351
|
Shao J, Chen L, Marrs B, Lee L, Huang H, Manton KG, Martin GM, Oshima J. SOD2 polymorphisms: unmasking the effect of polymorphism on splicing. BMC MEDICAL GENETICS 2007; 8:7. [PMID: 17331249 PMCID: PMC1819367 DOI: 10.1186/1471-2350-8-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 03/01/2007] [Indexed: 11/10/2022]
Abstract
Background The SOD2 gene encodes an antioxidant enzyme, mitochondrial superoxide dismutase. SOD2 polymorphisms are of interest because of their potential roles in the modulation of free radical-mediated macromolecular damage during aging. Results We identified a new splice variant of SOD2 in human lymphoblastoid cell lines (LCLs). The alternatively spliced product was originally detected by exon trapping of a minigene in order to examine the consequences of an intronic polymorphism found upstream of exon 4 (nucleotide 8136, 10T vs 9T). Examination of the transcripts derived from the endogenous loci in five LCLs with or without the intron 3 polymorphism revealed low levels of an in-frame deletion of exon 4 that were different from those detected by the exon trap assay. This suggested that exon trapping of the minigene unmasked the effect of the 10T vs 9T polymorphism on the splicing of the adjacent exon. We also determined the frequencies of single nucleotide polymorphisms in a sample of US African-Americans and non-African-Americans ages 65 years and older who participated in the 1999 wave of the National Long Term Care Survey (NLTCS). Particularly striking differences between African-Americans and non-African-Americans were found for the frequencies of genotypes at the 10T/9T intron 3 polymorphism. Conclusion Exon trapping can unmask in vitro splicing differences caused by a 10T/9T intron 3 polymorphism. Given the recent evidence that SOD2 is in a region on chromosome 6 linked to susceptibility to hypertension, it will be of interest to investigate possible associations of this polymorphism with cardiovascular disorders.
Collapse
Affiliation(s)
- Jing Shao
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Lishan Chen
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Brian Marrs
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Lin Lee
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Hai Huang
- Center for Demographic Studies, Duke University, Durham, North Carolina, USA
| | - Kenneth G Manton
- Center for Demographic Studies, Duke University, Durham, North Carolina, USA
| | - George M Martin
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
352
|
Kashima T, Rao N, Manley JL. An intronic element contributes to splicing repression in spinal muscular atrophy. Proc Natl Acad Sci U S A 2007; 104:3426-31. [PMID: 17307868 PMCID: PMC1805620 DOI: 10.1073/pnas.0700343104] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neurodegenerative disease spinal muscular atrophy is caused by mutation of the survival motor neuron 1 (SMN1) gene. SMN2 is a nearly identical copy of SMN1 that is unable to prevent disease, because most SMN2 transcripts lack exon 7 and thus produce a nonfunctional protein. A key cause of inefficient SMN2 exon 7 splicing is a single nucleotide difference between SMN1 and SMN2 within exon 7. We previously provided evidence that this base change suppresses exon 7 splicing by creating an inhibitory element, a heterogeneous nuclear ribonucleoprotein (hnRNP) A1-dependent exonic splicing silencer. We now find that another rare nucleotide difference between SMN1 and SMN2, in intron 7, potentially creates a second SMN2-specific hnRNP A1 binding site. Remarkably, this single base change does indeed create a high-affinity hnRNP A1 binding site, and base substitutions that disrupt it restore exon 7 inclusion in vivo and prevent hnRNP A1 binding in vitro. We propose that interactions between hnRNP A1 molecules bound to the exonic and intronic sites cooperate to exclude exon 7 and discuss the significance of this exclusion with respect to SMN expression and splicing control more generally.
Collapse
Affiliation(s)
- Tsuyoshi Kashima
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Nishta Rao
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
353
|
Krawczak M, Thomas NST, Hundrieser B, Mort M, Wittig M, Hampe J, Cooper DN. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 2007; 28:150-8. [PMID: 17001642 DOI: 10.1002/humu.20400] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although single base-pair substitutions in splice junctions constitute at least 10% of all mutations causing human inherited disease, the factors that determine their phenotypic consequences at the RNA level remain to be fully elucidated. Employing a neural network for splice-site recognition, we performed a meta-analysis of 478 disease-associated splicing mutations, in 38 different genes, for which detailed laboratory-based mRNA phenotype assessment had been performed. Inspection of the +/-50-bp DNA sequence context of the mutations revealed that exon skipping was the preferred phenotype when the immediate vicinity of the affected exon-intron junctions was devoid of alternative splice-sites. By contrast, in the presence of at least one such motif, cryptic splice-site utilization, became more prevalent. This association was, however, confined to donor splice-sites. Outside the obligate dinucleotide, the spatial distribution of pathological mutations was found to differ significantly from that of SNPs. Whereas disease-associated lesions clustered at positions -1 and +3 to +6 for donor sites and -3 for acceptor sites, SNPs were found to be almost evenly distributed over all sequence positions considered. When all putative missense mutations in the vicinity of splice-sites were extracted from the Human Gene Mutation Database for the 38 studied genes, a significantly higher proportion of changes at donor sites (37/152; 24.3%) than at acceptor splice-sites (1/142; 0.7%) was found to reduce the neural network signal emitted by the respective splice-site. Based upon these findings, we estimate that some 1.6% of disease-causing missense substitutions in human genes are likely to affect the mRNA splicing phenotype. Taken together, our results are consistent with correct donor splice-site recognition being a key step in exon recognition.
Collapse
Affiliation(s)
- Michael Krawczak
- Institut für Medizinische Informatik und Statistik, Christian-Albrechts-Universität, Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|
354
|
Ramos-Trujillo E, González-Acosta H, Flores C, García-Nieto V, Guillén E, Gracia S, Vicente C, Espinosa L, Maseda MAF, Santos F, Camacho JA, Claverie-Martín F. A missense mutation in the chloride/proton ClC-5 antiporter gene results in increased expression of an alternative mRNA form that lacks exons 10 and 11. Identification of seven new CLCN5 mutations in patients with Dent’s disease. J Hum Genet 2007; 52:255-261. [PMID: 17262170 DOI: 10.1007/s10038-007-0112-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Mutations in the voltage-gated chloride/proton antiporter ClC-5 gene, CLCN5, are associated with Dent's disease, an X-linked renal tubulopathy. Our interest is to identify and characterize disease-causing CLCN5 mutations, especially those that alter the splicing of the pre-mRNA. We analyzed the CLCN5 gene from nine unrelated Spanish Dent's disease patients and their relatives by DNA sequencing. Pre-mRNA splicing analysis was performed by RT-PCR. Seven new mutations were identified, consisting of three missense mutations (C219R, F273L, and W547G), one splice-site mutation (IVS-2A > G), one deletion (976delG), and two non-sense mutations (Y140X and W314X). We found that missense mutation W547G also led to increased expression of a new alternative isoform lacking exons 10 and 11 that was expressed in several human tissues. In addition, we describe another novel CLCN5 splicing variant lacking exon 11 alone, which was expressed only in human skeletal muscle. We conclude that missense mutation W547G can also alter the expression levels of a CLCN5 mRNA splicing variant. This type of mutation has not been previously described in the CLCN5 gene. Our results support the importance of a routine analysis at the pre-mRNA level of mutations that are commonly assumed to cause single amino acids alterations.
Collapse
Affiliation(s)
- Elena Ramos-Trujillo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Hilaria González-Acosta
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Víctor García-Nieto
- Unidad de Nefrología Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Encarna Guillén
- Servicio de Pediatría, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Salvador Gracia
- Servicio de Pediatría, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Carmen Vicente
- Servicio de Pediatría, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Laura Espinosa
- Servicio de Nefrología Infantil, Hospital Universitario La Paz, Madrid, Spain
| | | | - Fernando Santos
- Servicio de Nefrología Pediátrica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan A Camacho
- Sección de Nefrología, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Félix Claverie-Martín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
| |
Collapse
|
355
|
Nasser NJ, Avivi A, Shushy M, Vlodavsky I, Nevo E. Cloning, expression, and characterization of an alternatively spliced variant of human heparanase. Biochem Biophys Res Commun 2007; 354:33-8. [PMID: 17208203 PMCID: PMC1852469 DOI: 10.1016/j.bbrc.2006.12.189] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 12/12/2006] [Indexed: 11/16/2022]
Abstract
Heparanase is an endoglycosidase that cleaves heparan sulfate in the extracellular matrix (ECM) and hence participates in ECM degradation and remodeling. Heparanase is involved in fundamental biological processes such as cancer metastasis, angiogenesis, and inflammation. Alternative splicing in the coding region of human heparanase was not reported. Here, we report the cloning of a splice variant of human heparanase that lacks exon 5 and is missing 174 bp compared to the wild-type cDNA. Splice 5 is expressed as a 55 kDa protein compared to the 65 and 50 kDa latent and active wild-type enzyme. Splice 5 was not detected in the incubation medium of tumor cells as opposed to the wild-type latent heparanase. Splice 5 escaped proteolytic cleavage, was devoid of HS degradation activity and exhibited diffused rather than granular cellular localization.
Collapse
Affiliation(s)
- Nicola J. Nasser
- Institute of Evolution, International Graduate Center of Evolution, University of Haifa, Haifa 31905, Israel
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Aaron Avivi
- Institute of Evolution, International Graduate Center of Evolution, University of Haifa, Haifa 31905, Israel
- To whom correspondence should be addressed: Israel Vlodavsky, Ph.D., Tel. +972-4-8295410, Fax. +972-4-8523947,
| | - Moran Shushy
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
- To whom correspondence should be addressed: Israel Vlodavsky, Ph.D., Tel. +972-4-8295410, Fax. +972-4-8523947,
| | - Eviatar Nevo
- Institute of Evolution, International Graduate Center of Evolution, University of Haifa, Haifa 31905, Israel
| |
Collapse
|
356
|
Martinez-Contreras R, Cloutier P, Shkreta L, Fisette JF, Revil T, Chabot B. hnRNP proteins and splicing control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:123-47. [PMID: 18380344 DOI: 10.1007/978-0-387-77374-2_8] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins of the heterogeneous nuclear ribonucleoparticles (hnRNP) family form a structurally diverse group of RNA binding proteins implicated in various functions in metazoans. Here we discuss recent advances supporting a role for these proteins in precursor-messenger RNA (pre-mRNA) splicing. Heterogeneous nuclear RNP proteins can repress splicing by directly antagonizing the recognition of splice sites, or can interfere with the binding of proteins bound to enhancers. Recently, hnRNP proteins have been shown to hinder communication between factors bound to different splice sites. Conversely, several reports have described a positive role for some hnRNP proteins in pre-mRNA splicing. Moreover, cooperative interactions between bound hnRNP proteins may encourage splicing between specific pairs of splice sites while simultaneously hampering other combinations. Thus, hnRNP proteins utilize a variety of strategies to control splice site selection in a manner that is important for both alternative and constitutive pre-mRNA splicing.
Collapse
|
357
|
Raponi M, Baralle FE, Pagani F. Reduced splicing efficiency induced by synonymous substitutions may generate a substrate for natural selection of new splicing isoforms: the case of CFTR exon 12. Nucleic Acids Res 2006; 35:606-13. [PMID: 17172597 PMCID: PMC1802620 DOI: 10.1093/nar/gkl1087] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing has been associated with increased evolutionary changes and with recent exon creation or loss. The addition of a new exon can be explained by its inclusion in only a fraction of the transcripts leaving the original form intact and giving to the new form the possibility to evolve independently but the exon loss phenomenon is less clear. To explore the mechanism that could be involved in CFTR exon 12 lower splicing efficiency in primates, we have analyzed the effect of multiple synonymous variations. Random patterns of synonymous variations were created in CFTR exon12 and the majority of them induced exon inclusion, suggesting a suboptimal splicing efficiency of the human gene. In addition, the effect of each single synonymous substitution on splicing is strongly dependent on the exonic context and does not correlate with available in silico exon splicing prediction programs. We propose that casual synonymous substitutions may lead to a reduced splicing efficiency that can result in a variable proportion of exon loss. If this phenomenon happens in in-frame exons and to an extent tolerated by the cells it can have an important evolutionary effect since it may generate a substrate for natural selection of new splicing isoforms.
Collapse
Affiliation(s)
| | | | - Franco Pagani
- To whom correspondence should be addressed: Tel: +39 040 37571; Fax: +39 040 226555;
| |
Collapse
|
358
|
Law AJ, Kleinman JE, Weinberger DR, Weickert CS. Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum Mol Genet 2006; 16:129-41. [PMID: 17164265 DOI: 10.1093/hmg/ddl449] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The neuregulin 1 (NRG1) receptor, ErbB4, has been identified as a potential risk gene for schizophrenia. HER4/ErbB4 is a receptor tyrosine kinase whose transcript undergoes alternative splicing in the brain. Exon 16 encodes isoforms containing a metalloprotease cleavable extracellular domain (JM-a), exon 15 for a cleavage resistant form (JM-b) and exon 26 for a cytoplasmic domain (CYT-1) with a phosphotidylinositol-3 kinase (PI3K) binding site. Disease-associated variants in the ErbB4 gene are intronic and implicate altered splicing of the gene. We examined ErbB4 splice-variant gene expression in the hippocampus and dorsolateral prefrontal cortex (DLPFC) in schizophrenia using qPCR and investigated whether expression levels are associated with previously reported genomic risk variants in ErbB4 in a large cohort of human brains. In the DLPFC, we confirmed previous observations, in a separate cohort, that mRNA for ErbB4 splice isoforms containing exon 16 (JM-a) and exon 26 (CYT-1) are significantly elevated in patients with schizophrenia. A main effect of genotype was observed in the DLPFC and hippocampus at a single risk SNP located in intron 12 (rs4673628) on isoforms containing exon 16 (JM-a). We also found that three intronic risk SNPs (rs7598440, rs707284, rs839523) and a core-risk haplotype surrounding exon 3 are strongly associated with elevated expression of splice variants containing exon 26 (CYT-1). These findings suggest that dysregulation of splice-variant specific expression of ErbB4 in the brain underlies the genetic association of the gene with schizophrenia and that the NRG1/ErbB4 signaling pathway may be an important genetic network involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Amanda J Law
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK.
| | | | | | | |
Collapse
|
359
|
ElSharawy A, Manaster C, Teuber M, Rosenstiel P, Kwiatkowski R, Huse K, Platzer M, Becker A, Nürnberg P, Schreiber S, Hampe J. SNPSplicer: systematic analysis of SNP-dependent splicing in genotyped cDNAs. Hum Mutat 2006; 27:1129-34. [PMID: 16937379 DOI: 10.1002/humu.20377] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Functional annotation of SNPs (as generated by HapMap (http://www.hapmap.org) for instance) is a major challenge. SNPs that lead to single amino acid substitutions, stop codons, or frameshift mutations can be readily interpreted, but these represent only a fraction of known SNPs. Many SNPs are located in sequences of splicing relevance-the canonical splice site consensus sequences, exonic and intronic splice enhancers or silencers (exonic splice enhancer [ESE], intronic splice enhancer [ISE], exonic splicing silencer [ESS], and intronic splicing silencer [ISS]), and others. We propose using sets of matching DNA and complementary DNA (cDNA) as a screening method to investigate the potential splice effects of SNPs in RT-PCR experiments with tissue material from genotyped sources. We have developed a software solution (SNPSplicer; http://www.ikmb.uni-kiel.de/snpsplicer) that aids in the rapid interpretation of such screening experiments. The utility of the approach is illustrated for SNPs affecting the donor splice sites (rs2076530:A>G, rs3816989:G>A) leading to the use of a cryptic splice site and exon skipping, respectively, and an exonic splice enhancer SNP (rs2274987:C/T), leading to inclusion of a new exon. We anticipate that this methodology may help in the functional annotation of SNPs in a more high-throughput fashion.
Collapse
Affiliation(s)
- Abdou ElSharawy
- Institute of Clinical Molecular Biology at the Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Korman SH. Inborn errors of isoleucine degradation: a review. Mol Genet Metab 2006; 89:289-99. [PMID: 16950638 DOI: 10.1016/j.ymgme.2006.07.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 11/28/2022]
Abstract
Three inborn errors have been identified in the pathway of isoleucine degradation. Deficiency of beta-ketothiolase (beta-KT, also known as T2, mitochondrial acetoacetyl-CoA thiolase and acetyl-CoA acetyltransferase 1) is a well-described disorder which presents with acute episodic ketoacidosis. In contrast, short/branched-chain acyl-CoA dehydrogenase (SBCAD) and 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiencies are recently described and relatively rare defects which present with predominantly neurological manifestations, although acute metabolic decompensation may occur in the early newborn period. Careful examination of urine organic acids is required for identification and differential diagnosis of these disorders, with awareness that the abnormalities may be subtle and variable. Tandem MS analysis of acylcarnitines may reveal elevated C5 (SBCAD) or C5:1 and/or OH-C5 species (MHBD and beta-KT deficiencies) but the abnormalities are non-diagnostic and may be intermittent or absent. Confirmation of diagnosis is therefore advisable by specific enzyme assay and/or mutation analysis of the ACAT1 (beta-KT), ACADSB (SBCAD) or HADH2 (MHBD) genes. The latter is located on the X chromosome, accounting for the milder clinical phenotype in females. If beta-KT deficiency is diagnosed early and treated by fasting avoidance and modest protein restriction, ketoacidosis episodes can be prevented and the prognosis is excellent. The role of treatment in SBCAD deficiency remains unclear pending further delineation of its clinical phenotype and pathogenicity, particularly regarding asymptomatic individuals detected by expanded newborn screening. The ineffectiveness of isoleucine restriction in MHBD deficiency is consistent with the additional roles of this multifunctional enzyme in sex steroid and neurosteroid metabolism and its interaction with amyloid-beta peptide.
Collapse
Affiliation(s)
- Stanley H Korman
- Metabolic Diseases Unit, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.
| |
Collapse
|
361
|
Ishida Y, David VA, Eizirik E, Schäffer AA, Neelam BA, Roelke ME, Hannah SS, O'Brien SJ, Menotti-Raymond M. A homozygous single-base deletion in MLPH causes the dilute coat color phenotype in the domestic cat. Genomics 2006; 88:698-705. [PMID: 16860533 DOI: 10.1016/j.ygeno.2006.06.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 11/22/2022]
Abstract
Three proteins have been described in humans and mice as being essential for even distribution, transport, and translocation of pigment granules, with defects in these molecules giving rise to lighter skin/coat color. The dilute phenotype in domestic cats affects both eumelanin and phaeomelanin pigment pathways; for example, black pigmentation combined with dilute appears gray and orange pigments appear cream. The dilute pigmentation segregates as a fully penetrant, autosomal recessive trait. We conducted classical linkage mapping with microsatellites in a large multigeneration pedigree of domestic cats and detected tight linkage for dilute on cat chromosome C1 (theta=0.08, LOD=10.81). Fine-mapping identified a genomic region exhibiting conserved synteny to human chromosome 2, which included one of the three dilute candidate genes, melanophilin (MLPH). Sequence analysis in dilute cats identified a single base pair deletion in exon 2 of MLPH transcripts that introduces a stop codon 11 amino acids downstream, resulting in the truncation of the bulk of the MLPH protein. The occurrence of this homozygous variant in 97 unrelated dilute cats representing 26 cat breeds and random-bred cats, along with 89 unrelated wild-type cats representing 29 breeds and random-bred cats, supports the finding that dilute is caused by this single mutation in MLPH (p<0.00001). Single-nucleotide polymorphism analyses in dilute individuals identified a single haplotype in dilute cats, suggesting that a single mutation event in MLPH gave rise to dilute in domestic cats.
Collapse
Affiliation(s)
- Yasuko Ishida
- Laboratory of Genomic Diversity, National Cancer Institute, Building 560, Room 11-38, Fort Detrick, Frederick, MD 21702, USA.
| | - Victor A David
- Laboratory of Genomic Diversity, National Cancer Institute, Building 560, Room 11-38, Fort Detrick, Frederick, MD 21702, USA
| | - Eduardo Eizirik
- Centro de Biologia Genômica e Molecular, PUCRS, Porto Alegre, RS 90619-900, Brazil
| | - Alejandro A Schäffer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20894, USA
| | - Beena A Neelam
- Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | - Melody E Roelke
- Laboratory of Genomic Diversity, SAIC-Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | | | - Stephen J O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute, Building 560, Room 11-38, Fort Detrick, Frederick, MD 21702, USA
| | - Marilyn Menotti-Raymond
- Laboratory of Genomic Diversity, National Cancer Institute, Building 560, Room 11-38, Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
362
|
Sciabica KS, Hertel KJ. The splicing regulators Tra and Tra2 are unusually potent activators of pre-mRNA splicing. Nucleic Acids Res 2006; 34:6612-20. [PMID: 17135210 PMCID: PMC1747189 DOI: 10.1093/nar/gkl984] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sexual differentiation in Drosophila is regulated through alternative splicing of doublesex. Female-specific splicing is activated through the activity of splicing enhancer complexes assembled on multiple repeat elements. Each of these repeats serves as a binding platform for the cooperative assembly of a heterotrimeric complex consisting of the SR proteins Tra, Tra2 and 9G8. Using quantitative kinetic analyses, we demonstrate that each component of the enhancer complex is capable of recruiting the spliceosome. Surprisingly, Tra, Tra2 and 9G8 are much stronger splicing activators than other SR protein family members and their activation potential is significantly higher than expected from their serine/arginine content. 9G8 activates splicing not only through its RS domains but also through its RNA-binding domain. The RS domains of Tra and Tra2 are required but not sufficient for efficient complex assembly. Thus, the regulated assembly of the dsx enhancer complexes leads to the generation of an extended activation domain to guarantee the ‘all or none’ splicing switch that is required during Drosophila sexual differentiation.
Collapse
Affiliation(s)
| | - Klemens J. Hertel
- To whom correspondence should be addressed. Tel: +1 949 824 2127; Fax: +1 949 824 8598;
| |
Collapse
|
363
|
Guarnieri V, Muscarella LA, Amoroso R, Quattrone A, Abate ME, Coco M, Catapano D, D'Angelo VA, Zelante L, D'Agruma L. Identification of two novel mutations and of a novel critical region in the KRIT1 gene. Neurogenetics 2006; 8:29-37. [PMID: 17043900 DOI: 10.1007/s10048-006-0056-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 07/04/2006] [Indexed: 11/27/2022]
Abstract
Cerebral cavernous malformations (CCMs) represent a common autosomal dominant disorder that predisposes patients to hemorrhagic strokes and focal neurological signs. Mutations in three genes (KRIT1, MGC4607, and PDCD10) have been associated with CCMs. We investigated the role of two new mutations in the KRIT1 gene in two Italian families affected by CCMs. Whole blood DNA was extracted and the mutations were detected after polymerase chain reaction (PCR), denaturing high-performance liquid chromatography screening, and sequencing of the coding regions of the three CCMs-associated genes. Total RNA was extracted, and the KRIT1 cDNA was sequenced and subsequently subjected to real-time quantitative PCR in order to examine the translational outcome of each genomic mutation. A novel splicing acceptor site deletion of the exon 14 in one family and an intronic nucleotide change close to the exon 19 in the other one were identified, both in the KRIT1 gene. These mutations were proven to alter the correct splicing mechanism, resulting, respectively, in a truncated protein of 432 amino acids and in a protein lacking an internal segment. We report two novel cases of splicing affecting genomic variants, suggesting a careful reanalysis of previously identified splice site variations in KRIT1 to look for their possible causative roles of similar missplicing events and their consequent involvement in the pathogenesis of CCMs. Moreover, our genotype-phenotype functional correlation suggests that the C-terminal portion of the KRIT1 protein is likely to contain a short, previously unrecognized segment necessary for its activity.
Collapse
Affiliation(s)
- Vito Guarnieri
- Medical Genetics Service, Poliambulatorio Giovanni Paolo II, IRCCS Casa Sollievo della Sofferenza Hospital, Viale Cappuccini, 71013, San Giovanni Rotondo (FG), Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Benzinou M, Walley A, Lobbens S, Charles MA, Jouret B, Fumeron F, Balkau B, Meyre D, Froguel P. Bardet-Biedl syndrome gene variants are associated with both childhood and adult common obesity in French Caucasians. Diabetes 2006; 55:2876-82. [PMID: 17003356 DOI: 10.2337/db06-0337] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a rare developmental disorder with the cardinal features of abdominal obesity, retinopathy, polydactyly, cognitive impairment, renal and cardiac anomalies, hypertension, and diabetes. BBS is genetically heterogeneous, with nine genes identified to date and evidence for additional loci. In this study, we performed mutation analysis of the coding and conserved regions of BBS1, BBS2, BBS4, and BBS6 in 48 French Caucasian individuals. Among the 36 variants identified, 12 were selected and genotyped in 1,943 French-Caucasian case subjects and 1,299 French-Caucasian nonobese nondiabetic control subjects. Variants in BBS2, BBS4, and BBS6 showed evidence of association with common obesity in an age-dependent manner, the BBS2 single nucleotide polymorphism (SNP) being associated with common adult obesity (P = 0.0005) and the BBS4 and BBS6 SNPs being associated with common early-onset childhood obesity (P = 0.0003) and common adult morbid obesity (0.0003 < P < 0.007). The association of the BBS4 rs7178130 variant was found to be supported by transmission disequilibrium testing (P = 0.006). The BBS6 variants also showed nominal evidence of association with quantitative components of the metabolic syndrome (e.g., dyslipidemia, hyperglycemia), a complication previously described in BBS patients. In summary, our preliminary data suggest that variations at BBS genes are associated with risk of common obesity.
Collapse
Affiliation(s)
- Michael Benzinou
- Section of Genomic Medicine, Faculty of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Liang J, Zhang Y, Wang J, Pan H, Wu H, Xu K, Liu X, Jiang Y, Shen Y, Wu X. New variants in the CACNA1H gene identified in childhood absence epilepsy. Neurosci Lett 2006; 406:27-32. [PMID: 16905256 DOI: 10.1016/j.neulet.2006.06.073] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/11/2006] [Accepted: 06/15/2006] [Indexed: 11/22/2022]
Abstract
Childhood absence epilepsy (CAE) is a common form of idiopathic generalized epilepsy with polygenic inheritance. In our previous studies, relatively high frequent variants in the T-type calcium channel gene, CACNA1H, were identified in the Chinese Han population, most of which are located in exons 6-12. The goal of this study was to identify additional variants in this region of the CACNA1H gene. To this end, exons 6-12 were sequenced in 100 newly recruited CAE trios and 191 normal controls. Thirty-nine variants were identified in CAE trios or controls, 14 of which were found only in CAE patients, including two nonsynonymous variants that were newly found. Thirteen of the 39 variants were found in both CAE patients and controls, 11 were found only in parents of CAE trios, and one was found only in controls. Twenty-eight of these variants had not been previously reported. Both permutation test and transmission/disequilibrium test (TDT) indicated that a SNP-52037C>T in intron11 was significant in association with CAE. In conclusion, these data further support the hypothesis that CACNA1H is an important susceptibility gene for CAE in the Chinese Han population.
Collapse
Affiliation(s)
- Jianmin Liang
- Department of Pediatrics, Peking University, First Hospital, Beijing, 100034, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
366
|
van der Putten HHAGM, Spaargaren-van Riel CC, Bertina RM, Vos HL. Functional analysis of two prothrombin 3'-untranslated region variants: the C20209T variant, mainly found among African-Americans, and the C20209A variant. J Thromb Haemost 2006; 4:2285-7; author reply 2288-9. [PMID: 16796711 DOI: 10.1111/j.1538-7836.2006.02102.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
367
|
Lastella P, Surdo NC, Resta N, Guanti G, Stella A. In silico and in vivo splicing analysis of MLH1 and MSH2 missense mutations shows exon- and tissue-specific effects. BMC Genomics 2006; 7:243. [PMID: 16995940 PMCID: PMC1590028 DOI: 10.1186/1471-2164-7-243] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Accepted: 09/22/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abnormalities of pre-mRNA splicing are increasingly recognized as an important mechanism through which gene mutations cause disease. However, apart from the mutations in the donor and acceptor sites, the effects on splicing of other sequence variations are difficult to predict. Loosely defined exonic and intronic sequences have been shown to affect splicing efficiency by means of silencing and enhancement mechanisms. Thus, nucleotide substitutions in these sequences can induce aberrant splicing. Web-based resources have recently been developed to facilitate the identification of nucleotide changes that could alter splicing. However, computer predictions do not always correlate with in vivo splicing defects. The issue of unclassified variants in cancer predisposing genes is very important both for the correct ascertainment of cancer risk and for the understanding of the basic mechanisms of cancer gene function and regulation. Therefore we aimed to verify how predictions that can be drawn from in silico analysis correlate with results obtained in an in vivo splicing assay. RESULTS We analysed 99 hMLH1 and hMSH2 missense mutations with six different algorithms. Transfection of three different cell lines with 20 missense mutations, showed that a minority of them lead to defective splicing. Moreover, we observed that some exons and some mutations show cell-specific differences in the frequency of exon inclusion. CONCLUSION Our results suggest that the available algorithms, while potentially helpful in identifying splicing modulators especially when they are located in weakly defined exons, do not always correspond to an obvious modification of the splicing pattern. Thus caution must be used in assessing the pathogenicity of a missense or silent mutation with prediction programs. The variations observed in the splicing proficiency in three different cell lines suggest that nucleotide changes may dictate alternative splice site selection in a tissue-specific manner contributing to the widely observed phenotypic variability in inherited cancers.
Collapse
Affiliation(s)
- Patrizia Lastella
- Section of Medical Genetics, Department of Biomedicine in Childhood, University of Bari, Italy. Policlinico P.zza G.Cesare 11 70124 Bari, Italy
| | - Nicoletta Concetta Surdo
- Section of Medical Genetics, Department of Biomedicine in Childhood, University of Bari, Italy. Policlinico P.zza G.Cesare 11 70124 Bari, Italy
| | - Nicoletta Resta
- Section of Medical Genetics, Department of Biomedicine in Childhood, University of Bari, Italy. Policlinico P.zza G.Cesare 11 70124 Bari, Italy
| | - Ginevra Guanti
- Section of Medical Genetics, Department of Biomedicine in Childhood, University of Bari, Italy. Policlinico P.zza G.Cesare 11 70124 Bari, Italy
| | - Alessandro Stella
- Section of Medical Genetics, Department of Biomedicine in Childhood, University of Bari, Italy. Policlinico P.zza G.Cesare 11 70124 Bari, Italy
| |
Collapse
|
368
|
Thöny B, Blau N. Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Hum Mutat 2006; 27:870-8. [PMID: 16917893 DOI: 10.1002/humu.20366] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tetrahydrobiopterin (BH(4)) deficiencies are a highly heterogeneous group of disorders with several hundred patients, and so far a total of 193 different mutant alleles or molecular lesions identified in the GTP cyclohydrolase I (GTPCH), 6-pyruvoyl-tetrahydropterin synthase (PTPS), sepiapterin reductase (SR), carbinolamine-4a-dehydratase (PCD), or dihydropteridine reductase (DHPR) genes. The spectrum of mutations causing a reduction in one of the three biosynthetic (GTPCH, PTPS, and SR) or the two regenerating enzymes (PCD and DHPR) is tabulated and reviewed. Furthermore, current genomic variations or SNPs are also compiled. Mutations in GCH1 are scattered over the entire gene, and only 5 out of 104 mutant alleles, present in a homozygous state, are reported to cause the autosomal recessive form of inheritable hyperphenylalaninemia (HPA) associated with monoamine neurotransmitter deficiency. Almost all other 99 different mutant alleles in GCH1 are observed together with a wild-type allele and cause Dopa-responsive dystonia (DRD, Segawa disease) in a dominant fashion with reduced penetrance. Compound heterozygous or homozygous mutations are spread over the entire genes for PTS with 44 mutant alleles, for PCBD with nine mutant alleles, and for QDPR with 29 mutant alleles. These mutations cause an autosomal recessive inherited form of HPA, mostly accompanied by a deficiency of the neurotransmitters dopamine and serotonin. Lack of sepiapterin reductase activity, an autosomal recessive variant of BH(4) deficiency presenting without HPA, was diagnosed in patients with seven different mutant alleles in the SPR gene in exons 2 or 3 or in intron 2. Details on all mutations presented here are constantly updated in the BIOMDB database (www.bh4.org).
Collapse
Affiliation(s)
- Beat Thöny
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Zurich, Switzerland
| | | |
Collapse
|
369
|
Abstract
Recent analyses of sequence and microarray data have suggested that alternative splicing plays a major role in the generation of proteomic and functional diversity in metazoan organisms. Efforts are now being directed at establishing the full repertoire of functionally relevant transcript variants generated by alternative splicing, the specific roles of such variants in normal and disease physiology, and how alternative splicing is coordinated on a global level to achieve cell- and tissue-specific functions. Recent progress in these areas is summarized in this review.
Collapse
Affiliation(s)
- Benjamin J Blencowe
- Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, Centre for Cellular and Biomolecular Research, Donnelly CCBR Building, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
370
|
Qu HQ, Lawrence SG, Guo F, Majewski J, Polychronakos C. Strand bias in complementary single-nucleotide polymorphisms of transcribed human sequences: evidence for functional effects of synonymous polymorphisms. BMC Genomics 2006; 7:213. [PMID: 16916449 PMCID: PMC1559705 DOI: 10.1186/1471-2164-7-213] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 08/17/2006] [Indexed: 11/25/2022] Open
Abstract
Background Complementary single-nucleotide polymorphisms (SNPs) may not be distributed equally between two DNA strands if the strands are functionally distinct, such as in transcribed genes. In introns, an excess of A↔G over the complementary C↔T substitutions had previously been found and attributed to transcription-coupled repair (TCR), demonstrating the valuable functional clues that can be obtained by studying such asymmetry. Here we studied asymmetry of human synonymous SNPs (sSNPs) in the fourfold degenerate (FFD) sites as compared to intronic SNPs (iSNPs). Results The identities of the ancestral bases and the direction of mutations were inferred from human-chimpanzee genomic alignment. After correction for background nucleotide composition, excess of A→G over the complementary T→C polymorphisms, which was observed previously and can be explained by TCR, was confirmed in FFD SNPs and iSNPs. However, when SNPs were separately examined according to whether they mapped to a CpG dinucleotide or not, an excess of C→T over G→A polymorphisms was found in non-CpG site FFD SNPs but was absent from iSNPs and CpG site FFD SNPs. Conclusion The genome-wide discrepancy of human FFD SNPs provides novel evidence for widespread selective pressure due to functional effects of sSNPs. The similar asymmetry pattern of FFD SNPs and iSNPs that map to a CpG can be explained by transcription-coupled mechanisms, including TCR and transcription-coupled mutation. Because of the hypermutability of CpG sites, more CpG site FFD SNPs are relatively younger and have confronted less selection effect than non-CpG FFD SNPs, which can explain the asymmetric discrepancy of CpG site FFD SNPs vs. non-CpG site FFD SNPs.
Collapse
Affiliation(s)
- Hui-Qi Qu
- Endocrine Genetics Laboratory, The McGill University Health Center (Montreal Children's Hospital), Montréal, Québec, Canada
| | - Steve G Lawrence
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Fan Guo
- Endocrine Genetics Laboratory, The McGill University Health Center (Montreal Children's Hospital), Montréal, Québec, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Constantin Polychronakos
- Endocrine Genetics Laboratory, The McGill University Health Center (Montreal Children's Hospital), Montréal, Québec, Canada
- Department of Pediatrics, The McGill University Health Center (Montreal Children's Hospital), 2300 Tupper, Montréal, Québec H3H 1P3, Canada
| |
Collapse
|
371
|
Abstract
Variations in new splicing regulatory elements are difficult to identify exclusively by sequence inspection and may result in deleterious effects on precursor (pre) mRNA splicing. These mutations can result in either complete skipping of the exon, retention of the intron, or the introduction of a new splice site within an exon or intron. Sometimes mutations that do not disrupt or create a splice site activate pre-existing pseudo splice sites, consistent with the proposal that introns contain splicing inhibitory sequences. These variants can also affect the fine balance of isoforms produced by alternatively spliced exons and in consequence cause disease. Available genomic pathology data reveal that we are still partly ignorant of the basic mechanisms that underlie the pre-mRNA splicing process. The fact that human pathology can provide pointers to new modulatory elements of splicing should be exploited.
Collapse
Affiliation(s)
- D Baralle
- Department of Medical Genetics, Box 134, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK.
| | | |
Collapse
|
372
|
Borensztajn K, Sobrier ML, Duquesnoy P, Fischer AM, Tapon-Bretaudière J, Amselem S. Oriented scanning is the leading mechanism underlying 5' splice site selection in mammals. PLoS Genet 2006; 2:e138. [PMID: 16948532 PMCID: PMC1557585 DOI: 10.1371/journal.pgen.0020138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 07/20/2006] [Indexed: 11/28/2022] Open
Abstract
Splice site selection is a key element of pre-mRNA splicing. Although it is known to involve specific recognition of short consensus sequences by the splicing machinery, the mechanisms by which 5′ splice sites are accurately identified remain controversial and incompletely resolved. The human F7 gene contains in its seventh intron (IVS7) a 37-bp VNTR minisatellite whose first element spans the exon7–IVS7 boundary. As a consequence, the IVS7 authentic donor splice site is followed by several cryptic splice sites identical in sequence, referred to as 5′ pseudo-sites, which normally remain silent. This region, therefore, provides a remarkable model to decipher the mechanism underlying 5′ splice site selection in mammals. We previously suggested a model for splice site selection that, in the presence of consecutive splice consensus sequences, would stimulate exclusively the selection of the most upstream 5′ splice site, rather than repressing the 3′ following pseudo-sites. In the present study, we provide experimental support to this hypothesis by using a mutational approach involving a panel of 50 mutant and wild-type F7 constructs expressed in various cell types. We demonstrate that the F7 IVS7 5′ pseudo-sites are functional, but do not compete with the authentic donor splice site. Moreover, we show that the selection of the 5′ splice site follows a scanning-type mechanism, precluding competition with other functional 5′ pseudo-sites available on immediate sequence context downstream of the activated one. In addition, 5′ pseudo-sites with an increased complementarity to U1snRNA up to 91% do not compete with the identified scanning mechanism. Altogether, these findings, which unveil a cell type–independent 5′−3′-oriented scanning process for accurate recognition of the authentic 5′ splice site, reconciliate apparently contradictory observations by establishing a hierarchy of competitiveness among the determinants involved in 5′ splice site selection. Typically, mammalian genes contain coding sequences (exons) separated by non-coding sequences (introns). Introns are removed during pre-mRNA splicing. The accurate recognition of introns during splicing is essential, as any abnormality in that process will generate abnormal mRNAs that can cause diseases. Understanding the mechanisms of accurate splice site selection is of prime interest to life scientists. Exon–intron borders (splice sites) are defined by short sequences that are poorly conserved. The strength of any splice sequence can be assessed by its degree of homology with a splice site consensus sequence. Within exons and introns, several sequences can match with this consensus as well as or better than the splice sites. Using a system in which a splice site sequence is repeated several times in the intron, the authors showed that linear 5′−3′ search is a leading mechanism underlying splice site selection. This scanning mechanism is cell type–independent, and only the most upstream splice site of all the series is selected, even if splice sites with a better match to the consensus are in the vicinity. These findings reconciliate contradictory observations and establish a hierarchy among the determinants involved in splice site selection.
Collapse
Affiliation(s)
- Keren Borensztajn
- Faculté de Médecine, Université Paris-Descartes, INSERM U428, Paris, France
- * To whom correspondence should be addressed. E-mail: (KB); (SA)
| | | | | | - Anne-Marie Fischer
- Faculté de Médecine, Université Paris-Descartes, INSERM U428, Paris, France
| | | | - Serge Amselem
- Hôpital Henri-Mondor, INSERM U654, Créteil, France
- * To whom correspondence should be addressed. E-mail: (KB); (SA)
| |
Collapse
|
373
|
Buratti E, Baralle M, Baralle FE. Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucleic Acids Res 2006; 34:3494-510. [PMID: 16855287 PMCID: PMC1524908 DOI: 10.1093/nar/gkl498] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 12/25/2022] Open
Abstract
The number of aberrant splicing processes causing human disease is growing exponentially and many recent studies have uncovered some aspects of the unexpectedly complex network of interactions involved in these dysfunctions. As a consequence, our knowledge of the various cis- and trans-acting factors playing a role on both normal and aberrant splicing pathways has been enhanced greatly. However, the resulting information explosion has also uncovered the fact that many splicing systems are not easy to model. In fact we are still unable, with certainty, to predict the outcome of a given genomic variation. Nonetheless, in the midst of all this complexity some hard won lessons have been learned and in this survey we will focus on the importance of the wide sequence context when trying to understand why apparently similar mutations can give rise to different effects. The examples discussed in this summary will highlight the fine 'balance of power' that is often present between all the various regulatory elements that define exon boundaries. In the final part, we shall then discuss possible therapeutic targets and strategies to rescue genetic defects of complex splicing systems.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| | - Marco Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| | - Francisco E. Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| |
Collapse
|
374
|
Tazi J, Durand S, Jeanteur P. The spliceosome: a novel multi-faceted target for therapy. Trends Biochem Sci 2006; 30:469-78. [PMID: 16009556 DOI: 10.1016/j.tibs.2005.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/13/2005] [Accepted: 06/21/2005] [Indexed: 01/26/2023]
Abstract
The spliceosome is a dynamic and flexible ribonucleoprotein enzyme that removes intronic sequences in a regulated manner. Spliceosome action enables one stretch of genomic DNA sequence to yield several mRNAs that encode different proteins. It depends on a flexible mechanism for selecting splice sites, which calls for regulatory sequences (splicing enhancers or silencers) recognized by cognate trans-acting protein factors and constitutive ribonucleoprotein devices to build up the catalytic core. The identification of both types of elements now offers a comprehensive insight into how the spliceosome is adapted to carry out the removal of different introns and suggests novel therapeutic targets to, ultimately, restore a physiological pattern of alternatively spliced variants in a large repertoire of pathologies.
Collapse
Affiliation(s)
- Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, IFR 122, Centre National de Recherche Scientifique (CNRS), France.
| | | | | |
Collapse
|
375
|
Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 2006; 15:2490-508. [PMID: 16825284 DOI: 10.1093/hmg/ddl171] [Citation(s) in RCA: 383] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Numerous disease-associated point mutations exert their effects by disrupting the activity of exonic splicing enhancers (ESEs). We previously derived position weight matrices to predict putative ESEs specific for four human SR proteins. The score matrices are part of ESEfinder, an online resource to identify ESEs in query sequences. We have now carried out a refined functional SELEX screen for motifs that can act as ESEs in response to the human SR protein SF2/ASF. The test BRCA1 exon under selection was internal, rather than the 3'-terminal IGHM exon used in our earlier studies. A naturally occurring heptameric ESE in BRCA1 exon 18 was replaced with two libraries of random sequences, one seven nucleotides in length, the other 14. Following three rounds of selection for in vitro splicing via internal exon inclusion, new consensus motifs and score matrices were derived. Many winner sequences were demonstrated to be functional ESEs in S100-extract-complementation assays with recombinant SF2/ASF. Motif-score threshold values were derived from both experimental and statistical analyses. Motif scores were shown to correlate with levels of exon inclusion, both in vitro and in vivo. Our results confirm and extend our earlier data, as many of the same motifs are recognized as ESEs by both the original and our new score matrix, despite the different context used for selection. Finally, we have derived an increased specificity score matrix that incorporates information from both of our SF2/ASF-specific matrices and that accurately predicts the exon-skipping phenotypes of deleterious point mutations.
Collapse
Affiliation(s)
- Philip J Smith
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | |
Collapse
|
376
|
Hodgson U, Pulkkinen V, Dixon M, Peyrard-Janvid M, Rehn M, Lahermo P, Ollikainen V, Salmenkivi K, Kinnula V, Kere J, Tukiainen P, Laitinen T. ELMOD2 is a candidate gene for familial idiopathic pulmonary fibrosis. Am J Hum Genet 2006; 79:149-54. [PMID: 16773575 PMCID: PMC1474126 DOI: 10.1086/504639] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 03/27/2006] [Indexed: 11/04/2022] Open
Abstract
We performed a genomewide scan in six multiplex families with familial idiopathic pulmonary fibrosis (IPF) who originated from southeastern Finland. The majority of the Finnish multiplex families were clustered in the region, and the population history suggested that the clustering might be explained by an ancestor shared among the patients. The genomewide scan identified five loci of interest. The hierarchical fine mapping in an extended data set with 24 families originating from the same geographic region revealed a shared 110 kb to 13 Mb haplotype on chromosome 4q31, which was significantly more frequent among the patients than in population-based controls (odds ratio 6.3; 95% CI 2.5-15.9; P = .0001). The shared haplotype harbored two functionally uncharacterized genes, ELMOD2 and LOC152586, of which only ELMOD2 was expressed in lung and showed significantly decreased messenger-RNA expression in IPF lung (n = 6) when compared with that of healthy lung (n = 7; P = .05). Our results suggest ELMOD2 as a novel candidate gene for susceptibility in familial IPF.
Collapse
Affiliation(s)
- Ulla Hodgson
- Department of Pulmonary Medicine, Helsinki University Central Hospital, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
377
|
Abstract
Alternative splicing is a crucial mechanism for generating protein diversity. Different splice variants of a given protein can display different and even antagonistic biological functions. Therefore, appropriate control of their synthesis is required to assure the complex orchestration of cellular processes within multicellular organisms. Mutations in cis-acting splicing elements or changes in the activity of constitutive or alternative splicing could have a profound regulatory proteins that compromise the accuracy of either impact on human pathogenesis, in particular in tumor development and progression. Mutations in splicing elements, for example, have been found in genes such as LKB1, KIT, CDH17, KLF6 and BRCA1, and changes in trans-acting regulators can affect the expression of genes such as Ron, RAC1 and CD44.
Collapse
Affiliation(s)
- Anabella Srebrow
- Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, (C1428EHA) Buenos Aires, Argentina
| | | |
Collapse
|
378
|
Xing Y, Lee C. Alternative splicing and RNA selection pressure--evolutionary consequences for eukaryotic genomes. Nat Rev Genet 2006; 7:499-509. [PMID: 16770337 DOI: 10.1038/nrg1896] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome-wide analyses of alternative splicing have established its nearly ubiquitous role in gene regulation in many organisms. Genome sequencing and comparative genomics have made it possible to look in detail at the evolutionary history of specific alternative exons or splice sites, resulting in a flurry of publications in recent years. Here, we consider how alternative splicing has contributed to the evolution of modern genomes, and discuss constraints on evolution associated with alternative splicing that might have important medical implications.
Collapse
Affiliation(s)
- Yi Xing
- Molecular Biology Institute, Center for Genomics and Proteomics, Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
379
|
Baralle M, Baralle FE. Genetics and molecular biology: single nucleotide polymorphism associations and their functional significance. Curr Opin Lipidol 2006; 17:360-2. [PMID: 16680040 DOI: 10.1097/01.mol.0000226127.40500.0c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
380
|
Gaur RK. RNA interference: a potential therapeutic tool for silencing splice isoforms linked to human diseases. Biotechniques 2006; Suppl:15-22. [PMID: 16629383 DOI: 10.2144/000112165] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alternative splicing of precursor messenger RNAs (pre-mRNAs) is one of the most important sources of protein diversity in vertebrates. An estimated 35%-70% of human genes generate transcripts that are alternatively spliced, and defects in this process are linked to numerous human genetic diseases and various forms of cancer. The discovery that 21-23 nucleotide RNA duplexes, known as small interfering RNAs (siRNAs), can knockdown the homologous mRNAs in mammalian cells has revolutionized many aspects of drug discovery including down-regulation of disease-associated splicing isoforms. In addition, RNA interference (RNAi)-mediated silencing of splicing regulators has the potential to define the complex network of alternative splicing regulation and to analyze gene function. In this review, I first provide a brief introduction to mRNA splicing and its relationship to human diseases. This is followed by a brief overview of RNAi. Finally I discuss the therapeutic potential of RNAi in targeting disease-linked splicing isoforms.
Collapse
Affiliation(s)
- Rajesh K Gaur
- Division of Molecular Biology, Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
381
|
Lualdi S, Pittis MG, Regis S, Parini R, Allegri AE, Furlan F, Bembi B, Filocamo M. Multiple cryptic splice sites can be activated by IDS point mutations generating misspliced transcripts. J Mol Med (Berl) 2006; 84:692-700. [PMID: 16699754 DOI: 10.1007/s00109-006-0057-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 02/27/2006] [Indexed: 11/29/2022]
Abstract
Mutations in the gene encoding the enzyme iduronate-2-sulfatase (IDS) were reported as the cause of the X-linked recessive lysosomal disease, mucopolysaccharidosis II (MPS II). Amongst the different mutations, it emerges that nearly 10% are nucleotide substitutions causing splicing mutations. We now report the molecular characterisation of three MPS II patients with multiple aberrant transcripts due to three different point mutations. The c.418+1G>C that occurred in the invariant splice-site motif, produced only aberrantly spliced transcripts. Whilst the mutations affecting variant motifs (c.419G>T) or coding regions (c.245C>T) led to aberrantly spliced transcripts in addition to correctly spliced transcripts with the respective predicted missense mutation, p.G140V or p.A82V. A combination of experimental tests and computational approaches were used to understand the molecular basis underlying the altered transcription patterns. In addition, by using real-time reverse transcriptase polymerase chain reaction, the reduction of mRNA amount in two patients observed was likely due to nonsense-mediated mRNA decay pathway. Overall, our results further emphasised the importance of cloning and sequencing independent transcripts to reveal less abundant, aberrant products, which often could not be detected by direct sequencing. Moreover, the different splicing patterns observed in the three patients as a consequence of point mutations show how sensitive the balance is between constitutive and cryptic splice sites in the IDS gene. The generation of such diverse transcripts, together with their level of expression, could contribute to the profound phenotypic variability reported in MPS II.
Collapse
Affiliation(s)
- Susanna Lualdi
- Laboratorio Diagnosi Pre-Postnatale Malattie Metaboliche, IRCCS G. Gaslini, Largo G. Gaslini, Genova 16147, Italy
| | | | | | | | | | | | | | | |
Collapse
|
382
|
Weikard R, Kühn C, Goldammer T, Freyer G, Schwerin M. The bovine PPARGC1A gene: molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol Genomics 2006; 21:1-13. [PMID: 15781588 DOI: 10.1152/physiolgenomics.00103.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several studies in a variety of breeds have reported at least two QTL for milk production traits, including milk fat synthesis on bovine chromosome 6 (BTA6), comprising a region that comparatively has been mapped to equivalent syntenic chromosome intervals in human, pig, and mouse harboring loci associated with type II diabetes and obesity-related traits. We identified the bovine peroxysome proliferator-activated receptor-gamma coactivator-1alpha gene (PPARGC1A) as a plausible positional and functional candidate gene for a previously described QTL for milk fat yield on BTA6 because of its chromosomal position and its key role in energy, fat, and glucose metabolism. To analyze the role of the bovine PPARGC1A gene in regulation of milk fat synthesis in dairy cattle, we determined its cDNA sequence, genomic organization, chromosomal localization, and expression pattern. The bovine PPARGC1A gene is organized in 13 exons comprising 6,261 bp and is expressed at different levels in a large number of tissues. Bovine PPARGC1A cDNA and protein sequences showed substantial similarity (92-95%) to its respective orthologs from human, rat, and mouse. Screening for polymorphisms in the coding sequence, exon/intron boundaries, 5'- and 3'-untranslated regions, and promoter region of the PPARGC1A gene in sires with a different genotype at the QTL for milk fat yield as well as in a multibreed panel revealed a total of 11 polymorphic loci. A significant association between an SNP in intron 9 of the PPARGC1A gene and milk fat yield was observed in a major dairy cattle population, indicating that the PPARGC1A gene could be involved in genetic variation underlying the QTL for milk fat synthesis on BTA6.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cattle
- Chromosome Mapping
- Chromosomes, Artificial, Bacterial
- DNA, Complementary/metabolism
- Exons
- Fats/metabolism
- Female
- Gene Frequency
- Genetic Markers
- Genetic Variation
- Genotype
- Haplotypes
- History, 20th Century
- Humans
- Introns
- Lactation
- Mice
- Milk/metabolism
- Models, Genetic
- Models, Statistical
- Molecular Sequence Data
- Oligonucleotide Array Sequence Analysis
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Phenotype
- Polymorphism, Genetic
- Polymorphism, Single Nucleotide
- Quantitative Trait Loci
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Species Specificity
- Trans-Activators/genetics
- Transcription Factors
Collapse
Affiliation(s)
- Rosemarie Weikard
- Forschungsinstitut für die Biologie landwirtschaftlicher Nutztiere, Dummerstorf, Germany.
| | | | | | | | | |
Collapse
|
383
|
Chamary JV, Parmley JL, Hurst LD. Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 2006; 7:98-108. [PMID: 16418745 DOI: 10.1038/nrg1770] [Citation(s) in RCA: 590] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although the assumption of the neutral theory of molecular evolution - that some classes of mutation have too small an effect on fitness to be affected by natural selection - seems intuitively reasonable, over the past few decades the theory has been in retreat. At least in species with large populations, even synonymous mutations in exons are not neutral. By contrast, in mammals, neutrality of these mutations is still commonly assumed. However, new evidence indicates that even some synonymous mutations are subject to constraint, often because they affect splicing and/or mRNA stability. This has implications for understanding disease, optimizing transgene design, detecting positive selection and estimating the mutation rate.
Collapse
Affiliation(s)
- J V Chamary
- Center for Integrative Genomics, University of Lausanne, Switzerland.
| | | | | |
Collapse
|
384
|
Ermakova EO, Nurtdinov RN, Gelfand MS. Fast rate of evolution in alternatively spliced coding regions of mammalian genes. BMC Genomics 2006; 7:84. [PMID: 16620375 PMCID: PMC1459143 DOI: 10.1186/1471-2164-7-84] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/18/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND At least half of mammalian genes are alternatively spliced. Alternative isoforms are often genome-specific and it has been suggested that alternative splicing is one of the major mechanisms for generating protein diversity in the course of evolution. Another way of looking at alternative splicing is to consider sequence evolution of constitutive and alternative regions of protein-coding genes. Indeed, it turns out that constitutive and alternative regions evolve in different ways. RESULTS A set of 3029 orthologous pairs of human and mouse alternatively spliced genes was considered. The rate of nonsynonymous substitutions (dN), the rate of synonymous substitutions (dS), and their ratio (omega = dN/dS) appear to be significantly higher in alternatively spliced coding regions compared to constitutive regions. When N-terminal, internal and C-terminal alternatives are analysed separately, C-terminal alternatives appear to make the main contribution to the observed difference. The effects become even more pronounced in a subset of fast evolving genes. CONCLUSION These results provide evidence of weaker purifying selection and/or stronger positive selection in alternative regions and thus one more confirmation of accelerated evolution in alternative regions. This study corroborates the theory that alternative splicing serves as a testing ground for molecular evolution.
Collapse
Affiliation(s)
- Ekaterina O Ermakova
- Department of Bioengineering and Bioinformatics, Moscow State University, Vorob'evy gory, 1-73, 119992, Moscow, Russia
- Research and Training Center "Bioinformatics", Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny per. 19, 127994, Moscow, Russia
| | - Ramil N Nurtdinov
- Department of Bioengineering and Bioinformatics, Moscow State University, Vorob'evy gory, 1-73, 119992, Moscow, Russia
| | - Mikhail S Gelfand
- Department of Bioengineering and Bioinformatics, Moscow State University, Vorob'evy gory, 1-73, 119992, Moscow, Russia
- Research and Training Center "Bioinformatics", Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny per. 19, 127994, Moscow, Russia
| |
Collapse
|
385
|
Singh NK, Singh NN, Androphy EJ, Singh RN. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 2006; 26:1333-46. [PMID: 16449646 PMCID: PMC1367187 DOI: 10.1128/mcb.26.4.1333-1346.2006] [Citation(s) in RCA: 336] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Humans have two nearly identical copies of the Survival Motor Neuron (SMN) gene, SMN1 and SMN2. In spinal muscular atrophy (SMA), SMN2 is not able to compensate for the loss of SMN1 due to exclusion of exon 7. Here we describe a novel inhibitory element located immediately downstream of the 5' splice site in intron 7. We call this element intronic splicing silencer N1 (ISS-N1). Deletion of ISS-N1 promoted exon 7 inclusion in mRNAs derived from the SMN2 minigene. Underlining the dominant role of ISS-N1 in exon 7 skipping, abrogation of a number of positive cis elements was tolerated when ISS-N1 was deleted. Confirming the silencer function of ISS-N1, an antisense oligonucleotide against ISS-N1 restored exon 7 inclusion in mRNAs derived from the SMN2 minigene or from endogenous SMN2. Consistently, this oligonucleotide increased the levels of SMN protein in SMA patient-derived cells that carry only the SMN2 gene. Our findings underscore for the first time the profound impact of an evolutionarily nonconserved intronic element on SMN2 exon 7 splicing. Considering that oligonucleotides annealing to intronic sequences do not interfere with exon-junction complex formation or mRNA transport and translation, ISS-N1 provides a very specific and efficient therapeutic target for antisense oligonucleotide-mediated correction of SMN2 splicing in SMA.
Collapse
Affiliation(s)
- Nirmal K Singh
- Department of Medicine (LRB 326), University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
386
|
Peretz H, Rosenberg N, Landau M, Usher S, Nelson EJR, Mor-Cohen R, French DL, Mitchell BW, Nair SC, Chandy M, Coller BS, Srivastava A, Seligsohn U. Molecular diversity of Glanzmann thrombasthenia in southern India: new insights into mRNA splicing and structure-function correlations ofαIIbβ3 integrin (ITGA2B, ITGB3). Hum Mutat 2006; 27:359-69. [PMID: 16463284 DOI: 10.1002/humu.20304] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The molecular basis of Glanzmann thrombasthenia (GT) was studied in 40 families from southern India. Of 23 identified mutations (13 in the alphaIIb (ITGA2B) gene and 10 in the beta3 (ITGB3) gene), 20 were novel and three were described previously. Three mutations in the beta3 gene-p.Leu143Trp (Leu117Trp), p.Tyr307Stop (Tyr281Stop), and p.Arg119Gln (Arg93Gln)-were detected in 12, three, and two families, respectively, with definite founder effects observed for the first two mutations. Alternative splicing was predicted in silico for the normal variant and a missense variant of the beta3 gene, and for 10/11 frameshift or nonsense mutations in alphaIIb or beta3. The prediction was confirmed experimentally for a c.2898_2902dupCCCCT mutation in exon 28 of the alphaIIb gene that induced exon skipping. Seven out of nine missense mutations substituted highly conserved amino acids buried in the proteins' cores, predicting structural abnormalities. Among these, a beta3 substitution, p.Cys39Gly (Cys13Gly) was found to cause intracellular degradation of the beta3 subunit, in contrast to previous findings that mutations at Cys435, the partner of Cys13 in a disulfide bond, cause constitutive activation of alphaIIbbeta3. The two patients with a beta3 Arg93Gln mutation had normal clot retraction, consistent with a recent finding that this substitution is associated with normal surface expression of alphaIIbbeta3. In conclusion, this study demonstrates that a variety of mutations account for GT in southern Indian patients, provides new insights into mRNA splicing, and highlights the role of specific amino acids in structure-function correlations of alphaIIbbeta3.
Collapse
Affiliation(s)
- Hava Peretz
- Clinical Biochemistry Laboratory, Sourasky Medical Center, Tel Aviv, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Schwaag S, Evers S, Schirmacher A, Stögbauer F, Ringelstein EB, Kuhlenbäumer G. Genetic variants of the NOTCH3 gene in migraine--a mutation analysis and association study. Cephalalgia 2006; 26:158-61. [PMID: 16426270 DOI: 10.1111/j.1468-2982.2005.01007.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations in the NOTCH3 gene cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Exons 3 and 4 are mutation hotspots. Migraine is a clinical hallmark of CADASIL. The objective of this study was to investigate whether genetic variants in exons 3 and 4 of the NOTCH3 gene are associated with migraine. Exons 3 and 4 of the NOTCH3 were analysed for mutations and polymorphisms by direct DNA sequencing in 97 migraineurs and the same number of control individuals. No mutations in exons 3 and 4 of the NOTCH3 gene were found in 97 patients with migraine. However, association analysis revealed significant association of the single nucleotide polymorphism (SNP) rs1043994 with migraine.
Collapse
Affiliation(s)
- S Schwaag
- Department of Neurology, University of Münster, Münster, Germany
| | | | | | | | | | | |
Collapse
|
388
|
Xing Y, Lee C. Can RNA selection pressure distort the measurement of Ka/Ks? Gene 2006; 370:1-5. [PMID: 16488091 DOI: 10.1016/j.gene.2005.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/15/2005] [Accepted: 12/20/2005] [Indexed: 11/24/2022]
Abstract
Recently, an interesting question has emerged in the evolutionary interpretation of sequence substitution data as evidence of amino acid selection pressure. Specifically, the Ka/Ks metric was designed to measure selection pressure on amino acid substitutions, assuming that the synonymous substitution rate Ks reflects the neutral nucleotide substitution rate. However, there is increasing evidence for selection pressure at silent sites due to constraints of RNA splicing. Is Ka/Ks an appropriate metric for selection pressure on amino acid substitutions, in the presence of other selection pressures acting only at the RNA level (such as selection for exonic splicing enhancers)? Or can the resulting decreases in Ks from such selection pressures introduce bias into the Ka/Ks metric, so that it no longer gives an accurate measure of amino acid level selection pressure? In this review, we present both mathematical models and empirical evidence for these divergent points of view.
Collapse
Affiliation(s)
- Yi Xing
- Molecular Biology Institute, Center for Genomics and Proteomics, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
389
|
Ham MF, Takakuwa T, Luo WJ, Liu A, Horii A, Aozasa K. Impairment of double-strand breaks repair and aberrant splicing of ATM and MRE11 in leukemia-lymphoma cell lines with microsatellite instability. Cancer Sci 2006; 97:226-34. [PMID: 16542220 PMCID: PMC11159514 DOI: 10.1111/j.1349-7006.2006.00165.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mutations of DNA double-strand breaks (DSB) repair genes, ATM, MRE11, RAD50, NBS1 and ATR, are postulated to play a role in the development of gastrointestinal malignancies with an impaired mismatch repair (MMR) function. In the present study, mutations of these genes together with the presence of microsatellite instability (MSI) were examined in 50 leukemia-lymphoma cell lines. MSI was detected in 13 (26%) lines. Mutations of intronic mononucleotide repeats in ATM and MRE11 were found in nine and six lines, respectively, whereas mutations of mononucleotide repeats of RAD50 were found in only one line, and none were found in either NBS1 or ATR. Frequencies of ATM and MRE11 mutations were significantly higher in MSI-positive than MSI-negative lines. These mutations generated aberrant splicing in both genes. The intensity of the aberrant transcript of ATM (497del22) was stronger in five lines harboring mononucleotide mutations of 2 bp or more than in the lines without or with a 1-bp mutation. The intensity of the aberrant transcript of MRE11 (315del88) was stronger in four lines with mononucleotide mutations than in lines without. The expression levels of ATM and MRE11 transcripts in MSI-positive lines were significantly higher than those in MSI-negative lines. MSI-positive cell lines showed delay or abrogation of DSB repair. The present study suggests that impairment of the MMR system causes aberrant transcripts in the DSB repair genes ATM and MRE11. This might result in inactivation of the DSB repair system, thus inducing an acceleration of genome instability and accumulation of genetic damage.
Collapse
Affiliation(s)
- Maria Francisca Ham
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
390
|
Bradley KJ, Cavaco BM, Bowl MR, Harding B, Cranston T, Fratter C, Besser GM, Conceição Pereira M, Davie MWJ, Dudley N, Leite V, Sadler GP, Seller A, Thakker RV. Parafibromin mutations in hereditary hyperparathyroidism syndromes and parathyroid tumours. Clin Endocrinol (Oxf) 2006; 64:299-306. [PMID: 16487440 DOI: 10.1111/j.1365-2265.2006.02460.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate two patients with the hyperparathyroidism-jaw tumour (HPT-JT) syndrome and three patients with familial isolated hyperparathyroidism (FIHP), together with 31 parathyroid tumours (2 HPT-JT, 2 FIHP and 27 sporadic) for HRPT2 mutations. The HPT-JT syndrome and FIHP are autosomal dominant disorders that may be caused by abnormalities of the HRPT2 gene, located on chromosome 1q31.2. HRPT2 encodes a 531 amino acid protein, parafibromin, which interacts with human homologues of the yeast Paf1 complex. DESIGN Leukocyte and tumor DNA was used with HRPT2-specific primers for polymerase chain reaction amplification of the 17 exons and their splice junctions, and the DNA sequences of the polymerase chain reaction products determined. RESULTS Three heterozygous germline HRPT2 mutations, two in HPT-JT and one in FIHP patients, were identified. These consisted of one 1-bp duplication (745dup1bp), 1 nonsense (Arg234Stop) and 1 missense (Asp379Asn) mutation. One parathyroid tumour from an FIHP patient was demonstrated to harbour a germline deletion of 1 bp together with a somatic missense (Leu95Pro) mutation, consistent with a 'two-hit' model for hereditary cancer. The 27 sporadic benign parathyroid tumours did not harbour any HRPT2 somatic mutations. Six HRPT2 polymorphisms with allele frequencies ranging from 2% to 15% were detected. CONCLUSIONS Our results have identified three novel HRPT2 mutations (two germline and one somatic). The Asp379Asn mutation is likely to disrupt interaction with the human homologue of the yeast Paf1 complex, and the demonstration of combined germline and somatic HRPT2 mutations in a parathyroid tumour provide further evidence for the tumour suppressor role of the HRPT2 gene.
Collapse
Affiliation(s)
- K J Bradley
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, OCDEM, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
391
|
Hiller M, Huse K, Szafranski K, Jahn N, Hampe J, Schreiber S, Backofen R, Platzer M. Single-nucleotide polymorphisms in NAGNAG acceptors are highly predictive for variations of alternative splicing. Am J Hum Genet 2006; 78:291-302. [PMID: 16400609 PMCID: PMC1380236 DOI: 10.1086/500151] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 11/22/2005] [Indexed: 01/16/2023] Open
Abstract
Aberrant or modified splicing patterns of genes are causative for many human diseases. Therefore, the identification of genetic variations that cause changes in the splicing pattern of a gene is important. Elsewhere, we described the widespread occurrence of alternative splicing at NAGNAG acceptors. Here, we report a genomewide screen for single-nucleotide polymorphisms (SNPs) that affect such tandem acceptors. From 121 SNPs identified, we extracted 64 SNPs that most likely affect alternative NAGNAG splicing. We demonstrate that the NAGNAG motif is necessary and sufficient for this type of alternative splicing. The evolutionarily young NAGNAG alleles, as determined by the comparison with the chimpanzee genome, exhibit the same biases toward intron phase 1 and single-amino acid insertion/deletions that were already observed for all human NAGNAG acceptors. Since 28% of the NAGNAG SNPs occur in known disease genes, they represent preferable candidates for a more-detailed functional analysis, especially since the splice relevance for some of the coding SNPs is overlooked. Against the background of a general lack of methods for identifying splice-relevant SNPs, the presented approach is highly effective in the prediction of polymorphisms that are causal for variations in alternative splicing.
Collapse
Affiliation(s)
- Michael Hiller
- Institute of Computer Science, Chair for Bioinformatics, Friedrich-Schiller-University Jena, and Genome Analysis, Leibniz Institute for Age Research–Fritz Lipmann Institute, Jena, Germany; and Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Klaus Huse
- Institute of Computer Science, Chair for Bioinformatics, Friedrich-Schiller-University Jena, and Genome Analysis, Leibniz Institute for Age Research–Fritz Lipmann Institute, Jena, Germany; and Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Karol Szafranski
- Institute of Computer Science, Chair for Bioinformatics, Friedrich-Schiller-University Jena, and Genome Analysis, Leibniz Institute for Age Research–Fritz Lipmann Institute, Jena, Germany; and Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Niels Jahn
- Institute of Computer Science, Chair for Bioinformatics, Friedrich-Schiller-University Jena, and Genome Analysis, Leibniz Institute for Age Research–Fritz Lipmann Institute, Jena, Germany; and Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jochen Hampe
- Institute of Computer Science, Chair for Bioinformatics, Friedrich-Schiller-University Jena, and Genome Analysis, Leibniz Institute for Age Research–Fritz Lipmann Institute, Jena, Germany; and Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Stefan Schreiber
- Institute of Computer Science, Chair for Bioinformatics, Friedrich-Schiller-University Jena, and Genome Analysis, Leibniz Institute for Age Research–Fritz Lipmann Institute, Jena, Germany; and Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Rolf Backofen
- Institute of Computer Science, Chair for Bioinformatics, Friedrich-Schiller-University Jena, and Genome Analysis, Leibniz Institute for Age Research–Fritz Lipmann Institute, Jena, Germany; and Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Platzer
- Institute of Computer Science, Chair for Bioinformatics, Friedrich-Schiller-University Jena, and Genome Analysis, Leibniz Institute for Age Research–Fritz Lipmann Institute, Jena, Germany; and Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
392
|
Rodríguez-Trelles F, Tarrío R, Ayala FJ. Models of spliceosomal intron proliferation in the face of widespread ectopic expression. Gene 2006; 366:201-8. [PMID: 16288838 DOI: 10.1016/j.gene.2005.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/04/2005] [Accepted: 09/02/2005] [Indexed: 11/27/2022]
Abstract
It is now certain that today living organisms can acquire new spliceosomal introns in their genes. The proposed sources of spliceosomal introns are exons, transposons, and other introns, including spliceosomal and group II self-splicing introns. Spliceosomal introns are thought to be the most likely source, because the inserted sequence would immediately be endowed with the essential set of intron recognition sequences, thereby preventing the deleterious effects associated with incorrect splicing. The most obvious spliceosomal intron duplication pathways involve an RNA transcript intermediate step. Therefore, for a spliceosomal intron to be originated by duplication, either the source gene from which the novel intron is derived, or that gene and the recipient gene, which contains the novel intron, would need to be expressed in the germ line. Intron proliferation surveys indicate that putative intron duplicate-containing genes do not always match detectable expression in the germ line, which casts doubt on the generality of the duplication model. However, judging mechanisms of intron gain (or loss) from present-day gene expression profiles could be erroneous, if expression patterns were different at the time the introns arose. In fact, this may likely be so in most cases. Ectopic expression, i.e., the expression of genes at times and locations where the target gene is not known to have a function, is a much more common phenomenon than previously realized. We conclude with a speculation on a possible interplay between spliceosomal introns and ectopic expression at the origin of multicellularity.
Collapse
Affiliation(s)
- Francisco Rodríguez-Trelles
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | | | |
Collapse
|
393
|
Dear A, Daly J, Brennan SO, Tuckfield A, George PM. An intronic mutation within FGB (IVS1+2076 a-->g) is associated with afibrinogenemia and recurrent transient ischemic attacks. J Thromb Haemost 2006; 4:471-2. [PMID: 16420582 DOI: 10.1111/j.1538-7836.2006.01722.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
394
|
Gooding C, Clark F, Wollerton MC, Grellscheid SN, Groom H, Smith CWJ. A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones. Genome Biol 2006; 7:R1. [PMID: 16507133 PMCID: PMC1431707 DOI: 10.1186/gb-2006-7-1-r1] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/21/2005] [Accepted: 11/28/2005] [Indexed: 01/19/2023] Open
Abstract
Exons with predicted branch points were identified from a large dataset of human exons and the importance of these branch points for splicing was verified. Background The three consensus elements at the 3' end of human introns - the branch point sequence, the polypyrimidine tract, and the 3' splice site AG dinucleotide - are usually closely spaced within the final 40 nucleotides of the intron. However, the branch point sequence and polypyrimidine tract of a few known alternatively spliced exons lie up to 400 nucleotides upstream of the 3' splice site. The extended regions between the distant branch points (dBPs) and their 3' splice site are marked by the absence of other AG dinucleotides. In many cases alternative splicing regulatory elements are located within this region. Results We have applied a simple algorithm, based on AG dinucleotide exclusion zones (AGEZ), to a large data set of verified human exons. We found a substantial number of exons with large AGEZs, which represent candidate dBP exons. We verified the importance of the predicted dBPs for splicing of some of these exons. This group of exons exhibits a higher than average prevalence of observed alternative splicing, and many of the exons are in genes with some human disease association. Conclusion The group of identified probable dBP exons are interesting first because they are likely to be alternatively spliced. Second, they are expected to be vulnerable to mutations within the entire extended AGEZ. Disruption of splicing of such exons, for example by mutations that lead to insertion of a new AG dinucleotide between the dBP and 3' splice site, could be readily understood even though the causative mutation might be remote from the conventional locations of splice site sequences.
Collapse
Affiliation(s)
- Clare Gooding
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Francis Clark
- Advanced Computational Modelling Centre, and ARC Centre for Bioinformatics, University of Queensland, Australia
| | - Matthew C Wollerton
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Harriet Groom
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Christopher WJ Smith
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
395
|
Abstract
Abundant evidence indicates that developmental evolution, the foundation of morphological evolution, is based on changes in gene function. Over the past decade a consensus has developed that transcriptional regulation, acting through enhancer sequences, is the primary level of evolutionarily significant change. Here we propose that other regulatory levels are probably as important as enhancers in developmental evolution. We also explain why these alternative regulatory levels might have been neglected, and briefly discuss ways to test our hypothesis.
Collapse
Affiliation(s)
- Claudio R Alonso
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
396
|
Fonseca C, Renzoni E, Sestini P, Pantelidis P, Lagan A, Bunn C, McHugh N, Welsh KI, Du Bois RM, Denton CP, Black C, Abraham D. Endothelin axis polymorphisms in patients with scleroderma. ACTA ACUST UNITED AC 2006; 54:3034-42. [PMID: 16947775 DOI: 10.1002/art.22036] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To evaluate the distribution of polymorphisms in the endothelin 1 (EDN1), endothelin receptor A (EDNRA) and endothelin receptor B (EDNRB) genes in systemic sclerosis (SSc; scleroderma) and SSc subsets. METHODS Two hundred five patients with SSc and 255 healthy controls were screened for polymorphisms in EDN1, EDNRA, and EDNRB, using sequence-specific primer-polymerase chain reaction. The polymorphisms studied were at the following positions: for EDN1, -1370 (T-1370G) of the promoter, +138 of exon 1 (+138 A/-), +85 of exon 3 (E106E), and +23 of exon 5 (K198N); for EDNRA, -231 of exon 1 (G-231A), and +69(H323H) and +105 (E335E) of exon 6; for EDNRB, +2841 of exon 2 (EDNRB-3), -2547 of exon 3 (EDNRB-2), and -2446 of exon 3 (EDNRB-1). RESULTS No significant differences between the SSc group as a whole and control subjects were observed for any of the investigated polymorphisms in EDN1, EDNRA, and EDNRB. However, compared with patients with limited cutaneous SSc, patients with diffuse skin involvement had an increased frequency of allele carriage of EDNRB-1A (76.8% versus 54.4%; P = 0.002), EDNRB-2A (79.7% versus 60.2%; P = 0.006), and EDNRB-3G (79.7% versus 56.6%; P = 0.001). Significantly increased carriage frequencies for EDNRA alleles H323H/C and E335E/A were observed in SSc patients with anti-RNA polymerase (anti-RNAP) antibodies, compared with both anti-RNAP-negative SSc patients (P < 0.05) and control subjects (P < 0.005). CONCLUSION The finding of associations between endothelin receptors A and B and distinct clinical and immunologic SSc subsets supports the role of endothelin and its receptors in the pathogenesis of SSc. However, these findings and their functional significance need to be confirmed and investigated in future studies.
Collapse
Affiliation(s)
- Carmen Fonseca
- Royal Free and University College Medical School, Center for Rheumatology and Connective Tissue Diseases, Department of Medicine, University College London Hampstead Campus, Hampstead, London NW3 2PF, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
397
|
Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 2006; 78:63-77. [PMID: 16385450 PMCID: PMC1380224 DOI: 10.1086/498853] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 10/07/2005] [Indexed: 11/03/2022] Open
Abstract
Spinal muscular atrophy is a neurodegenerative disorder caused by the deletion or mutation of the survival-of-motor-neuron gene, SMN1. An SMN1 paralog, SMN2, differs by a C-->T transition in exon 7 that causes substantial skipping of this exon, such that SMN2 expresses only low levels of functional protein. A better understanding of SMN splicing mechanisms should facilitate the development of drugs that increase survival motor neuron (SMN) protein levels by improving SMN2 exon 7 inclusion. In addition, exonic mutations that cause defective splicing give rise to many genetic diseases, and the SMN1/2 system is a useful paradigm for understanding exon-identity determinants and alternative-splicing mechanisms. Skipping of SMN2 exon 7 was previously attributed either to the loss of an SF2/ASF-dependent exonic splicing enhancer or to the creation of an hnRNP A/B-dependent exonic splicing silencer, as a result of the C-->T transition. We report the extensive testing of the enhancer-loss and silencer-gain models by mutagenesis, RNA interference, overexpression, RNA splicing, and RNA-protein interaction experiments. Our results support the enhancer-loss model but also demonstrate that hnRNP A/B proteins antagonize SF2/ASF-dependent ESE activity and promote exon 7 skipping by a mechanism that is independent of the C-->T transition and is, therefore, common to both SMN1 and SMN2. Our findings explain the basis of defective SMN2 splicing, illustrate the fine balance between positive and negative determinants of exon identity and alternative splicing, and underscore the importance of antagonistic splicing factors and exonic elements in a disease context.
Collapse
Affiliation(s)
- Luca Cartegni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
398
|
King K, Sheikh MF, Cuthbert AP, Fisher SA, Onnie CM, Mirza MM, Pattni RC, Sanderson J, Forbes A, Mansfield J, Lewis CM, Roberts RG, Mathew CG. Mutation, selection, and evolution of the Crohn disease susceptibility geneCARD15. Hum Mutat 2006; 27:44-54. [PMID: 16278823 DOI: 10.1002/humu.20264] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three common mutations in the CARD15 (NOD2) gene are known to be associated with susceptibility to Crohn disease (CD), and genetic data suggest a gene dosage model with an increased risk of 2-4-fold in heterozygotes and 20-40-fold in homozygotes. However, the discovery of numerous rare variants of CARD15 indicates that some heterozygotes for the common mutations have a rare mutation on the other CARD15 allele, which would support a recessive model for CD. We addressed this issue by screening CARD15 for mutations in 100 CD patients who were heterozygous for one of the three common mutations. We also developed a strategy for evaluating potential disease susceptibility alleles (DSAs) that involves assessing the degree of evolutionary conservation of involved residues, predicted effects on protein structure and function, and genotyping in a large sample of cases and controls. The evolutionary analysis was aided by sequencing the entire coding region of CARD15 in three primates (chimp, gibbon, and tamarin) and aligning the human sequence with these and orthologs from other species. We found that 11 of the 100 CD patients screened had a second potential pathogenic mutation within the exonic and periexonic sequences examined. Assuming that there are no additional pathogenic mutations in noncoding regions, our study suggests that most carriers of the common DSAs are true heterozygotes, and supports previous evidence for a gene dosage model. Four novel nonsynonymous mutations were detected, one of which would produce premature termination of translation c.2686C>T (p.Arg896X). Two potential DSAs--c.2107C>T (p.Arg703Cys) and g.2238T>A (c.74-7T>A)--were significantly associated with CD in the case control sample. Analysis of the evolution of CARD15 revealed strong conservation of the encoded protein, with identity to the human sequence ranging from 99.1% in the chimp to 44.5% in fugu. Higher primates possess an open reading frame (ORF) upstream of the putative initiation site in other species that encodes a further 27 N-terminal amino acids, while four regions of high conservation are observed outside of the known domains of CARD15, indicative of additional residues of functional importance. The strategy developed here may have general application to the assessment of mutation pathogenicity and genetic models in other complex disorders.
Collapse
Affiliation(s)
- Kathy King
- Department of Medical and Molecular Genetics, Guy's, King's and St. Thomas' School of Medicine, King's College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Holste D, Huo G, Tung V, Burge CB. HOLLYWOOD: a comparative relational database of alternative splicing. Nucleic Acids Res 2006; 34:D56-62. [PMID: 16381932 PMCID: PMC1347411 DOI: 10.1093/nar/gkj048] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/26/2005] [Accepted: 10/04/2005] [Indexed: 01/05/2023] Open
Abstract
RNA splicing is an essential step in gene expression, and is often variable, giving rise to multiple alternatively spliced mRNA and protein isoforms from a single gene locus. The design of effective databases to support experimental and computational investigations of alternative splicing (AS) is a significant challenge. In an effort to integrate accurate exon and splice site annotation with current knowledge about splicing regulatory elements and predicted AS events, and to link information about the splicing of orthologous genes in different species, we have developed the Hollywood system. This database was built upon genomic annotation of splicing patterns of known genes derived from spliced alignment of complementary DNAs (cDNAs) and expressed sequence tags, and links features such as splice site sequence and strength, exonic splicing enhancers and silencers, conserved and non-conserved patterns of splicing, and cDNA library information for inferred alternative exons. Hollywood was implemented as a relational database and currently contains comprehensive information for human and mouse. It is accompanied by a web query tool that allows searches for sets of exons with specific splicing characteristics or splicing regulatory element composition, or gives a graphical or sequence-level summary of splicing patterns for a specific gene. A streamlined graphical representation of gene splicing patterns is provided, and these patterns can alternatively be layered onto existing information in the UCSC Genome Browser. The database is accessible at http://hollywood.mit.edu.
Collapse
Affiliation(s)
- Dirk Holste
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02319, USA.
| | | | | | | |
Collapse
|
400
|
Green RF, Moore C. Incorporating genetic analyses into birth defects cluster investigations: Strategies for identifying candidate genes. ACTA ACUST UNITED AC 2006; 76:798-810. [PMID: 17036308 DOI: 10.1002/bdra.20280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Incorporating genetic analyses into birth defect cluster investigations may increase understanding of both genetic and environmental risk factors for the defect. Current constraints of most birth defect cluster investigations make candidate gene selection the most feasible approach. Here, we describe strategies for choosing candidate genes for such investigations, which will also be applicable to more general gene-environment studies. METHODS We reviewed publicly available web-based resources for selection of candidate genes and identification of risk factors, as well as publications on different strategies for candidate gene selection. RESULTS Candidate gene selection requires consideration of available gene-disease databases, previous epidemiological studies, animal model research, linkage and expression studies, and other resources. We describe general considerations for utilizing available resources, as well as provide an example of a search for candidate genes related to gastroschisis. CONCLUSIONS Available web resources could facilitate selection of candidate genes, but selection of optimal candidates will still require a strong understanding of genetics and the pathogenesis of the defect, as well as careful consideration of previous epidemiological studies.
Collapse
Affiliation(s)
- Ridgely Fisk Green
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | |
Collapse
|