351
|
Banskota S, Yousefpour P, Chilkoti A. Cell-Based Biohybrid Drug Delivery Systems: The Best of the Synthetic and Natural Worlds. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600361] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/18/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Samagya Banskota
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Parisa Yousefpour
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| |
Collapse
|
352
|
Fukui Y, Sakai D, Fujimoto K. Preparation of protein nano-objects by assembly of polymer-grafted proteins. Colloids Surf B Biointerfaces 2016; 148:503-510. [PMID: 27686514 DOI: 10.1016/j.colsurfb.2016.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
Abstract
We carried out surface-grafting from proteins and their assembling into objects with unique nanostructured materials (nano-objects). To immobilize polymer-initiating sites, amino groups of bovine serum albumin (BSA) were allowed to react with iniferter groups (BSA-i). Then, graft polymerization of N-isopropyl acrylamide (NIPAM) was performed by light-initiated living radical polymerization from immobilized iniferter moieties of BSA-i. The polymer-grafted BSA (BSA-g-PNIPAM) was assembled into nano-objects through the precipitation of PNIPAM graft chains and their sizes and morphologies were tuned by the chain length, the density and the chemical structure of graft polymers in addition to the environmental conditions such as temperature and pH. It was possible to retain the structures of nano-objects by thermal denaturation via heat treatment. Fluorescent substances were encapsulated in particulate nano-objects (nanoparticles) assembled from PNIPAM-g-BSA and their release could be regulated by tuning pH and temperature. Next, further graft polymerization from PNIPAM-grafted BSA was carried out by living radical polymerization of a cationic monomer, N,N-dimethylamino propyl acrylamide methyl chloride quaternary (DMAPAAQ). The grafted polymer was composed of a block copolymer of PNIPAM and a cationic polymer (PDMAPAAQ) and the gel-like nano-object was generated by increasing temperature. In contrast to PNIPAM-g-BSA, it became insoluble even when the temperature decreased, probably due to the electrostatic association between anionic regions of BSA and cationic regions of graft polymers. Coating of BSA-g-P(NIPAM-b-DMAPAAQ) enabled to form a uniform thin layer over a human hair. A free-standing membrane could be obtained by peeling from a water repellent substrate to create a porous membrane.
Collapse
Affiliation(s)
- Yuuka Fukui
- Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Daiki Sakai
- Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Keiji Fujimoto
- Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
353
|
Hao Y, Zerdoum AB, Stuffer AJ, Rajasekaran AK, Jia X. Biomimetic Hydrogels Incorporating Polymeric Cell-Adhesive Peptide To Promote the 3D Assembly of Tumoroids. Biomacromolecules 2016; 17:3750-3760. [PMID: 27723964 PMCID: PMC5148723 DOI: 10.1021/acs.biomac.6b01266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Toward the goal of establishing physiologically relevant in vitro tumor models, we synthesized and characterized a biomimetic hydrogel using thiolated hyaluronic acid (HA-SH) and an acrylated copolymer carrying multiple copies of cell adhesive peptide (PolyRGD-AC). PolyRGD-AC was derived from a random copolymer of tert-butyl methacrylate (tBMA) and oligomeric (ethylene glycol) methacrylate (OEGMA), synthesized via atom transfer radical polymerization (ATRP). Acid hydrolysis of tert-butyl moieties revealed the carboxylates, through which acrylate groups were installed. Partial modification of the acrylate groups with a cysteine-containing RGD peptide generated PolyRGD-AC. When PolyRGD-AC was mixed with HA-SH under physiological conditions, a macroscopic hydrogel with an average elastic modulus of 630 Pa was produced. LNCaP prostate cancer cells encapsulated in HA-PolyRGD gels as dispersed single cells formed multicellular tumoroids by day 4 and reached an average diameter of ∼95 μm by day 28. Cells in these structures were viable, formed cell-cell contacts through E-cadherin (E-CAD), and displayed cortical organization of F-actin. Compared with the control gels prepared using PolyRDG, multivalent presentation of the RGD signal in the HA matrix increased cellular metabolism, promoted the development of larger tumoroids, and enhanced the expression of E-CAD and integrins. Overall, hydrogels with multivalently immobilized RGD are a promising 3D culture platform for dissecting principles of tumorigenesis and for screening anticancer drugs.
Collapse
Affiliation(s)
- Ying Hao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Aidan B. Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Alexander J. Stuffer
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Ayyappan K. Rajasekaran
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
- Therapy Architects, LLC, Helen F Graham Cancer Center, Newark, DE, 19718, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
354
|
Lim YH, Tiemann KM, Hunstad DA, Elsabahy M, Wooley KL. Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:842-871. [PMID: 27016134 PMCID: PMC5035710 DOI: 10.1002/wnan.1401] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/17/2022]
Abstract
Serious lung infections, such as pneumonia, tuberculosis, and chronic obstructive cystic fibrosis-related bacterial diseases, are increasingly difficult to treat and can be life-threatening. Over the last decades, an array of therapeutics and/or diagnostics have been exploited for management of pulmonary infections, but the advent of drug-resistant bacteria and the adverse conditions experienced upon reaching the lung environment urge the development of more effective delivery vehicles. Nanotechnology is revolutionizing the approach to circumventing these barriers, enabling better management of pulmonary infectious diseases. In particular, polymeric nanoparticle-based therapeutics have emerged as promising candidates, allowing for programmed design of multi-functional nanodevices and, subsequently, improved pharmacokinetics and therapeutic efficiency, as compared to conventional routes of delivery. Direct delivery to the lungs of such nanoparticles, loaded with appropriate antimicrobials and equipped with 'smart' features to overcome various mucosal and cellular barriers, is a promising approach to localize and concentrate therapeutics at the site of infection while minimizing systemic exposure to the therapeutic agents. The present review focuses on recent progress (2005-2015) important for the rational design of nanostructures, particularly polymeric nanoparticles, for the treatment of pulmonary infections with highlights on the influences of size, shape, composition, and surface characteristics of antimicrobial-bearing polymeric nanoparticles on their biodistribution, therapeutic efficacy, and toxicity. WIREs Nanomed Nanobiotechnol 2016, 8:842-871. doi: 10.1002/wnan.1401 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Young H Lim
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, TX, USA
| | - Kristin M Tiemann
- Department of Pediatrics, Washington University of School of Medicine, St. Louis, MO, USA
| | - David A Hunstad
- Department of Pediatrics, Washington University of School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University of School of Medicine, St. Louis, MO, USA
| | - Mahmoud Elsabahy
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, TX, USA.
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, Egypt.
- Misr University for Science and Technology, 6th of October City, Egypt.
| | - Karen L Wooley
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
355
|
Catrouillet S, Brendel JC, Larnaudie S, Barlow T, Jolliffe KA, Perrier S. Tunable Length of Cyclic Peptide-Polymer Conjugate Self-Assemblies in Water. ACS Macro Lett 2016; 5:1119-1123. [PMID: 35658192 DOI: 10.1021/acsmacrolett.6b00586] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymers conjugated to cyclic peptides capable of forming strong hydrogen bonds can self-assemble into supramolecular bottlebrushes even in aqueous solutions. However, controlling the aggregation of these supramolecular assemblies remains an obstacle that is yet to be overcome. By introducing pH-responsive poly(dimethylamino ethyl methacrylate) (pDMAEMA) arms, the repulsive forces were tuned by adjusting the degree of protonation on the polymer arms. Neutron scattering experiments demonstrated that conjugates in an uncharged state will self-assemble into supramolecular bottlebrushes. Reducing the pH in the system led to a decrease in the number of aggregation, which was reversible by addition of base. Potentiometric titration showed a correlation between the number of aggregation and the degree of ionization of the pDMAEMA arms. Hence, a balance between the strength of the hydrogen bonds and the repulsive electrostatic interactions determines the number of aggregation and extent of self-assembly. The presented work demonstrates that conjugate self-association can be controlled by tuning the charge density on the conjugated polymer arms, paving the way for the use of responsive cyclic peptide conjugates in pharmaceutical applications.
Collapse
Affiliation(s)
- Sylvain Catrouillet
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Johannes C. Brendel
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, VIC 3052, Australia
| | - Sophie Larnaudie
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Tammie Barlow
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | - Sébastien Perrier
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
356
|
Edson JA, Kwon YJ. Design, challenge, and promise of stimuli-responsive nanoantibiotics. NANO CONVERGENCE 2016; 3:26. [PMID: 28191436 PMCID: PMC5271158 DOI: 10.1186/s40580-016-0085-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/22/2016] [Indexed: 05/18/2023]
Abstract
Over the past few years, there have been calls for novel antimicrobials to combat the rise of drug-resistant bacteria. While some promising new discoveries have met this call, it is not nearly enough. The major problem is that although these new promising antimicrobials serve as a short-term solution, they lack the potential to provide a long-term solution. The conventional method of creating new antibiotics relies heavily on the discovery of an antimicrobial compound from another microbe. This paradigm of development is flawed due to the fact that microbes can easily transfer a resistant mechanism if faced with an environmental pressure. Furthermore, there has been some evidence to indicate that the environment of the microbe can provide a hint as to their virulence. Because of this, the use of materials with antimicrobial properties has been garnering interest. Nanoantibiotics, (nAbts), provide a new way to circumvent the current paradigm of antimicrobial discovery and presents a novel mechanism of attack not found in microbes yet; which may lead to a longer-term solution against drug-resistance formation. This allows for environment-specific activation and efficacy of the nAbts but may also open up and create new design methods for various applications. These nAbts provide promise, but there is still ample work to be done in their development. This review looks at possible ways of improving and optimizing nAbts by making them stimuli-responsive, then consider the challenges ahead, and industrial applications.Graphical abstractA graphic detailing how the current paradigm of antibiotic discovery can be circumvented by the use of nanoantibiotics.
Collapse
Affiliation(s)
- Julius A. Edson
- Department of Chemical Engineering and Material Science, University of California, Irvine, Irvine, CA USA
| | - Young Jik Kwon
- Department of Chemical Engineering and Material Science, University of California, Irvine, Irvine, CA USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA USA
- 132 Sprague Hall, Irvine, CA USA
| |
Collapse
|
357
|
Meißig;ler M, Wieczorek S, ten Brummelhuis N, Börner HG. Synthetic Aspects of Peptide– and Protein–Polymer Conjugates in the Post-click Era. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biomacromolecules offer complex and precise functions embedded in their monomer sequence such as enzymatic activity or specific interactions towards other molecules. Their informational content and capability to organize in higher ordered structures is superior to those of synthetic molecules. In comparison, synthetic polymers are easy to access even at large production scales and they are chemically more diverse. Solubilization, shielding against enzymatic degradation to more advanced functions like switchability or protein mimicry, etc., are accessible through the world of polymer chemistry. Bio-inspired hybrid materials consisting of peptides or proteins and synthetic polymers thereby combine the properties of both molecules to give rise to a new class of materials with unique characteristics and performance. To obtain well-defined bioconjugate materials, high yielding and site-specific as well as biorthogonal ligation techniques are mandatory. Since the first attempts of protein PEGylation in the 1970s and the concept of “click” chemistry arising in 2001, continuous progress in the field of peptide– and protein–polymer conjugate preparation has been gained. Herein, we provide an overview on ligation techniques to prepare functional bioconjugates published in the last decade, also referred to as “post-click” methods. Furthermore, chemoenzymatic approaches and biotransformation reactions used in peptide or protein modification, as well as highly site-specific and efficient reactions originated in synthetic macromolecular chemistry, which could potentially be adapted for bioconjugation, are presented. Finally, future perspectives for the preparation and application of bioconjugates at the interface between biology and synthetic materials are given.
Collapse
Affiliation(s)
- Maria Meißig;ler
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Sebastian Wieczorek
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
358
|
Araujo JV, Rifaie-Graham O, Apebende EA, Bruns N. Self-reporting Polymeric Materials with Mechanochromic Properties. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mechanical transduction of force onto molecules is an essential feature of many biological processes that results in the senses of touch and hearing, gives important cues for cellular interactions and can lead to optically detectable signals, such as a change in colour, fluorescence or chemoluminescence. Polymeric materials that are able to visually indicate deformation, stress, strain or the occurrence of microdamage draw inspiration from these biological events. The field of self-reporting (or self-assessing) materials is reviewed. First, mechanochromic events in nature are discussed, such as the formation of bruises on skin, the bleeding of a wound, or marine glow caused by dinoflagellates. Then, materials based on force-responsive mechanophores, such as spiropyrans, cyclobutanes, cyclooctanes, Diels–Alder adducts, diarylbibenzofuranone and bis(adamantyl)-1,2-dioxetane are reviewed, followed by mechanochromic blends, chromophores stabilised by hydrogen bonds, and pressure sensors based on ionic interactions between fluorescent dyes and polyelectrolyte brushes. Mechanobiochemistry is introduced as an important tool to create self-reporting hybrid materials that combine polymers with the force-responsive properties of fluorescent proteins, protein FRET pairs, and other biomacromolecules. Finally, dye-filled microcapsules, microvascular networks, and hollow fibres are demonstrated to be important technologies to create damage-indicating coatings, self-reporting fibre-reinforced composites and self-healing materials.
Collapse
Affiliation(s)
- Jose V. Araujo
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Omar Rifaie-Graham
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Edward A. Apebende
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| |
Collapse
|
359
|
Paluck S, Nguyen TH, Lee JP, Maynard HD. A Heparin-Mimicking Block Copolymer Both Stabilizes and Increases the Activity of Fibroblast Growth Factor 2 (FGF2). Biomacromolecules 2016; 17:3386-3395. [PMID: 27580376 PMCID: PMC5059753 DOI: 10.1021/acs.biomac.6b01182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/27/2016] [Indexed: 01/22/2023]
Abstract
Fibroblast growth factor 2 (FGF2) is a protein involved in cellular functions in applications such as wound healing and tissue regeneration. Stabilization of this protein is important for its use as a therapeutic since the native protein is unstable during storage and delivery. Additionally, the ability to increase the activity of FGF2 is important for its application, particularly in chronic wound healing and the treatment of various ischemic conditions. Here we report a heparin mimicking block copolymer, poly(styrenesulfonate-co-poly(ethylene glycol) methyl ether methacrylate)-b-vinyl sulfonate) (p(SS-co-PEGMA)-b-VS, that contains a segment that enhances the stability of FGF2 and one that binds to the FGF2 receptor. The FGF2 conjugate retained activity after exposure to refrigeration (4 °C) and room temperature (23 °C) for 7 days, while unmodified FGF2 was inactive after these standard storage conditions. A cell study performed with a cell line lacking native heparan sulfate proteoglycans indicated that the conjugated block copolymer facilitated binding of FGF2 to its receptor similar to the addition of heparin to FGF2. A receptor-based enzyme-linked immunosorbant assay (ELISA) confirmed the results. The conjugate also increased the migration of endothelial cells by 80% compared to FGF2 alone. Additionally, the FGF2-p(SS-co-PEGMA)-b-VS stimulated endothelial cell sprouting 250% better than FGF2 at low concentration. These data verify that this rationally designed protein-block copolymer conjugate enhances receptor binding, cellular processes such as migration and tube-like formation, and stability, and suggest that it may be useful for applications in biomaterials, tissue regeneration, and wound healing.
Collapse
Affiliation(s)
- Samantha
J. Paluck
- Department of Chemistry and
Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| | - Thi H. Nguyen
- Department of Chemistry and
Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| | - Jonghan P. Lee
- Department of Chemistry and
Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| | - Heather D. Maynard
- Department of Chemistry and
Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| |
Collapse
|
360
|
Peng H, Rübsam K, Huang X, Jakob F, Karperien M, Schwaneberg U, Pich A. Reactive Copolymers Based on N-Vinyl Lactams with Pyridyl Disulfide Side Groups via RAFT Polymerization and Postmodification via Thiol–Disulfide Exchange Reaction. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01210] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Huan Peng
- DWI-Leibniz Institute
for Interactive Materials e.V., Aachen, Germany
| | - Kristin Rübsam
- DWI-Leibniz Institute
for Interactive Materials e.V., Aachen, Germany
| | - Xiaobin Huang
- Developmental
BioEngineering, MIRA Institute for Biomedical Technology and Technical
Medicine, University of Twente, Enschede, The Netherlands
| | - Felix Jakob
- DWI-Leibniz Institute
for Interactive Materials e.V., Aachen, Germany
| | - Marcel Karperien
- Developmental
BioEngineering, MIRA Institute for Biomedical Technology and Technical
Medicine, University of Twente, Enschede, The Netherlands
| | | | - Andrij Pich
- DWI-Leibniz Institute
for Interactive Materials e.V., Aachen, Germany
| |
Collapse
|
361
|
Zhang R, Heyde KC, Scott FY, Paek SH, Ruder WC. Programming Surface Chemistry with Engineered Cells. ACS Synth Biol 2016; 5:936-41. [PMID: 27203116 DOI: 10.1021/acssynbio.6b00037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have developed synthetic gene networks that enable engineered cells to selectively program surface chemistry. E. coli were engineered to upregulate biotin synthase, and therefore biotin synthesis, upon biochemical induction. Additionally, two different functionalized surfaces were developed that utilized binding between biotin and streptavidin to regulate enzyme assembly on programmable surfaces. When combined, the interactions between engineered cells and surfaces demonstrated that synthetic biology can be used to engineer cells that selectively control and modify molecular assembly by exploiting surface chemistry. Our system is highly modular and has the potential to influence fields ranging from tissue engineering to drug development and delivery.
Collapse
Affiliation(s)
- Ruihua Zhang
- Department
of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Keith C. Heyde
- Department
of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Felicia Y. Scott
- Department
of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Sung-Ho Paek
- Department
of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Warren C. Ruder
- Department
of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
362
|
Cheng L, Jiang Y, Yan N, Shan SF, Liu XQ, Sun LB. Smart Adsorbents with Photoregulated Molecular Gates for Both Selective Adsorption and Efficient Regeneration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23404-23411. [PMID: 27559985 DOI: 10.1021/acsami.6b07853] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Selective adsorption and efficient regeneration are two crucial issues for adsorption processes; unfortunately, only one of them instead of both is favored by traditional adsorbents with fixed pore orifices. Herein, we fabricated a new generation of smart adsorbents through grafting photoresponsive molecules, namely, 4-(3-triethoxysilylpropyl-ureido)azobenzene (AB-TPI), onto pore orifices of the support mesoporous silica. The azobenzene (AB) derivatives serve as the molecular gates of mesopores and are reversibly opened and closed upon light irradiation. Irradiation with visible light (450 nm) causes AB molecules to isomerize from cis to trans configuration, and the molecular gates are closed. It is easy for smaller adsorbates to enter while difficult for the larger ones, and the selective adsorption is consequently facilitated. Upon irradiation with UV light (365 nm), the AB molecules are transformed from trans to cis isomers, promoting the desorption of adsorbates due to the opened molecular gates. The present smart adsorbents can consequently benefit not only selective adsorption but also efficient desorption, which are exceedingly desirable for adsorptive separation but impossible for traditional adsorbents with fixed pore orifices.
Collapse
Affiliation(s)
- Lei Cheng
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University , Nanjing 210009, China
| | - Yao Jiang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University , Nanjing 210009, China
| | - Ni Yan
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University , Nanjing 210009, China
| | - Shu-Feng Shan
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University , Nanjing 210009, China
| | - Xiao-Qin Liu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University , Nanjing 210009, China
| | - Lin-Bing Sun
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University , Nanjing 210009, China
| |
Collapse
|
363
|
Charan H, Kinzel J, Glebe U, Anand D, Garakani TM, Zhu L, Bocola M, Schwaneberg U, Böker A. Grafting PNIPAAm from β-barrel shaped transmembrane nanopores. Biomaterials 2016; 107:115-23. [PMID: 27614163 DOI: 10.1016/j.biomaterials.2016.08.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
Abstract
The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N-isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors.
Collapse
Affiliation(s)
- Himanshu Charan
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany; Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476, Potsdam-Golm, Germany
| | - Julia Kinzel
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Deepak Anand
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Tayebeh Mirzaei Garakani
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany; DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Leilei Zhu
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Marco Bocola
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany; DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany.
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany; Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
364
|
Ghosh R, Das S, Chatterjee DP, Nandi AK. Surfactant-Triggered Fluorescence Turn "on/off" Behavior of a Polythiophene-graft-Polyampholyte. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8413-8423. [PMID: 27465928 DOI: 10.1021/acs.langmuir.6b01928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polythiophene-graft-polyampholyte (PTP) is synthesized using N,N-dimethylaminoethyl methacrylate and tert-butyl methacrylate monomers by grafting from polythiophene backbone, followed by hydrolysis. The resulting polymer exhibits aqueous solubility via formation of small-sized miceller aggregates with hydrophobic polythiophene at the center and radiating polyionic side chains (cationic or anionic depending on the pH of the medium) at the outer periphery. The critical micelle concentration of PTP in acidic solution (0.025 mg/mL, pH = 2.7) is determined from fluorescence spectroscopy. PTP exhibits reversible fluorescence on and off response in both acidic and basic medium with the sequential addition of differently charged ionic surfactants, repeatedly. The fluorescence intensity of PTP at pH 2.7 increases with the addition of an anionic surfactant, sodium dodecyl benzenesulfonate (SDBS), due to the self-aggregation forming compound micelles. The fluorescence intensity of these solutions again decreases on addition of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), because of assembling of SDBS with CTAB, thus deassembling the PTP-SDBS aggregates. At pH 9.2, these turn on and turn off responses are also shown by PTP with the sequential addition of cationic surfactant (CTAB) and anionic surfactant (SDBS), respectively. This result shows that PTP has potential for surfactant-induced reversible fluorescence turn on and off using ionic surfactant (SDBS and CTAB) through self-assembling and deassembling of the ionic aggregates. The reversible aggregation and disaggregation process of PTP with the surfactants at both acidic and basic pH is supported from dynamic light scattering and Fourier transform infrared spectroscopy. The morphology of the above systems studied by transmission and scanning electron microscopy also supports the above aggregation and disaggregation process.
Collapse
Affiliation(s)
- Radhakanta Ghosh
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Sandip Das
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | | | - Arun K Nandi
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| |
Collapse
|
365
|
Liu B, Liu X, Shi S, Huang R, Su R, Qi W, He Z. Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomater 2016; 40:100-118. [PMID: 26921775 DOI: 10.1016/j.actbio.2016.02.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED Surface plasmon resonance (SPR) biosensors have many possible applications, but are limited by sensor chip surface fouling, which blocks immobilization and specific binding by the recognizer elements. Therefore, there is a pressing need for the development of antifouling surfaces. In this paper, the mechanisms of antifouling materials were firstly discussed, including both theories (hydration and steric hindrance) and factors influencing antifouling effects (molecular structures and self-assembled monolayer (SAM) architectures, surface charges, molecular hydrophilicity, and grafting thickness and density). Then, the most recent advances in antifouling materials applied on SPR biosensors were systematically reviewed, together with the grafting strategies, antifouling capacity, as well as their merits and demerits. These materials included, but not limited to, zwitterionic compounds, polyethylene glycol-based, and polysaccharide-based materials. Finally, the prospective research directions in the development of SPR antifouling materials were discussed. STATEMENT OF SIGNIFICANCE Surface plasmon resonance (SPR) is a powerful tool in monitoring biomolecular interactions. The principle of SPR biosensors is the conversion of refractive index change caused by molecular binding into resonant spectral shifts. However, the fouling on the surface of SPR gold chips is ubiquitous and troublesome. It limits the application of SPR biosensors by blocking recognition element immobilization and specific binding. Hence, we write this paper to review the antifouling mechanisms and the recent advances of the design of antifouling materials that can improve the accuracy and sensitivity of SPR biosensors. To our knowledge, this is the first review focusing on the antifouling materials that were applied or had potential to be applied on SPR biosensors.
Collapse
|
366
|
Translational biomaterials — the journey from the bench to the market — think ‘product’. Curr Opin Biotechnol 2016; 40:31-34. [DOI: 10.1016/j.copbio.2016.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 12/23/2022]
|
367
|
Wu B, Wang X, Yang J, Hua Z, Tian K, Kou R, Zhang J, Ye S, Luo Y, Craig VSJ, Zhang G, Liu G. Reorganization of hydrogen bond network makes strong polyelectrolyte brushes pH-responsive. SCIENCE ADVANCES 2016; 2:e1600579. [PMID: 27532049 PMCID: PMC4975552 DOI: 10.1126/sciadv.1600579] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Weak polyelectrolytes have found extensive practical applications owing to their rich pH-responsive properties. In contrast, strong polyelectrolytes have long been regarded as pH-insensitive based on the well-established fact that the average degree of charging of strong polyelectrolyte chains is independent of pH. The possible applications of strong polyelectrolytes in smart materials have, thus, been severely limited. However, we demonstrate that almost all important properties of strong polyelectrolyte brushes (SPBs), such as chain conformation, hydration, stiffness, surface wettability, lubricity, adhesion, and protein adsorption are sensitive to pH. The pH response originates from the reorganization of the interchain hydrogen bond network between the grafted chains, triggered by the pH-mediated adsorption-desorption equilibrium of hydronium or hydroxide with the brushes. The reorganization process is firmly identified by advanced sum-frequency generation vibrational spectroscopy. Our findings not only provide a new understanding of the fundamental properties of SPBs but also uncover an extensive family of building blocks for constructing pH-responsive materials.
Collapse
Affiliation(s)
- Bo Wu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaowen Wang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun Yang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zan Hua
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kangzhen Tian
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ran Kou
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian Zhang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuji Ye
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi Luo
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Vincent S. J. Craig
- Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangming Liu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
368
|
Tao Y, Xu L, Zhang Z, Chen R, Li H, Xu H, Zheng C, Huang W. Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering. J Am Chem Soc 2016; 138:9655-62. [PMID: 27403886 DOI: 10.1021/jacs.6b05042] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic.
Collapse
Affiliation(s)
- Ye Tao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Lijia Xu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Zhen Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University , 74 Xuefu Road, Harbin 150080, China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Huanhuan Li
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , 30 South Puzhu Road, Nanjing 211816, China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University , 74 Xuefu Road, Harbin 150080, China
| | - Chao Zheng
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
369
|
Han L, Ma H, Li Y, Zhu S, Yang L, Tan R, Liu P, Shen H, Huang W, Gong X. Strategies for Tailoring LC-Functionalized Polymer: Probe Contribution of [Si–O–Si] versus [Si–C] Spacer to Thermal and Polarized Optical Performance “Driven by” Well-Designed Grafting Density and Precision in Flexible/Rigid Matrix. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Li Han
- State Key
Laboratory of Fine
Chemicals, Department of Polymer Science and Engineering, School of
Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116012, China
- Liaoning Key Laboratory
of Polymer Science
and Engineering, Dalian, Liaoning 116012, China
| | - Hongwei Ma
- State Key
Laboratory of Fine
Chemicals, Department of Polymer Science and Engineering, School of
Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116012, China
- Liaoning Key Laboratory
of Polymer Science
and Engineering, Dalian, Liaoning 116012, China
| | - Yang Li
- State Key
Laboratory of Fine
Chemicals, Department of Polymer Science and Engineering, School of
Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116012, China
- Liaoning Key Laboratory
of Polymer Science
and Engineering, Dalian, Liaoning 116012, China
| | - Siqi Zhu
- State Key
Laboratory of Fine
Chemicals, Department of Polymer Science and Engineering, School of
Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116012, China
- Liaoning Key Laboratory
of Polymer Science
and Engineering, Dalian, Liaoning 116012, China
| | - Lincan Yang
- State Key
Laboratory of Fine
Chemicals, Department of Polymer Science and Engineering, School of
Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116012, China
- Liaoning Key Laboratory
of Polymer Science
and Engineering, Dalian, Liaoning 116012, China
| | - Rui Tan
- State Key
Laboratory of Fine
Chemicals, Department of Polymer Science and Engineering, School of
Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116012, China
- Liaoning Key Laboratory
of Polymer Science
and Engineering, Dalian, Liaoning 116012, China
| | - Pibo Liu
- State Key
Laboratory of Fine
Chemicals, Department of Polymer Science and Engineering, School of
Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116012, China
- Liaoning Key Laboratory
of Polymer Science
and Engineering, Dalian, Liaoning 116012, China
| | - Heyu Shen
- State Key
Laboratory of Fine
Chemicals, Department of Polymer Science and Engineering, School of
Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116012, China
- Liaoning Key Laboratory
of Polymer Science
and Engineering, Dalian, Liaoning 116012, China
| | - Wei Huang
- State Key
Laboratory of Fine
Chemicals, Department of Polymer Science and Engineering, School of
Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116012, China
- Liaoning Key Laboratory
of Polymer Science
and Engineering, Dalian, Liaoning 116012, China
| | - Xichen Gong
- State Key
Laboratory of Fine
Chemicals, Department of Polymer Science and Engineering, School of
Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116012, China
- Liaoning Key Laboratory
of Polymer Science
and Engineering, Dalian, Liaoning 116012, China
| |
Collapse
|
370
|
Schmidt-Dannert C, Lopez-Gallego F. A roadmap for biocatalysis - functional and spatial orchestration of enzyme cascades. Microb Biotechnol 2016; 9:601-9. [PMID: 27418373 PMCID: PMC4993178 DOI: 10.1111/1751-7915.12386] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 12/23/2022] Open
Abstract
Advances in biological engineering and systems biology have provided new approaches and tools for the industrialization of biology. In the next decade, advanced biocatalytic systems will increasingly be used for the production of chemicals that cannot be made by current processes and/or where the use of enzyme catalysts is more resource efficient with a much reduced environmental impact. We expect that in the future, manufacture of chemicals and materials will utilize both biocatalytic and chemical synthesis synergistically. The realization of such advanced biomanufacturing processes currently faces a number of major challenges. Ready‐to‐deploy portfolios of biocatalysts for design to production must be created from biological diverse sources and through protein engineering. Robust and efficient multi‐step enzymatic reaction cascades must be developed that can operate simultaneously in one‐pot. For this to happen, bio‐orthogonal strategies for spatial and temporal control of biocatalyst activities must be developed. Promising approaches and technologies are emerging that will eventually lead to the design of in vitro biocatalytic systems that mimic the metabolic pathways and networks of cellular systems which will be discussed in this roadmap.
Collapse
Affiliation(s)
- Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Fernando Lopez-Gallego
- Heterogeneous Biocatalysis Group, CIC BiomaGUNE, Pase Miramon 182, San Sebastian-Donostia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
371
|
Affiliation(s)
- Yuanyuan Cao
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Yapei Wang
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| |
Collapse
|
372
|
|
373
|
Carlini A, Adamiak L, Gianneschi NC. Biosynthetic Polymers as Functional Materials. Macromolecules 2016; 49:4379-4394. [PMID: 27375299 PMCID: PMC4928144 DOI: 10.1021/acs.macromol.6b00439] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/06/2016] [Indexed: 02/07/2023]
Abstract
The synthesis of functional polymers encoded with biomolecules has been an extensive area of research for decades. As such, a diverse toolbox of polymerization techniques and bioconjugation methods has been developed. The greatest impact of this work has been in biomedicine and biotechnology, where fully synthetic and naturally derived biomolecules are used cooperatively. Despite significant improvements in biocompatible and functionally diverse polymers, our success in the field is constrained by recognized limitations in polymer architecture control, structural dynamics, and biostabilization. This Perspective discusses the current status of functional biosynthetic polymers and highlights innovative strategies reported within the past five years that have made great strides in overcoming the aforementioned barriers.
Collapse
Affiliation(s)
- Andrea
S. Carlini
- Department of Chemistry and
Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States
| | - Lisa Adamiak
- Department of Chemistry and
Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States
| | - Nathan C. Gianneschi
- Department of Chemistry and
Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
374
|
Geng Z, Cheng Z, Zhu Y, Jiang W. Controllable Cooperative Self-Assembly of PS-b-PAA/PS-b-P4VP Mixture by Tuning the Intercorona Interaction. J Phys Chem B 2016; 120:5527-33. [DOI: 10.1021/acs.jpcb.6b00273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhen Geng
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhongkai Cheng
- School
of Life Sciences, Jilin University, Changchun 130022, People’s Republic of China
| | - Yutian Zhu
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Wei Jiang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
375
|
Abstract
We report biomass-derived, shape-memory materials prepared via simple reactions, including "grafting from" ATRP and TAD click chemistry. Although the biomass, including plant oils and cellulose nanocrystals, has heterogeneous chemical structures in nature, these materials exhibit excellent multiple shape-memory properties toward temperature, water, and organic solvents, which are comparable to petroleum counterparts. The work presented herein provides burgeoning opportunities to design the next-generation, low-cost, biomass-prevalent, green materials for niche applications.
Collapse
|
376
|
Cao ZQ, Wang GJ. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels. CHEM REC 2016; 16:1398-435. [DOI: 10.1002/tcr.201500281] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Zi-Quan Cao
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P. R. China
| | - Guo-Jie Wang
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P. R. China
| |
Collapse
|
377
|
Abstract
Enzymes play a central role in a spectrum of fundamental physiological processes and their altered expression level has been associated with many diseases and pathological disorders. Enzymes therefore can be exploited as a pristine biological trigger to tune material responses and to achieve controlled release of biomolecules at desired sites. This mini-review highlights enzyme-responsive polymer hydrogels for therapeutic delivery applications developed within the last five years, focusing on protease- and glycosidase-based catalyzed reactions. Strategies employed to produce responsive materials are described. Successful applications for controlled drug delivery are highlighted, and finally, future opportunities and challenges are presented.
Collapse
Affiliation(s)
- Rona Chandrawati
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
378
|
Cummings CS, Murata H, Matyjaszewski K, Russell AJ. Polymer-Based Protein Engineering Enables Molecular Dissolution of Chymotrypsin in Acetonitrile. ACS Macro Lett 2016; 5:493-497. [PMID: 35607221 DOI: 10.1021/acsmacrolett.6b00137] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While most effective in aqueous environments, enzymes are also able to catalyze reactions in essentially anhydrous organic media. Enzyme activity in organic solvents is limited as a result of inefficient substrate binding, lack of solubility, and inactivation by hydrophilic anhydrous solvents. With these facts in mind, atom transfer radical polymerization was used to synthesize chymotrypsin-poly(2-(dimethylamino)ethyl methacrylate) (CT-pDMAEMA) conjugates designed to be soluble and active in acetonitrile. CT-pDMAEMA solubility in organic solvents and the rate of CT-pDMAEMA-catalyzed transesterification in acetonitrile were examined at a range of water (0-15 M) and propanol (0.01-5 M) concentrations. The conjugates were soluble at the molecular scale in several organic solvents, exhibited good substrate binding with N-acetyl l-phenylalanine thiophenylester (KM as low as 17 mM), and had an activity (peak activity 330 μM/min/mg enzyme) many orders of magnitude higher than that of the insoluble native enzyme.
Collapse
Affiliation(s)
- Chad S. Cummings
- Center
for Polymer-based Protein Engineering, ICES, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Scott Hall 4N201, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Center
for Polymer-based Protein Engineering, ICES, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center
for Polymer-based Protein Engineering, ICES, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J. Russell
- Center
for Polymer-based Protein Engineering, ICES, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Scott Hall 4N201, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
379
|
Zhang Y, Zhao H. Surfactant Behavior of Amphiphilic Polymer-Tethered Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3567-3579. [PMID: 27018567 DOI: 10.1021/acs.langmuir.6b00267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, an emerging research area has been the surfactant behavior of polymer-tethered nanoparticles. In this feature article, we have provided a general introduction to the synthesis, self-assembly, and interfacial activity of polymer-tethered inorganic nanoparticles, polymer-tethered organic nanoparticles, and polymer-tethered natural nanoparticles. In addition, applications of the polymer-tethered nanoparticles in colloidal and materials science are briefly reviewed. All research demonstrates that amphiphilic polymer-tethered nanoparticles exhibit surfactant behavior and can be used as elemental building blocks for the fabrication of advanced structures by the self-assembly approach. The polymer-tethered nanoparticles provide new opportunities to engineer materials and biomaterials possessing specific functionality and physical properties.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University , Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
380
|
Nauka PC, Lee J, Maynard HD. Enhancing Conjugation Yield of Brush Polymer-Protein Conjugates by Increasing Linker Length at the Polymer End-Group. Polym Chem 2016; 7:2352-2357. [PMID: 27110293 PMCID: PMC4836366 DOI: 10.1039/c6py00080k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymers with oligoethylene glycol side chains are promising in therapeutic protein-polymer conjugates as replacements for linear polyethylene glycol (PEG). Branched PEG polymers can confer additional stability and advantageous properties compared to linear PEGs. However, branched PEG polymers suffer from low conjugation yields to proteins, likely due to steric interactions between bulky side chains of the polymer and the protein. In an effort to increase yields, the linker length between the protein-reactive functional end-group of the polymer chain and branched PEG side chain was systematically increased. This was accomplished by synthesizing four well-defined poly(poly(ethylene glycol methyl ether) acrylates) (pPEGA) with pyridyl disulfide end-groups by reversible addition-fragmentation chain transfer (RAFT) polymerization mediated by chain transfer agents (CTAs) with different linker lengths. These, along with linear PEG and poly(N-isopropylacrylamide) (pNIPAAm), were conjugated to two model proteins, bovine serum albumin (BSA) and beta-lactoglobulin (βLG). The conjugation yields were determined by gel electrophoresis. The length of the linker affected conjugation yield for both proteins. For BSA, the conjugation yield step increased from 10% to 24% when the linker was altered from 1 ethylene glycol (EG) unit to 3, with no additional increase for 4 and 6 EG units. In the case of βLG, the yield gradually increased from 9% to the 33% when the linker length was increased from 1 to 6. PEG and pNIPAAm reacted with yields as high as 75% further emphasizing the effect of steric hindrance in lowering conjugation yields.
Collapse
Affiliation(s)
- Peter C Nauka
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, California 90095-1569, United States
| | - Juneyoung Lee
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, California 90095-1569, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, California 90095-1569, United States
| |
Collapse
|
381
|
Jiang Y, Stenzel M. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates. Macromol Biosci 2016; 16:791-802. [DOI: 10.1002/mabi.201500453] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/23/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Yanyan Jiang
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales, UNSW; Kensington NSW 2052 Australia
| | - Martina Stenzel
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales, UNSW; Kensington NSW 2052 Australia
| |
Collapse
|
382
|
Qiao ZY, Lin YX, Lai WJ, Hou CY, Wang Y, Qiao SL, Zhang D, Fang QJ, Wang H. A General Strategy for Facile Synthesis and In Situ Screening of Self-Assembled Polymer-Peptide Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1859-1867. [PMID: 26698326 DOI: 10.1002/adma.201504564] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/18/2015] [Indexed: 06/05/2023]
Abstract
A universal strategy for efficient, mild, and purification-free synthesis and in situ screening of functional polymer-peptide nanomaterials is described. More than 1000 polymer-peptide conjugates (PPCs) with various chemical structures, compositions, and therapeutic efficacy are created. According to this strategy, the structure-function relationship of the PPCs is revealed, and the antitumor efficacies of the top performing PPCs are evaluated in vivo.
Collapse
Affiliation(s)
- Zeng-Ying Qiao
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yao-Xin Lin
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Wen-Jia Lai
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Chun-Yuan Hou
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yi Wang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Sheng-Lin Qiao
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Di Zhang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Qiao-Jun Fang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
383
|
Lucius M, Falatach R, McGlone C, Makaroff K, Danielson A, Williams C, Nix JC, Konkolewicz D, Page RC, Berberich JA. Investigating the Impact of Polymer Functional Groups on the Stability and Activity of Lysozyme–Polymer Conjugates. Biomacromolecules 2016; 17:1123-34. [DOI: 10.1021/acs.biomac.5b01743] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | | | | | - Jay C. Nix
- Molecular
Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | | | | |
Collapse
|
384
|
Wong EHH, Khin MM, Ravikumar V, Si Z, Rice SA, Chan-Park MB. Modulating Antimicrobial Activity and Mammalian Cell Biocompatibility with Glucosamine-Functionalized Star Polymers. Biomacromolecules 2016; 17:1170-8. [PMID: 26859230 DOI: 10.1021/acs.biomac.5b01766] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of novel reagents and antibiotics for combating multidrug resistance bacteria has received significant attention in recent years. In this study, new antimicrobial star polymers (14-26 nm in diameter) that consist of mixtures of polylysine and glycopolymer arms were developed and were shown to possess antimicrobial efficacy toward Gram positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) (with MIC values as low as 16 μg mL(-1)) while being non-hemolytic (HC50 > 10,000 μg mL(-1)) and exhibit excellent mammalian cell biocompatibility. Structure function analysis indicated that the antimicrobial activity and mammalian cell biocompatibility of the star nanoparticles could be optimized by modifying the molar ratio of polylysine to glycopolymers arms. The technology described herein thus represents an innovative approach that could be used to fight deadly infectious diseases.
Collapse
Affiliation(s)
- Edgar H H Wong
- School of Chemical and Biomedical Engineering, and ‡Centre for Antimicrobial Bioengineering, Nanyang Technological University , Singapore 637459.,The Singapore Centre for Environmental Life Sciences Engineering, and ∥School of Biological Sciences, Nanyang Technological University , Singapore 637551
| | - Mya Mya Khin
- School of Chemical and Biomedical Engineering, and ‡Centre for Antimicrobial Bioengineering, Nanyang Technological University , Singapore 637459.,The Singapore Centre for Environmental Life Sciences Engineering, and ∥School of Biological Sciences, Nanyang Technological University , Singapore 637551
| | - Vikashini Ravikumar
- School of Chemical and Biomedical Engineering, and ‡Centre for Antimicrobial Bioengineering, Nanyang Technological University , Singapore 637459.,The Singapore Centre for Environmental Life Sciences Engineering, and ∥School of Biological Sciences, Nanyang Technological University , Singapore 637551
| | - Zhangyong Si
- School of Chemical and Biomedical Engineering, and ‡Centre for Antimicrobial Bioengineering, Nanyang Technological University , Singapore 637459.,The Singapore Centre for Environmental Life Sciences Engineering, and ∥School of Biological Sciences, Nanyang Technological University , Singapore 637551
| | - Scott A Rice
- School of Chemical and Biomedical Engineering, and ‡Centre for Antimicrobial Bioengineering, Nanyang Technological University , Singapore 637459.,The Singapore Centre for Environmental Life Sciences Engineering, and ∥School of Biological Sciences, Nanyang Technological University , Singapore 637551
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, and ‡Centre for Antimicrobial Bioengineering, Nanyang Technological University , Singapore 637459.,The Singapore Centre for Environmental Life Sciences Engineering, and ∥School of Biological Sciences, Nanyang Technological University , Singapore 637551
| |
Collapse
|
385
|
Li B, He M, Ramirez L, George J, Wang J. Multifunctional Hydrogel Microparticles by Polymer-Assisted Photolithography. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4158-4164. [PMID: 26821173 DOI: 10.1021/acsami.5b11883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Although standard lithography has been the most common technique in micropatterning, ironically it has not been adopted to produce multifunctional hydrogel microparticles, which are highly useful for bioassays. We address this issue by developing a negative photoresist-like polymer system, which is basically comprised of polyethylene glycol (PEG) triacrylate as cross-linking units and long-chain polyvinylpyrrolidone (PVP) as the supporting scaffold. We leverage standard lithography to manufacture multilayer microparticles that are intrinsically hydrophilic, low-autofluorescent, and chemically reactive. The versatility of the microparticles is demonstrated to be color-encoded, pore-controllable, bioactive, and potentially used as a DNA bioassay.
Collapse
Affiliation(s)
- Bin Li
- Department of Chemistry, University at Albany, State University of New York , Albany, New York 12222, United States
| | - Muhan He
- Department of Chemistry, University at Albany, State University of New York , Albany, New York 12222, United States
| | - Lisa Ramirez
- Department of Chemistry, University at Albany, State University of New York , Albany, New York 12222, United States
| | - Justin George
- Department of Chemistry, University at Albany, State University of New York , Albany, New York 12222, United States
| | - Jun Wang
- Department of Chemistry, University at Albany, State University of New York , Albany, New York 12222, United States
- Cancer Research Center, University at Albany, State University of New York , Rensselaer, New York 12144, United States
| |
Collapse
|
386
|
Nuthanakanti A, Srivatsan SG. Hierarchical self-assembly of switchable nucleolipid supramolecular gels based on environmentally-sensitive fluorescent nucleoside analogs. NANOSCALE 2016; 8:3607-3619. [PMID: 26804191 DOI: 10.1039/c5nr07490h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Exquisite recognition and folding properties have rendered nucleic acids as useful supramolecular synthons for the construction of programmable architectures. Despite their proven applications in nanotechnology, scalability and fabrication of nucleic acid nanostructures still remain a challenge. Here, we describe a novel design strategy to construct new supramolecular nucleolipid synthons by using environmentally-sensitive fluorescent nucleoside analogs, based on 5-(benzofuran-2-yl)uracil and 5-(benzo[b]thiophen-2-yl)uracil cores, as the head group and fatty acids, attached to the ribose sugar, as the lipophilic group. These modified nucleoside-lipid hybrids formed organogels driven by hierarchical structures such as fibers, twisted ribbons, helical ribbons and nanotubes, which depended on the nature of fatty acid chain and nucleobase modification. NMR, single crystal X-ray and powder X-ray diffraction studies revealed the coordinated interplay of various non-covalent interactions invoked by modified nucleobase, sugar and fatty acid chains in setting up the pathway for the gelation process. Importantly, these nucleolipid gels retained or displayed aggregation-induced enhanced emission and their gelation behavior and photophysical properties could be reversibly switched by external stimuli such as temperature, ultrasound and chemicals. Furthermore, the switchable nature of nucleolipid gels to chemical stimuli enabled the selective two channel recognition of fluoride and Hg(2+) ions through visual phase transition and fluorescence change. Fluorescent organogels exhibiting such a combination of useful features is rare, and hence, we expect that this innovative design of fluorescent nucleolipid supramolecular synthons could lead to the emergence of a new family of smart optical materials and probes.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | | |
Collapse
|
387
|
Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016; 85:152-67. [PMID: 26871891 DOI: 10.1016/j.biomaterials.2016.01.061] [Citation(s) in RCA: 633] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
As the mainstay in the treatment of various cancers, chemotherapy plays a vital role, but still faces many challenges, such as poor tumour selectivity and multidrug resistance (MDR). Targeted drug delivery using nanotechnology has provided a new strategy for addressing the limitations of the conventional chemotherapy. In the last decade, the volume of research published in this area has increased tremendously, especially with functional nano drug delivery systems (nanocarriers). Coupling a specific stimuli-triggered drug release mechanism with these delivery systems is one of the most prevalent approaches for improving therapeutic outcomes. Among the various stimuli, pH triggered delivery is regarded as the most general strategy, targeting the acidic extracellular microenvironment and intracellular organelles of solid tumours. In this review, we discuss recent advances in the development of pH-sensitive nanocarriers for tumour-targeted drug delivery. The review focuses on the chemical design of pH-sensitive biomaterials, which are used to fabricate nanocarriers for extracellular and/or intracellular tumour site-specific drug release. The pH-responsive biomaterials bring forth conformational changes in these nanocarriers through various mechanisms such as protonation, charge reversal or cleavage of a chemical bond, facilitating tumour specific cell uptake or drug release. A greater understanding of these mechanisms will help to design more efficient drug delivery systems to address the challenges encountered in conventional chemotherapy.
Collapse
|
388
|
Allegrezza ML, DeMartini ZM, Kloster AJ, Digby ZA, Konkolewicz D. Visible and sunlight driven RAFT photopolymerization accelerated by amines: kinetics and mechanism. Polym Chem 2016. [DOI: 10.1039/c6py01433j] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RAFT polymerization using only tertiary amines under visible light or sunlight is studied, to determine the kinetics of polymerization, and the system is applied to various monomers giving well-defined homo and block copolymers.
Collapse
Affiliation(s)
| | | | - Alex J. Kloster
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Zachary A. Digby
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | | |
Collapse
|
389
|
Wang JT, Hong Y, Ji X, Zhang M, Liu L, Zhao H. In situ fabrication of PHEMA–BSA core–corona biohybrid particles. J Mater Chem B 2016; 4:4430-4438. [DOI: 10.1039/c6tb00699j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(2-hydroxyethyl methacrylate)–bovine serum albumin core–corona particles were prepared using in situ activators generated by electron transfer for atom transfer radical polymerizations of HEMA initiated by a BSA macroinitiator.
Collapse
Affiliation(s)
- Jin-Tao Wang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Yanhang Hong
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Xiaotian Ji
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
390
|
Mabire AB, Brouard Q, Pitto-Barry A, Williams RJ, Willcock H, Kirby N, Chapman E, O'Reilly RK. CO2/pH-responsive particles with built-in fluorescence read-out. Polym Chem 2016. [DOI: 10.1039/c6py01254j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent monomer was synthesized to probe the state of CO2-responsive cross-linked polymer particles.
Collapse
Affiliation(s)
- Anne B. Mabire
- University of Warwick
- Department of Chemistry
- Coventry CV4 7AL
- UK
| | - Quentin Brouard
- University of Warwick
- Department of Chemistry
- Coventry CV4 7AL
- UK
| | | | | | - Helen Willcock
- University of Warwick
- Department of Chemistry
- Coventry CV4 7AL
- UK
| | | | - Emma Chapman
- BP Exploration Operating Company
- Ltd
- Sunbury-on-Thames
- UK
| | | |
Collapse
|
391
|
Chen S, Peng Y, Wu Q, Chang A, Qu A, Shen J, Xie J, Farooqi ZH, Wu W. Synthesis and characterization of responsive poly(anionic liquid) microgels. Polym Chem 2016. [DOI: 10.1039/c6py01282e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Responsive poly(anionic liquid) microgels are synthesized by polymerization of tetrabutylphosphonium 4-styrenesulfonate, which can be further functionalized to harness catalytic properties.
Collapse
Affiliation(s)
- Shoumin Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Yahui Peng
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Qingshi Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Aiping Chang
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Anqi Qu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Jing Shen
- Department of Applied Chemistry
- College of Vocational Education
- Yunnan Normal University
- Kunming
- China
| | - Jianda Xie
- School of Materials Science and Engineering
- Xiamen University of Technology
- Xiamen
- China
| | | | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| |
Collapse
|
392
|
Swift T, Lapworth J, Swindells K, Swanson L, Rimmer S. pH responsive highly branched poly(N-isopropylacrylamide) with trihistidine or acid chain ends. RSC Adv 2016. [DOI: 10.1039/c6ra13139e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Thermally responsive highly branched poly(N-isopropyl acrylamide)s (HB-PNIPAM) were prepared and end-functionalised to give polymers with acid or trihistidine end groups. The ionisation of the end groups affects the swelling of desolvated globules.
Collapse
Affiliation(s)
- T. Swift
- Polymer and Biomaterials Laboratory
- Department of Chemistry and Forensic Science
- University of Bradford
- Bradford
- UK
| | - J. Lapworth
- Department of Chemistry
- University of Sheffield
- UK
| | - K. Swindells
- Department of Chemistry
- University of Sheffield
- UK
| | - L. Swanson
- Department of Chemistry
- University of Sheffield
- UK
| | - S. Rimmer
- Polymer and Biomaterials Laboratory
- Department of Chemistry and Forensic Science
- University of Bradford
- Bradford
- UK
| |
Collapse
|
393
|
Wu Q, Du X, Chang A, Jiang X, Yan X, Cao X, Farooqi ZH, Wu W. Bioinspired synthesis of poly(phenylboronic acid) microgels with high glucose selectivity at physiological pH. Polym Chem 2016. [DOI: 10.1039/c6py01521b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A microgel that is more sensitive towards glucose than to other saccharides is made of 4-vinylphenylboronic acid crosslinked withN,N′-bis(propene)perylene-3,4,9,10-tetracarboxyldiimide.
Collapse
Affiliation(s)
- Qingshi Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Xue Du
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Aiping Chang
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Xiaomei Jiang
- Clinical Laboratory
- Huli Center for Maternal and Child Health
- Xiamen
- China
| | - Xiaoyun Yan
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Xiaoyu Cao
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | | | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| |
Collapse
|
394
|
Cao L, Shi X, Cui Y, Yang W, Chen G, Yuan L, Chen H. Protein–polymer conjugates prepared via host–guest interactions: effects of the conjugation site, polymer type and molecular weight on protein activity. Polym Chem 2016. [DOI: 10.1039/c6py00882h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein–polymer conjugates are prepared via host–guest interactions and the effects of various parameters on protein activity are investigated.
Collapse
Affiliation(s)
- Limin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiujuan Shi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yuecheng Cui
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Weikang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou
- P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
395
|
Jung S, Kwon I. Expansion of bioorthogonal chemistries towards site-specific polymer–protein conjugation. Polym Chem 2016. [DOI: 10.1039/c6py00856a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioorthogonal chemistries have been used to achieve polymer-protein conjugation with the retained critical properties.
Collapse
Affiliation(s)
- Secheon Jung
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
- Department of Chemical Engineering
| |
Collapse
|
396
|
Rother M, Nussbaumer MG, Renggli K, Bruns N. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev 2016; 45:6213-6249. [DOI: 10.1039/c6cs00177g] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein cages have become essential tools in bionanotechnology due to their well-defined, monodisperse, capsule-like structure. Combining them with synthetic polymers greatly expands their application, giving rise to novel nanomaterials fore.g.drug-delivery, sensing, electronic devices and for uses as nanoreactors.
Collapse
Affiliation(s)
- Martin Rother
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Martin G. Nussbaumer
- Wyss Institute for Biologically Inspired Engineering
- Harvard University
- Cambridge
- USA
| | - Kasper Renggli
- Department of Biosystems Science and Engineering
- ETH Zürich
- 4058 Basel
- Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| |
Collapse
|
397
|
Nguyen D, Oliver S, Adnan NNM, Herbert C, Boyer C. Polymer–protein hybrid scaffolds as carriers for CORM-3: platforms for the delivery of carbon monoxide (CO). RSC Adv 2016. [DOI: 10.1039/c6ra21703f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The carbon monoxide releasing molecule, CORM-3, was grafted onto a polymer–protein conjugate thereby improving its half-life and release characteristics.
Collapse
Affiliation(s)
- Diep Nguyen
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia 2052
| | - Susan Oliver
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia 2052
| | - Nik Nik M. Adnan
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia 2052
| | - Cristan Herbert
- School of Medical Sciences
- UNSW Australia
- Sydney
- Australia 2052
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia 2052
| |
Collapse
|
398
|
Jiang L, Bagán H, Kamra T, Zhou T, Ye L. Nanohybrid polymer brushes on silica for bioseparation. J Mater Chem B 2016; 4:3247-3256. [DOI: 10.1039/c6tb00241b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Surface-initiated atom transfer radical polymerization and click chemistry are used to synthesize temperature-responsive polymer brushes for glycoprotein separation.
Collapse
Affiliation(s)
- Lingdong Jiang
- Division of Pure & Applied Biochemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| | - Héctor Bagán
- Division of Pure & Applied Biochemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| | - Tripta Kamra
- Division of Pure & Applied Biochemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| | - Tongchang Zhou
- Division of Pure & Applied Biochemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| | - Lei Ye
- Division of Pure & Applied Biochemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| |
Collapse
|
399
|
Zhang J, Zheng M, Xie Z. Co-assembled hybrids of proteins and carbon dots for intracellular protein delivery. J Mater Chem B 2016; 4:5659-5663. [DOI: 10.1039/c6tb01622g] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Co-assembled hybrids of carbon dots and proteins protect proteins against enzymatic hydrolysis and deliver them into HeLa cells.
Collapse
Affiliation(s)
- Jianxu Zhang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Min Zheng
- School of Chemistry and life Science
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
400
|
Isahak N, Gody G, Malins LR, Mitchell NJ, Payne RJ, Perrier S. Single addition of an allylamine monomer enables access to end-functionalized RAFT polymers for native chemical ligation. Chem Commun (Camb) 2016; 52:12952-12955. [DOI: 10.1039/c6cc06010b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A novel method for the introduction of a single protected amine-functional monomer at the chain end of RAFT polymers has been developed to enable native chemical ligation with peptide thioesters.
Collapse
Affiliation(s)
| | - Guillaume Gody
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
| | | | | | | | - Sébastien Perrier
- School of Chemistry
- The University of Sydney
- Australia
- Department of Chemistry
- The University of Warwick
| |
Collapse
|