune diseases. Here a hypothesis is presented explaining how polyamines can stabilize autoantigens. In addition, the hypothesis explains how polyamines can inappropriately activate enzymes involved in NETosis, a process in which chromatin is modified and extruded from cells as extracellular traps that bind pathogens during an immune response. This polyamine-induced enzymatic activity can lead to an increase in NETosis resulting in release of autoantigenic material and tissue damage.
Collapse
Affiliation(s)
- Wesley H Brooks
- Department of Chemistry, University of South Florida Tampa, FL, USA
| |
Collapse
|
381
|
Chiriva-Internati M, Pandey A, Saba R, Kim M, Saadeh C, Lukman T, Chiaramonte R, Jenkins M, Cobos E, Jumper C, Alalawi R. Cancer testis antigens: a novel target in lung cancer. Int Rev Immunol 2013; 31:321-43. [PMID: 23083344 DOI: 10.3109/08830185.2012.723512] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the main cause of cancer mortality worldwide. This is mainly due to the fact that it is diagnosed in advanced stage patients, which are no more surgically curable. Consequently, searching for novel treatments and new modalities for early diagnosis offers great promise to improve the clinical outcome. Recently, a new group of antigens, the cancer testis antigens, have been described as possible early diagnostic tools and therapeutic targets in cancer therapy.This review will report emerging evidences of cancer testis antigens deregulation in lung cancer and explore the state of the art of their currently known role and potential as markers for early diagnosis and disease progression and targets of an immunotherapeutic approach aiming to improve the cure rate of this tumor.
Collapse
Affiliation(s)
- Maurizio Chiriva-Internati
- Department of Internal Medicine, Division of Hematology & Oncology and Pulmonary and Critical Care Medicine, The Southwest Cancer Treatment and Research Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
382
|
Kim R, Kulkarni P, Hannenhalli S. Derepression of Cancer/testis antigens in cancer is associated with distinct patterns of DNA hypomethylation. BMC Cancer 2013; 13:144. [PMID: 23522060 PMCID: PMC3618251 DOI: 10.1186/1471-2407-13-144] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/14/2013] [Indexed: 01/29/2023] Open
Abstract
Background The Cancer/Testis Antigens (CTAs) are a heterogeneous group of proteins whose expression is typically restricted to the testis. However, they are aberrantly expressed in most cancers that have been examined to date. Broadly speaking, the CTAs can be divided into two groups: the CTX antigens that are encoded by the X-linked genes and the non-X CT antigens that are encoded by the autosomes. Unlike the non-X CTAs, the CTX antigens form clusters of closely related gene families and their expression is frequently associated with advanced disease with poorer prognosis. Regardless however, the mechanism(s) underlying their selective derepression and stage-specific expression in cancer remain poorly understood, although promoter DNA demethylation is believed to be the major driver. Methods Here, we report a systematic analysis of DNA methylation profiling data from various tissue types to elucidate the mechanism underlying the derepression of the CTAs in cancer. We analyzed the methylation profiles of 501 samples including sperm, several cancer types, and their corresponding normal somatic tissue types. Results We found strong evidence for specific DNA hypomethylation of CTA promoters in the testis and cancer cells but not in their normal somatic counterparts. We also found that hypomethylation was clustered on the genome into domains that coincided with nuclear lamina-associated domains (LADs) and that these regions appeared to be insulated by CTCF sites. Interestingly, we did not observe any significant differences in the hypomethylation pattern between the CTAs without CpG islands and the CTAs with CpG islands in the proximal promoter. Conclusion Our results corroborate that widespread DNA hypomethylation appears to be the driver in the derepression of CTA expression in cancer and furthermore, demonstrate that these hypomethylated domains are associated with the nuclear lamina-associated domains (LADS). Taken together, our results suggest that wide-spread methylation changes in cancer are linked to derepression of germ-line-specific genes that is orchestrated by the three dimensional organization of the cancer genome.
Collapse
Affiliation(s)
- Robert Kim
- James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
383
|
Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ 2013; 4:5. [PMID: 23514128 PMCID: PMC3618244 DOI: 10.1186/2042-6410-4-5] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/04/2013] [Indexed: 12/17/2022] Open
Abstract
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.
Collapse
Affiliation(s)
- Anne Gabory
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, F-78352, France.
| | | | | | | | | |
Collapse
|
384
|
Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 2013; 14:113-24. [PMID: 23329112 DOI: 10.1038/nrg3366] [Citation(s) in RCA: 551] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.
Collapse
|
385
|
Natri HM, Shikano T, Merilä J. Progressive recombination suppression and differentiation in recently evolved neo-sex chromosomes. Mol Biol Evol 2013; 30:1131-44. [PMID: 23436913 PMCID: PMC3670740 DOI: 10.1093/molbev/mst035] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recombination suppression leads to the structural and functional differentiation of sex chromosomes and is thus a crucial step in the process of sex chromosome evolution. Despite extensive theoretical work, the exact processes and mechanisms of recombination suppression and differentiation are not well understood. In threespine sticklebacks (Gasterosteus aculeatus), a different sex chromosome system has recently evolved by a fusion between the Y chromosome and an autosome in the Japan Sea lineage, which diverged from the ancestor of other lineages approximately 2 Ma. We investigated the evolutionary dynamics and differentiation processes of sex chromosomes based on comparative analyses of these divergent lineages using 63 microsatellite loci. Both chromosome-wide differentiation patterns and phylogenetic inferences with X and Y alleles indicated that the ancestral sex chromosomes were extensively differentiated before the divergence of these lineages. In contrast, genetic differentiation appeared to have proceeded only in a small region of the neo-sex chromosomes. The recombination maps constructed for the Japan Sea lineage indicated that recombination has been suppressed or reduced over a large region spanning the ancestral and neo-sex chromosomes. Chromosomal regions exhibiting genetic differentiation and suppressed or reduced recombination were detected continuously and sequentially in the neo-sex chromosomes, suggesting that differentiation has gradually spread from the fusion point following the extension of recombination suppression. Our study illustrates an ongoing process of sex chromosome differentiation, providing empirical support for the theoretical model postulating that recombination suppression and differentiation proceed in a gradual manner in the very early stage of sex chromosome evolution.
Collapse
Affiliation(s)
- Heini M Natri
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
386
|
Abstract
In mammals, the Y chromosome plays the pivotal role in male sex determination and is essential for normal sperm production. Yet only three Y chromosomes have been completely sequenced to date--those of human, chimpanzee, and rhesus macaque. While Y chromosomes are notoriously difficult to sequence owing to their highly repetitive genomic landscapes, these dedicated sequencing efforts have generated tremendous yields in medical, biological, and evolutionary insight. Knowledge of the complex structural organization of the human Y chromosome and a complete catalog of its gene content have provided a deeper understanding of the mechanisms that generate disease-causing mutations and large-scale rearrangements. Variation among human Y-chromosome sequences has been an invaluable tool for understanding relationships among human populations. Comprehensive comparisons of the human Y-chromosome sequence with those of other primates have illuminated aspects of Y-chromosome evolutionary dynamics over much longer timescales (>25 million years compared with 100,000 years). The future sequencing of additional Y chromosomes will provide a basis for a more comprehensive understanding of the evolution of Y chromosomes and their roles in reproductive biology.
Collapse
Affiliation(s)
- Jennifer F Hughes
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | | |
Collapse
|
387
|
Skinner BM, Lachani K, Sargent CA, Affara NA. Regions of XY homology in the pig X chromosome and the boundary of the pseudoautosomal region. BMC Genet 2013; 14:3. [PMID: 23320497 PMCID: PMC3564682 DOI: 10.1186/1471-2156-14-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/08/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Sex chromosomes are subject to evolutionary pressures distinct from the remainder of the genome, shaping their structure and sequence content. We are interested in the sex chromosomes of domestic pigs (Sus scrofa), how their structure and gene content compares and contrasts with other mammalian species, and the role of sex-linked genes in fertility. This requires an understanding of the XY-homologous sequence on these chromosomes.To this end, we performed microarray-based comparative genomic hybridisation (array-CGH) with male and female Duroc genomic DNA on a pig X-chromosome BAC tiling-path microarray. Putative XY-homologous BACs from regions of interest were subsequently FISH mapped. RESULTS We show that the porcine PAR is approximately 6.5-6.9 Mb at the beginning of the short arm of the X, with gene content reflective of the artiodactyl common ancestor. Our array-CGH data also shows an XY-homologous region close to the end of the X long arm, spanning three X BACs. These BACs were FISH mapped, and paint the entire long arm of SSCY. Further clones of interest revealed X-autosomal homology or regions containing repetitive content. CONCLUSIONS This study has identified regions of XY homology in the pig genome, and defined the boundary of the PAR on the X chromosome. This adds to our understanding of the evolution of the sex chromosomes in different mammalian lineages, and will prove valuable for future comparative genomic work in suids and for the construction and annotation of the genome sequence for the sex chromosomes. Our finding that the SSCYq repetitive content has corresponding sequence on the X chromosome gives further insight into structure of SSCY, and suggests further functionally important sequences remain to be discovered on the X and Y.
Collapse
Affiliation(s)
- Benjamin M Skinner
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | | | | |
Collapse
|
388
|
Esteban PF, Murcia-Belmonte V, García-González D, de Castro F. The cysteine-rich region and the whey acidic protein domain are essential for anosmin-1 biological functions. J Neurochem 2012. [PMID: 23189990 DOI: 10.1111/jnc.12104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The protein anosmin-1, coded by the KAL1 gene responsible for the X-linked form of Kallmann syndrome (KS), exerts its biological effects mainly through the interaction with and signal modulation of fibroblast growth factor receptor 1 (FGFR1). We have previously shown the interaction of the third fibronectin-like type 3 (FnIII) domain and the N-terminal region of anosmin-1 with FGFR1. Here, we demonstrate that missense mutations reported in patients with KS, C172R and N267K did not alter or substantially reduce, respectively, the binding to FGFR1. These substitutions annulled the chemoattraction of the full-length protein over subventricular zone (SVZ) neuronal precursors (NPs), but they did not annul it in the N-terminal-truncated protein (A1Nt). We also show that although not essential for binding to FGFR1, the cysteine-rich (CR) region is necessary for anosmin-1 function and that FnIII.3 cannot substitute for FnIII.1 function. Truncated proteins recapitulating nonsense mutations found in KS patients did not show the chemotropic effect on SVZ NPs, suggesting that the presence behind FnIII.1 of any part of anosmin-1 produces an unstable protein incapable of action. We also identify the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway as necessary for the chemotropic effect exerted by FGF2 and anosmin-1 on rat SVZ NPs.
Collapse
Affiliation(s)
- Pedro F Esteban
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain.
| | | | | | | |
Collapse
|
389
|
Yamamoto T, Nakayama K, Hirano H, Tomonaga T, Ishihama Y, Yamada T, Kondo T, Kodera Y, Sato Y, Araki N, Mamitsuka H, Goshima N. Integrated view of the human chromosome X-centric proteome project. J Proteome Res 2012; 12:58-61. [PMID: 23259409 DOI: 10.1021/pr300844p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This article introduces how the human chromosome X-centric proteome project is carried out by the Japan Chromosome X Project Consortium. The inactivation of one of two chromosomes in female mammals and accumulation of genes related to neural/immune systems/tumor/testis are characteristic of chromosome X. In this Chromosome X Project, information on proteins translated from genes on chromosome X is collected by both mass spectrometry- and antibody-based proteomics. Information on the following resources is also provided: antibodies to proteins translated and full-length cDNAs transcripted from the chromosome X genes for recombinant proteins. The consortium aims to provide the following tools to search useful antibodies in the literature (Antibody Ranker), to find gene expression sites in microarray databases (Transcript Localizer) and to do advanced MRM analysis (information-based MRM).
Collapse
Affiliation(s)
- Tadashi Yamamoto
- Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
390
|
Abstract
Y chromosomes have long been dismissed as "graveyards of genes," but there is still much to be learned from the genetic relics of genes that were once functional on the human Y. We identified human X-linked genes whose gametologs have been pseudogenized or completely lost from the Y chromosome and inferred which evolutionary forces may be acting to retain genes on the Y. Although gene loss appears to be largely correlated with the suppression of recombination, we observe that X-linked genes with functional Y homologs evolve under stronger purifying selection and are expressed at higher levels than X-linked genes with nonfunctional Y homologs. Additionally, we support and expand upon the hypothesis that X inactivation is primarily driven by gene loss on the Y. Using linear discriminant analysis, we show that X-inactivation status can successfully classify 90% of X-linked genes into those with functional or nonfunctional Y homologs.
Collapse
|
391
|
Abstract
Advances in human genomics have accelerated studies in evolution, disease, and cellular regulation. However, centromere sequences, defining the chromosomal interface with spindle microtubules, remain largely absent from ongoing genomic studies and disconnected from functional, genome-wide analyses. This disparity results from the challenge of predicting the linear order of multi-megabase-sized regions that are composed almost entirely of near-identical satellite DNA. Acknowledging these challenges, the field of human centromere genomics possesses the potential to rapidly advance given the availability of individual, or personalized, genome projects matched with the promise of long-read sequencing technologies. Here I review the current genomic model of human centromeres in consideration of those studies involving functional datasets that examine the role of sequence in centromere identity.
Collapse
|
392
|
Kim H, Lee T, Sung S, Lee C, Kim H. Reanalysis of Ohno's hypothesis on conservation of the size of the X chromosome in mammals. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2012.724709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
393
|
Yang C, McLeod AJ, Cotton AM, de Leeuw CN, Laprise S, Banks KG, Simpson EM, Brown CJ. Targeting of >1.5 Mb of human DNA into the mouse X chromosome reveals presence of cis-acting regulators of epigenetic silencing. Genetics 2012; 192:1281-93. [PMID: 23023002 PMCID: PMC3512139 DOI: 10.1534/genetics.112.143743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/17/2012] [Indexed: 12/18/2022] Open
Abstract
Regulatory sequences can influence the expression of flanking genes over long distances, and X chromosome inactivation is a classic example of cis-acting epigenetic gene regulation. Knock-ins directed to the Mus musculus Hprt locus offer a unique opportunity to analyze the spread of silencing into different human DNA sequences in the identical genomic environment. X chromosome inactivation of four knock-in constructs, including bacterial artificial chromosome (BAC) integrations of over 195 kb, was demonstrated by both the lack of expression from the inactive X chromosome in females with nonrandom X chromosome inactivation and promoter DNA methylation of the human transgene in females. We further utilized promoter DNA methylation to assess the inactivation status of 74 human reporter constructs comprising >1.5 Mb of DNA. Of the 47 genes examined, only the PHB gene showed female DNA hypomethylation approaching the level seen in males, and escape from X chromosome inactivation was verified by demonstration of expression from the inactive X chromosome. Integration of PHB resulted in lower DNA methylation of the flanking HPRT promoter in females, suggesting the action of a dominant cis-acting escape element. Female-specific DNA hypermethylation of CpG islands not associated with promoters implies a widespread imposition of DNA methylation during X chromosome inactivation; yet transgenes demonstrated differential capacities to accumulate DNA methylation when integrated into the identical location on the inactive X chromosome, suggesting additional cis-acting sequence effects. As only one of the human transgenes analyzed escaped X chromosome inactivation, we conclude that elements permitting ongoing expression from the inactive X are rare in the human genome.
Collapse
Affiliation(s)
- Christine Yang
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Andrea J. McLeod
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Allison M. Cotton
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Charles N. de Leeuw
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Stéphanie Laprise
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kathleen G. Banks
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Medical Genetics, Department of Psychiatry, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Carolyn J. Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
394
|
Wright AE, Moghadam HK, Mank JE. Trade-off between selection for dosage compensation and masculinization on the avian Z chromosome. Genetics 2012; 192:1433-45. [PMID: 22997237 PMCID: PMC3512148 DOI: 10.1534/genetics.112.145102] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/12/2012] [Indexed: 01/27/2023] Open
Abstract
Following the suppression of recombination, gene expression levels decline on the sex-limited chromosome, and this can lead to selection for dosage compensation in the heterogametic sex to rebalance average expression from the X or Z chromosome with average autosomal expression. At the same time, due to their unequal pattern of inheritance in males and females, the sex chromosomes are subject to unbalanced sex-specific selection, which contributes to a nonrandom distribution of sex-biased genes compared to the remainder of the genome. These two forces act against each other, and the relative importance of each is currently unclear. The Gallus gallus Z chromosome provides a useful opportunity to study the importance and trade-offs between sex-specific selection and dosage compensation in shaping the evolution of the genome as it shows incomplete dosage compensation and is also present twice as often in males than females, and therefore predicted to be enriched for male-biased genes. Here, we refine our understanding of the evolution of the avian Z chromosome, and show that multiple strata formed across the chromosome over ∼130 million years. We then use this evolutionary history to examine the relative strength of selection for sex chromosome dosage compensation vs. the cumulative effects of masculinizing selection on gene expression. We find that male-biased expression increases over time, indicating that selection for dosage compensation is relatively less important than masculinizing selection in shaping Z chromosome gene expression.
Collapse
Affiliation(s)
- Alison E Wright
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | |
Collapse
|
395
|
Localization of centromeric breaks in head and neck squamous cell carcinoma. Cancer Genet 2012; 205:622-9. [DOI: 10.1016/j.cancergen.2012.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/20/2022]
|
396
|
Clark C, Palta P, Joyce CJ, Scott C, Grundberg E, Deloukas P, Palotie A, Coffey AJ. A comparison of the whole genome approach of MeDIP-seq to the targeted approach of the Infinium HumanMethylation450 BeadChip(®) for methylome profiling. PLoS One 2012; 7:e50233. [PMID: 23209683 PMCID: PMC3510246 DOI: 10.1371/journal.pone.0050233] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 10/17/2012] [Indexed: 02/04/2023] Open
Abstract
DNA methylation is one of the most studied epigenetic marks in the human genome, with the result that the desire to map the human methylome has driven the development of several methods to map DNA methylation on a genomic scale. Our study presents the first comparison of two of these techniques - the targeted approach of the Infinium HumanMethylation450 BeadChip® with the immunoprecipitation and sequencing-based method, MeDIP-seq. Both methods were initially validated with respect to bisulfite sequencing as the gold standard and then assessed in terms of coverage, resolution and accuracy. The regions of the methylome that can be assayed by both methods and those that can only be assayed by one method were determined and the discovery of differentially methylated regions (DMRs) by both techniques was examined. Our results show that the Infinium HumanMethylation450 BeadChip® and MeDIP-seq show a good positive correlation (Spearman correlation of 0.68) on a genome-wide scale and can both be used successfully to determine differentially methylated loci in RefSeq genes, CpG islands, shores and shelves. MeDIP-seq however, allows a wider interrogation of methylated regions of the human genome, including thousands of non-RefSeq genes and repetitive elements, all of which may be of importance in disease. In our study MeDIP-seq allowed the detection of 15,709 differentially methylated regions, nearly twice as many as the array-based method (8070), which may result in a more comprehensive study of the methylome.
Collapse
Affiliation(s)
- Christine Clark
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Priit Palta
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Christopher J. Joyce
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Carol Scott
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Elin Grundberg
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Panos Deloukas
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Aarno Palotie
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics and Genetic Analysis Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
| | - Alison J. Coffey
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
397
|
Analysis of compensatory substitution and gene evolution on the MAGEA/CSAG-palindrome of the primate X chromosomes. Comput Biol Chem 2012; 42:18-22. [PMID: 23257410 DOI: 10.1016/j.compbiolchem.2012.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 11/06/2012] [Accepted: 11/13/2012] [Indexed: 11/20/2022]
Abstract
The human X chromosome contains a large number of inverted repeat DNA palindromes. Although arbitrary substitutions destroyed the inverted repeat structure of MAGEA/CSAG-palindrome during the evolutionary process of the primates, most of the substitutions are compensatory. Using maximum parsimony, it is demonstrated that the compensatory substitutions are prone to occur between bases with similar structures on the human, chimpanzee and orangutan MAGEA/CSAG-palindromes. Furthermore, it is found that MAGEA/CSAG genes also exist in orangutan and rhesus monkey palindromes by homologous searching. This suggests that the MAGEA/CSAG-palindrome might predate the divergence of human and other primate lineages. Comparative sequence analysis of the arms and genes on the primate MAGEA/CSAG-palindromes provides possible evidence of subsequently arm to arm gene conversion. These compensatory substitutions on the MAGEA/CSAG-palindrome of the primate X chromosomes play an important role in maintaining their structural symmetry during the process of formation.
Collapse
|
398
|
Avila F, Das PJ, Kutzler M, Owens E, Perelman P, Rubes J, Hornak M, Johnson WE, Raudsepp T. Development and application of camelid molecular cytogenetic tools. J Hered 2012; 105:858-69. [PMID: 23109720 DOI: 10.1093/jhered/ess067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cytogenetic chromosome maps offer molecular tools for genome analysis and clinical cytogenetics and are of particular importance for species with difficult karyotypes, such as camelids (2n = 74). Building on the available human-camel zoo-fluorescence in situ hybridization (FISH) data, we developed the first cytogenetic map for the alpaca (Lama pacos, LPA) genome by isolating and identifying 151 alpaca bacterial artificial chromosome (BAC) clones corresponding to 44 specific genes. The genes were mapped by FISH to 31 alpaca autosomes and the sex chromosomes; 11 chromosomes had 2 markers, which were ordered by dual-color FISH. The STS gene mapped to Xpter/Ypter, demarcating the pseudoautosomal region, whereas no markers were assigned to chromosomes 14, 21, 22, 28, and 36. The chromosome-specific markers were applied in clinical cytogenetics to identify LPA20, the major histocompatibility complex (MHC)-carrying chromosome, as a part of an autosomal translocation in a sterile male llama (Lama glama, LGL; 2n = 73,XY). FISH with LPAX BACs and LPA36 paints, as well as comparative genomic hybridization, were also used to investigate the origin of the minute chromosome, an abnormally small LPA36 in infertile female alpacas. This collection of cytogenetically mapped markers represents a new tool for camelid clinical cytogenetics and has applications for the improvement of the alpaca genome map and sequence assembly.
Collapse
Affiliation(s)
- Felipe Avila
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Pranab J Das
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Michelle Kutzler
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Elaine Owens
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Polina Perelman
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Jiri Rubes
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Miroslav Hornak
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Warren E Johnson
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Terje Raudsepp
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak).
| |
Collapse
|
399
|
[Detecting selection signatures on X chromosome in pig through high density SNPs]. YI CHUAN = HEREDITAS 2012; 34:1251-60. [PMID: 23099781 DOI: 10.3724/sp.j.1005.2012.01251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the process of domestic pig breeding, many important economic traits were subject to strong artificial se-lection pressure. With the availability of high density single nucleotide polymorphism (SNP) markers in farm animals, selection occurring in those traits could be traced by detecting selection signatures on genome, and the genes experiencing selection can also be further mined based on selection signatures. Due to the special characteristic of X chromosome, many approaches of genetic analysis fitted for autosome are not plausible for X chromosome. Fortunately, detecting selection signature provides an effective tool to settle such situation. In this study, the Cross Population Extend Haplotype Homozygosity Test (XP-EHH) was implemented to identify selection signatures on chromosome X in three pig breeds (Landrace, Songliao, and Yorkshire) using high density SNPs, and the genes located within selection signature regions were revealed through bioinformatic analysis. In total, 29, 13, and 15 selection signature regions, with 3.59, 4.92, and 4.07 SNPs on average in each region, were identified in Landrace, Songliao, and Yorkshire, respectively. Some overlaps of selection signature regions were observed between Songliao and Landrace, and between Landrace and Yorkshire, while no overlaps between Yorkshire and Songliao were found. Bioinformatic analysis revealed that many genes in the selection signature regions were related to reproduction and immune traits, and some of them have not been reported in pigs, which might serve as important candidate genes in future study.
Collapse
|
400
|
Zhao Q, Caballero OL, Simpson AJG, Strausberg RL. Differential evolution of MAGE genes based on expression pattern and selection pressure. PLoS One 2012; 7:e48240. [PMID: 23133577 PMCID: PMC3484994 DOI: 10.1371/journal.pone.0048240] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
Starting from publicly-accessible datasets, we have utilized comparative and phylogenetic genome analyses to characterize the evolution of the human MAGE gene family. Our characterization of genomic structures in representative genomes of primates, rodents, carnivora, and macroscelidea indicates that both Type I and Type II MAGE genes have undergone lineage-specific evolution. The restricted expression pattern in germ cells of Type I MAGE orthologs is observed throughout evolutionary history. Unlike Type II MAGEs that have conserved promoter sequences, Type I MAGEs lack promoter conservation, suggesting that epigenetic regulation is a central mechanism for controlling their expression. Codon analysis shows that Type I but not Type II MAGE genes have been under positive selection. The combination of genomic and expression analysis suggests that Type 1 MAGE promoters and genes continue to evolve in the hominin lineage, perhaps towards functional diversification or acquiring additional specific functions, and that selection pressure at codon level is associated with expression spectrum.
Collapse
Affiliation(s)
- Qi Zhao
- Ludwig Collaborative Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | |
Collapse
|