351
|
Zarzynska JM. Two faces of TGF-beta1 in breast cancer. Mediators Inflamm 2014; 2014:141747. [PMID: 24891760 PMCID: PMC4033515 DOI: 10.1155/2014/141747] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is potentially life-threatening malignancy that still causes high mortality among women. Scientific research in this field is focused on deeper understanding of pathogenesis and progressing of BC, in order to develop relevant diagnosis and improve therapeutic treatment. Multifunctional cytokine TGF- β 1 is one of many factors that have a direct influence on BC pathophysiology. Expression of TGF- β 1, induction of canonical and noncanonical signaling pathways, and mutations in genes encoding TGF- β 1 and its receptors are correlated with oncogenic activity of this cytokine. In early stages of BC this cytokine inhibits epithelial cell cycle progression and promotes apoptosis, showing tumor suppressive effects. However, in late stages, TGF- β 1 is linked with increased tumor progression, higher cell motility, cancer invasiveness, and metastasis. It is also involved in cancer microenvironment modification and promotion of epithelial to mesenchymal transition (EMT). This review summarizes the current knowledge on the phenomenon called "TGF- β 1 paradox", showing that better understanding of TGF- β 1 functions can be a step towards development of new therapeutic approaches. According to current knowledge several drugs against TGF- β 1 have been developed and are either in nonclinical or in early stages of clinical investigation.
Collapse
Affiliation(s)
- Joanna Magdalena Zarzynska
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, WULS-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
352
|
Mari L, Milano F, Parikh K, Straub D, Everts V, Hoeben KK, Fockens P, Buttar NS, Krishnadath KK. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia. Cell Rep 2014; 7:1197-210. [PMID: 24794431 DOI: 10.1016/j.celrep.2014.03.074] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 12/13/2013] [Accepted: 03/31/2014] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms leading to epithelial metaplasias are poorly understood. Barrett's esophagus is a premalignant metaplastic change of the esophageal epithelium into columnar epithelium, occurring in patients suffering from gastroesophageal reflux disease. Mechanisms behind the development of the intestinal subtype, which is associated with the highest cancer risk, are unclear. In humans, it has been suggested that a nonspecialized columnar metaplasia precedes the development of intestinal metaplasia. Here, we propose that a complex made up of at least two factors needs to be activated simultaneously to drive the expression of intestinal type of genes. Using unique animal models and robust in vitro assays, we show that the nonspecialized columnar metaplasia is a precursor of intestinal metaplasia and that pSMAD/CDX2 interaction is essential for the switch toward an intestinal phenotype.
Collapse
Affiliation(s)
- Luigi Mari
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Francesca Milano
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Section of Hematology and Clinical Immunology, Department of Internal and Experimental Medicine, Ospedale S. Maria della Misericordia, University of Perugia, 06156 Perugia, Italy
| | - Kaushal Parikh
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Danielle Straub
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Vincent Everts
- Core facility Cellular Imaging/LCAM-AMC, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Kees K Hoeben
- Core facility Cellular Imaging/LCAM-AMC, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Paul Fockens
- Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Navtej S Buttar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55902, USA
| | - Kausilia K Krishnadath
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands.
| |
Collapse
|
353
|
MiR-489 regulates chemoresistance in breast cancer via epithelial mesenchymal transition pathway. FEBS Lett 2014; 588:2009-15. [PMID: 24786471 DOI: 10.1016/j.febslet.2014.04.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/31/2014] [Accepted: 04/16/2014] [Indexed: 11/21/2022]
Abstract
To investigate the role of microRNAs in the development of chemoresistance and related epithelial-mesenchymal transition (EMT), we examined the effect of miR-489 in adriamycin (ADM)-resistant human breast cancer cells (MCF-7/ADM). MiR-489 was significantly suppressed in MCF-7/ADM cells compared with chemosensitive parental control MCF-7/WT cells. Forced-expression of miR-489 reversed chemoresistance. Furthermore, Smad3 was identified as the target of miR-489 and is highly expressed in MCF-7/ADM cells. Forced expression of miR-489 both inhibited Smad3 expression and Smad3 related EMT properties. Finally, the interactions between Smad3, miR-489 and EMT were confirmed in chemoresistant tumor xenografts and clinical samples, indicating their potential implication for treatment of chemoresistance.
Collapse
|
354
|
Zhang R, Zhao C, Xiong Z, Zhou X. Pathway bridge based multiobjective optimization approach for lurking pathway prediction. BIOMED RESEARCH INTERNATIONAL 2014; 2014:351095. [PMID: 24949437 PMCID: PMC4052696 DOI: 10.1155/2014/351095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/16/2014] [Indexed: 11/26/2022]
Abstract
Ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) is a protein with unknown function. Frequently methylated or downregulated, OCIAD2 has been observed in kinds of tumors, and TGFβ signaling has been proved to induce the expression of OCIAD2. However, current pathway analysis tools do not cover the genes without reported interactions like OCIAD2 and also miss some significant genes with relatively lower expression. To investigate potential biological milieu of OCIAD2, especially in cancer microenvironment, a nova approach pbMOO was created to find the potential pathways from TGFβ to OCIAD2 by searching on the pathway bridge, which consisted of cancer enriched looping patterns from the complicated entire protein interactions network. The pbMOO approach was further applied to study the modulator of ligand TGFβ1, receptor TGFβR1, intermediate transfer proteins, transcription factor, and signature OCIAD2. Verified by literature and public database, the pathway TGFβ1-TGFβR1-SMAD2/3-SMAD4/AR-OCIAD2 was detected, which concealed the androgen receptor (AR) which was the possible transcription factor of OCIAD2 in TGFβsignal, and it well explained the mechanism of TGFβ induced OCIAD2 expression in cancer microenvironment, therefore providing an important clue for the future functional analysis of OCIAD2 in tumor pathogenesis.
Collapse
Affiliation(s)
- Rengjing Zhang
- Electrical and Computer Engineering Department, Texas A&M University, College Station, TX 77840, USA
| | - Chen Zhao
- Radiology Comprehensive Cancer Center Cancer Biology, Wake Forest University, Winston-Salem, NC 27103, USA
| | - Zixiang Xiong
- Electrical and Computer Engineering Department, Texas A&M University, College Station, TX 77840, USA
| | - Xiaobo Zhou
- Radiology Comprehensive Cancer Center Cancer Biology, Wake Forest University, Winston-Salem, NC 27103, USA
| |
Collapse
|
355
|
Abstract
The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.
Collapse
|
356
|
Zhang Z, Dong Z, Lauxen IS, Filho MS, Nör JE. Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res 2014; 74:2869-81. [PMID: 24686166 DOI: 10.1158/0008-5472.can-13-2032] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Emerging evidence suggests that endothelial cell-secreted factors contribute to the pathobiology of squamous cell carcinoma (SCC) by enhancing invasive migration and resistance to anoikis. Here, we report that SCC cells within the perivascular niche have undergone epithelial to mesenchymal transition (EMT) in a primary human SCC of a patient that developed distant metastases. Endothelial cell-secreted EGF induced EMT of human SCC cells in vitro and also induced acquisition of a stem-like phenotype. In vivo, tumor xenografts vascularized with EGF-silenced endothelial cells exhibited a smaller fraction of cancer stem-like cells (ALDH(+)CD44(+)) and were less invasive than tumors vascularized with control endothelial cells. Collectively, these results demonstrated that endothelial cell-EGF induces EMT and acquisition of stem-like properties by head and neck tumor cells. On this basis, we suggest that vascular endothelial cells contribute to tumor dissemination by secreting factors that endow carcinoma cells with enhanced motility and stemness.
Collapse
Affiliation(s)
- Zhaocheng Zhang
- Authors' Affiliations: Department of Restorative Sciences, Angiogenesis Research Laboratory, University of Michigan School of Dentistry; Department of Biomedical Engineering, University of Michigan College of Engineering; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan; and Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul; Porto Alegre, Rio Grande do Sul, Brazil
| | - Zhihong Dong
- Authors' Affiliations: Department of Restorative Sciences, Angiogenesis Research Laboratory, University of Michigan School of Dentistry; Department of Biomedical Engineering, University of Michigan College of Engineering; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan; and Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul; Porto Alegre, Rio Grande do Sul, Brazil
| | - Isabel S Lauxen
- Authors' Affiliations: Department of Restorative Sciences, Angiogenesis Research Laboratory, University of Michigan School of Dentistry; Department of Biomedical Engineering, University of Michigan College of Engineering; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan; and Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul; Porto Alegre, Rio Grande do Sul, Brazil
| | - Manoel Sant'Ana Filho
- Authors' Affiliations: Department of Restorative Sciences, Angiogenesis Research Laboratory, University of Michigan School of Dentistry; Department of Biomedical Engineering, University of Michigan College of Engineering; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan; and Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul; Porto Alegre, Rio Grande do Sul, Brazil
| | - Jacques E Nör
- Authors' Affiliations: Department of Restorative Sciences, Angiogenesis Research Laboratory, University of Michigan School of Dentistry; Department of Biomedical Engineering, University of Michigan College of Engineering; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan; and Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul; Porto Alegre, Rio Grande do Sul, BrazilAuthors' Affiliations: Department of Restorative Sciences, Angiogenesis Research Laboratory, University of Michigan School of Dentistry; Department of Biomedical Engineering, University of Michigan College of Engineering; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan; and Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul; Porto Alegre, Rio Grande do Sul, BrazilAuthors' Affiliations: Department of Restorative Sciences, Angiogenesis Research Laboratory, University of Michigan School of Dentistry; Department of Biomedical Engineering, University of Michigan College of Engineering; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan; and Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul; Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
357
|
Sengupta D, Bhargava DK, Dixit A, Sahoo BS, Biswas S, Biswas G, Mishra SK. ERRβ signalling through FST and BCAS2 inhibits cellular proliferation in breast cancer cells. Br J Cancer 2014; 110:2144-58. [PMID: 24667650 PMCID: PMC3992508 DOI: 10.1038/bjc.2014.53] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/06/2013] [Accepted: 01/13/2014] [Indexed: 12/11/2022] Open
Abstract
Background: The overexpression of oestrogen-related receptor-β (ERRβ) in breast cancer patients is correlated with improved prognosis and longer relapse-free survival, and the level of ERRβ mRNA is inversely correlated with the S-phase fraction of cells from breast cancer patients. Methods: Chromatin immunoprecipitation (ChIP) cloning of ERRβ transcriptional targets and gel supershift assays identified breast cancer amplified sequence 2 (BCAS2) and Follistatin (FST) as two important downstream genes that help to regulate tumourigenesis. Confocal microscopy, co-immunoprecipitation (CoIP), western blotting and quantitative real-time PCR confirmed the involvement of ERRβ in oestrogen signalling. Results: Overexpressed ERRβ induced FST-mediated apoptosis in breast cancer cells, and E-cadherin expression was also enhanced through upregulation of FST. However, this anti-proliferative signalling function was challenged by ERRβ-mediated BCAS2 upregulation, which inhibited FST transcription through the downregulation of β-catenin/TCF4 recruitment to the FST promoter. Interestingly, ERRβ-mediated upregulation of BCAS2 downregulated the major G1-S transition marker cyclin D1, despite the predictable oncogenic properties of BCAS2. Interpretation: Our study provides the first evidence that ERRβ, which is a coregulator of ERα also acts as a potential tumour-suppressor molecule in breast cancer. Our current report also provides novel insights into the entire cascade of ERRβ signalling events, which may lead to BCAS2-mediated blockage of the G1/S transition and inhibition of the epithelial to mesenchymal transition through FST-mediated regulation of E-cadherin. Importantly, matrix metalloprotease 7, which is a classical mediator of metastasis and E-cadherin cleavage, was also restricted as a result of ERRβ-mediated FST overexpression.
Collapse
Affiliation(s)
- D Sengupta
- Cancer Biology Laboratory, Department of Gene Function and Regulation, Institute of Life Sciences (an Institute under the Department of Biotechnology, Government of India), Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - D K Bhargava
- Cancer Biology Laboratory, Department of Gene Function and Regulation, Institute of Life Sciences (an Institute under the Department of Biotechnology, Government of India), Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - A Dixit
- Drug Design and Discovery, Department of Translational Research and Technology Development, Institute of Life Sciences (an Institute under the Department of Biotechnology, Government of India), Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - B S Sahoo
- Confocal Microscopic Facility, Institute of Life Sciences (an Institute under the Department of Biotechnology, Government of India), Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - S Biswas
- Department of Pathology, Sparsh Hospitals and Critical Care, A/407, Saheed Nagar, Bhubaneswar, Odisha 751007, India
| | - G Biswas
- Department of Medical Oncology, Sparsh Hospitals and Critical Care, A/407, Saheed Nagar, Bhubaneswar, Odisha 751007, India
| | - S K Mishra
- Cancer Biology Laboratory, Department of Gene Function and Regulation, Institute of Life Sciences (an Institute under the Department of Biotechnology, Government of India), Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
358
|
Liu RY, Zeng Y, Lei Z, Wang L, Yang H, Liu Z, Zhao J, Zhang HT. JAK/STAT3 signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. Int J Oncol 2014; 44:1643-51. [PMID: 24573038 DOI: 10.3892/ijo.2014.2310] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/29/2014] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a key step in the early stages of cancer metastasis, is orchestrated by several signaling pathways, including IL-6/JAK/STAT3 and TGF-β/Smad signaling. However, an association between the two signaling pathways during the EMT process is largely unknown. Here, we focused on lung cancer and demonstrated that TGF-β1 induced the phosphorylation of Smad3 (p-Smad3), upregulation of Snail, a fibroblast-like morphology, and downregulation of E-cadherin as well as upregulation of vimentin in lung cancer cell lines. SIS3 (an inhibitor of Smad3) suppressed TGF-β1-induced activation of Smad3, upregulation of Snail and the EMT process. Importantly, the JAK2/STAT3-specific inhibitor AG490 blocked Stat3 phosphorylation, resulting in attenuated levels of TGF-β1-induced p-Smad3, Snail, MMP2, and Smad-mediated PAI-1 promoter reporter gene activity in A549 and H1650 cells. Subsequently, AG490 inhibited TGF-β-induced cell migration and invasion. Moreover, exogenous IL-6 treatment stimulated Stat3 activation, enhanced TGF-β-induced expression of p-Smad3 and Snail, aggravated the EMT process, and increased lung cancer cell migration and invasion induced by TGF-β1. Our findings show that the JAK/STAT3 pathway is required for TGF-β-induced EMT and cancer cell migration and invasion via upregulation of the expression of p-Smad3 and Snail, and the IL-6/JAK/STAT3 and TGF-β/Smad signaling synergistically enhance EMT in lung carcinomas. The present study suggests a novel rationale for inhibiting cancer metastasis using anti-IL-6/JAK/STAT3 and anti-TGF-β/Smad therapeutic strategies.
Collapse
Affiliation(s)
- Reng-Yun Liu
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Yuanyuan Zeng
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Longqiang Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Haiping Yang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Zeyi Liu
- Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou 215123, P.R. China
| | - Jun Zhao
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
359
|
Lane DJR, Mills TM, Shafie NH, Merlot AM, Saleh Moussa R, Kalinowski DS, Kovacevic Z, Richardson DR. Expanding horizons in iron chelation and the treatment of cancer: role of iron in the regulation of ER stress and the epithelial-mesenchymal transition. Biochim Biophys Acta Rev Cancer 2014; 1845:166-81. [PMID: 24472573 DOI: 10.1016/j.bbcan.2014.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/14/2014] [Indexed: 12/19/2022]
Abstract
Cancer is a major public health issue and, despite recent advances, effective clinical management remains elusive due to intra-tumoural heterogeneity and therapeutic resistance. Iron is a trace element integral to a multitude of metabolic processes, including DNA synthesis and energy transduction. Due to their generally heightened proliferative potential, cancer cells have a greater metabolic demand for iron than normal cells. As such, iron metabolism represents an important "Achilles' heel" for cancer that can be targeted by ligands that bind and sequester intracellular iron. Indeed, novel thiosemicarbazone chelators that act by a "double punch" mechanism to both bind intracellular iron and promote redox cycling reactions demonstrate marked potency and selectivity in vitro and in vivo against a range of tumours. The general mechanisms by which iron chelators selectively target tumour cells through the sequestration of intracellular iron fall into the following categories: (1) inhibition of cellular iron uptake/promotion of iron mobilisation; (2) inhibition of ribonucleotide reductase, the rate-limiting, iron-containing enzyme for DNA synthesis; (3) induction of cell cycle arrest; (4) promotion of localised and cytotoxic reactive oxygen species production by copper and iron complexes of thiosemicarbazones (e.g., Triapine(®) and Dp44mT); and (5) induction of metastasis and tumour suppressors (e.g., NDRG1 and p53, respectively). Emerging evidence indicates that chelators can further undermine the cancer phenotype via inhibiting the epithelial-mesenchymal transition that is critical for metastasis and by modulating ER stress. This review explores the "expanding horizons" for iron chelators in selectively targeting cancer cells.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas M Mills
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nurul H Shafie
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rayan Saleh Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
360
|
Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M, Feng XH, Sawaya R, Medema RH, Hung MC, Huang S. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis. J Clin Invest 2014; 124:564-79. [PMID: 24382352 DOI: 10.1172/jci71104] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/18/2013] [Indexed: 12/22/2022] Open
Abstract
A key feature of TGF-β signaling activation in cancer cells is the sustained activation of SMAD complexes in the nucleus; however, the drivers of SMAD activation are poorly defined. Here, using human and mouse breast cancer cell lines, we found that oncogene forkhead box M1 (FOXM1) interacts with SMAD3 to sustain activation of the SMAD3/SMAD4 complex in the nucleus. FOXM1 prevented the E3 ubiquitin-protein ligase transcriptional intermediary factor 1 γ (TIF1γ) from binding SMAD3 and monoubiquitinating SMAD4, which stabilized the SMAD3/SMAD4 complex. Loss of FOXM1 abolished TGF-β-induced SMAD3/SMAD4 formation. Moreover, the interaction of FOXM1 and SMAD3 promoted TGF-β/SMAD3-mediated transcriptional activity and target gene expression. We found that FOXM1/SMAD3 interaction was required for TGF-β-induced breast cancer invasion, which was the result of SMAD3/SMAD4-dependent upregulation of the transcription factor SLUG. Importantly, the function of FOXM1 in TGF-β-induced invasion was not dependent on FOXM1's transcriptional activity. Knockdown of SMAD3 diminished FOXM1-induced metastasis. Furthermore, FOXM1 levels correlated with activated TGF-β signaling and metastasis in human breast cancer specimens. Together, our data indicate that FOXM1 promotes breast cancer metastasis by increasing nuclear retention of SMAD3 and identify crosstalk between FOXM1 and TGF-β/SMAD3 pathways. This study highlights the critical interaction of FOXM1 and SMAD3 for controlling TGF-β signaling during metastasis.
Collapse
|
361
|
Bebee TW, Cieply BW, Carstens RP. Genome-wide activities of RNA binding proteins that regulate cellular changes in the epithelial to mesenchymal transition (EMT). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:267-302. [PMID: 25201109 DOI: 10.1007/978-1-4939-1221-6_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The epithelial to mesenchymal transition (EMT) and reverse mesenchymal to epithelial transition (MET) are developmentally conserved processes that are essential for patterning of developing embryos and organs. The EMT/MET are further utilized in wound healing, but they can also be hijacked by cancer cells to promote tumor progression and metastasis. The molecular pathways governing these processes have historically focused on the transcriptional regulation and networks that control them. Indeed, global profiling of transcriptional changes has provided a wealth of information into how these networks are regulated, the downstream targets, and functional consequence of alterations to the global transcriptome. However, recent evidence has revealed that the posttranscriptional landscape of the cell is also dramatically altered during the EMT/MET and contributes to changes in cell behavior and phenotypes. While studies of this aspect of EMT biology are still in their infancy, recent progress has been achieved by the identification of several RNA binding proteins (RBPs) that regulate splicing, polyadenylation, mRNA stability, and translational control during EMT. This chapter focuses on the global impact of RBPs that regulate mRNA maturation as well as outlines the functional impact of several key posttranscriptional changes during the EMT. The growing evidence of RBP involvement in the cellular transformation during EMT underscores that a coordinated regulation of both transcriptional and posttranscriptional changes is essential for EMT. Furthermore, new discoveries into these events will paint a more detailed picture of the transcriptome during the EMT/MET and provide novel molecular targets for treatment of human diseases.
Collapse
Affiliation(s)
- Thomas W Bebee
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
362
|
Szaszi K, Amoozadeh Y. New Insights into Functions, Regulation, and Pathological Roles of Tight Junctions in Kidney Tubular Epithelium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:205-71. [DOI: 10.1016/b978-0-12-800097-7.00006-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
363
|
Avilova E, Andreeva O, Shatskaya V, Krasilnikov M. The role of protein kinase PAK1 in the regulation of estrogen-independent growth of breast cancer. ACTA ACUST UNITED AC 2014; 60:322-31. [DOI: 10.18097/pbmc20146003322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The main goal of this work was to study the intracellular signaling pathways responsible for the development of hormone resistance and maintaining the autonomous growth of breast cancer cells. In particular, the role of PAK1 (p21-activated kinase 1), the key mitogenic signaling protein, in the development of cell resistance to estrogens was analyzed. In vitro studies were performed on cultured breast cancer cell lines: estrogen-dependent estrogen receptor (ER)-positive MCF-7 cells and estrogen-resistant ER-negative HBL-100 cells. We found that the resistant HBL-100 cells were characterized by a higher level of PAK1 and demonstrated PAK1 involvement in the maintaining of estrogen-independent cell growth. We have also shown PAK1 ability to up-regulate Snail1, one of the epithelial-mesenchymal transition proteins, and obtained experimental evidence for Snail1 importance in the regulation of cell proliferation. In general, the results obtained in this study demonstrate involvement of PAK1 and Snail1 in the formation of estrogen-independent phenotype of breast cancer cells showing the potential role of both proteins as markers of hormone resistance of breast tumors.
Collapse
|
364
|
Ma R, Bonnefond S, Morshed SA, Latif R, Davies TF. Stemness is Derived from Thyroid Cancer Cells. Front Endocrinol (Lausanne) 2014; 5:114. [PMID: 25076938 PMCID: PMC4097959 DOI: 10.3389/fendo.2014.00114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/01/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs). Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT) from malignant cells since EMT is known to confer stem-like characteristics. Furthermore, EMT is a critical process for epithelial tumor progression, local invasion, and metastasis formation. In addition, stemness provides cells with therapeutic resistance and is the likely cause of tumor recurrence. However, the relevance of EMT and stemness in thyroid cancer progression has not been extensively studied. METHODS To examine the status of stemness in thyroid papillary cancer, we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf((V600E))/TPO-Cre). This construct is only activated at the time of thyroid peroxidase (TPO) expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells, which do not express TPO. RESULTS There was decreased expression of thyroid-specific genes such as Tg and NIS and increased expression of stemness markers, such as Oct4, Rex1, CD15, and Sox2 in the thyroid carcinoma tissue from 6-week-old BRAF(V600E) mice indicating the dedifferentiated status of the cells and the fact that stemness was derived in this model from differentiated thyroid cells. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a cancer thyroid cell line (named Marca cells) derived from one of the murine tumors. In this cell line, we also found that overexpression of Snail caused up-regulation of vimentin expression and up-regulation of stemness markers Oct4, Rex1, and CD15, with enhanced migration ability of the cells. We also showed that TGF-β1 was able to induce Snail and vimentin expression in the Marca cell thyroid cancer line, indicating the induction of EMT in these cells, and this induction of EMT and stemness was significantly inhibited by celastro a natural inhibitor of neoplastic cells. CONCLUSION Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf((V600E))/TPO-Cre), the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells. Furthermore, celastrol suppressed TGF-β1 induced EMT in thyroid cancer cells and may have therapeutic potential.
Collapse
Affiliation(s)
- Risheng Ma
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J Peters VA Medical Center, New York, NY, USA
- *Correspondence: Risheng Ma, Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J Peters VA Medical Center, Room 2F-28, 130 West Kingsbridge Road, New York, NY 10468, USA e-mail:
| | | | - Syed A. Morshed
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J Peters VA Medical Center, New York, NY, USA
| | - Rauf Latif
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J Peters VA Medical Center, New York, NY, USA
| | - Terry F. Davies
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J Peters VA Medical Center, New York, NY, USA
| |
Collapse
|
365
|
Masui T, Ota I, Yook JI, Mikami S, Yane K, Yamanaka T, Hosoi H. Snail-induced epithelial-mesenchymal transition promotes cancer stem cell-like phenotype in head and neck cancer cells. Int J Oncol 2013; 44:693-9. [PMID: 24365974 DOI: 10.3892/ijo.2013.2225] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/20/2013] [Indexed: 11/05/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is known to have a poor prognosis. The resistance to treatment and distant metastasis are important clinical problems in HNSCC. The epithelial-mesenchymal transition (EMT) is a key process in successful execution of many steps such as the invasion and metastasis for cancer cells. Snail is one of the master regulators that promote EMT in many types of malignancies including HNSCC. Recently, it has been shown that Snail-induced EMT could induce a cancer stem cell (CSC)‑like phenotype in a number of tumor types. In this study, we investigated the role of Snail in inducing EMT properties and CSC-like phenotype in HNSCC. We established HNSCC cell lines transfected with Snail. E-cadherin was analyzed using western blot analysis and immunofluorescence staining. Cell migration and invasion were assessed using wound-healing assay and modified Boyden chamber assay, respectively. CSC markers of HNSCC, CD44 and aldehyde dehydrogenase 1 (ALDH1), were also evaluated with western blot analysis, and chemosensitivity was assessed with WST-8 assay. Introduction of Snail induced EMT properties in HNSCC cells and enhanced cell migration and invasion. Moreover, Snail-induced EMT gained CSC-like phenotype and was associated with increased chemoresistance. These results suggest that Snail could be one of the attractive targets for the development of therapeutic strategies in HNSCC.
Collapse
Affiliation(s)
- Takashi Masui
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Ichiro Ota
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Jong-In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul 120-752, Republic of Korea
| | - Shinji Mikami
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Katsunari Yane
- Department of Otolaryngology, Kinki University School of Medicine, Nara Hospital, Ikoma, Nara 630-0293, Japan
| | - Toshiaki Yamanaka
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroshi Hosoi
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
366
|
Collagen as a double-edged sword in tumor progression. Tumour Biol 2013; 35:2871-82. [PMID: 24338768 PMCID: PMC3980040 DOI: 10.1007/s13277-013-1511-7] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/03/2013] [Indexed: 12/11/2022] Open
Abstract
It has been recognized that cancer is not merely a disease of tumor cells, but a disease of imbalance, in which stromal cells and tumor microenvironment play crucial roles. Extracellular matrix (ECM) as the most abundant component in tumor microenvironment can regulate tumor cell behaviors and tissue tension homeostasis. Collagen constitutes the scaffold of tumor microenvironment and affects tumor microenvironment such that it regulates ECM remodeling by collagen degradation and re-deposition, and promotes tumor infiltration, angiogenesis, invasion and migration. While collagen was traditionally regarded as a passive barrier to resist tumor cells, it is now evident that collagen is also actively involved in promoting tumor progression. Collagen changes in tumor microenvironment release biomechanical signals, which are sensed by both tumor cells and stromal cells, trigger a cascade of biological events. In this work, we discuss how collagen can be a double-edged sword in tumor progression, both inhibiting and promoting tumor progression at different stages of cancer development.
Collapse
|
367
|
Okabe H, Ishimoto T, Mima K, Nakagawa S, Hayashi H, Kuroki H, Imai K, Nitta H, Saito S, Hashimoto D, Chikamoto A, Ishiko T, Watanabe M, Nagano O, Beppu T, Saya H, Baba H. CD44s signals the acquisition of the mesenchymal phenotype required for anchorage-independent cell survival in hepatocellular carcinoma. Br J Cancer 2013; 110:958-66. [PMID: 24300972 PMCID: PMC3929866 DOI: 10.1038/bjc.2013.759] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/24/2013] [Accepted: 11/11/2013] [Indexed: 12/11/2022] Open
Abstract
Background: Circulating tumour cells (CTCs) have an important role in metastatic processes, but details of their basic characteristics remain elusive. We hypothesised that CD44-expressing CTCs show a mesenchymal phenotype and high potential for survival in hepatocellular carcinoma (HCC). Methods: Circulating CD44+CD90+ cells, previously shown to be tumour-initiating cells, were sorted from human blood and their genetic characteristics were compared with those of tumour cells from primary tissues. The mechanism underlying the high survival potential of CD44-expressing cells in the circulatory system was investigated in vitro. Results: CD44+CD90+ cells in the blood acquired epithelial–mesenchymal transition, and CD44 expression remarkably increased from the tissue to the blood. In Li7 and HLE cells, the CD44high population showed higher anoikis resistance and sphere-forming ability than did the CD44low population. This difference was found to be attributed to the upregulation of Twist1 and Akt signal in the CD44high population. Twist1 knockdown showed remarkable reduction in anoikis resistance, sphere formation, and Akt signal in HLE cells. In addition, mesenchymal markers and CD44s expression were downregulated in the Twist1 knockdown. Conclusions: CD44s symbolises the acquisition of a mesenchymal phenotype regulating anchorage-independent capacity. CD44s-expressing tumour cells in peripheral blood are clinically important therapeutic targets in HCC.
Collapse
Affiliation(s)
- H Okabe
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - T Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - K Mima
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - S Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - H Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - H Kuroki
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - K Imai
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - H Nitta
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - S Saito
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - D Hashimoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - A Chikamoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - T Ishiko
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - M Watanabe
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - O Nagano
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Minato, Japan
| | - T Beppu
- 1] Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan [2] Department of Multidisciplinary Treatment for Gastroenterological Cancer, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - H Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Minato, Japan
| | - H Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| |
Collapse
|
368
|
Fucosylated TGF-β receptors transduces a signal for epithelial-mesenchymal transition in colorectal cancer cells. Br J Cancer 2013; 110:156-63. [PMID: 24253505 PMCID: PMC3887298 DOI: 10.1038/bjc.2013.699] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/11/2013] [Accepted: 10/08/2013] [Indexed: 02/06/2023] Open
Abstract
Background: Transforming growth factor-β (TGF-β) is a major inducer of epithelial–mesenchymal transition (EMT) in different cell types. TGF-β-mediated EMT is thought to contribute to tumour cell spread and metastasis. Sialyl Lewis antigens synthesised by fucosyltransferase (FUT) 3 and FUT6 are highly expressed in patients with metastatic colorectal cancer (CRC) and are utilised as tumour markers for cancer detection and evaluation of treatment efficacy. However, the role of FUT3 and FUT6 in augmenting the malignant potential of CRC induced by TGF-β is unclear. Methods: Colorectal cancer cell lines were transfected with siRNAs for FUT3/6 and were examined by cell proliferation, invasion and migration assays. The expression and phosphorylation status of TGF-β downstream molecules were analysed by western blot. Fucosylation of TGF-β receptor (TβR) was examined by lectin blot analysis. Results: Inhibition of FUT3/6 expression by siRNAs suppressed the fucosylation of type I TβR and phosphorylation of the downstream molecules, thereby inhibiting the invasion and migration of CRC cells by EMT. Conclusion: Fucosyltransferase 3/6 has an essential role in cancer cell adhesion to endothelial cells by upregulation of sialyl Lewis antigens and also by enhancement of cancer cell migration through TGF-β-mediated EMT.
Collapse
|
369
|
|
370
|
Johnson JR, Nishioka M, Chakir J, Risse PA, Almaghlouth I, Bazarbashi AN, Plante S, Martin JG, Eidelman D, Hamid Q. IL-22 contributes to TGF-β1-mediated epithelial-mesenchymal transition in asthmatic bronchial epithelial cells. Respir Res 2013; 14:118. [PMID: 24283210 PMCID: PMC4176096 DOI: 10.1186/1465-9921-14-118] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Allergic asthma is characterized by airway inflammation in response to antigen exposure, leading to airway remodeling and lung dysfunction. Epithelial-mesenchymal transition (EMT) may play a role in airway remodeling through the acquisition of a mesenchymal phenotype in airway epithelial cells. TGF-β1 is known to promote EMT; however, other cytokines expressed in severe asthma with extensive remodeling, such as IL-22, may also contribute to this process. In this study, we evaluated the contribution of IL-22 to EMT in primary bronchial epithelial cells from healthy and asthmatic subjects. METHODS Primary bronchial epithelial cells were isolated from healthy subjects, mild asthmatics and severe asthmatics (n=5 patients per group). The mRNA and protein expression of epithelial and mesenchymal cell markers and EMT-associated transcription factors was evaluated following stimulation with TGF-β1, IL-22 and TGF-β1+IL-22. RESULTS Primary bronchial epithelial cells stimulated with TGF-β1 underwent EMT, demonstrated by decreased expression of epithelial markers (E-cadherin and MUC5AC) and increased expression of mesenchymal markers (N-cadherin and vimentin) and EMT-associated transcription factors. IL-22 alone had no effect on epithelial or mesenchymal gene expression. However, IL-22+TGF-β1 promoted the expression of some EMT transcription factors (Snail1 and Zeb1) and led to a more profound cadherin shift, but only in cells obtained from severe asthmatics. CONCLUSION The impact of IL-22 on airway epithelial cells depends on the cytokine milieu and the clinical phenotype of the patient. Further studies are required to determine the molecular mechanism of IL-22 and TGF-β1 cooperativity in driving EMT in primary human bronchial epithelial cells.
Collapse
Affiliation(s)
- Jill R Johnson
- Meakins-Christie Laboratories, McGill University, 3626 St. Urbain Street, Montréal, QC H2X 2P2, Canada
| | - Michiyoshi Nishioka
- Meakins-Christie Laboratories, McGill University, 3626 St. Urbain Street, Montréal, QC H2X 2P2, Canada
| | - Jamila Chakir
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Paul-André Risse
- Meakins-Christie Laboratories, McGill University, 3626 St. Urbain Street, Montréal, QC H2X 2P2, Canada
| | - Ibrahim Almaghlouth
- Meakins-Christie Laboratories, McGill University, 3626 St. Urbain Street, Montréal, QC H2X 2P2, Canada
| | - Ahmad N Bazarbashi
- Meakins-Christie Laboratories, McGill University, 3626 St. Urbain Street, Montréal, QC H2X 2P2, Canada
| | - Sophie Plante
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - James G Martin
- Meakins-Christie Laboratories, McGill University, 3626 St. Urbain Street, Montréal, QC H2X 2P2, Canada
| | - David Eidelman
- Meakins-Christie Laboratories, McGill University, 3626 St. Urbain Street, Montréal, QC H2X 2P2, Canada
| | - Qutayba Hamid
- Meakins-Christie Laboratories, McGill University, 3626 St. Urbain Street, Montréal, QC H2X 2P2, Canada
| |
Collapse
|
371
|
Garg M. Epithelial-mesenchymal transition - activating transcription factors - multifunctional regulators in cancer. World J Stem Cells 2013; 5:188-195. [PMID: 24179606 PMCID: PMC3812522 DOI: 10.4252/wjsc.v5.i4.188] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/06/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023] Open
Abstract
The process of epithelial to mesenchymal transition (EMT), first noted during embryogenesis, has also been reported in tumor formation and leads to the development of metastatic growth. It is a naturally occurring process that drives the transformation of adhesive, non-mobile epithelial like cells into mobile cells with a mesenchymal phenotype that have ability to migrate to distant anatomical sites. Activating complex network of embryonic signaling pathways, including Wnt, Notch, hedgehog and transforming growth factor-β pathways, lead to the upregulation of EMT activating transcription factors, crucial for normal tissue development and maintenance. However, deregulation of tightly regulated pathways affecting the process of EMT has been recently investigated in various human cancers. Given the critical role of EMT in metastatic tumor formation, better understanding of the mechanistic regulation provides new opportunities for the development of potential therapeutic targets of clinical importance.
Collapse
|
372
|
Kalita M, Tian B, Gao B, Choudhary S, Wood TG, Carmical JR, Boldogh I, Mitra S, Minna JD, Brasier AR. Systems approaches to modeling chronic mucosal inflammation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:505864. [PMID: 24228254 PMCID: PMC3818818 DOI: 10.1155/2013/505864] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 12/27/2022]
Abstract
The respiratory mucosa is a major coordinator of the inflammatory response in chronic airway diseases, including asthma and chronic obstructive pulmonary disease (COPD). Signals produced by the chronic inflammatory process induce epithelial mesenchymal transition (EMT) that dramatically alters the epithelial cell phenotype. The effects of EMT on epigenetic reprogramming and the activation of transcriptional networks are known, its effects on the innate inflammatory response are underexplored. We used a multiplex gene expression profiling platform to investigate the perturbations of the innate pathways induced by TGF β in a primary airway epithelial cell model of EMT. EMT had dramatic effects on the induction of the innate pathway and the coupling interval of the canonical and noncanonical NF- κ B pathways. Simulation experiments demonstrate that rapid, coordinated cap-independent translation of TRAF-1 and NF- κ B2 is required to reduce the noncanonical pathway coupling interval. Experiments using amantadine confirmed the prediction that TRAF-1 and NF- κ B2/p100 production is mediated by an IRES-dependent mechanism. These data indicate that the epigenetic changes produced by EMT induce dynamic state changes of the innate signaling pathway. Further applications of systems approaches will provide understanding of this complex phenotype through deterministic modeling and multidimensional (genomic and proteomic) profiling.
Collapse
Affiliation(s)
- Mridul Kalita
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Bing Tian
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, Department of Internal Medicine Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sanjeev Choudhary
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Thomas G. Wood
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Departments of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Joseph R. Carmical
- Departments of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Microbiology and Immunology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Sankar Mitra
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Departments of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Department of Internal Medicine Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Allan R. Brasier
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
373
|
Conidi A, van den Berghe V, Leslie K, Stryjewska A, Xue H, Chen YG, Seuntjens E, Huylebroeck D. Four amino acids within a tandem QxVx repeat in a predicted extended α-helix of the Smad-binding domain of Sip1 are necessary for binding to activated Smad proteins. PLoS One 2013; 8:e76733. [PMID: 24146916 PMCID: PMC3795639 DOI: 10.1371/journal.pone.0076733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 08/28/2013] [Indexed: 12/20/2022] Open
Abstract
The zinc finger transcription factor Smad-interacting protein-1 (Sip1; Zeb2, Zfhx1b) plays an important role during vertebrate embryogenesis in various tissues and differentiating cell types, and during tumorigenesis. Previous biochemical analysis suggests that interactions with several partner proteins, including TGFβ family receptor-activated Smads, regulate the activities of Sip1 in the nucleus both as a DNA-binding transcriptional repressor and activator. Using a peptide aptamer approach we mapped in Sip1 its Smad-binding domain (SBD), initially defined as a segment of 51 amino acids, to a shorter stretch of 14 amino acids within this SBD. Modelling suggests that this short SBD stretch is part of an extended α-helix that may fit the binding to a hydrophobic corridor within the MH2 domain of activated Smads. Four amino acids (two polar Q residues and two non-polar V residues) that form the tandem repeat (QxVx)2 in this 14-residue stretch were found to be crucial for binding to both TGFβ/Nodal/Activin-Smads and BMP-Smads. A full-length Sip1 with collective mutation of these Q and V residues (to A) no longer binds to Smads, while it retains its binding activity to its cognate bipartite target DNA sequence. This missense mutant Sip1(AxAx)2 provides a new molecular tool to identify SBD (in)dependent target genes in Sip1-controlled TGFβ and/or BMP (de)regulated cellular, developmental and pathological processes.
Collapse
Affiliation(s)
- Andrea Conidi
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Veronique van den Berghe
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kris Leslie
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Agata Stryjewska
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hua Xue
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Beijing Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Beijing Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Eve Seuntjens
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
374
|
Ju SY, Chiou SH, Su Y. Maintenance of the stemness in CD44(+) HCT-15 and HCT-116 human colon cancer cells requires miR-203 suppression. Stem Cell Res 2013; 12:86-100. [PMID: 24145190 DOI: 10.1016/j.scr.2013.09.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/21/2013] [Accepted: 09/23/2013] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to isolate cancer stem cells (CSCs, also called tumor-initiating cells, TICs) from established human colorectal carcinoma (CRC) cell lines, characterize them extensively and dissect the mechanism for their stemness. Freshly isolated CD44(+) and CD44(-) cells from the HCT-15 human colon cancer cell line were subjected to various analyses. Interestingly, CD44(+) cells exhibited higher soft agar colony-forming ability and in vivo tumorigenicity than CD44(-) cells. In addition, the significant upregulation of the protein Snail and the downregulation of miR-203, a stemness inhibitor, in CD44(+) cells suggested that this population possessed higher invasion/metastasis and differentiation potential than CD44(-) cells. By manipulating the expression of CD44 in HCT-15 and HCT-116 cells, we found that the levels of several EMT activators and miR-203 were positively and negatively correlated with those of CD44, respectively. Further analyses revealed that miR-203 levels were repressed by Snail, which was shown to bind to specific E-box(es) present in the miR-203 promoter. In agreement, silencing miR-203 expression in wild-type HCT-116 human colon cancer cells also resulted in an increase of their stemness. Finally, we discovered that c-Src kinase activity was required for the downregulation of miR-203 in HCT-15 cells, which was stimulated by the interaction between hyaluronan (HA) and CD44. Taken together, CD44 is a critical molecule for modulating stemness in CSCs. More importantly, we show for the first time that the downregulation of miR-203 by HA/CD44 signaling is the main reason for stemness-maintenance in colon cancer cells.
Collapse
Affiliation(s)
- Sy-Yeuan Ju
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang-Ming University, Taiwan; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yeu Su
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taiwan.
| |
Collapse
|
375
|
Kang GY, Pyun BJ, Seo HR, Jin YB, Lee HJ, Lee YJ, Lee YS. Inhibition of Snail1-DNA-PKcs protein-protein interface sensitizes cancer cells and inhibits tumor metastasis. J Biol Chem 2013; 288:32506-32516. [PMID: 24085291 DOI: 10.1074/jbc.m113.479840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our previous study suggested that the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) interacts with Snail1, which affects genomic instability, sensitivity to DNA-damaging agents, and migration of tumor cells by reciprocal regulation between DNA-PKcs and Snail1. Here, we further investigate that a peptide containing 7-amino acid sequences (amino acids 15-21) of Snail1 (KPNYSEL, SP) inhibits the endogenous interaction between DNA-PKcs and Snail1 through primary interaction with DNA-PKcs. SP restored the inhibited DNA-PKcs repair activity and downstream pathways. On the other hand, DNA-PKcs-mediated phosphorylation of Snail1 was inhibited by SP, which resulted in decreased Snail1 stability and Snail1 functions. However, these phenomena were only shown in p53 wild-type cells, not in p53-defective cells. From these results, it is suggested that interfering with the protein interaction between DNA-PKcs and Snail1 might be an effective strategy for sensitizing cancer cells and inhibiting tumor migration, especially in both Snail1-overexpressing and DNA-PKcs-overexpressing cancer cells with functional p53.
Collapse
Affiliation(s)
- Ga-Young Kang
- From the College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750
| | - Bo-Jeong Pyun
- From the College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750
| | - Haeng Ran Seo
- the Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Yeung Bae Jin
- the Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup-si, Jeollabuk-do 580-185, Korea
| | - Hae-June Lee
- the Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Yoon-Jin Lee
- the Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Yun-Sil Lee
- From the College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750,.
| |
Collapse
|
376
|
Li J, Weinberg MS, Zerbini L, Prince S. The oncogenic TBX3 is a downstream target and mediator of the TGF-β1 signaling pathway. Mol Biol Cell 2013; 24:3569-76. [PMID: 24025717 PMCID: PMC3826994 DOI: 10.1091/mbc.e13-05-0273] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The T-box transcription factor, TBX3, plays an important role in embryonic development, and haploinsufficiency of TBX3 causes ulnar-mammary syndrome. Overexpression of TBX3, on the other hand, is associated with several cancers, and preliminary evidence suggests that increased levels of TBX3 may inhibit cell proliferation but promote tumor migration and invasion. Although this suggests that deregulated levels of TBX3 are deleterious in development and promotes disease, very little is known about the signaling pathways that regulate TBX3 expression. Here we show that overexpressing TBX3 inhibits proliferative ability while promoting the migration of breast epithelial cells. We demonstrate that the transforming growth factor β1 (TGF-β1) pathway up-regulates TBX3 protein and mRNA levels and show a detailed transcriptional mechanism by which this occurs. Using in vitro and in vivo assays, we show that Smad3/4 and JunB bind and cooperatively regulate TBX3 promoter activity through a Smad-binding element at -67 base pairs. Further, we show that TBX3 plays a pivotal role in mediating the antiproliferative and promigratory role of TGF-β1 in breast epithelial and skin keratinocytes. This study identifies the TGF-β1 signaling pathway as a potentially important player in the regulation of TBX3 in development and cancer.
Collapse
Affiliation(s)
- Jarod Li
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa International Centre for Genetic Engineering and Biotechnology and Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Parktown 2193, South Africa
| | | | | | | |
Collapse
|
377
|
Scherbakov AM, Stefanova LB, Sorokin DV, Semina SE, Berstein LM, Krasil'nikov MA. Snail/beta-catenin signaling protects breast cancer cells from hypoxia attack. Exp Cell Res 2013; 319:3150-9. [PMID: 23973669 DOI: 10.1016/j.yexcr.2013.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/18/2013] [Accepted: 08/10/2013] [Indexed: 01/12/2023]
Abstract
The tolerance of cancer cells to hypoxia depends on the combination of different factors--from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial-mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ from estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O2 atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK - the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as well the level of AMPK phosphorylation may be considered as predictors of the tumor sensitivity to anti-angiogenic drugs.
Collapse
Affiliation(s)
- Alexander M Scherbakov
- Laboratory of Clinical Biochemistry, Institute of Clinical Oncology, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478, Russia.
| | | | | | | | | | | |
Collapse
|
378
|
Elamin E, Masclee A, Troost F, Dekker J, Jonkers D. Activation of the epithelial-to-mesenchymal transition factor snail mediates acetaldehyde-induced intestinal epithelial barrier disruption. Alcohol Clin Exp Res 2013; 38:344-53. [PMID: 24033729 DOI: 10.1111/acer.12234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/20/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Acetaldehyde (AcH) is mutagenic and can reach high concentrations in colonic lumen after ethanol consumption and is associated with intestinal barrier dysfunction and an increased risk of progressive cancers, including colorectal carcinoma. Snail, the transcription factor of epithelial-mesenchymal transition, is known to down-regulate expression of tight junction (TJ) and adherens junction (AJ) proteins, resulting in loss of epithelial integrity, cancer progression, and metastases. As AcH is mutagenic, the role of Snail in the AcH-induced disruption of intestinal epithelial TJs deserves further investigation. Our aim was to investigate the role of oxidative stress and Snail activation in AcH-induced barrier disruption in Caco-2 monolayers. METHODS The monolayers were exposed from the apical side to AcH ± L-cysteine. Reactive oxygen species (ROS) generation and Snail activation were assessed by ELISA and immunofluorescence. Paracellular permeability, localization, and expression of ZO-1, occludin, E-cadherin, and β-catenin were examined using transepithelial electrical resistance (TEER), fluorescein isothiocyanate-labeled dextran 4 kDa (FITC-D4), immunofluorescence, and ELISA, respectively. Involvement of Snail was further addressed by inhibiting Snail using small interfering RNA (siRNA). RESULTS Exposure to 25 μM AcH increased ROS generation and ROS-dependently induced Snail phosphorylation. In addition, AcH increased paracellular permeability (decrease in TEER and increase in FITC-D4 permeation) in association with redistribution and decrease of TJ and AJ protein levels, which could be attenuated by L-cysteine. Knockdown of Snail by siRNA attenuated the AcH-induced redistribution and decrease in the TJ and AJ proteins, in association with improvement of the barrier function. CONCLUSIONS Our data demonstrate that oxidative stress-mediated Snail phosphorylation is likely a novel mechanism contributing to the deleterious effects of AcH on the TJ and AJ, and intestinal barrier function.
Collapse
Affiliation(s)
- Elhaseen Elamin
- Top Institute Food and Nutrition (TIFN) , Wageningen, the Netherlands; Division of Gastroenterology and Hepatology , Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Nutrition, Toxicology and Metabolism , Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
379
|
Johansson J, Berg T, Kurzejamska E, Pang MF, Tabor V, Jansson M, Roswall P, Pietras K, Sund M, Religa P, Fuxe J. MiR-155-mediated loss of C/EBPβ shifts the TGF-β response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene 2013; 32:5614-24. [PMID: 23955085 PMCID: PMC3898103 DOI: 10.1038/onc.2013.322] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/01/2013] [Accepted: 06/24/2013] [Indexed: 12/19/2022]
Abstract
During breast cancer progression, transforming growth factor-beta (TGF-β) switches from acting as a growth inhibitor to become a major promoter of epithelial-mesenchymal transition (EMT), invasion and metastasis. However, the mechanisms involved in this switch are not clear. We found that loss of CCAAT-enhancer binding protein beta (C/EBPβ), a differentiation factor for the mammary epithelium, was associated with signs of EMT in triple-negative human breast cancer, and in invasive areas of mammary tumors in MMTV-PyMT mice. Using an established model of TGF-β-induced EMT in mouse mammary gland epithelial cells, we discovered that C/EBPβ was repressed during EMT by miR-155, an oncomiR in breast cancer. Depletion of C/EBPβ potentiated the TGF-β response towards EMT, and contributed to evasion of the growth inhibitory response to TGF-β. Furthermore, loss of C/EBPβ enhanced invasion and metastatic dissemination of the mouse mammary tumor cells to the lungs after subcutaneous injection into mice. The mechanism by which loss of C/EBPβ promoted the TGF-β response towards EMT, invasion and metastasis, was traced to a previously uncharacterized role of C/EBPβ as a transcriptional activator of genes encoding the epithelial junction proteins E-cadherin and coxsackie virus and adenovirus receptor. The results identify miR-155-mediated loss of C/EBPβ as a mechanism, which promotes breast cancer progression by shifting the TGF-β response from growth inhibition to EMT, invasion and metastasis.
Collapse
Affiliation(s)
- J Johansson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - T Berg
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - E Kurzejamska
- 1] Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden [2] Department of Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - M-F Pang
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - V Tabor
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - M Jansson
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - P Roswall
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - K Pietras
- 1] Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden [2] Department of Laboratory Medicine Malmö, Lund University Cancer Center, Lund University, Malmö, Sweden
| | - M Sund
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - P Religa
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - J Fuxe
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
380
|
Tang M, Shen H, Jin Y, Lin T, Cai Q, Pinard MA, Biswas S, Tran Q, Li G, Shenoy AK, Tongdee E, Lin S, Gu Y, Law BK, Zhou L, Mckenna R, Wu L, Lu J. The malignant brain tumor (MBT) domain protein SFMBT1 is an integral histone reader subunit of the LSD1 demethylase complex for chromatin association and epithelial-to-mesenchymal transition. J Biol Chem 2013; 288:27680-27691. [PMID: 23928305 DOI: 10.1074/jbc.m113.482349] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin readers decipher the functional readouts of histone modifications by recruiting specific effector complexes for subsequent epigenetic reprogramming. The LSD1 (also known as KDM1A) histone demethylase complex modifies chromatin and represses transcription in part by catalyzing demethylation of dimethylated histone H3 lysine 4 (H3K4me2), a mark for active transcription. However, none of its currently known subunits recognizes methylated histones. The Snai1 family transcription factors are central drivers of epithelial-to-mesenchymal transition (EMT) by which epithelial cells acquire enhanced invasiveness. Snai1-mediated transcriptional repression of epithelial genes depends on its recruitment of the LSD1 complex and ensuing demethylation of H3K4me2 at its target genes. Through biochemical purification, we identified the MBT domain-containing protein SFMBT1 as a novel component of the LSD1 complex associated with Snai1. Unlike other mammalian MBT domain proteins characterized to date that selectively recognize mono- and dimethylated lysines, SFMBT1 binds di- and trimethyl H3K4, both of which are enriched at active promoters. We show that SFMBT1 is essential for Snai1-dependent recruitment of LSD1 to chromatin, demethylation of H3K4me2, transcriptional repression of epithelial markers, and induction of EMT by TGFβ. Carcinogenic metal nickel is a widespread environmental and occupational pollutant. Nickel alters gene expression and induces EMT. We demonstrate the nickel-initiated effects are dependent on LSD1-SFMBT1-mediated chromatin modification. Furthermore, in human cancer, expression of SFMBT1 is associated with mesenchymal markers and unfavorable prognosis. These results highlight a critical role of SFMBT1 in epigenetic regulation, EMT, and cancer.
Collapse
Affiliation(s)
- Ming Tang
- Department of Biochemistry and Molecular Biology; Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida 32610
| | - Huangxuan Shen
- Department of Molecular Genetics and Microbiology; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Yue Jin
- Department of Biochemistry and Molecular Biology
| | - Tong Lin
- Department of Biochemistry and Molecular Biology; Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida 32610
| | - Qingsong Cai
- Department of Biochemistry and Molecular Biology
| | | | | | - Quyen Tran
- Agnes Scott College, Decatur, Georgia 30030
| | - Guangyao Li
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida 32610; Department of Molecular Genetics and Microbiology
| | | | | | - Shuibin Lin
- Department of Molecular Genetics and Microbiology
| | - Yumei Gu
- Department of Molecular Genetics and Microbiology
| | - Brian K Law
- Department of Pharmacology and Therapeutics, Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Lei Zhou
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida 32610; Department of Molecular Genetics and Microbiology
| | | | - Lizi Wu
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida 32610; Department of Molecular Genetics and Microbiology.
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology; Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida 32610.
| |
Collapse
|
381
|
Liu X, Ma Y, Zhang C, Wei S, Cao Y, Wang Q. Nodal promotes mir206 expression to control convergence and extension movements during zebrafish gastrulation. J Genet Genomics 2013; 40:515-21. [PMID: 24156917 DOI: 10.1016/j.jgg.2013.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/15/2013] [Accepted: 07/22/2013] [Indexed: 11/25/2022]
Abstract
Nodal, a member of the transforming growth factor β (TGF-β) superfamily, has been shown to play a role in mesendoderm induction and gastrulation movements. The activity of Nodal signaling can be modulated by microRNAs (miRNAs) as previously reported, but little is known about which miRNAs are regulated by Nodal during gastrulation. In the present study, we found that the expression of mir206, one of the most abundant miRNAs during zebrafish early embryo development, is regulated by Nodal signaling. Abrogation of Nodal signal activity results in defective convergence and extension (CE) movements, and these cell migration defects can be rescued by supplying an excess of mir206, suggesting that mir206 acts downstream of Nodal signaling to regulate CE movements. Furthermore, in mir206 morphants, the expression of cell adhesion molecule E-cadherin is significantly increased, while the key transcriptional repressor of E-cadherin, snail1a, is depressed. Our study uncovers a novel mechanism by which Nodal-regulated mir206 modulates gastrulation movements in connection with the Snail/E-cadherin pathway.
Collapse
Affiliation(s)
- Xiuli Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
382
|
Liang X, Zhang XH, Han BC, Lei W, Qi QR, Wang TS, Gu XW, Yang ZM. Progesterone and heparin-binding epidermal growth factor-like growth factor regulate the expression of tight junction protein Claudin-3 during early pregnancy. Fertil Steril 2013; 100:1410-8. [PMID: 23909989 DOI: 10.1016/j.fertnstert.2013.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine Claudin-3 expression and its regulatory factors during embryo implantation. DESIGN Experimental mouse models and cell culture. SETTING University research laboratory. ANIMAL(S) Sexually mature female CD-1 strain mice. INTERVENTION(S) Ovariectomy and treatments. MAIN OUTCOME MEASURE(S) In situ hybridization and immunohistochemistry for detecting Claudin-3 messenger RNA and protein expression in mouse uterus, respectively; Western blot for detecting protein levels; immunofluorescence for detecting Claudin-3 protein in cultured cells. RESULT(S) Claudin-3 is strongly expressed in the uterine luminal epithelium on days 3 and 4 of pregnancy, and diminished at day 5 implantation sites. Then it is expressed at secondary decidual zone on day 8. Pseudopregnant uteri have a similar expression pattern as pregnant uteri from days 1-5. Claudin-3 expression is down-regulated after delayed implantation is activated by estrogen (E) treatment. Meanwhile Claudin-3 expression is stimulated by artificial decidualization. In ovariectomized mice, P induces Claudin-3 expression in the luminal epithelium, which is abrogated by P receptor antagonist RU486. Heparin-binding-epidermal growth factor (HB-EGF) down-regulates Claudin-3 expression, but enhances transcription factor Snail expression. In human endometrial epithelial ECC-1 cells, both E and P could stimulate Claudin-3 expression, whereas HB-EGF decreases Claudin-3 and increases Snail expression. CONCLUSION(S) Claudin-3 expression in uterine luminal epithelium is stimulated by P and suppressed by HB-EGF in mice and humans.
Collapse
Affiliation(s)
- Xuan Liang
- Department of Biology, Shantou University, Shantou, People's Republic of China; School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
383
|
Id2 complexes with the SNAG domain of Snai1 inhibiting Snai1-mediated repression of integrin β4. Mol Cell Biol 2013; 33:3795-804. [PMID: 23878399 DOI: 10.1128/mcb.00434-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a fundamental process that underlies development and cancer. Although the EMT involves alterations in the expression of specific integrins that mediate stable adhesion to the basement membrane, such as α6β4, the mechanisms involved are poorly understood. Here, we report that Snai1 inhibits β4 transcription by increasing repressive histone modification (trimethylation of histone H3 at K27 [H3K27Me3]). Surprisingly, Snai1 is expressed and localized in the nucleus in epithelial cells, but it does not repress β4. We resolved this paradox by discovering that Id2 complexes with the SNAG domain of Snai1 on the β4 promoter and constrains the repressive function of Snai1. Disruption of the complex by depleting Id2 resulted in Snai1-mediated β4 repression with a concomitant increase in H3K27Me3 modification on the β4 promoter. These findings establish a novel function for Id2 in regulating Snai1 that has significant implications for the regulation of epithelial gene expression.
Collapse
|
384
|
Cancer stem cells, epithelial-mesenchymal transition, and drug resistance in high-grade ovarian serous carcinoma. Hum Pathol 2013; 44:2373-84. [PMID: 23850493 DOI: 10.1016/j.humpath.2013.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 02/06/2023]
Abstract
Although epithelial ovarian cancer cells are eliminated by debulking surgery and chemotherapy during initial treatment, it is believed that only a subset of cancer cells, that is, cancer stem cells, may be an important source of tumor recurrence and drug resistance. This review highlights our current understanding of high-grade serous carcinoma, ovarian cancer stem cells, common methods for enrichment of ovarian cancer stem cells, mechanisms involved in drug resistance, and potential strategies for overcoming drug resistance, with associated potential controversies and pitfalls. We also review the potential relationship between epithelial-to-mesenchymal transition and cancer stem cells and how we can induce cancer cells to differentiate into benign stromal fibroblasts in response to certain chemotherapy drugs.
Collapse
|
385
|
Sun L, Li H, Chen J, Iwasaki Y, Kubota T, Matsuoka M, Shen A, Chen Q, Xu Y. PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells. J Cell Sci 2013; 126:3939-47. [PMID: 23843607 DOI: 10.1242/jcs.127381] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has an essential role in organogenesis and contributes to a host of pathologies, including carcinogenesis. Hypoxia (low oxygen supply) aids tumor metastasis in part by promoting EMT in cancer cells. The underlying mechanism whereby hypoxia orchestrates EMT remains poorly defined. Here we report that SIRT1, a multifaceted player in tumorigenesis, opposed ovarian cancer metastasis in vitro and in vivo by impeding EMT. Hypoxic stress downregulated the expression of SIRT1, primarily at the transcriptional level, by reducing the occupancy of the transcriptional activator Sp1 on the proximal promoter of the SIRT1 gene in a SUMOylation-dependent manner. Further analysis revealed that the SUMO E3 ligase PIASy (also known as PIAS4) was induced by hypoxia and prevented Sp1 from binding to the SIRT1 promoter. Conversely, knockdown of PIASy by small interfering RNA (siRNA) restored Sp1 binding and SIRT1 expression in cancer cells challenged with hypobaric hypoxia, reversed cancer cell EMT, and attenuated metastasis in vivo in nude mice. Importantly, analysis of human ovarian tumor specimens indicated that PIASy expression was positively, whereas SIRT1 expression was inversely, correlated with cancer aggressiveness. In summary, our work has identified a new pathway that links downregulation of SIRT1 to hypoxia-induced EMT in ovarian cancer cells and, as such, sheds light on the development of novel anti-tumor therapeutics.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Reproductive Medicine, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Rd, Nanjing 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Dysregulation of PAD4-mediated citrullination of nuclear GSK3β activates TGF-β signaling and induces epithelial-to-mesenchymal transition in breast cancer cells. Proc Natl Acad Sci U S A 2013; 110:11851-6. [PMID: 23818587 DOI: 10.1073/pnas.1308362110] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptidylarginine deiminase 4 (PAD4) is a Ca(2+)-dependent enzyme that converts arginine and methylarginine residues to citrulline, with histone proteins being among its best-described substrates to date. However, the biological function of this posttranslational modification, either in histones or in nonhistone proteins, is poorly understood. Here, we show that PAD4 recognizes, binds, and citrullinates glycogen synthase kinase-3β (GSK3β), both in vitro and in vivo. Among other functions, GSK3β is a key regulator of transcription factors involved in tumor progression, and its dysregulation has been associated with progression of human cancers. We demonstrate that silencing of PAD4 in breast cancer cells leads to a striking reduction of nuclear GSK3β protein levels, increased TGF-β signaling, induction of epithelial-to-mesenchymal transition, and production of more invasive tumors in xenograft assays. Moreover, in breast cancer patients, reduction of PAD4 and nuclear GSK3β is associated with increased tumor invasiveness. We propose that PAD4-mediated citrullination of GSK3β is a unique posttranslational modification that regulates its nuclear localization and thereby plays a critical role in maintaining an epithelial phenotype. We demonstrate a dynamic and previously unappreciated interplay between histone-modifying enzymes, citrullination of nonhistone proteins, and epithelial-to-mesenchymal transition.
Collapse
|
387
|
Giarnieri E, De Vitis C, Noto A, Roscilli G, Salerno G, Mariotta S, Ricci A, Bruno P, Russo G, Laurenzi A, Giovagnoli MR, Ciliberto G, Mancini R. EMT markers in lung adenocarcinoma pleural effusion spheroid cells. J Cell Physiol 2013; 228:1720-6. [PMID: 23255165 DOI: 10.1002/jcp.24300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/27/2012] [Indexed: 01/15/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process in which cells undergo a developmental switch from epithelial to mesenchymal phenotype. This process has been related to embryologic morphogenesis but also to cancer progression and metastasis. The aim of the current study was to investigate the expression of EMT-related markers in adherent and spheroid cell cultures derived from malignant pleural effusions (MPEs) of patients affected by lung adenocarcinoma. On the basis of efficient in vitro propagation, six cases of MPEs were selected and analyzed by immunocytochemistry staining for EMT markers and by RT-PCR for transcription factors known to orchestrate EMT. EMT markers immunostaining showed in spheroids a statistically significant correlation between the loss of E-cadherin immunoreactivity and overexpression of N-cadherin (P < 0.001). Likewise loss of EpCAM epithelial marker was coincident with Vimentin overexpression (P < 0.001). RT-PCR analysis of transcription factors Snail, Slug, and Twist showed a highly variable expression, although a general trend to increase was observed. Importantly, in some selected cases it was possible to establish a precise relationship between spheroid formation, EMT switch and increased upregulation of the marker related to cancer stemness such as ALDH positivity. Therefore, MPE-derived cell cultures, while recapitulating the heterogeneity of lung cancer, are a suitable system to study the mechanisms at the basis of EMT and to understand its relationship with the generation of cancer stem cells.
Collapse
Affiliation(s)
- Enrico Giarnieri
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza, S Andrea Hospital, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
388
|
Runkle EA, Mu D. Tight junction proteins: from barrier to tumorigenesis. Cancer Lett 2013; 337:41-8. [PMID: 23743355 DOI: 10.1016/j.canlet.2013.05.038] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/16/2013] [Accepted: 05/27/2013] [Indexed: 12/13/2022]
Abstract
The tight junction is a multi-protein complex and is the apical most junctional complex in certain epithelial and endothelial cells. A great deal of attention has been devoted to the understanding of these proteins in contributing to the barrier function - that is, regulating the paracellular flux or permeability between adjacent cells. However, tight junction proteins are now recognized as having functions beyond the barrier. The focus of this review is to discuss the barrier function of the tight junction and to summarize the literature with a focus on the role of tight junction proteins in proliferation, transformation, and metastasis.
Collapse
Affiliation(s)
- E Aaron Runkle
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
389
|
Li DM, Zhang J, Li WM, Cui JT, Pan YM, Liu SQ, Xing R, Lu YY. MAWBP and MAWD inhibit proliferation and invasion in gastric cancer. World J Gastroenterol 2013; 19:2781-92. [PMID: 23687415 PMCID: PMC3653152 DOI: 10.3748/wjg.v19.i18.2781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/27/2013] [Accepted: 04/10/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate role of putative mitogen-activated protein kinase activator with WD40 repeats (MAWD)/MAWD binding protein (MAWBP) in gastric cancer (GC). METHODS MAWBP and MAWD mRNA expression level was examined by real-time reverse transcriptase-polymerase chain reaction and semi-quantitative polymerase chain reaction in six GC cell lines. Western blotting was used to examine the protein expression levels. We developed GC cells that stably overexpressed MAWBP and MAWD, and downregulated expression by RNA interference assay. Proliferation and migration of these GC cells were analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT), soft agar, tumorigenicity, migration and transwell assays. The effect of expression of MAWBP and MAWD on transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) was examined by transfection of MAWBP and MAWD into GC cells. We detected the levels of EMT markers E-cadherin, N-cadherin and Snail in GC cells overexpressing MAWBP and MAWD by Western blotting. The effect of MAWBP and MAWD on TGF-β signal was detected by analysis of phosphorylation level and nuclear translocation of Smad3 using Western blotting and immunofluorescence. RESULTS Among the GC cell lines, expression of endogenous MAWBP and MAWD was lowest in SGC7901 cells and highest in BGC823 cells. MAWBP and MAWD were stably overexpressed in SGC7901 cells and knocked down in BGC823 cells. MAWBP and MAWD inhibited GC cell proliferation in vitro and in vivo. MTT assay showed that overexpression of MAWBP and MAWD suppressed growth of SGC7901 cells (P < 0.001), while knockdown of these genes promoted growth of BGC823 cells (P < 0.001). Soft agar colony formation experiments showed that overexpression of MAWBP and MAWD alone or together reduced colony formation compared with vector group in SGC7901 (86.25 ± 8.43, 12.75 ± 4.49, 30 ± 6.41 vs 336.75 ± 22.55, P < 0.001), and knocked-down MAWBP and MAWD demonstrated opposite effects (131.25 ± 16.54, 88.75 ± 11.12, 341.75 ± 22.23 vs 30.25 ± 8.07, P < 0.001). Tumorigenicity experiments revealed that overexpressed MAWBP and MAWD inhibited GC cell proliferation in vivo (P < 0.001). MAWBP and MAWD also inhibited GC cell invasion. Transwell assay showed that the number of traverse cells of MAWBP, MAWD and coexpression group were more than that in vector group (84 ± 16.57, 98.33 ± 9.8, 29 ± 16.39 vs 298 ± 11.86, P < 0.001). Coexpression of MAWBP and MAWD significantly decreased the cells traversing the matrix membrane. Conversely, knocked-down MAWBP and MAWD correspondingly promoted invasion of GC cells (100.67 ± 14.57, 72.66 ± 8.51, 330.67 ± 20.55 vs 27 ± 11.53, P < 0.001). More importantly, coexpression of MAWBP and MAWD promoted EMT. Cells that coexpressed MAWBP and MAWD displayed a pebble-like shape and tight cell-cell adhesion, while vector cells showed a classical mesenchymal phenotype. Western blotting showed that expression of E-cadherin was increased, and expression of N-cadherin and Snail was decreased when cells coexpressed MAWBP and MAWD and were treated with TGF-β1. Nuclear translocation of p-Smad3 was reduced by attenuating its phosphorylation. CONCLUSION Coexpression of MAWBP and MAWD inhibited EMT, and EMT-aided malignant cell progression was suppressed.
Collapse
|
390
|
Abstract
PURPOSE OF REVIEW TGF-β acts as a potent driver of cancer progression through the induction of epithelial-mesenchymal transition (EMT), in which epithelial cells acquire mesenchymal phenotype, leading to enhanced motility and invasion. Recent reports highlight the fundamental roles of TGF-β-induced EMT in multiple aspects of cancer progression. In this review, we focus on the novel insights into the roles of TGF-β-induced EMT in cancer progression and the underlying mechanisms that enable TGF-β to activate this epithelial plasticity response at transcription, translation, and posttranslational levels. RECENT FINDINGS Smad-mediated transcription regulation is known to activate TGF-β-induced EMT. More recently, novel mechanisms of epigenetic control, alternative splicing, miRNAs, translation control, and posttranslational modifications have been shown to play key roles in the control of EMT. In addition to initiating carcinoma cell invasion, TGF-β-induced EMT can guide cancer cells to de-differentiate and gain cancer stem-cell-like properties. EMT also allows the generation of stromal cells that support and instruct cancer progression. SUMMARY The differentiation plasticity of epithelial cells that mediates TGF-β-induced EMT and reversion from mesenchymal to epithelial phenotype are increasingly seen as integral aspects of cancer progression that contribute to survival and dissemination of cancer cells. Further mechanistic insights under physiological conditions may lead to new therapeutic or prognostic strategies in cancer treatment.
Collapse
|
391
|
Naber HPH, Drabsch Y, Snaar-Jagalska BE, ten Dijke P, van Laar T. Snail and Slug, key regulators of TGF-β-induced EMT, are sufficient for the induction of single-cell invasion. Biochem Biophys Res Commun 2013; 435:58-63. [PMID: 23618854 DOI: 10.1016/j.bbrc.2013.04.037] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 11/24/2022]
Abstract
TGF-β plays a dual role in cancer; in early stages it inhibits tumor growth, whereas later it promotes invasion and metastasis. TGF-β is thought to be pro-invasive by inducing epithelial-to-mesenchymal transition (EMT) via induction of transcriptional repressors, including Slug and Snail. In this study, we investigated the role of Snail and Slug in TGF-β-induced invasion in an in vitro invasion assay and in an embryonic zebrafish xenograft model. Ectopic expression of Slug or Snail promoted invasion of single, rounded amoeboid cells in vitro. In an embryonic zebrafish xenograft model, forced expression of Slug and Snail promoted single cell invasion and metastasis. Slug and Snail are sufficient for the induction of single-cell invasion in an in vitro invasion assay and in an embryonic zebrafish xenograft model.
Collapse
Affiliation(s)
- Hildegonda P H Naber
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
392
|
Caffeic Acid phenethyl ester inhibits epithelial-mesenchymal transition of human pancreatic cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:270906. [PMID: 23662124 PMCID: PMC3638595 DOI: 10.1155/2013/270906] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/05/2013] [Indexed: 12/17/2022]
Abstract
Background. This study aimed to investigate the effect of propolis component caffeic acid phenethyl ester (CAPE) on epithelial-mesenchymal transition (EMT) of human pancreatic cancer cells and the molecular mechanisms underlying these effects. Methods. The transforming growth factor β (TGF-β-) induced EMT in human pancreatic PANC-1 cancer cells was characterized by observation of morphology and the expression of E-cadherin and vimentin by western blotting. The migration potential was estimated with wound closure assay. The expression of transcriptional factors was measured by quantitative RT-PCR and immunocytochemistry staining. The orthotopic pancreatic cancer xenograft model was used for in vivo assessment. Results. The overexpression of vimentin was attenuated by CAPE, and the alteration in morphology from polygonal to spindle shape was partially reversed by CAPE. Furthermore, CAPE delayed the TGF-β-stimulated migration potential. CAPE treatment did not reduce the expression levels of Smad 2/3, Snail 1, and Zeb 1 but inhibited the expression of transcriptional factor Twist 2. By using an orthotopic pancreatic cancer model, CAPE suppressed the expression of Twist 2 and growth of PANC-1 xenografts without significant toxicity. Conclusion. CAPE could inhibit the orthotopic growth and EMT of pancreatic cancer PANC-1 cells accompanied by downregulation of vimentin and Twist 2 expression.
Collapse
|
393
|
Abstract
Claudins are tight junction membrane proteins that are expressed in epithelia and endothelia and form paracellular barriers and pores that determine tight junction permeability. This review summarizes our current knowledge of this large protein family and discusses recent advances in our understanding of their structure and physiological functions.
Collapse
Affiliation(s)
- Dorothee Günzel
- Department of Clinical Physiology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
394
|
Vincentz JW, Firulli BA, Lin A, Spicer DB, Howard MJ, Firulli AB. Twist1 controls a cell-specification switch governing cell fate decisions within the cardiac neural crest. PLoS Genet 2013; 9:e1003405. [PMID: 23555309 PMCID: PMC3605159 DOI: 10.1371/journal.pgen.1003405] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/07/2013] [Indexed: 01/31/2023] Open
Abstract
Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. During vertebrate development, a unique population of cells, termed neural crest cells, migrates throughout the developing embryo, generating various cell types, for example, the smooth muscle that divides the aorta and pulmonary artery where they connect to the heart, and the autonomic neurons, which coordinate organ function. The distinctions between neural crest cells that will form smooth muscle and those that will become neurons are thought to occur prior to migration. Here, we show that, in mice with mutations of the transcription factor Twist1, a subpopulation of presumptive smooth muscle cells, following migration to the heart, instead mis-specify to resemble autonomic neurons. Twist1 represses transcription of the pro-neural factor Phox2b both through antagonism of its upstream effector, Sox10, and through direct binding to its promoter. Phox2b is absolutely required for autonomic neuron development, and indeed, the aberrant neurons in Twist1 mutants disappear when Phox2b is also mutated. Ectopic Twist1 expression within all neural crest cells disrupts the specification of normal autonomic neurons. Collectively, these data reveal that neural crest cells can alter their cell fate from mesoderm to ectoderm after they have migrated and that Twist1 functions to maintain neural crest cell potency during embryonic development.
Collapse
Affiliation(s)
- Joshua W Vincentz
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatrics Cardiology, Departments of Anatomy, Indiana University Medical School, Indianapolis, Indiana, United States of America
| | | | | | | | | | | |
Collapse
|
395
|
Chang JT, Mani SA. Sheep, wolf, or werewolf: cancer stem cells and the epithelial-to-mesenchymal transition. Cancer Lett 2013; 341:16-23. [PMID: 23499890 DOI: 10.1016/j.canlet.2013.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/28/2013] [Accepted: 03/03/2013] [Indexed: 12/18/2022]
Abstract
Multiple cancers contain subpopulations that exhibit characteristics of cancer stem cells (CSCs), the ability to self-renew and seed heterogeneous tumors. Recent evidence suggests two potentially overlapping models for these phenotypes: one where stem cells arise from multipotent progenitor cells, and another where they are created via an epithelial to mesenchymal transition. Unraveling this issue is critical, as it underlies phenomena such as metastasis and therapeutic resistance. Therefore, there is intense interest in understanding these two types of CSSs, how they differ from differentiated cancer cells, the mechanisms that drive their phenotypes, and how that knowledge can be incorporated into therapeutics.
Collapse
Affiliation(s)
- Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, Medical School, University of Texas Health Science Center, Houston, TX 77030, United States; School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, United States; Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, United States.
| | | |
Collapse
|
396
|
Wang Y, Zhou BP. Epithelial-mesenchymal Transition---A Hallmark of Breast Cancer Metastasis. ACTA ACUST UNITED AC 2013; 1:38-49. [PMID: 24611128 DOI: 10.1166/ch.2013.1004] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a highly conserved cellular program that converts polarized, immotile epithelial cells to migratory mesenchymal cells. In addition, EMT was initially recognized as a key step for morphogenesis during embryonic development. Emerging evidences indicate that this important developmental program promotes metastasis, drug resistance, and tumor recurrence, features that are associated with a poor clinical outcome for patients with breast cancer. Therefore, better understanding of regulation and signaling pathways in EMT is essential to develop novel targeted therapeutics. In this review, we present updated developments underlying EMT in tumor progression and metastasis, and discuss the challenges remaining in breast cancer research.
Collapse
Affiliation(s)
- Yifan Wang
- Departments of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, 40506
| | - Binhua P Zhou
- Departments of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, 40506
| |
Collapse
|
397
|
Sakurai F, Fujiwara T, Mizuguchi H. Development of a Detection System for Circulating Tumor Cells in Peripheral Blood Using a Next Generation Conditionally-replicating Adenovirus. YAKUGAKU ZASSHI 2013; 133:291-6. [DOI: 10.1248/yakushi.12-00237-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation
- The Center for Advanced Medical Engineering and Informatics, Osaka University
| |
Collapse
|
398
|
Ko H, So Y, Jeon H, Jeong MH, Choi HK, Ryu SH, Lee SW, Yoon HG, Choi KC. TGF-β1-induced epithelial-mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in human A549 lung cancer cells. Cancer Lett 2013; 335:205-13. [PMID: 23419524 DOI: 10.1016/j.canlet.2013.02.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 01/22/2023]
Abstract
Transforming growth factor-β1, the key ligand of Smad-dependent signaling pathway, is critical for epithelial-mesenchymal transition during embryo-morphogenesis, fibrotic diseases, and tumor metastasis. In this study, we found that activation of p300/CBP, a histone acetyltransferase, by TGF-β1 mediates Epithelial-mesenchymal transition (EMT) via acetylating Smad2 and Smad3 in TGF-β1 signaling pathway. We demonstrated that treatment with EGCG inhibited p300/CBP activity in human lung cancer cells. Also, we observed that EGCG potently inhibited TGF-β1-induced EMT and reversed the up-regulation of various genes during EMT. Our findings suggest that EGCG inhibits the induction of p300/CBP activity by TGF-β1. Therefore, EGCG inhibits TGF-β1-mediated EMT by suppressing the acetylation of Smad2 and Smad3 in human lung cancer cells.
Collapse
Affiliation(s)
- Hyeonseok Ko
- Laboratory of Molecular Oncology, Cheil General Hospital & Women's Healthcare Center, Kwandong University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Rachow S, Zorn-Kruppa M, Ohnemus U, Kirschner N, Vidal-y-Sy S, von den Driesch P, Börnchen C, Eberle J, Mildner M, Vettorazzi E, Rosenthal R, Moll I, Brandner JM. Occludin is involved in adhesion, apoptosis, differentiation and Ca2+-homeostasis of human keratinocytes: implications for tumorigenesis. PLoS One 2013; 8:e55116. [PMID: 23390516 PMCID: PMC3563667 DOI: 10.1371/journal.pone.0055116] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/19/2012] [Indexed: 12/16/2022] Open
Abstract
Tight junction (TJ) proteins are involved in a number of cellular functions, including paracellular barrier formation, cell polarization, differentiation, and proliferation. Altered expression of TJ proteins was reported in various epithelial tumors. Here, we used tissue samples of human cutaneous squamous cell carcinoma (SCC), its precursor tumors, as well as sun-exposed and non-sun-exposed skin as a model system to investigate TJ protein alteration at various stages of tumorigenesis. We identified that a broader localization of zonula occludens protein (ZO)-1 and claudin-4 (Cldn-4) as well as downregulation of Cldn-1 in deeper epidermal layers is a frequent event in all the tumor entities as well as in sun-exposed skin, suggesting that these changes result from chronic UV irradiation. In contrast, SCC could be distinguished from the precursor tumors and sun-exposed skin by a frequent complete loss of occludin (Ocln). To elucidate the impact of down-regulation of Ocln, we performed Ocln siRNA experiments in human keratinocytes and uncovered that Ocln downregulation results in decreased epithelial cell-cell adhesion and reduced susceptibility to apoptosis induction by UVB or TNF-related apoptosis-inducing ligand (TRAIL), cellular characteristics for tumorigenesis. Furthermore, an influence on epidermal differentiation was observed, while there was no change of E-cadherin and vimentin, markers for epithelial-mesenchymal transition. Ocln knock-down altered Ca2+-homeostasis which may contribute to alterations of cell-cell adhesion and differentiation. As downregulation of Ocln is also seen in SCC derived from other tissues, as well as in other carcinomas, we suggest this as a common principle in tumor pathogenesis, which may be used as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Susanne Rachow
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Tabea Clinics GmbH, Hamburg, Germany
| | - Michaela Zorn-Kruppa
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Ohnemus
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Kirschner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Vidal-y-Sy
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Christian Börnchen
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center, Charité, Berlin, Germany
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Eik Vettorazzi
- Department of Medical Biometry and Epidemiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Rita Rosenthal
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ingrid Moll
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna M. Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
400
|
Alkatout I, Wiedermann M, Bauer M, Wenners A, Jonat W, Klapper W. Transcription factors associated with epithelial–mesenchymal transition and cancer stem cells in the tumor centre and margin of invasive breast cancer. Exp Mol Pathol 2013; 94:168-73. [DOI: 10.1016/j.yexmp.2012.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 09/09/2012] [Indexed: 10/27/2022]
|