351
|
Zhang CZ, Pellman D. From Mutational Mechanisms in Single Cells to Mutational Patterns in Cancer Genomes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:117-37. [PMID: 26968629 DOI: 10.1101/sqb.2015.80.027623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Analysis of mutations in thousands of cancer genomes has revealed many characteristic patterns of mutagenesis. The search for the molecular mechanisms underlying these mutational patterns has not only generated novel biological insight but also led to the development of new experimental strategies to study cell-to-cell variation and genome evolution. In this essay, we discuss recent progress in the study of mutational mechanisms with a particular emphasis on the analysis of mutagenesis at the single-cell level.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142 Howard Hughes Medical Institute, Boston, Massachusetts 02115
| |
Collapse
|
352
|
Pantel K, Speicher MR. The biology of circulating tumor cells. Oncogene 2016; 35:1216-24. [PMID: 26050619 DOI: 10.1038/onc.2015.192] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 12/15/2022]
Abstract
Metastasis is a biologically complex process consisting of numerous stochastic events which may tremendously differ across various cancer types. Circulating tumor cells (CTCs) are cells that are shed from primary tumors and metastatic deposits into the blood stream. CTCs bear a tremendous potential to improve our understanding of steps involved in the metastatic cascade, starting from intravasation of tumor cells into the circulation until the formation of clinically detectable metastasis. These efforts were propelled by novel high-resolution approaches to dissect the genomes and transcriptomes of CTCs. Furthermore, capturing of viable CTCs has paved the way for innovative culturing technologies to study fundamental characteristics of CTCs such as invasiveness, their kinetics and responses to selection barriers, such as given therapies. Hence the study of CTCs is not only instrumental as a basic research tool, but also allows the serial monitoring of tumor genotypes and may therefore provide predictive and prognostic biomarkers for clinicians. Here, we review how CTCs have contributed to significant insights into the metastatic process and how they may be utilized in clinical practice.
Collapse
Affiliation(s)
- K Pantel
- Institute of Tumor Biology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - M R Speicher
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| |
Collapse
|
353
|
Caceres G, Puskas JA, Magliocco AM. Circulating Tumor Cells: A Window Into Tumor Development and Therapeutic Effectiveness. Cancer Control 2016; 22:167-76. [PMID: 26068761 DOI: 10.1177/107327481502200207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are an important diagnostic tool for understanding the metastatic process and the development of cancer. METHODS This review covers the background, relevance, and potential limitations of CTCs as a measurement of cancer progression and how information derived from CTCs may affect treatment efficacy. It also highlights the difficulties of characterizing these rare cells due to the limited cell surface molecules unique to CTCs and each particular type of cancer. RESULTS The analysis of cancer in real time, through the measure of the number of CTCs in a " liquid" biopsy specimen, gives us the ability to monitor the therapeutic efficacy of treatments and possibly the metastatic potential of a tumor. CONCLUSIONS Through novel and innovative techniques yielding encouraging results, including microfluidic techniques, isolating and molecularly analyzing CTCs are becoming a reality. CTCs hold promise for understanding how tumors work and potentially aiding in their demise.
Collapse
Affiliation(s)
- Gisela Caceres
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
354
|
Soto J, Rodriguez-Antolin C, Vallespín E, de Castro Carpeño J, Ibanez de Caceres I. The impact of next-generation sequencing on the DNA methylation-based translational cancer research. Transl Res 2016; 169:1-18.e1. [PMID: 26687736 DOI: 10.1016/j.trsl.2015.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/29/2015] [Accepted: 11/14/2015] [Indexed: 01/08/2023]
Abstract
Epigenetics is currently in an exponential phase of growth, constituting one of the most promising fields in science, particularly in cancer research. Impaired epigenetic processes can lead to abnormal gene activity or inactivity, causing cellular disorders that are closely associated with tumor initiation and progression. Thus, there is a pivotal role of massive sequencing techniques for epigenetics, which aim to find novel biomarkers, factors of prognosis and prediction, and targets for achieving personalized treatments. We present a brief description of the evolution of next-generation sequencing technologies and its coupling with DNA methylation analysis techniques, highlighting its future in translational medicine and presenting significant findings in several malignancies. We also expose critical topics related to the implementation of these approaches, which is expected to be affordable for most research centers in the near future.
Collapse
Affiliation(s)
- Javier Soto
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain; Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Carlos Rodriguez-Antolin
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain; Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Elena Vallespín
- Structural and Functional Genomics, INGEMM-IdiPAZ-CIBERER, La Paz University Hospital, Madrid, Spain
| | | | - Inmaculada Ibanez de Caceres
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain; Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain.
| |
Collapse
|
355
|
Heath JR, Ribas A, Mischel PS. Single-cell analysis tools for drug discovery and development. Nat Rev Drug Discov 2016; 15:204-16. [PMID: 26669673 PMCID: PMC4883669 DOI: 10.1038/nrd.2015.16] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed.
Collapse
Affiliation(s)
- James R Heath
- California Institute of Technology Division of Chemistry and Chemical Engineering, MC 127-72, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Antoni Ribas
- Department of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research San Diego, Department of Pathology and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
356
|
Ferreira MM, Ramani VC, Jeffrey SS. Circulating tumor cell technologies †. Mol Oncol 2016; 10:374-94. [PMID: 26897752 PMCID: PMC5528969 DOI: 10.1016/j.molonc.2016.01.007] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/16/2016] [Accepted: 01/19/2016] [Indexed: 02/08/2023] Open
Abstract
Circulating tumor cells, a component of the “liquid biopsy”, hold great potential to transform the current landscape of cancer therapy. A key challenge to unlocking the clinical utility of CTCs lies in the ability to detect and isolate these rare cells using methods amenable to downstream characterization and other applications. In this review, we will provide an overview of current technologies used to detect and capture CTCs with brief insights into the workings of individual technologies. We focus on the strategies employed by different platforms and discuss the advantages of each. As our understanding of CTC biology matures, CTC technologies will need to evolve, and we discuss some of the present challenges facing the field in light of recent data encompassing epithelial‐to‐mesenchymal transition, tumor‐initiating cells, and CTC clusters. We present a comprehensive overview of CTC detection and capture technologies. We provide a conceptual description of strategies used in different technologies. We highlight the key features of individual technologies. We discuss CTC technology performance in the context of clinical studies.
Collapse
Affiliation(s)
- Meghaan M Ferreira
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vishnu C Ramani
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
357
|
van der Toom EE, Verdone JE, Pienta KJ. Disseminated tumor cells and dormancy in prostate cancer metastasis. Curr Opin Biotechnol 2016; 40:9-15. [PMID: 26900985 DOI: 10.1016/j.copbio.2016.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 12/20/2022]
Abstract
It has been reported that disseminated tumor cells (DTCs) can be found in the majority of prostate cancer (PCa) patients, even at the time of primary treatment with no clinical evidence of metastatic disease. This suggests that these cells escaped the primary tumor early in the disease and exist in a dormant state in distant organs until they develop in some patients as overt metastases. Understanding the mechanisms by which cancer cells exit the primary tumor, survive the circulation, settle in a distant organ, and exist in a quiescent state is critical to understanding tumorigenesis, developing new prognostic assays, and designing new therapeutic modalities to prevent and treat clinical metastases.
Collapse
Affiliation(s)
- Emma E van der Toom
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA; VUmc School of Medical Sciences, VU University, Amsterdam, The Netherlands
| | - James E Verdone
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
358
|
Khoo BL, Chaudhuri PK, Ramalingam N, Tan DSW, Lim CT, Warkiani ME. Single-cell profiling approaches to probing tumor heterogeneity. Int J Cancer 2016; 139:243-55. [PMID: 26789729 DOI: 10.1002/ijc.30006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/10/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Abstract
Tumor heterogeneity is a major hindrance in cancer classification, diagnosis and treatment. Recent technological advances have begun to reveal the true extent of its heterogeneity. Single-cell analysis (SCA) is emerging as an important approach to detect variations in morphology, genetic or proteomic expression. In this review, we revisit the issue of inter- and intra-tumor heterogeneity, and list various modes of SCA techniques (cell-based, nucleic acid-based, protein-based, metabolite-based and lipid-based) presently used for cancer characterization. We further discuss the advantages of SCA over pooled cell analysis, as well as the limitations of conventional techniques. Emerging trends, such as high-throughput sequencing, are also mentioned as improved means for cancer profiling. Collectively, these applications have the potential for breakthroughs in cancer treatment.
Collapse
Affiliation(s)
- Bee Luan Khoo
- Mechanobiology Institute, National University of Singapore.,BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
| | | | | | - Daniel Shao Weng Tan
- Division of Medical Oncology, National Cancer Centre Singapore.,Cancer Stem Cell Biology, Genome Institute of Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore.,BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore.,Department of Biomedical Engineering, National University of Singapore
| | - Majid Ebrahimi Warkiani
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore.,School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
359
|
Masuda T, Hayashi N, Iguchi T, Ito S, Eguchi H, Mimori K. Clinical and biological significance of circulating tumor cells in cancer. Mol Oncol 2016; 10:408-17. [PMID: 26899533 DOI: 10.1016/j.molonc.2016.01.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 02/08/2023] Open
Abstract
During the process of metastasis, which is the leading cause of cancer-related death, cancer cells dissociate from primary tumors, migrate to distal sites, and finally colonize, eventually leading to the formation of metastatic tumors. The migrating tumor cells in circulation, e.g., those found in peripheral blood (PB) or bone marrow (BM), are called circulating tumor cells (CTCs). CTCs in the BM are generally called disseminated tumor cells (DTCs). Many studies have reported the detection and characterization of CTCs to facilitate early diagnosis of relapse or metastasis and improve early detection and appropriate treatment decisions. Initially, epithelial markers, such as EpCAM and cytokeratins (CKs), identified using immunocytochemistry or reverse transcription polymerase chain reaction (RT-PCR) were used to identify CTCs in PB or BM. Recently, however, other markers such as human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), and immuno-checkpoint genes also have been examined to facilitate detection of CTCs with metastatic potential. Moreover, the epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) have also received increasing attention as important CTC markers owing to their roles in the biological progression of metastasis. In addition to these markers, researchers have attempted to develop detection or capture techniques for CTCs. Notably, however, the establishment of metastasis requires cancer-host interactions. Markers from host cells, such as macrophages, mesenchymal stem cells, and bone marrow-derived cells, which constitute the premetastatic niche, may become novel biomarkers for predicting relapse or metastasis or monitoring the effects of treatment. Biological studies of CTCs are still emerging. However, recent technical innovations, such as next-generation sequencing, are being used more commonly and could help to clarify the mechanism of metastasis. Additionally, biological findings are gradually being accumulated, adding to our body of knowledge on CTCs. In this review, we will summarize recent approaches to detect or capture CTCs. Moreover, we will introduce recent studies of the clinical and biological importance of CTCs and host cells.
Collapse
Affiliation(s)
- Takaaki Masuda
- Kyushu University Beppu Hospital, Department of Surgery, Japan
| | - Naoki Hayashi
- Kyushu University Beppu Hospital, Department of Surgery, Japan
| | - Tomohiro Iguchi
- Kyushu University Beppu Hospital, Department of Surgery, Japan
| | - Shuhei Ito
- Kyushu University Beppu Hospital, Department of Surgery, Japan
| | | | - Koshi Mimori
- Kyushu University Beppu Hospital, Department of Surgery, Japan.
| |
Collapse
|
360
|
|
361
|
Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet 2016; 17:175-88. [PMID: 26806412 DOI: 10.1038/nrg.2015.16] [Citation(s) in RCA: 900] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of single-cell genomics is advancing rapidly and is generating many new insights into complex biological systems, ranging from the diversity of microbial ecosystems to the genomics of human cancer. In this Review, we provide an overview of the current state of the field of single-cell genome sequencing. First, we focus on the technical challenges of making measurements that start from a single molecule of DNA, and then explore how some of these recent methodological advancements have enabled the discovery of unexpected new biology. Areas highlighted include the application of single-cell genomics to interrogate microbial dark matter and to evaluate the pathogenic roles of genetic mosaicism in multicellular organisms, with a focus on cancer. We then attempt to predict advances we expect to see in the next few years.
Collapse
Affiliation(s)
- Charles Gawad
- Departments of Oncology and Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Winston Koh
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford, California 94304, USA.,Howard Hughes Medical Institute, Stanford University, California 94304, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford, California 94304, USA.,Howard Hughes Medical Institute, Stanford University, California 94304, USA
| |
Collapse
|
362
|
Meyer CP, Pantel K, Tennstedt P, Stroelin P, Schlomm T, Heinzer H, Riethdorf S, Steuber T. Limited prognostic value of preoperative circulating tumor cells for early biochemical recurrence in patients with localized prostate cancer. Urol Oncol 2016; 34:235.e11-6. [PMID: 26795608 DOI: 10.1016/j.urolonc.2015.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/25/2015] [Accepted: 12/05/2015] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The presence of circulating tumor cells (CTCs) is an established marker for prognosis in men with castration-resistant prostate cancer. A cutoff of ≥5 CTCs/7.5ml blood in the CellSearch Epithelial Cell Test has been shown to stratify prognostic groups and predict outcome of abiraterone treatment. In contrast, the value of CTC detection in men with localized prostrate cancer before radical prostatectomy (RP) is unknown. MATERIALS AND METHODS A total of 152 patients treated with RP between 06/2009 and 09/2009 were included. Peripheral venous blood drawn the day before RP was evaluated for CTCs by the CellSearch system. The detection of CTCs was correlated with prostate-specific antigen (PSA) and the histopathological outcome of the RP specimen. A cutoff of 0 vs. ≥1 CTC/7.5ml blood was defined as the threshold for positive vs. negative CTC status. RESULTS Median age was 62 years and median PSA was 6.7ng/dl. Staging revealed 62.5% pT2, 26.3% pT3a, and 11.2% pT3b tumors, and high-grade disease (≥Gleason 4+3) was determined in 25.6% of patients. CTCs were detected in 17 patients (11%) with a median CTC count/7.5ml of 1 (range: 1-clusters with>100 epithelial cells) without significant correlations to PSA levels, pT stage, or Gleason scores. Postoperative pT stage was a significant predictor of biochemical recurrence (BCR) in univariable logistic regression models and as a composite measure together with positive CTC counts (P<0.0001). CTC positivity alone tended to have a higher hazard ratio for BCR, but this was not statistically significant (P = 0.1). After a median follow-up of 48 months, there was no significant difference in BCR-free survival between patients with or without CTCs (P = 0.7). CONCLUSION Using the CellSearch system, we infrequently detected CTCs in patients with localized tumors before RP. The detection of CTCs did not correlate significantly with PSA, disease characteristics, or the development of BCR. However, larger cohorts with extended follow-up are needed to validate our findings.
Collapse
Affiliation(s)
- Christian P Meyer
- Martini-Clinic Prostate Cancer Center, Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Pierre Tennstedt
- Martini-Clinic Prostate Cancer Center, Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Stroelin
- Martini-Clinic Prostate Cancer Center, Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic Prostate Cancer Center, Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic Prostate Cancer Center, Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Steuber
- Martini-Clinic Prostate Cancer Center, Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
363
|
|
364
|
Mateo J, de Bono JS. Interrogating the Cancer Genome to Deliver More Precise Cancer Care. Am Soc Clin Oncol Educ Book 2016; 35:e577-e583. [PMID: 27249770 DOI: 10.1200/edbk_156908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of precision medicine is to select the best treatment option for each patient at the appropriate time in the natural history of the disease, based on understanding the molecular makeup of the tumor, with the ultimate objective of improving patient survival and quality of life. To achieve it, we must identify functionally distinct subtypes of cancers and, critically, have multiple therapy options available to match to these functional subtypes. As a result of the development of better and less costly next-generation sequencing assays, we can now interrogate the cancer genome, enabling us to use the DNA sequence itself for biomarker studies in drug development. The success of DNA-based biomarkers requires analytical validation and careful clinical qualification in prospective clinical trials. In this article, we review some of the challenges the scientific community is facing as a consequence of this sequencing revolution: reclassifying cancers based on biologic/phenotypic clusters relevant to clinical decision making; adapting how we conduct clinical trials; and adjusting our frameworks for regulatory approvals of biomarker technologies and drugs. Ultimately, we must ensure that this revolution can be safely implemented into routine clinical practice and benefit patients.
Collapse
Affiliation(s)
- Joaquin Mateo
- From The Institute of Cancer Research, Sutton, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Johann S de Bono
- From The Institute of Cancer Research, Sutton, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| |
Collapse
|
365
|
Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat Med 2016; 22:26-36. [PMID: 26735408 PMCID: PMC6295670 DOI: 10.1038/nm.4015] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/20/2015] [Indexed: 02/08/2023]
Abstract
Adoptive transfer of receptor-engineered T cells has produced impressive results in treating patients with B cell leukemias and lymphomas. This success has captured public imagination and driven academic and industrial researchers to develop similar 'off-the-shelf' receptors targeting shared antigens on epithelial cancers, the leading cause of cancer-related deaths. However, the successful treatment of large numbers of people with solid cancers using this strategy is unlikely to be straightforward. Receptor-engineered T cells have the potential to cause lethal toxicity from on-target recognition of normal tissues, and there is a paucity of truly tumor-specific antigens shared across tumor types. Here we offer our perspective on how expanding the use of genetically redirected T cells to treat the majority of patients with solid cancers will require major technical, manufacturing and regulatory innovations centered around the development of autologous gene therapies targeting private somatic mutations.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven A Rosenberg
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
366
|
Venkatesan S, Swanton C. Tumor Evolutionary Principles: How Intratumor Heterogeneity Influences Cancer Treatment and Outcome. Am Soc Clin Oncol Educ Book 2016; 35:e141-9. [PMID: 27249716 DOI: 10.1200/edbk_158930] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have shown that intratumor heterogeneity contributes to drug resistance in advanced disease. Intratumor heterogeneity may foster the selection of a resistant subclone, sometimes detectable prior to treatment. Next-generation sequencing is enabling the phylogenetic reconstruction of a cancer's life history and has revealed different modes of cancer evolution. These studies have shown that cancer evolution is not always stochastic and has certain constraints. Consideration of cancer evolution may enable the better design of clinical trials and cancer therapeutics. In this review, we summarize the different modes of cancer evolution and how this might impact clinical outcomes. Furthermore, we will discuss several therapeutic strategies for managing emergent intratumor heterogeneity.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- From the UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Charles Swanton
- From the UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
367
|
Stoecklein NH, Fischer JC, Niederacher D, Terstappen LWMM. Challenges for CTC-based liquid biopsies: low CTC frequency and diagnostic leukapheresis as a potential solution. Expert Rev Mol Diagn 2015; 16:147-64. [DOI: 10.1586/14737159.2016.1123095] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
368
|
Stover DG, Wagle N. Precision medicine in breast cancer: genes, genomes, and the future of genomically driven treatments. Curr Oncol Rep 2015; 17:15. [PMID: 25708799 DOI: 10.1007/s11912-015-0438-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Remarkable progress in sequencing technology over the past 20 years has made it possible to comprehensively profile tumors and identify clinically relevant genomic alterations. In breast cancer, the most common malignancy affecting women, we are now increasingly able to use this technology to help specify the use of therapies that target key molecular and genetic dependencies. Large sequencing studies have confirmed the role of well-known cancer-related genes and have also revealed numerous other genes that are recurrently mutated in breast cancer. This growing understanding of patient-to-patient variability at the genomic level in breast cancer is advancing our ability to direct the appropriate treatment to the appropriate patient at the appropriate time--a hallmark of "precision cancer medicine." This review focuses on the technological advances that have catalyzed these developments, the landscape of mutations in breast cancer, the clinical impact of genomic profiling, and the incorporation of genomic information into clinical care and clinical trials.
Collapse
Affiliation(s)
- Daniel G Stover
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | | |
Collapse
|
369
|
Green BJ, Saberi Safaei T, Mepham A, Labib M, Mohamadi RM, Kelley SO. Beyond the Capture of Circulating Tumor Cells: Next-Generation Devices and Materials. Angew Chem Int Ed Engl 2015; 55:1252-65. [PMID: 26643151 DOI: 10.1002/anie.201505100] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 12/22/2022]
Abstract
Over the last decade, significant progress has been made towards the development of approaches that enable the capture of rare circulating tumor cells (CTCs) from the blood of cancer patients, a critical capability for noninvasive tumor profiling. These advances have leveraged new insights in materials chemistry and microfluidics and allowed the capture and enumeration of CTCs with unprecedented sensitivity. However, it has become increasingly clear that simply capturing and counting tumor cells launched into the bloodstream may not provide the information needed to advance our understanding of the biology of these rare cells, or to allow us to better exploit them in medicine. A variety of advances have now emerged demonstrating that more information can be extracted from CTCs with next-generation devices and materials featuring tailored physical and chemical properties. In this Minireview, the last ten years of work in this area will be discussed, with an emphasis on the groundbreaking work of the last five years, during which the focus has moved beyond the simple capture of CTCs and gravitated towards approaches that enable in-depth analysis.
Collapse
Affiliation(s)
- Brenda J Green
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tina Saberi Safaei
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Adam Mepham
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Mahmoud Labib
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Reza M Mohamadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Shana O Kelley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
370
|
Green BJ, Saberi Safaei T, Mepham A, Labib M, Mohamadi RM, Kelley SO. Profilierung zirkulierender Tumorzellen mit Apparaturen und Materialien der nächsten Generation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Brenda J. Green
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Kanada
| | - Tina Saberi Safaei
- Department of Electrical and Computer Engineering; University of Toronto; Toronto ON Kanada
| | - Adam Mepham
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Kanada
| | - Mahmoud Labib
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Kanada
| | - Reza M. Mohamadi
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Kanada
| | - Shana O. Kelley
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Kanada
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Kanada
- Department of Biochemistry; University of Toronto; Toronto ON Kanada
| |
Collapse
|
371
|
Alberter B, Klein CA, Polzer B. Single-cell analysis of CTCs with diagnostic precision: opportunities and challenges for personalized medicine. Expert Rev Mol Diagn 2015; 16:25-38. [PMID: 26567956 DOI: 10.1586/14737159.2016.1121099] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The generation of variant cancer cells is the major cause of acquired resistance against systemic therapies and consequently, of our inability to cure advanced cancer patients. Circulating tumor cells are gaining increasing clinical attention because they may enable the monitoring cancer progression and adjustment of treatment. In recent years multiple technologies for enrichment, isolation as well as molecular and functional analysis of circulating tumor cells have been developed. Implementation of these technologies in standardized and automated workflows in clinical diagnostics could provide valuable information for real-time monitoring of cancer and eventually new therapeutic strategies for the benefit of patients.
Collapse
Affiliation(s)
- Barbara Alberter
- a Project Group "Personalized Tumor Therapy" , Fraunhofer Institute for Toxicology and Experimental Medicine , Regensburg , Germany
| | - Christoph A Klein
- a Project Group "Personalized Tumor Therapy" , Fraunhofer Institute for Toxicology and Experimental Medicine , Regensburg , Germany.,b Experimental Medicine and Therapy Research , University of Regensburg , Regensburg , Germany
| | - Bernhard Polzer
- a Project Group "Personalized Tumor Therapy" , Fraunhofer Institute for Toxicology and Experimental Medicine , Regensburg , Germany
| |
Collapse
|
372
|
Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 2015; 15:701-11. [PMID: 26563462 PMCID: PMC4771416 DOI: 10.1038/nrc4016] [Citation(s) in RCA: 1078] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past 10 years, preclinical studies implicating sustained androgen receptor (AR) signalling as the primary driver of castration-resistant prostate cancer (CRPC) have led to the development of novel agents targeting the AR pathway that are now in widespread clinical use. These drugs prolong the survival of patients with late-stage prostate cancer but are not curative. In this Review, we highlight emerging mechanisms of acquired resistance to these contemporary therapies, which fall into the three broad categories of restored AR signalling, AR bypass signalling and complete AR independence. This diverse range of resistance mechanisms presents new challenges for long-term disease control, which may be addressable through early use of combination therapies guided by recent insights from genomic landscape studies of CRPC.
Collapse
Affiliation(s)
- Philip A Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Vivek K Arora
- Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri 63130, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
373
|
Catenacci DVT, Chapman CG, Xu P, Koons A, Konda VJ, Siddiqui UD, Waxman I. Acquisition of Portal Venous Circulating Tumor Cells From Patients With Pancreaticobiliary Cancers by Endoscopic Ultrasound. Gastroenterology 2015; 149:1794-1803.e4. [PMID: 26341722 PMCID: PMC4985007 DOI: 10.1053/j.gastro.2015.08.050] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Tumor cells circulate in low numbers in peripheral blood; their detection is used predominantly in metastatic disease. We evaluated the feasibility and safety of sampling portal venous blood via endoscopic ultrasound (EUS) to count portal venous circulating tumor cells (CTCs), compared with paired peripheral CTCs, in patients with pancreaticobiliary cancers (PBCs). METHODS In a single-center cohort study, we evaluated 18 patients with suspected PBCs. Under EUS guidance, a 19-gauge EUS fine needle was advanced transhepatically into the portal vein and as many as four 7.5-mL aliquots of blood were aspirated. Paired peripheral blood samples were obtained. Epithelial-derived CTCs were sorted magnetically based on expression of epithelial cell adhesion molecules; only those with a proper morphology and found to be CD45 negative and positive for cytokeratins 8, 18, and/or 19 and 4',6-diamidino-2-phenylindole were considered to be CTCs. For 5 samples, CTCs also were isolated by flow cytometry and based on CD45 depletion. ImageStream was used to determine the relative protein levels of P16, SMAD4, and P53. DNA was extracted from CTCs for sequencing of select KRAS codons. RESULTS There were no complications from portal vein blood acquisition. We detected CTCs in portal vein samples from all 18 patients (100%) vs peripheral blood samples from only 4 patients (22.2%). Patients with confirmed PBCs had a mean of 118.4 ± 36.8 CTCs/7.5 mL portal vein blood, compared with a mean of 0.8 ± 0.4 CTCs/7.5 mL peripheral blood (P < .01). The 9 patients with nonmetastatic, resectable, or borderline-resectable PBCs had a mean of 83.2 CTCs/7.5 mL portal vein blood (median, 62.0 CTCs/7.5 mL portal vein blood). In a selected patient, portal vein CTCs were found to carry the same mutations as those detected in a metastatic lymph node and expressed similar levels of P16, SMAD4, and P53 proteins. CONCLUSIONS It is feasible and safe to collect portal venous blood from patients undergoing EUS. We identified CTCs in all portal vein blood samples from patients with PBCs, but less than 25% of peripheral blood samples. Portal vein CTCs can be used for molecular characterization of PBCs and share features of metastatic tissue. This technique might be used to study the pathogenesis and progression of PBCs, as well as a diagnostic or prognostic tool to stratify risk of cancer recurrence or developing metastases.
Collapse
Affiliation(s)
- Daniel V. T. Catenacci
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Christopher G. Chapman
- Center for Endoscopic Research and Therapeutics, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Peng Xu
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Ann Koons
- Center for Endoscopic Research and Therapeutics, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Vani J. Konda
- Center for Endoscopic Research and Therapeutics, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Uzma D. Siddiqui
- Center for Endoscopic Research and Therapeutics, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Irving Waxman
- Center for Endoscopic Research and Therapeutics, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois.
| |
Collapse
|
374
|
Salvianti F, Pazzagli M, Pinzani P. Single circulating tumor cell sequencing as an advanced tool in cancer management. Expert Rev Mol Diagn 2015; 16:51-63. [PMID: 26560087 DOI: 10.1586/14737159.2016.1116942] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Circulating tumor cells (CTCs) shed by the primary tumor and metastases are considered a real-time 'liquid biopsy', reflecting the disease complexity that evolves during progression, showing in its late stages different genetic, epigenetic and expression features. Consequently, heterogeneity and development of characteristic features upon disease progression are the two main goals that emerging technologies should account for in view of a clinical application. Single-cell analysis, now possible due to technological advances, may help elucidate tumor heterogeneity at the CTC level. This review focuses on the necessary steps for the analysis of CTCs at the single-cell level. A concise overview is given on the alternative methods referring in particular to studies on the mutational status of single CTCs from cancer patients.
Collapse
Affiliation(s)
- Francesca Salvianti
- a Department of Clinical, Experimental and Biomedical Sciences , University of Florence , Firenze , Italy
| | - Mario Pazzagli
- a Department of Clinical, Experimental and Biomedical Sciences , University of Florence , Firenze , Italy
| | - Pamela Pinzani
- a Department of Clinical, Experimental and Biomedical Sciences , University of Florence , Firenze , Italy
| |
Collapse
|
375
|
Diagnostic technologies for circulating tumour cells and exosomes. Biosci Rep 2015; 36:e00292. [PMID: 26604322 PMCID: PMC4741183 DOI: 10.1042/bsr20150180] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
Circulating tumour cells (CTCs) and exosomes are promising circulating biomarkers. They exist in easily accessible blood and carry large diversity of molecular information. As such, they can be easily and repeatedly obtained for minimally invasive cancer diagnosis and monitoring. Because of their intrinsic differences in counts, size and molecular contents, CTCs and exosomes pose unique sets of technical challenges for clinical translation–CTCs are rare whereas exosomes are small. Novel technologies are underway to overcome these specific challenges to fully harness the clinical potential of these circulating biomarkers. Herein, we will overview the characteristics of CTCs and exosomes as valuable circulating biomarkers and their associated technical challenges for clinical adaptation. Specifically, we will describe emerging technologies that have been developed to address these technical obstacles and the unique clinical opportunities enabled by technological innovations.
Collapse
|
376
|
Abstract
In 2000 the United States launched the National Nanotechnology Initiative and, along with it, a well-defined set of goals for nanomedicine. This Perspective looks back at the progress made toward those goals, within the context of the changing landscape in biomedicine that has occurred over the past 15 years, and considers advances that are likely to occur during the next decade. In particular, nanotechnologies for health-related genomics and single-cell biology, inorganic and organic nanoparticles for biomedicine, and wearable nanotechnologies for wellness monitoring are briefly covered.
Collapse
Affiliation(s)
- James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
377
|
Wu Y, Schoenborn JR, Morrissey C, Xia J, Larson S, Brown LG, Qu X, Lange PH, Nelson PS, Vessella RL, Fang M. High-Resolution Genomic Profiling of Disseminated Tumor Cells in Prostate Cancer. J Mol Diagn 2015; 18:131-43. [PMID: 26607774 DOI: 10.1016/j.jmoldx.2015.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 08/18/2015] [Accepted: 08/25/2015] [Indexed: 12/27/2022] Open
Abstract
Circulating tumor cells and disseminated tumor cells (DTCs) are of great interest because they provide a minimally invasive window for assessing aspects of cancer biology, including tumor heterogeneity, a means to discover biomarkers of disease behavior, and a way to identify and prioritize therapeutic targets in the emerging era of precision oncology. However, the rarity of circulating tumor cells and DTCs poses a substantial challenge to the consistent success in analyzing their molecular features, including genomic aberrations. Herein, we describe optimized and robust methods to reproducibly detect genomic copy number alterations in samples of 2 to 40 cells after whole-genome amplification with the use of a high-resolution single-nuclear polymorphism-array platform and refined computational algorithms. We have determined the limit of detection for heterogeneity within a sample as 50% and also demonstrated success in analyzing single cells. We validated the genes in genomic regions that are frequently amplified or deleted by real-time quantitative PCR and nCounter copy number quantification. We further applied these methods to DTCs isolated from individuals with advanced prostate cancer to confirm their highly aberrant nature. We compared copy number alterations of DTCs with matched metastatic tumors isolated from the same individual to gain biological insight. These developments provide high-resolution genomic profiling of single and rare cell populations and should be applicable to a wide-range of sample sources.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jamie R Schoenborn
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Jing Xia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sandy Larson
- Department of Urology, University of Washington, Seattle, Washington
| | - Lisha G Brown
- Department of Urology, Puget Sound VA Health Care System, Seattle, Washington
| | - Xiaoyu Qu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paul H Lange
- Department of Urology, University of Washington, Seattle, Washington
| | - Peter S Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Urology, University of Washington, Seattle, Washington
| | - Robert L Vessella
- Department of Urology, University of Washington, Seattle, Washington; Department of Urology, Puget Sound VA Health Care System, Seattle, Washington
| | - Min Fang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Urology, University of Washington, Seattle, Washington.
| |
Collapse
|
378
|
Cracking the Code of Human Diseases Using Next-Generation Sequencing: Applications, Challenges, and Perspectives. BIOMED RESEARCH INTERNATIONAL 2015; 2015:161648. [PMID: 26665001 PMCID: PMC4668301 DOI: 10.1155/2015/161648] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/30/2015] [Accepted: 10/18/2015] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology's flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics.
Collapse
|
379
|
Lopez J, Harris S, Roda D, Yap TA. Precision Medicine for Molecularly Targeted Agents and Immunotherapies in Early-Phase Clinical Trials. TRANSLATIONAL ONCOGENOMICS 2015; 7:1-11. [PMID: 26609214 PMCID: PMC4648610 DOI: 10.4137/tog.s30533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022]
Abstract
Precision medicine in oncology promises the matching of genomic, molecular, and clinical data with underlying mechanisms of a range of novel anticancer therapeutics to develop more rational and effective antitumor strategies in a timely manner. However, despite the remarkable progress made in the understanding of novel drivers of different oncogenic processes, success rates for the approval of oncology drugs remain low with substantial fiscal consequences. In this article, we focus on how recent rapid innovations in technology have brought greater clarity to the biological and clinical complexities of different cancers and advanced the development of molecularly targeted agents and immunotherapies in clinical trials. We discuss the key challenges of identifying and validating predictive biomarkers of response and resistance using both tumor and surrogate tissues, as well as the hurdles associated with intratumor heterogeneity. Finally, we outline evolving strategies employed in early-phase trial designs that incorporate omics-based technologies.
Collapse
Affiliation(s)
- Juanita Lopez
- Royal Marsden NHS Foundation Trust, The Institute of Cancer Research, London, UK
| | - Sam Harris
- Royal Marsden NHS Foundation Trust, The Institute of Cancer Research, London, UK
| | - Desam Roda
- Royal Marsden NHS Foundation Trust, The Institute of Cancer Research, London, UK
| | - Timothy A Yap
- Royal Marsden NHS Foundation Trust, The Institute of Cancer Research, London, UK
| |
Collapse
|
380
|
Vlaeminck-Guillem V. When Prostate Cancer Circulates in the Bloodstream. Diagnostics (Basel) 2015; 5:428-74. [PMID: 26854164 PMCID: PMC4728468 DOI: 10.3390/diagnostics5040428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022] Open
Abstract
Management of patients with prostate cancer is currently based on imperfect clinical, biological, radiological and pathological evaluation. Prostate cancer aggressiveness, including metastatic potential, remains difficult to accurately estimate. In an attempt to better adapt therapeutics to an individual (personalized medicine), reliable evaluation of the intrinsic molecular biology of the tumor is warranted, and particularly for all tumor sites (primary tumors and secondary sites) at any time of the disease progression. As a consequence of their natural tendency to grow (passive invasion) or as a consequence of an active blood vessel invasion by metastase-initiating cells, tumors shed various materials into the bloodstream. Major efforts have been recently made to develop powerful and accurate methods able to detect, quantify and/or analyze all these circulating tumor materials: circulating tumors cells, disseminating tumor cells, extracellular vesicles (including exosomes), nucleic acids, etc. The aim of this review is to summarize current knowledge about these circulating tumor materials and their applications in translational research.
Collapse
Affiliation(s)
- Virginie Vlaeminck-Guillem
- Cancer Research Centre of Lyon, U1052 INSERM, CNRS 5286, Léon Bérard Centre, Lyon I University, 28 rue Laennec, Lyon 69008, France.
- Medical Unit of Molecular Oncology and Transfer, Department of Biochemistry and Molecular Biology, University Hospital of Lyon-Sud, Hospices Civils of Lyon, Lyon 69008, France.
| |
Collapse
|
381
|
Brinkmann F, Hirtz M, Haller A, Gorges TM, Vellekoop MJ, Riethdorf S, Müller V, Pantel K, Fuchs H. A Versatile Microarray Platform for Capturing Rare Cells. Sci Rep 2015; 5:15342. [PMID: 26493176 PMCID: PMC4615978 DOI: 10.1038/srep15342] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) – about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences.
Collapse
Affiliation(s)
- Falko Brinkmann
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Germany.,Physical Institute and Center for Nanotechnology (CeNTech), University of Münster, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Germany
| | - Anna Haller
- Institute of Sensor and Actuator Systems, Vienna University of Technology, Austria
| | - Tobias M Gorges
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Michael J Vellekoop
- Institute for Microsensors, -Actuators and -Systems, University of Bremen, Germany
| | - Sabine Riethdorf
- Institute for Microsensors, -Actuators and -Systems, University of Bremen, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Germany
| | - Klaus Pantel
- Institute for Microsensors, -Actuators and -Systems, University of Bremen, Germany
| | - Harald Fuchs
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Germany.,Physical Institute and Center for Nanotechnology (CeNTech), University of Münster, Germany
| |
Collapse
|
382
|
Abstract
Circulating tumor cells (CTCs) are a population of tumor cells mediating metastasis, which results in most of the cancer related deaths. The number of CTCs in the peripheral blood of patients is rare, and many platforms have been launched for detection and enrichment of CTCs. Enumeration of CTCs has already been used as a prognosis marker predicting the survival rate of cancer patients. Yet CTCs should be more potential. Studies on CTCs at single cell level may help revealing the underlying mechanism of tumorigenesis and metastasis. Though far from developed, this area of study holds much promise in providing new clinical application and deep understanding towards metastasis and cancer development.
Collapse
Affiliation(s)
- Xi-Xi Chen
- Biodynamic Optical Imaging Center, School of Life Science, Peking University, Beijing 100871, China
| | - Fan Bai
- Biodynamic Optical Imaging Center, School of Life Science, Peking University, Beijing 100871, China
| |
Collapse
|
383
|
Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT, Desai R, Fox DB, Brannigan BW, Trautwein J, Arora KS, Desai N, Dahl DM, Sequist LV, Smith MR, Kapur R, Wu CL, Shioda T, Ramaswamy S, Ting DT, Toner M, Maheswaran S, Haber DA. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 2015; 349:1351-6. [PMID: 26383955 PMCID: PMC4872391 DOI: 10.1126/science.aab0917] [Citation(s) in RCA: 564] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer is initially responsive to androgen deprivation, but the effectiveness of androgen receptor (AR) inhibitors in recurrent disease is variable. Biopsy of bone metastases is challenging; hence, sampling circulating tumor cells (CTCs) may reveal drug-resistance mechanisms. We established single-cell RNA-sequencing (RNA-Seq) profiles of 77 intact CTCs isolated from 13 patients (mean six CTCs per patient), by using microfluidic enrichment. Single CTCs from each individual display considerable heterogeneity, including expression of AR gene mutations and splicing variants. Retrospective analysis of CTCs from patients progressing under treatment with an AR inhibitor, compared with untreated cases, indicates activation of noncanonical Wnt signaling (P = 0.0064). Ectopic expression of Wnt5a in prostate cancer cells attenuates the antiproliferative effect of AR inhibition, whereas its suppression in drug-resistant cells restores partial sensitivity, a correlation also evident in an established mouse model. Thus, single-cell analysis of prostate CTCs reveals heterogeneity in signaling pathways that could contribute to treatment failure.
Collapse
Affiliation(s)
- David T Miyamoto
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yu Zheng
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ben S Wittner
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Richard J Lee
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Huili Zhu
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Katherine T Broderick
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Rushil Desai
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Douglas B Fox
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Brian W Brannigan
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Julie Trautwein
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kshitij S Arora
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Niyati Desai
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Douglas M Dahl
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Urology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lecia V Sequist
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Matthew R Smith
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ravi Kapur
- Center for Bioengineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Chin-Lee Wu
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Toshi Shioda
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sridhar Ramaswamy
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - David T Ting
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mehmet Toner
- Center for Bioengineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Shyamala Maheswaran
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Daniel A Haber
- Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
384
|
Court CM, Ankeny JS, Hou S, Tseng HR, Tomlinson JS. Improving pancreatic cancer diagnosis using circulating tumor cells: prospects for staging and single-cell analysis. Expert Rev Mol Diagn 2015; 15:1491-504. [PMID: 26390158 DOI: 10.1586/14737159.2015.1091311] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer (PC) is the fourth most common cause of cancer-related death in the USA, primarily due to late presentation coupled with an aggressive biology. The lack of adequate biomarkers for diagnosis and staging confound clinical decision-making and delay potentially effective therapies. Circulating tumor cells (CTCs) are a promising new biomarker in PC. Preliminary studies have demonstrated their potential clinical utility, and newer CTC isolation platforms have the potential to provide clinicians access to tumor tissue in a reliable, real-time manner. Such a 'liquid biopsy' has been demonstrated in several cancers, and small studies have demonstrated its potential applications in PC. This article reviews the available literature on CTCs as a biomarker in PC and presents the latest innovations in CTC research as well as their potential applications in PC.
Collapse
Affiliation(s)
- Colin M Court
- a 1 Department of Surgery, University of California , Los Angeles, USA.,b 2 VA Greater, Healthcare System , Los Angeles, USA
| | - Jacob S Ankeny
- a 1 Department of Surgery, University of California , Los Angeles, USA.,b 2 VA Greater, Healthcare System , Los Angeles, USA
| | - Shuang Hou
- a 1 Department of Surgery, University of California , Los Angeles, USA
| | - Hsian-Rong Tseng
- c 3 Department of Molecular and Medical Pharmacology, University of California , Los Angeles, USA
| | - James S Tomlinson
- a 1 Department of Surgery, University of California , Los Angeles, USA.,b 2 VA Greater, Healthcare System , Los Angeles, USA.,d 4 Center for Pancreatic Diseases, University of California , Los Angeles, USA
| |
Collapse
|
385
|
Characterization of RNA from Exosomes and Other Extracellular Vesicles Isolated by a Novel Spin Column-Based Method. PLoS One 2015; 10:e0136133. [PMID: 26317354 PMCID: PMC4552735 DOI: 10.1371/journal.pone.0136133] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/31/2015] [Indexed: 12/24/2022] Open
Abstract
Exosomes and other extracellular vesicles (commonly referred to as EVs) have generated a lot of attention for their potential applications in both diagnostics and therapeutics. The contents of these vesicles are the subject of intense research, and the relatively recent discovery of RNA inside EVs has raised interest in the biological function of these RNAs as well as their potential as biomarkers for cancer and other diseases. Traditional ultracentrifugation-based protocols to isolate EVs are labor-intensive and subject to significant variability. Various attempts to develop methods with robust, reproducible performance have not yet been completely successful. Here, we report the development and characterization of a spin column-based method for the isolation of total RNA from EVs in serum and plasma. This method isolates highly pure RNA of equal or higher quantity compared to ultracentrifugation, with high specificity for vesicular over non-vesicular RNA. The spin columns have a capacity to handle up to 4 mL sample volume, enabling detection of low-abundance transcripts in serum and plasma. We conclude that the method is an improvement over traditional methods in providing a faster, more standardized way to achieve reliable high quality RNA preparations from EVs in biofluids such as serum and plasma. The first kit utilizing this new method has recently been made available by Qiagen as “exoRNeasy Serum/Plasma Maxi Kit”.
Collapse
|
386
|
Cheng F, Zhao J, Zhao Z. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes. Brief Bioinform 2015; 17:642-56. [PMID: 26307061 DOI: 10.1093/bib/bbv068] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Indexed: 12/27/2022] Open
Abstract
Cancer is often driven by the accumulation of genetic alterations, including single nucleotide variants, small insertions or deletions, gene fusions, copy-number variations, and large chromosomal rearrangements. Recent advances in next-generation sequencing technologies have helped investigators generate massive amounts of cancer genomic data and catalog somatic mutations in both common and rare cancer types. So far, the somatic mutation landscapes and signatures of >10 major cancer types have been reported; however, pinpointing driver mutations and cancer genes from millions of available cancer somatic mutations remains a monumental challenge. To tackle this important task, many methods and computational tools have been developed during the past several years and, thus, a review of its advances is urgently needed. Here, we first summarize the main features of these methods and tools for whole-exome, whole-genome and whole-transcriptome sequencing data. Then, we discuss major challenges like tumor intra-heterogeneity, tumor sample saturation and functionality of synonymous mutations in cancer, all of which may result in false-positive discoveries. Finally, we highlight new directions in studying regulatory roles of noncoding somatic mutations and quantitatively measuring circulating tumor DNA in cancer. This review may help investigators find an appropriate tool for detecting potential driver or actionable mutations in rapidly emerging precision cancer medicine.
Collapse
|
387
|
Szulwach KE, Chen P, Wang X, Wang J, Weaver LS, Gonzales ML, Sun G, Unger MA, Ramakrishnan R. Single-Cell Genetic Analysis Using Automated Microfluidics to Resolve Somatic Mosaicism. PLoS One 2015; 10:e0135007. [PMID: 26302375 PMCID: PMC4547741 DOI: 10.1371/journal.pone.0135007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/16/2015] [Indexed: 12/31/2022] Open
Abstract
Somatic mosaicism occurs throughout normal development and contributes to numerous disease etiologies, including tumorigenesis and neurological disorders. Intratumor genetic heterogeneity is inherent to many cancers, creating challenges for effective treatments. Unfortunately, analysis of bulk DNA masks subclonal phylogenetic architectures created by the acquisition and distribution of somatic mutations amongst cells. As a result, single-cell genetic analysis is becoming recognized as vital for accurately characterizing cancers. Despite this, methods for single-cell genetics are lacking. Here we present an automated microfluidic workflow enabling efficient cell capture, lysis, and whole genome amplification (WGA). We find that ~90% of the genome is accessible in single cells with improved uniformity relative to current single-cell WGA methods. Allelic dropout (ADO) rates were limited to 13.75% and variant false discovery rates (SNV FDR) were 4.11x10(-6), on average. Application to ER-/PR-/HER2+ breast cancer cells and matched normal controls identified novel mutations that arose in a subpopulation of cells and effectively resolved the segregation of known cancer-related mutations with single-cell resolution. Finally, we demonstrate effective cell classification using mutation profiles with 10X average exome coverage depth per cell. Our data demonstrate an efficient automated microfluidic platform for single-cell WGA that enables the resolution of somatic mutation patterns in single cells.
Collapse
Affiliation(s)
- Keith E. Szulwach
- Fluidigm Corporation, South San Francisco, California, United States of America
| | - Peilin Chen
- Fluidigm Corporation, South San Francisco, California, United States of America
| | - Xiaohui Wang
- Fluidigm Corporation, South San Francisco, California, United States of America
| | - Jing Wang
- Fluidigm Corporation, South San Francisco, California, United States of America
| | - Lesley S. Weaver
- Fluidigm Corporation, South San Francisco, California, United States of America
| | - Michael L. Gonzales
- Fluidigm Corporation, South San Francisco, California, United States of America
| | - Gang Sun
- Fluidigm Corporation, South San Francisco, California, United States of America
| | - Marc A. Unger
- Fluidigm Corporation, South San Francisco, California, United States of America
| | - Ramesh Ramakrishnan
- Fluidigm Corporation, South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
388
|
Computational and experimental single cell biology techniques for the definition of cell type heterogeneity, interplay and intracellular dynamics. Curr Opin Biotechnol 2015; 34:9-15. [DOI: 10.1016/j.copbio.2014.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/31/2022]
|
389
|
Abstract
As a result of multiple technological and practical advances, high-throughput sequencing, known more commonly as “next-generation” sequencing (NGS), can now be incorporated into standard clinical practice. Whereas early protocols relied on samples that were harvested outside of typical clinical pathology workflows, standard formalin-fixed, paraffin-embedded specimens can more regularly be used as starting materials for NGS. Furthermore, protocols for the analysis and interpretation of NGS data, as well as knowledge bases, are being amassed, allowing clinicians to act more easily on genomic information at the point of care for patients. In parallel, new therapies that target somatically mutated genes identified through clinical NGS are gaining US Food and Drug Administration (FDA) approval, and novel clinical trial designs are emerging in which genetic identifiers are given equal weight to histology. For clinical oncology providers, understanding the potential and the limitations of DNA sequencing will be crucial for providing genomically driven care in this era of precision medicine.
Collapse
Affiliation(s)
- Jeffrey Gagan
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115 USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA ; Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
390
|
Abstract
Cancer metastasis is the main cause of cancer-related death, and dissemination of tumor cells through the blood circulation is an important intermediate step that also exemplifies the switch from localized to systemic disease. Early detection and characterization of circulating tumor cells (CTCs) is therefore important as a general strategy to monitor and prevent the development of overt metastatic disease. Furthermore, sequential analysis of CTCs can provide clinically relevant information on the effectiveness and progression of systemic therapies (e.g., chemo-, hormonal, or targeted therapies with antibodies or small inhibitors). Although many advances have been made regarding the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this important diagnostic approach. In this review, we discuss the biology of tumor cell dissemination, technical advances, as well as the challenges and potential clinical implications of CTC detection and characterization.
Collapse
Affiliation(s)
- Simon A Joosse
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias M Gorges
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
391
|
Wills QF, Mead AJ. Application of single-cell genomics in cancer: promise and challenges. Hum Mol Genet 2015; 24:R74-84. [PMID: 26113645 PMCID: PMC4571998 DOI: 10.1093/hmg/ddv235] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/13/2022] Open
Abstract
Recent advances in single-cell genomics are opening up unprecedented opportunities to transform cancer genomics. While bulk tissue genomic analysis across large populations of tumour cells has provided key insights into cancer biology, this approach does not provide the resolution that is critical for understanding the interaction between different genetic events within the cellular hierarchy of the tumour during disease initiation, evolution, relapse and metastasis. Single-cell genomic approaches are uniquely placed to definitively unravel complex clonal structures and tissue hierarchies, account for spatiotemporal cell interactions and discover rare cells that drive metastatic disease, drug resistance and disease progression. Here we present five challenges that need to be met for single-cell genomics to fulfil its potential as a routine tool alongside bulk sequencing. These might be thought of as being challenges related to samples (processing and scale for analysis), sensitivity and specificity of mutation detection, sources of heterogeneity (biological and technical), synergies (from data integration) and systems modelling. We discuss these in the context of recent advances in technologies and data modelling, concluding with implications for moving cancer research into the clinic.
Collapse
Affiliation(s)
- Quin F Wills
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK and
| | - Adam J Mead
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK, NIHR Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK
| |
Collapse
|
392
|
Shen T, Pajaro-Van de Stadt SH, Yeat NC, Lin JCH. Clinical applications of next generation sequencing in cancer: from panels, to exomes, to genomes. Front Genet 2015; 6:215. [PMID: 26136771 PMCID: PMC4469892 DOI: 10.3389/fgene.2015.00215] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023] Open
Abstract
This article will review recent impact of massively parallel next-generation sequencing (NGS) in our understanding and treatment of cancer. While whole exome sequencing (WES) remains popular and effective as a method of genetically profiling different cancers, advances in sequencing technology has enabled an increasing number of whole-genome based studies. Clinically, NGS has been used or is being developed for genetic screening, diagnostics, and clinical assessment. Though challenges remain, clinicians are in the early stages of using genetic data to make treatment decisions for cancer patients. As the integration of NGS in the study and treatment of cancer continues to mature, we believe that the field of cancer genomics will need to move toward more complete 100% genome sequencing. Current technologies and methods are largely limited to coding regions of the genome. A number of recent studies have demonstrated that mutations in non-coding regions may have direct tumorigenic effects or lead to genetic instability. Non-coding regions represent an important frontier in cancer genomics.
Collapse
Affiliation(s)
- Tony Shen
- Rare Genomics InstituteBethesda, MD, USA
- School of Medicine, Washington UniversitySaint Louis, MO, USA
| | | | - Nai Chien Yeat
- Rare Genomics InstituteBethesda, MD, USA
- School of Medicine, Washington UniversitySaint Louis, MO, USA
| | | |
Collapse
|
393
|
Li J, Gregory SG, Garcia-Blanco MA, Armstrong AJ. Using circulating tumor cells to inform on prostate cancer biology and clinical utility. Crit Rev Clin Lab Sci 2015; 52:191-210. [PMID: 26079252 DOI: 10.3109/10408363.2015.1023430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Substantial advances in the molecular biology of prostate cancer have led to the approval of multiple new systemic agents to treat men with metastatic castration-resistant prostate cancer (mCRPC). These treatments encompass androgen receptor directed therapies, immunotherapies, bone targeting radiopharmaceuticals and cytotoxic chemotherapies. There is, however, great heterogeneity in the degree of patient benefit with these agents, thus fueling the need to develop predictive biomarkers that are able to rationally guide therapy. Circulating tumor cells (CTCs) have the potential to provide an assessment of tumor-specific biomarkers through a non-invasive, repeatable "liquid biopsy" of a patient's cancer at a given point in time. CTCs have been extensively studied in men with mCRPC, where CTC enumeration using the Cellsearch® method has been validated and FDA approved to be used in conjunction with other clinical parameters as a prognostic biomarker in metastatic prostate cancer. In addition to enumeration, more sophisticated molecular profiling of CTCs is now feasible and may provide more clinical utility as it may reflect tumor evolution within an individual particularly under the pressure of systemic therapies. Here, we review technologies used to detect and characterize CTCs, and the potential biological and clinical utility of CTC molecular profiling in men with metastatic prostate cancer.
Collapse
Affiliation(s)
- Jing Li
- a Duke Cancer Institute, Duke University Medical Center , Durham , NC , USA
| | | | | | | |
Collapse
|
394
|
Huang L, Ma F, Chapman A, Lu S, Xie XS. Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications. Annu Rev Genomics Hum Genet 2015; 16:79-102. [PMID: 26077818 DOI: 10.1146/annurev-genom-090413-025352] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present a survey of single-cell whole-genome amplification (WGA) methods, including degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycles (MALBAC). The key parameters to characterize the performance of these methods are defined, including genome coverage, uniformity, reproducibility, unmappable rates, chimera rates, allele dropout rates, false positive rates for calling single-nucleotide variations, and ability to call copy-number variations. Using these parameters, we compare five commercial WGA kits by performing deep sequencing of multiple single cells. We also discuss several major applications of single-cell genomics, including studies of whole-genome de novo mutation rates, the early evolution of cancer genomes, circulating tumor cells (CTCs), meiotic recombination of germ cells, preimplantation genetic diagnosis (PGD), and preimplantation genomic screening (PGS) for in vitro-fertilized embryos.
Collapse
Affiliation(s)
- Lei Huang
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
395
|
Hsiao YS, Ho BC, Yan HX, Kuo CW, Chueh DY, Yu HH, Chen P. Integrated 3D conducting polymer-based bioelectronics for capture and release of circulating tumor cells. J Mater Chem B 2015; 3:5103-5110. [PMID: 32262462 DOI: 10.1039/c5tb00096c] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we develop a novel fabrication approach for producing three-dimensional (3D) conducting polymer-based bioelectronic interfaces (BEIs) that can be integrated on electronic devices for rare circulating tumor cell (CTC) isolation, detection, and collection via an electrically triggered cell released from chips. Based on the chemical oxidative polymerization of carboxylic acid-modified 3,4-ethylenedioxythiophene and modified poly(dimethylsiloxane) (PDMS) transfer printing technology, the high-aspect-ratio structures of poly(3,4-ethylenedioxythiophene) (PEDOT)-based "nanorod" arrays can be fabricated on indium tin oxide (ITO) electrodes when using the Si "microrod" arrays as masters. Furthermore, we integrated the biotinylated poly-(l)-lysine-graft-poly-ethylene-glycol (PLL-g-PEG-biotin) coating with 3D PEDOT-based BEIs for dynamic control of the capture/release performance of CTCs on chips; this combination exhibited an optimal cell-capture yield cells of ∼45 000 cells cm-2 from EpCAM-positive MCF7 while maintaining resistance from the adhesion of EpCAM-negative HeLa cells at a density of ∼4000 cells cm-2. By taking advantage of the electrochemical doping/dedoping properties of PEDOT materials, the captured CTCs can be triggered to be electrically released through the desorption phenomena of the PLL-g-PEG-biotin. More than 90% of the captured cells can be released while maintaining very high cell viability. Therefore, it is conceivable that the use of a 3D PEDOT-based BEI platform will meet the requirements for the development of downstream characterization of CTCs, as well as the next generation of bioelectronics for biomedical applications.
Collapse
Affiliation(s)
- Yu-Sheng Hsiao
- Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
396
|
Shi Y, Pramanik A, Tchounwou C, Pedraza F, Crouch RA, Chavva SR, Vangara A, Sinha SS, Jones S, Sardar D, Hawker C, Ray PC. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10935-43. [PMID: 25939643 PMCID: PMC4570252 DOI: 10.1021/acsami.5b02199] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(-) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells.
Collapse
Affiliation(s)
- Yongliang Shi
- Department of Chemistry
and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Avijit Pramanik
- Department of Chemistry
and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Christine Tchounwou
- Department of Chemistry
and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Francisco Pedraza
- Department of Physics and Astronomy, University
of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Rebecca A. Crouch
- Department of Chemistry
and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Suhash Reddy Chavva
- Department of Chemistry
and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Aruna Vangara
- Department of Chemistry
and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Sudarson Sekhar Sinha
- Department of Chemistry
and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Stacy Jones
- Department of Chemistry
and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Dhiraj Sardar
- Department of Physics and Astronomy, University
of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Craig Hawker
- Department of Chemistry and Biochemistry and Materials Research Laboratory, Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Paresh Chandra Ray
- Department of Chemistry
and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
- E-mail:. Fax: +16019793674
| |
Collapse
|
397
|
Abstract
Single-cell sequencing (SCS) has emerged as a powerful new set of technologies for studying rare cells and delineating complex populations. Over the past 5 years, SCS methods for DNA and RNA have had a broad impact on many diverse fields of biology, including microbiology, neurobiology, development, tissue mosaicism, immunology, and cancer research. In this review, we will discuss SCS technologies and applications, as well as translational applications in the clinic.
Collapse
Affiliation(s)
- Yong Wang
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas E Navin
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
398
|
Smith JP, Kirby BJ. A transfer function approach for predicting rare cell capture microdevice performance. Biomed Microdevices 2015; 17:9956. [PMID: 25971361 DOI: 10.1007/s10544-015-9956-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rare cells have the potential to improve our understanding of biological systems and the treatment of a variety of diseases; each of those applications requires a different balance of throughput, capture efficiency, and sample purity. Those challenges, coupled with the limited availability of patient samples and the costs of repeated design iterations, motivate the need for a robust set of engineering tools to optimize application-specific geometries. Here, we present a transfer function approach for predicting rare cell capture in microfluidic obstacle arrays. Existing computational fluid dynamics (CFD) tools are limited to simulating a subset of these arrays, owing to computational costs; a transfer function leverages the deterministic nature of cell transport in these arrays, extending limited CFD simulations into larger, more complicated geometries. We show that the transfer function approximation matches a full CFD simulation within 1.34 %, at a 74-fold reduction in computational cost. Taking advantage of these computational savings, we apply the transfer function simulations to simulate reversing array geometries that generate a "notch filter" effect, reducing the collision frequency of cells outside of a specified diameter range. We adapt the transfer function to study the effect of off-design boundary conditions (such as a clogged inlet in a microdevice) on overall performance. Finally, we have validated the transfer function's predictions for lateral displacement within the array using particle tracking and polystyrene beads in a microdevice.
Collapse
Affiliation(s)
- James P Smith
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
399
|
Chen JF, Ho H, Lichterman J, Lu YT, Zhang Y, Garcia MA, Chen SF, Liang AJ, Hodara E, Zhau HE, Hou S, Ahmed RS, Luthringer DJ, Huang J, Li KC, Chung LWK, Ke Z, Tseng HR, Posadas EM. Subclassification of prostate cancer circulating tumor cells by nuclear size reveals very small nuclear circulating tumor cells in patients with visceral metastases. Cancer 2015; 121:3240-51. [PMID: 25975562 DOI: 10.1002/cncr.29455] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Although enumeration of circulating tumor cells (CTCs) has shown some clinical value, the pool of CTCs contains a mixture of cells that contains additional information that can be extracted. The authors subclassified CTCs by shape features focusing on nuclear size and related this with clinical information. METHODS A total of 148 blood samples were obtained from 57 patients with prostate cancer across the spectrum of metastatic states: no metastasis, nonvisceral metastasis, and visceral metastasis. CTCs captured and enumerated on NanoVelcro Chips (CytoLumina, Los Angeles, Calif) were subjected to pathologic review including nuclear size. The distribution of nuclear size was analyzed using a Gaussian mixture model. Correlations were made between CTC subpopulations and metastatic status. RESULTS Statistical modeling of nuclear size distribution revealed 3 distinct subpopulations: large nuclear CTCs, small nuclear CTCs, and very small nuclear CTCs (vsnCTCs). Small nuclear CTCs and vsnCTC identified those patients with metastatic disease. However, vsnCTC counts alone were found to be elevated in patients with visceral metastases when compared with those without (0.36 ± 0.69 vs 1.95 ± 3.77 cells/mL blood; P<.001). Serial enumeration studies suggested the emergence of vsnCTCs occurred before the detection of visceral metastases. CONCLUSIONS There are morphologic subsets of CTCs that can be identified by fundamental pathologic approaches, such as nuclear size measurement. The results of this observational study strongly suggest that CTCs contain relevant information regarding disease status. In particular, the detection of vsnCTCs was found to be correlated with the presence of visceral metastases and should be formally explored as a putative blood-borne biomarker to identify patients at risk of developing this clinical evolution of prostate cancer.
Collapse
Affiliation(s)
- Jie-Fu Chen
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hao Ho
- Department of Statistics, University of California at Los Angeles, Los Angeles, California.,Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jake Lichterman
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yi-Tsung Lu
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yang Zhang
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California
| | - Mitch A Garcia
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California
| | - Shang-Fu Chen
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California
| | - An-Jou Liang
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California
| | - Elisabeth Hodara
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Haiyen E Zhau
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shuang Hou
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California
| | - Rafi S Ahmed
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Daniel J Luthringer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, California
| | - Ker-Chau Li
- Department of Statistics, University of California at Los Angeles, Los Angeles, California.,Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
| | - Leland W K Chung
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hsian-Rong Tseng
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
| | - Edwin M Posadas
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
400
|
Werner SL, Graf RP, Landers M, Valenta DT, Schroeder M, Greene SB, Bales N, Dittamore R, Marrinucci D. Analytical Validation and Capabilities of the Epic CTC Platform: Enrichment-Free Circulating Tumour Cell Detection and Characterization. J Circ Biomark 2015; 4:3. [PMID: 28936239 PMCID: PMC5572988 DOI: 10.5772/60725] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022] Open
Abstract
The Epic Platform was developed for the unbiased detection and molecular characterization of circulating tumour cells (CTCs). Here, we report assay performance data, including accuracy, linearity, specificity and intra/inter-assay precision of CTC enumeration in healthy donor (HD) blood samples spiked with varying concentrations of cancer cell line controls (CLCs). Additionally, we demonstrate clinical feasibility for CTC detection in a small cohort of metastatic castrate-resistant prostate cancer (mCRPC) patients. The Epic Platform demonstrated accuracy, linearity and sensitivity for the enumeration of all CLC concentrations tested. Furthermore, we established the precision between multiple operators and slide staining batches and assay specificity showing zero CTCs detected in 18 healthy donor samples. In a clinical feasibility study, at least one traditional CTC/mL (CK+, CD45-, and intact nuclei) was detected in 89 % of 44 mCRPC samples, whereas 100 % of samples had CTCs enumerated if additional CTC subpopulations (CK-/CD45- and CK+ apoptotic CTCs) were included in the analysis. In addition to presenting Epic Platform's performance with respect to CTC enumeration, we provide examples of its integrated downstream capabilities, including protein biomarker expression and downstream genomic analyses at single cell resolution.
Collapse
|