351
|
Paulo CSO, Pires das Neves R, Ferreira LS. Nanoparticles for intracellular-targeted drug delivery. NANOTECHNOLOGY 2011; 22:494002. [PMID: 22101232 DOI: 10.1088/0957-4484/22/49/494002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.
Collapse
Affiliation(s)
- Cristiana S O Paulo
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, Portugal
| | | | | |
Collapse
|
352
|
Durchfort N, Verhoef S, Vaughn MB, Shrestha R, Adam D, Kaplan J, Ward DM. The enlarged lysosomes in beige j cells result from decreased lysosome fission and not increased lysosome fusion. Traffic 2011; 13:108-19. [PMID: 21985295 DOI: 10.1111/j.1600-0854.2011.01300.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chediak-Higashi syndrome is an autosomal recessive disorder that affects vesicle morphology. The Chs1/Lyst protein is a member of the BEige And CHediak family of proteins. The absence of Chs1/Lyst gives rise to enlarged lysosomes. Lysosome size is regulated by a balance between vesicle fusion and fission and can be reversibly altered by acidifying the cytoplasm using Acetate Ringer's or by incubating with the drug vacuolin-1. We took advantage of these procedures to determine rates of lysosome fusion and fission in the presence or absence of Chs1/Lyst. Here, we show by microscopy, flow cytometry and in vitro fusion that the absence of the Chs1/Lyst protein does not increase the rate of lysosome fusion. Rather, our data indicate that loss of this protein decreases the rate of lysosome fission. We further show that overexpression of the Chs1/Lyst protein gives rise to a faster rate of lysosome fission. These results indicate that Chs1/Lyst regulates lysosome size by affecting fission.
Collapse
Affiliation(s)
- Nina Durchfort
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
353
|
Reider A, Wendland B. Endocytic adaptors--social networking at the plasma membrane. J Cell Sci 2011; 124:1613-22. [PMID: 21536832 DOI: 10.1242/jcs.073395] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Receptor-mediated endocytosis is a dynamic process that is crucial for maintaining plasma membrane composition and controlling cell-signaling pathways. A variety of entry routes have evolved to ensure that the vast array of molecules on the cell surface can be differentially internalized by endocytosis. This diversity has extended to include a growing list of endocytic adaptor proteins, which are thought to initiate the internalization process. The key function of adaptors is to select the proteins that should be removed from the cell surface. Thus, they have a central role in defining the physiology of a cell. This has made the study of adaptor proteins a very active area of research that is ripe for exciting future discoveries. Here, we review recent work on how adaptors mediate endocytosis and address the following questions: what characteristics define an endocytic adaptor protein? What roles do these proteins fulfill in addition to selecting cargo and how might adaptors function in clathrin-independent endocytic pathways? Through the findings discussed in this Commentary, we hope to stimulate further characterization of known adaptors and expansion of the known repertoire by identification of new adaptors.
Collapse
Affiliation(s)
- Amanda Reider
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
354
|
Gephart JD, Singh B, Higginbotham JN, Franklin JL, Gonzalez A, Fölsch H, Coffey RJ. Identification of a novel mono-leucine basolateral sorting motif within the cytoplasmic domain of amphiregulin. Traffic 2011; 12:1793-804. [PMID: 21917092 DOI: 10.1111/j.1600-0854.2011.01282.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epithelial cells establish apical and basolateral (BL) membranes with distinct protein and lipid compositions. To achieve this spatial asymmetry, the cell utilizes a variety of mechanisms for differential sorting, delivery and retention of cell surface proteins. The EGF receptor (EGFR) and its ligand, amphiregulin (AREG), are transmembrane proteins delivered to the BL membrane in polarized epithelial cells. Herein, we show that the cytoplasmic domain of AREG (ACD) contains dominant BL sorting information; replacement of the cytoplasmic domain of apically targeted nerve growth factor receptor with the ACD redirects the chimera to the BL surface. Using sequential truncations and site-directed mutagenesis of the ACD, we identify a novel BL sorting motif consisting of a single leucine C-terminal to an acidic cluster (EEXXXL). In adaptor protein (AP)-1B-deficient cells, newly synthesized AREG is initially delivered to the BL surface as in AP-1B-expressing cells. However, in these AP-1B-deficient cells, recycling of AREG back to the BL surface is compromised, leading to its appearance at the apical surface. These results show that recycling, but not delivery, of AREG to the BL surface is AP-1B dependent.
Collapse
Affiliation(s)
- Jonathan D Gephart
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
355
|
Chen B, Dores MR, Grimsey N, Canto I, Barker BL, Trejo J. Adaptor protein complex-2 (AP-2) and epsin-1 mediate protease-activated receptor-1 internalization via phosphorylation- and ubiquitination-dependent sorting signals. J Biol Chem 2011; 286:40760-70. [PMID: 21965661 DOI: 10.1074/jbc.m111.299776] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs.
Collapse
Affiliation(s)
- Buxin Chen
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
356
|
Lin AE, Benmerah A, Guttman JA. Eps15 and Epsin1 Are Crucial for Enteropathogenic Escherichia coli Pedestal Formation Despite the Absence of Adaptor Protein 2. J Infect Dis 2011; 204:695-703. [DOI: 10.1093/infdis/jir386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
357
|
Wang CC, Sato K, Otsuka Y, Otsu W, Inaba M. Clathrin-mediated endocytosis of mammalian erythroid AE1 anion exchanger facilitated by a YXXΦ or a noncanonical YXXXΦ motif in the N-terminal stretch. J Vet Med Sci 2011; 74:17-25. [PMID: 21873807 DOI: 10.1292/jvms.11-0345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To explore the roles of the conserved YXXΦ-type motif in the erythroid-specific N-terminal stretch of anion exchanger 1 (AE1), cell surface expression and internalization of various mutants derived from murine erythroid AE1 tagged with an N-terminal enhanced green fluorescent protein and an extracellular FLAG (EGFP-mAE1Flag) were explored in K562 and HEK293 cells. EGFP-mAE1Flag showed rapid internalization, in association with the internalizations of transferrin and the endogenous AE1 chaperone-like protein glycophorin A in K562 cells. Disruption of the conserved Y72VEL sequence markedly reduced the internalization and increased the relative abundance of cell-surface AE1, whereas substitution of the N-terminal region from bovine AE1 that lacks the relevant motif for the corresponding region had less of an effect on internalization. Deletion or substitution mutations of the Y7EDQL sequence in the bovine N-terminal stretch resulted in the decreased internalization of the AE1 proteins. Cell surface biotinylation and deglycosylation studies showed that approximately 30% of the cell-surface EGFP-mAE1Flag and several other mutants was sorted to the plasma membrane without N-glycan maturation in the Golgi apparatus. These findings indicate that the conserved YXXΦ sequence or a noncanonical YXXXΦ sequence in the N-terminal region facilitates the endocytic recycling of erythroid AE1 through a clathrin-mediated pathway.
Collapse
Affiliation(s)
- Chen-Chi Wang
- Laboratory of Molecular Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
358
|
Bhattacharyya S, Hope TJ, Young JAT. Differential requirements for clathrin endocytic pathway components in cellular entry by Ebola and Marburg glycoprotein pseudovirions. Virology 2011; 419:1-9. [PMID: 21855102 DOI: 10.1016/j.virol.2011.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/24/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
Clathrin-mediated endocytosis was previously implicated as one of the cellular pathways involved in filoviral glycoprotein mediated viral entry into target cells. Here we have further dissected the requirements for different components of this pathway in Ebola versus Marburg virus glycoprotein (GP) mediated viral infection. Although a number of these components were involved in both cases; Ebola GP-dependent viral entry specifically required the cargo recognition proteins Eps15 and DAB2 as well as the clathrin adaptor protein AP-2. In contrast, Marburg GP-mediated infection was independent of these three proteins and instead required beta-arrestin 1 (ARRB1). These findings have revealed an unexpected difference between the clathrin pathway requirements for Ebola GP versus Marburg GP pseudovirion infection. Anthrax toxin also uses a clathrin-, and ARRB1-dependent pathway for cellular entry, indicating that the mechanism used by Marburg GP pseudovirions may be more generally important for pathogen entry.
Collapse
Affiliation(s)
- Suchita Bhattacharyya
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
359
|
Shakor ABA, Taniguchi M, Kitatani K, Hashimoto M, Asano S, Hayashi A, Nomura K, Bielawski J, Bielawska A, Watanabe K, Kobayashi T, Igarashi Y, Umehara H, Takeya H, Okazaki T. Sphingomyelin synthase 1-generated sphingomyelin plays an important role in transferrin trafficking and cell proliferation. J Biol Chem 2011; 286:36053-36062. [PMID: 21856749 DOI: 10.1074/jbc.m111.228593] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transferrin (Tf) endocytosis and recycling are essential for iron uptake and the regulation of cell proliferation. Tf and Tf receptor (TfR) complexes are internalized via clathrin-coated pits composed of a variety of proteins and lipids and pass through early endosomes to recycling endosomes. We investigated the role of sphingomyelin (SM) synthases (SMS1 and SMS2) in clathrin-dependent trafficking of Tf and cell proliferation. We employed SM-deficient lymphoma cells that lacked SMSs and that failed to proliferate in response to Tf. Transfection of SMS1, but not SMS2, enabled these cells to incorporate SM into the plasma membrane, restoring Tf-mediated proliferation. SM-deficient cells showed a significant reduction in clathrin-dependent Tf uptake compared with the parental SM-producing cells. Both SMS1 gene transfection and exogenous short-chain SM treatment increased clathrin-dependent Tf uptake in SM-deficient cells, with the Tf being subsequently sorted to Rab11-positive recycling endosomes. We observed trafficking of the internalized Tf to late/endolysosomal compartments, and this was not dependent on the clathrin pathway in SM-deficient cells. Thus, SMS1-mediated SM synthesis directs Tf-TfR to undergo clathrin-dependent endocytosis and recycling, promoting the proliferation of lymphoma cells.
Collapse
Affiliation(s)
- Abo Bakr Abdel Shakor
- Division of Clinical Laboratory Medicine and Hematology/Oncology, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago 683-8503, Japan
| | - Makoto Taniguchi
- Division of Clinical Laboratory Medicine and Hematology/Oncology, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago 683-8503, Japan
| | - Kazuyuki Kitatani
- Division of Clinical Laboratory Medicine and Hematology/Oncology, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago 683-8503, Japan
| | - Mayumi Hashimoto
- Division of Clinical Laboratory Medicine and Hematology/Oncology, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago 683-8503, Japan
| | - Satoshi Asano
- Division of Clinical Laboratory Medicine and Hematology/Oncology, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago 683-8503, Japan
| | - Akira Hayashi
- Division of Clinical Laboratory Medicine and Hematology/Oncology, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago 683-8503, Japan
| | - Kenichi Nomura
- Division of Clinical Laboratory Medicine and Hematology/Oncology, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago 683-8503, Japan
| | - Jacek Bielawski
- Departmant of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Alicja Bielawska
- Departmant of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ken Watanabe
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka-cho, Obu, Aichi 474-8511, Japan
| | | | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Sciences, Hokkaido University, Kita 21-jo, Nishi 11-choume, Kita-ku, Sapporo 001-0021, Japan
| | - Hisanori Umehara
- Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku Uchinada, Ishikawa 902-0293, Japan
| | - Hiroyuki Takeya
- Division of Pathological Biochemistry, Department of Biomedical Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago 683-8503, Japan
| | - Toshiro Okazaki
- Division of Clinical Laboratory Medicine and Hematology/Oncology, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago 683-8503, Japan; Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku Uchinada, Ishikawa 902-0293, Japan.
| |
Collapse
|
360
|
ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci U S A 2011; 108:E559-68. [PMID: 21825135 DOI: 10.1073/pnas.1100745108] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Amyloid β (Aβ) peptides, the primary constituents of senile plaques and a hallmark in Alzheimer's disease pathology, are generated through the sequential cleavage of amyloid precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. The early endosome is thought to represent a major compartment for APP processing; however, the mechanisms of how BACE1 encounters APP are largely unknown. In contrast to APP internalization, which is clathrin-dependent, we demonstrate that BACE1 is sorted to early endosomes via a route controlled by the small GTPase ADP ribosylation factor 6 (ARF6). Altering ARF6 levels or its activity affects endosomal sorting of BACE1, and consequently results in altered APP processing and Aβ production. Furthermore, sorting of newly internalized BACE1 from ARF6-positive towards RAB GTPase 5 (RAB5)-positive early endosomes depends on its carboxyterminal short acidic cluster-dileucine motif. This ARF6-mediated sorting of BACE1 is confined to the somatodendritic compartment of polarized neurons in agreement with Aβ peptides being primarily secreted from here. These results demonstrate a spatial separation between APP and BACE1 during surface-to-endosome transport, suggesting subcellular trafficking as a regulatory mechanism for this proteolytic processing step. It thereby provides a novel avenue to interfere with Aβ production through a selective modulation of the distinct endosomal transport routes used by BACE1 or APP.
Collapse
|
361
|
SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses. Proc Natl Acad Sci U S A 2011; 108:13540-5. [PMID: 21808019 DOI: 10.1073/pnas.1107067108] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurotransmission depends on the exo-endocytosis of synaptic vesicles at active zones. Synaptobrevin 2 [also known as vesicle-associated membrane protein 2 (VAMP2)], the most abundant synaptic vesicle protein and a major soluble NSF attachment protein receptor (SNARE) component, is required for fast calcium-triggered synaptic vesicle fusion. In contrast to the extensive knowledge about the mechanism of SNARE-mediated exocytosis, little is known about the endocytic sorting of synaptobrevin 2. Here we show that synaptobrevin 2 sorting involves determinants within its SNARE motif that are recognized by the ANTH domains of the endocytic adaptors AP180 and clathrin assembly lymphoid myeloid leukemia (CALM). Depletion of CALM or AP180 causes selective surface accumulation of synaptobrevin 2 but not vGLUT1 at the neuronal surface. Endocytic sorting of synaptobrevin 2 is mediated by direct interaction of the ANTH domain of the related endocytic adaptors CALM and AP180 with the N-terminal half of the SNARE motif centered around M46, as evidenced by NMR spectroscopy analysis and site-directed mutagenesis. Our data unravel a unique mechanism of SNARE motif-dependent endocytic sorting and identify the ANTH domain proteins AP180 and CALM as cargo-specific adaptors for synaptobrevin endocytosis. Defective SNARE endocytosis may also underlie the association of CALM and AP180 with neurodevelopmental and cognitive defects or neurodegenerative disorders.
Collapse
|
362
|
Ramanan V, Agrawal NJ, Liu J, Engles S, Toy R, Radhakrishnan R. Systems biology and physical biology of clathrin-mediated endocytosis. Integr Biol (Camb) 2011; 3:803-15. [PMID: 21792431 PMCID: PMC3153420 DOI: 10.1039/c1ib00036e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this review, we describe the application of experimental data and modeling of intracellular endocytic trafficking mechanisms with a focus on the process of clathrin-mediated endocytosis. A detailed parts-list for the protein-protein interactions in clathrin-mediated endocytosis has been available for some time. However, recent experimental, theoretical, and computational tools have proved to be critical in establishing a sequence of events, cooperative dynamics, and energetics of the intracellular process. On the experimental front, total internal reflection fluorescence microscopy, photo-activated localization microscopy, and spinning-disk confocal microscopy have focused on assembly and patterning of endocytic proteins at the membrane, while on the theory front, minimal theoretical models for clathrin nucleation, biophysical models for membrane curvature and bending elasticity, as well as methods from computational structural and systems biology, have proved insightful in describing membrane topologies, curvature mechanisms, and energetics.
Collapse
Affiliation(s)
- Vyas Ramanan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Neeraj J. Agrawal
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Jin Liu
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Sean Engles
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Randall Toy
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| |
Collapse
|
363
|
McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011; 12:517-33. [PMID: 21779028 DOI: 10.1038/nrm3151] [Citation(s) in RCA: 1550] [Impact Index Per Article: 119.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
364
|
Choi Y, Kim K, Hong S, Kim H, Kwon YJ, Song R. Intracellular protein target detection by quantum dots optimized for live cell imaging. Bioconjug Chem 2011; 22:1576-86. [PMID: 21718016 DOI: 10.1021/bc200126k] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Imaging of specific intracellular target proteins in living cells has been of great challenge and importance for understanding intracellular events and elucidating various biological phenomena. Highly photoluminescent and water-soluble semiconductor nanocrystal quantum dots (QDs) have been extensively applied to various cellular imaging applications due to the long-term photostability and the tunable narrow emission spectra with broad excitation. Despite the great success of various bioimaging and diagnostic applications, visualization of intracellular targets in live cells still has been of great challenge. Nonspecific binding, difficulty of intracellular delivery, or endosomal trapping of nanosized QDs are the main reasons to hamper specific target binding in live cells. In this context, we prepared the polymer-coated QDs (pcQD) of which the surface was optimized for specific intracellular targeting in live cells. Efficient intracellular delivery was achieved through PEGylation and subsequent cell penetrating peptide (i.e., TAT) conjugation to the pcQD in order to avoid significant endosomal sequestration and to facilitate internalization of the QDs, respectively. In this study, we employed HEK293 cell line overexpressing endothelin A receptor (ET(A)R), a family of G-protein coupled receptor (GPCR), of which the cytosolic c-terminal site is genetically engineered to possess green fluorescent protein (GFP) as our intracellular protein target. The fluorescence signal of the target protein and the well-defined intracellular behavior of the GPCR help to evaluate the targeting specificity of QDs in living cells. To test the hypothesis that the TAT-QDs conjugated with antibody against intracellular target of interest can find the target, we conjugated anti-GFP antibody to TAT-PEG-pcQD using heterobifunctional linkers. Compared to the TAT-PEG-pcQD, which was distributed throughout the cytoplasm, the antiGFP-functionalized TAT-PEG-pcQD could penetrate the cell membrane and colocalize with the GFP. An agonist (endothelin-1, ET-1) treatment induced GFP-ET(A)R translocation into pericentriolar region, where the GFP also significantly colocalized with antiGFP-TAT-PEG-pcQD. These results demonstrate that stepwise optimization of PEG-pcQD conjugation with both a cell penetrating peptide and an antibody against a target of interest allows specific binding to the intracellular target protein with minimized nonspecific binding.
Collapse
Affiliation(s)
- Youngseon Choi
- Chemical Biology Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-Si, Gyeonggi-Do, 463-400, South Korea.
| | | | | | | | | | | |
Collapse
|
365
|
Uezu A, Umeda K, Tsujita K, Suetsugu S, Takenawa T, Nakanishi H. Characterization of the EFC/F-BAR domain protein, FCHO2. Genes Cells 2011; 16:868-78. [PMID: 21762413 DOI: 10.1111/j.1365-2443.2011.01536.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have previously shown that SGIP1α is an endocytic protein specifically expressed in neural tissues. SGIP1α has a lipid-binding domain called the MP domain, which shows no significant homology to any other domains. In this study, we characterized FCHO2, a protein with a high level of homology to SGIP1α. FCHO2 lacks the MP domain but has another lipid-binding domain, the EFC/F-BAR domain. FCHO2 was ubiquitously expressed. The FCHO2 EFC domain bound to phosphatidylserine and phosphoinositides and deformed the plasma membrane and liposomes into narrow tubes. FCHO2 localized to clathrin-coated pits at the plasma membrane and bound to Eps15, an important adaptor protein in clathrin-mediated endocytosis. FCHO2 knockdown reduced transferrin endocytosis. These results suggest that FCHO2 regulates clathrin-mediated endocytosis through its interactions with membranes and Eps15. These properties of FCHO2 are similar to those of SGIP1α. FCHO2 is likely to be a ubiquitous homologue of SGIP1α. We furthermore found that FCHO2 was subjected to monoubiquitination, and gel filtration analysis showed that FCHO2 formed an oligomer. These new properties might also contribute to the role of FCHO2 in clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Akiyoshi Uezu
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | |
Collapse
|
366
|
Eyster CA, Cole NB, Petersen S, Viswanathan K, Früh K, Donaldson JG. MARCH ubiquitin ligases alter the itinerary of clathrin-independent cargo from recycling to degradation. Mol Biol Cell 2011; 22:3218-30. [PMID: 21757542 PMCID: PMC3164467 DOI: 10.1091/mbc.e10-11-0874] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The MARCH family of proteins are membrane-associated E3 ubiquitin ligases that down-regulate surface membrane proteins. Expression of MARCH8 in cells causes the ubiquitination and down-regulation of surface CD98 and CD44—cargo proteins that enter cells by clathrin-independent endocytosis and are usually routed to recycling, not degradation. Following endocytosis, internalized plasma membrane proteins can be recycled back to the cell surface or trafficked to late endosomes/lysosomes for degradation. Here we report on the trafficking of multiple proteins that enter cells by clathrin-independent endocytosis (CIE) and determine that a set of proteins (CD44, CD98, and CD147) found primarily in recycling tubules largely failed to reach late endosomes in HeLa cells, whereas other CIE cargo proteins, including major histocompatibility complex class I protein (MHCI), trafficked to both early endosome antigen 1 (EEA1) and late endosomal compartments in addition to recycling tubules. Expression of the membrane-associated RING-CH 8 (MARCH8) E3 ubiquitin ligase completely shifted the trafficking of CD44 and CD98 proteins away from recycling tubules to EEA1 compartments and late endosomes, resulting in reduced surface levels. Cargo affected by MARCH expression, including CD44, CD98, and MHCI, still entered cells by CIE, suggesting that the routing of ubiquitinated cargo occurs after endocytosis. MARCH8 expression led to direct ubiquitination of CD98 and routing of CD98 to late endosomes/lysosomes.
Collapse
Affiliation(s)
- Craig A Eyster
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
367
|
Interaction between the HTLV-1 envelope and cellular proteins: impact on virus infection and restriction. Future Med Chem 2011; 2:1651-68. [PMID: 21428837 DOI: 10.4155/fmc.10.255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The first human retrovirus, human T-lymphotropic virus 1 (HTLV-1), was discovered 30 years ago. Despite intensive study, the cell surface molecules involved in virus entry have only been identified over the past few years. Three molecules form the receptor complex for HTLV-1: glucose transporter 1, neuropilin 1 and heparan sulfate proteoglycans. Another molecule on the surface of dendritic cells, DC-SIGN, may play a role in dendritic cell-mediated infection of cells. In addition to the cell surface molecules used for entry, the HTLV-1 envelope interacts with cellular proteins, enabling the virus to traffic by exploiting cellular delivery pathways. To facilitate both these steps, HTLV-1 encodes motifs that mimic cellular binding partners for the trafficking system and ligands for the receptors. Here we review the interactions between the HTLV-1 envelope and cellular proteins.
Collapse
|
368
|
Ivanovic T, Boulant S, Ehrlich M, Demidenko AA, Arnold MM, Kirchhausen T, Nibert ML. Recruitment of cellular clathrin to viral factories and disruption of clathrin-dependent trafficking. Traffic 2011; 12:1179-95. [PMID: 21736684 DOI: 10.1111/j.1600-0854.2011.01233.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The viral factories of mammalian reovirus (MRV) are cytoplasmic structures that serve as sites of viral genome replication and particle assembly. A 721-aa MRV non-structural protein, µNS, forms the factory matrix and recruits other viral proteins to these structures. In this report, we show that µNS contains a conserved C-proximal sequence (711-LIDFS-715) that is similar to known clathrin-box motifs and is required for recruitment of clathrin to viral factories. Clathrin recruitment by µNS occurs independently of infecting MRV particles or other MRV proteins. Ala substitution for a single Leu residue (mutation L711A) within the putative clathrin-binding motif of µNS inhibits clathrin recruitment, but does not prevent formation or expansion of viral factories. Notably, clathrin-dependent cellular functions, including both endocytosis and secretion, are disrupted in cells infected with MRV expressing wild-type, but not L711A, µNS. These results identify µNS as a novel adaptor-like protein that recruits cellular clathrin to viral factories, disrupting normal functions of clathrin in cellular membrane trafficking. To our knowledge, this is the only viral or bacterial protein yet shown to interfere with clathrin functions in this manner. The results additionally establish a new approach for studies of clathrin functions, based on µNS-mediated sequestration.
Collapse
Affiliation(s)
- Tijana Ivanovic
- Department of Microbiology & Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
369
|
Lasiecka ZM, Winckler B. Mechanisms of polarized membrane trafficking in neurons -- focusing in on endosomes. Mol Cell Neurosci 2011; 48:278-87. [PMID: 21762782 DOI: 10.1016/j.mcn.2011.06.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/21/2011] [Accepted: 06/25/2011] [Indexed: 12/13/2022] Open
Abstract
Neurons are polarized cells that have a complex and unique morphology: long processes (axons and dendrites) extending far from the cell body. In addition, the somatodendritic and axonal domains are further divided into specific subdomains, such as synapses (pre- and postsynaptic specializations), proximal and distal dendrites, axon initial segments, nodes of Ranvier, and axon growth cones. The striking asymmetry and complexity of neuronal cells are necessary for their function in receiving, processing and transferring electrical signals, with each domain playing a precise function in these processes. In order to establish and maintain distinct neuronal domains, mechanisms must exist for protein delivery to specific neuronal compartments, such that each compartment has the correct functional molecular composition. How polarized membrane domains are established and maintained is a long-standing question. Transmembrane proteins, such as receptors and adhesion molecules, can be transported to their proper membrane domains by several pathways. The biosynthetic secretory system delivers newly synthesized transmembrane proteins from the ER via the Golgi and trans-Golgi-network (TGN) to the plasma membrane. In addition, the endosomal system is critically involved in many instances in ensuring proper (re)targeting of membrane components because it can internalize and degrade mislocalized proteins, or recycle proteins from one domain to another. The endosomal system is thus crucial for establishing and maintaining neuronal polarity. In this review, we focus mainly on the intracellular compartments that serve as sorting stations for polarized transport, with particular emphasis on the emerging roles of endosomes.
Collapse
Affiliation(s)
- Zofia M Lasiecka
- Department of Neuroscience, University of Virginia Medical School, 409 Lane Rd. Extension, MR4-6116, Charlottesville, VA 22908, USA
| | | |
Collapse
|
370
|
Seil M, El Ouaaliti M, Dehaye JP. Secretion of IL-1β triggered by dynasore in murine peritoneal macrophages. Innate Immun 2011; 18:241-9. [PMID: 21709053 DOI: 10.1177/1753425911399478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The interaction of lipopolysaccharide-primed murine peritoneal macrophages with ivermectin, an antiparasite drug which potentiates P2X(4) receptors and dynasore which inhibits the GTPase activity of dynamin, a protein contributing to the internalization of plasma membrane proteins, was tested. Murine peritoneal macrophages express P2X(4) receptors which are mostly intracellular. In cells from P2X(7)-knockout mice (KO mice), 10 µm adenosine triphosphate (ATP) provoked a transient increase of the intracellular concentration of calcium. Ivermectin had no effect by itself but potentiated the increase of the intracellular concentration of calcium by ATP. The combination of ATP plus ivermectin also decreased the intracellular concentration of potassium and promoted the secretion of IL-1β. Concentrations of dynasore above 50 µm affected the integrity of mitochondria (MTT test) and of the plasma membrane (release of lactate dehydrogenase, LDH). At a 10 µm concentration, dynasore had no effect on the responses to ATP and on the internalization of P2X(4) receptors. By itself dynasore promoted the release of potassium and the secretion of IL-1β after activation of caspase-1. In conclusion, our results confirm that ivermectin potentiates the responses coupled to P2X(4) receptors probably by interaction with an allosteric site. We also show that this potentiation triggers the release of IL-1β by macrophages. As opposed to ivermectin, dynasore has no effect on P2X(4) receptors. This drug triggers a potassium efflux via a mechanism which does not involve purinergic receptors and generates, in consequence, the activation of caspase-1 and the secretion of IL-1β.
Collapse
Affiliation(s)
- Michèle Seil
- Laboratoire de Chimie Biologique et Médicale et de Microbiologie Pharmaceutique, Institut de Pharmacie C.P. 205/3, Université Libre de Bruxelles, Belgium
| | | | | |
Collapse
|
371
|
Refaei M, Leventis R, Silvius JR. Assessment of the roles of ordered lipid microdomains in post-endocytic trafficking of glycosyl-phosphatidylinositol-anchored proteins in mammalian fibroblasts. Traffic 2011; 12:1012-24. [PMID: 21696526 DOI: 10.1111/j.1600-0854.2011.01206.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have used artificial phosphatidylethanolamine-polyethylene glycol (PE-PEG)-anchored proteins, incorporated into living mammalian cells, to evaluate previously proposed roles for ordered lipid 'raft' domains in the post-endocytic trafficking of glycosylphosphatidylinositol (GPI)-anchored proteins in CHO and BHK cells. In CHO cells, endocytosed PE-PEG protein conjugates colocalized strongly with the internalized GPI-anchored folate receptor, concentrating in the endosomal recycling compartment, regardless of the structure of the hydrocarbon chains of the PE-PEG 'anchor'. However, internalized PE-PEG protein conjugates with long-chain saturated anchors recycled to the plasma membrane at a slow rate comparable to that measured for the GPI-anchored folate receptor, whereas conjugates with short-chain or unsaturated anchors recycled at a faster rate similar to that observed for the transferrin receptor. These findings support the proposal (Mayor et al. Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J 1998;17:4628-4638) that the slow recycling of GPI proteins in CHO cells rests on their affinity for ordered lipid domains. In BHK cells, internalized PE-PEG protein conjugates with either saturated or unsaturated 'anchors' colocalized strongly with simultaneously endocytosed folate receptor and, like the folate receptor, gradually accumulated in late endosomes/lysosomes. These latter findings do not support previous suggestions that the sorting of GPI proteins to late endosomes in BHK cells depends on their association with lipid rafts.
Collapse
Affiliation(s)
- Mohammad Refaei
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
372
|
Segatto O, Anastasi S, Alemà S. Regulation of epidermal growth factor receptor signalling by inducible feedback inhibitors. J Cell Sci 2011; 124:1785-93. [DOI: 10.1242/jcs.083303] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Signalling by the epidermal growth factor receptor (EGFR) controls morphogenesis and/or homeostasis of several tissues from worms to mammals. The correct execution of these programmes requires the generation of EGFR signals of appropriate strength and duration. This is obtained through a complex circuitry of positive and negative feedback regulation. Feedback inhibitory mechanisms restrain EGFR activity in time and space, which is key to ensuring that receptor outputs are commensurate to the cell and tissue needs. Here, we focus on the emerging field of inducible negative feedback regulation of the EGFR in mammals. In mammalian cells, four EGFR inducible feedback inhibitors (IFIs), namely LRIG1, RALT (also known as MIG6 and ERRFI1), SOCS4 and SOCS5, have been discovered recently. EGFR IFIs are expressed de novo in the context of early or delayed transcriptional responses triggered by EGFR activation. They all bind to the EGFR and suppress receptor signalling through several mechanisms, including catalytic inhibition and receptor downregulation. Here, we review the mechanistic basis of IFI signalling and rationalise the function of IFIs in light of gene-knockout studies that assign LRIG1 and RALT an essential role in restricting cell proliferation. Finally, we discuss how IFIs might participate in system control of EGFR signalling and highlight the emerging roles for IFIs in the suppression of EGFR-driven tumorigenesis.
Collapse
Affiliation(s)
- Oreste Segatto
- Department of Experimental Oncology, Regina Elena Cancer Institute, 00158 Rome, Italy
| | - Sergio Anastasi
- Department of Experimental Oncology, Regina Elena Cancer Institute, 00158 Rome, Italy
| | - Stefano Alemà
- Institute of Cell Biology, CNR, 00016 Monterotondo, Italy
| |
Collapse
|
373
|
The DISABLED protein functions in CLATHRIN-mediated synaptic vesicle endocytosis and exoendocytic coupling at the active zone. Proc Natl Acad Sci U S A 2011; 108:E222-9. [PMID: 21606364 DOI: 10.1073/pnas.1102231108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Members of the DISABLED (DAB) family of proteins are known to play a conserved role in endocytic trafficking of cell surface receptors by functioning as monomeric CLATHRIN-associated sorting proteins that recruit cargo proteins into endocytic vesicles. Here, we report a Drosophila disabled mutant revealing a novel role for DAB proteins in chemical synaptic transmission. This mutant exhibits impaired synaptic function, including a rapid activity-dependent reduction in neurotransmitter release and disruption of synaptic vesicle endocytosis. In presynaptic boutons, Drosophila DAB and CLATHRIN were highly colocalized within two distinct classes of puncta, including relatively dim puncta that were located at active zones and may reflect endocytic mechanisms operating at neurotransmitter release sites. Finally, broader analysis of endocytic proteins, including DYNAMIN, supported a general role for CLATHRIN-mediated endocytic mechanisms in rapid clearance of neurotransmitter release sites for subsequent vesicle priming and refilling of the release-ready vesicle pool.
Collapse
|
374
|
Zhang F, Landford WN, Ng M, McNatt MW, Bieniasz PD, Hatziioannou T. SIV Nef proteins recruit the AP-2 complex to antagonize Tetherin and facilitate virion release. PLoS Pathog 2011; 7:e1002039. [PMID: 21625568 PMCID: PMC3098198 DOI: 10.1371/journal.ppat.1002039] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 03/08/2011] [Indexed: 12/01/2022] Open
Abstract
Lentiviral Nef proteins have multiple functions and are important for viral pathogenesis. Recently, Nef proteins from many simian immunodefiency viruses were shown to antagonize a cellular antiviral protein, named Tetherin, that blocks release of viral particles from the cell surface. However, the mechanism by which Nef antagonizes Tetherin is unknown. Here, using related Nef proteins that differ in their ability to antagonize Tetherin, we identify three amino-acids in the C-terminal domain of Nef that are critical specifically for its ability to antagonize Tetherin. Additionally, divergent Nef proteins bind to the AP-2 clathrin adaptor complex, and we show that residues important for this interaction are required for Tetherin antagonism, downregulation of Tetherin from the cell surface and removal of Tetherin from sites of particle assembly. Accordingly, depletion of AP-2 using RNA interference impairs the ability of Nef to antagonize Tetherin, demonstrating that AP-2 recruitment is required for Nef proteins to counteract this antiviral protein. Primate lentiviruses express several small proteins which antagonize cellular proteins that inhibit virus replication. One such viral protein, Nef, has recently been shown to antagonize the cellular protein Tetherin that prevents newly formed viral particles from leaving the surface of infected cells. In this study we reveal the mechanism by which Nef overcomes inhibition by Tetherin. We show that three amino acids in the Nef C-terminal flexible loop are important for Tetherin antagonism. We also show that the interaction between Nef and AP-2 adaptor complexes is important for Tetherin downregulation from the cell surface, removal from sites of particle assembly and antagonism. Thus, our study demonstrates that AP-2 is important for the ability of Nef to antagonize Tetherin.
Collapse
Affiliation(s)
- Fengwen Zhang
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Wilmina N. Landford
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
| | - Melinda Ng
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
| | - Matthew W. McNatt
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Paul D. Bieniasz
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
- * E-mail: (PDB); (TH)
| | - Theodora Hatziioannou
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- * E-mail: (PDB); (TH)
| |
Collapse
|
375
|
Kitahara H, Masumoto J, Parker AL, Maruta F, Kubo N, Shimizu A, Akita N, Miwa S, Kobayashi N, Nakayama J, Miyagawa S. COP35, a Cholangiocarcinoma-Binding Oligopeptide, Interacts with the Clathrin Heavy Chain Accompanied by GRP78. Mol Cancer Res 2011; 9:688-701. [DOI: 10.1158/1541-7786.mcr-10-0470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
376
|
Bai M, Gad H, Turacchio G, Cocucci E, Yang JS, Li J, Beznoussenko GV, Nie Z, Luo R, Fu L, Collawn JF, Kirchhausen T, Luini A, Hsu VW. ARFGAP1 promotes AP-2-dependent endocytosis. Nat Cell Biol 2011; 13:559-67. [PMID: 21499258 PMCID: PMC3087831 DOI: 10.1038/ncb2221] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/03/2011] [Indexed: 12/17/2022]
Abstract
COPI (coat protein I) and the clathrin-AP-2 (adaptor protein 2) complex are well-characterized coat proteins, but a component that is common to these two coats has not been identified. The GTPase-activating protein (GAP) for ADP-ribosylation factor 1 (ARF1), ARFGAP1, is a known component of the COPI complex. Here, we show that distinct regions of ARFGAP1 interact with AP-2 and coatomer (components of the COPI complex). Selectively disrupting the interaction of ARFGAP1 with either of these two coat proteins leads to selective inhibition in the corresponding transport pathway. The role of ARFGAP1 in AP-2-regulated endocytosis has mechanistic parallels with its roles in COPI transport, as both its GAP activity and coat function contribute to promoting AP-2 transport.
Collapse
Affiliation(s)
- Ming Bai
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
377
|
Kang RS, Fölsch H. ARH cooperates with AP-1B in the exocytosis of LDLR in polarized epithelial cells. J Cell Biol 2011; 193:51-60. [PMID: 21444685 PMCID: PMC3082197 DOI: 10.1083/jcb.201012121] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/07/2011] [Indexed: 02/07/2023] Open
Abstract
The autosomal recessive hypercholesterolemia protein (ARH) is well known for its role in clathrin-mediated endocytosis of low-density lipoprotein receptors (LDLRs). During uptake, ARH directly binds to the FxNPxY signal in the cytoplasmic tail of LDLR. Interestingly, the same FxNPxY motif is used in basolateral exocytosis of LDLR from recycling endosomes (REs), which is facilitated by the epithelial-specific clathrin adaptor AP-1B. However, AP-1B directly interacts with neither the FxNPxY motif nor the second more distally located YxxØ sorting motif of LDLR. Here, we show that ARH colocalizes and cooperates with AP-1B in REs. Knockdown of ARH in polarized epithelial cells leads to specific apical missorting of truncated LDLR, which encodes only the FxNPxY motif (LDLR-CT27). Moreover, a mutation in ARH designed to disrupt the interaction of ARH with AP-1B specifically abrogates exocytosis of LDLR-CT27. We conclude that in addition to its role in endocytosis, ARH cooperates with AP-1B in basolateral exocytosis of LDLR from REs.
Collapse
Affiliation(s)
- Richard S Kang
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
378
|
Rao Y, Rückert C, Saenger W, Haucke V. The early steps of endocytosis: from cargo selection to membrane deformation. Eur J Cell Biol 2011; 91:226-33. [PMID: 21458101 DOI: 10.1016/j.ejcb.2011.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/11/2011] [Accepted: 02/13/2011] [Indexed: 10/18/2022] Open
Abstract
Clathrin-mediated endocytosis mediates the internalization of signaling and nutrient receptors, ion channels and regulates the endocytic recycling of pre- and postsynaptic membrane proteins. During early stages endocytic adaptors recognize sorting signals within this diverse array of cargo proteins destined for internalization. Cargo sequestration is mechanistically coupled to membrane deformation, a process involving BAR domain proteins, resulting in the generation of endocytic intermediates that finally undergo dynamin-mediated fission. Here we summarize recent insights gathered from a combination of structural, biochemical, and cell biological studies that have revealed a remarkable complexity of the machinery for endocytic sorting and membrane deformation.
Collapse
Affiliation(s)
- Yijian Rao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
379
|
Shieh JC, Schaar BT, Srinivasan K, Brodsky FM, McConnell SK. Endocytosis regulates cell soma translocation and the distribution of adhesion proteins in migrating neurons. PLoS One 2011; 6:e17802. [PMID: 21445347 PMCID: PMC3062553 DOI: 10.1371/journal.pone.0017802] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 02/14/2011] [Indexed: 11/21/2022] Open
Abstract
Newborn neurons migrate from their birthplace to their final location to form a properly functioning nervous system. During these movements, young neurons must attach and subsequently detach from their substrate to facilitate migration, but little is known about the mechanisms cells use to release their attachments. We show that the machinery for clathrin-mediated endocytosis is positioned to regulate the distribution of adhesion proteins in a subcellular region just proximal to the neuronal cell body. Inhibiting clathrin or dynamin function impedes the movement of migrating neurons both in vitro and in vivo. Inhibiting dynamin function in vitro shifts the distribution of adhesion proteins to the rear of the cell. These results suggest that endocytosis may play a critical role in regulating substrate detachment to enable cell body translocation in migrating neurons.
Collapse
Affiliation(s)
- Jennifer C. Shieh
- Department of Biology, Stanford University, Stanford, California, United States of America
- Program in Neuroscience, Stanford University, Stanford, California, United States of America
| | - Bruce T. Schaar
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Karpagam Srinivasan
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Frances M. Brodsky
- Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Susan K. McConnell
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
380
|
|
381
|
Affiliation(s)
- Sandra L Schmid
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
382
|
Boucrot E, McMahon HT. [Nucleation of clathrin-coated pits - « membrane sculptors » at work]. Med Sci (Paris) 2011; 27:122-5. [PMID: 21382316 DOI: 10.1051/medsci/2011272122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
383
|
Welling PA, Weisz OA. Sorting it out in endosomes: an emerging concept in renal epithelial cell transport regulation. Physiology (Bethesda) 2011; 25:280-92. [PMID: 20940433 DOI: 10.1152/physiol.00022.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ion and water transport by the kidney is continually adjusted in response to physiological cues. Selective endocytosis and endosomal trafficking of ion transporters are increasingly appreciated as mechanisms to acutely modulate renal function. Here, we discuss emerging paradigms in this new area of investigation.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
384
|
Mattera R, Boehm M, Chaudhuri R, Prabhu Y, Bonifacino JS. Conservation and diversification of dileucine signal recognition by adaptor protein (AP) complex variants. J Biol Chem 2011; 286:2022-30. [PMID: 21097499 PMCID: PMC3023499 DOI: 10.1074/jbc.m110.197178] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Indexed: 12/22/2022] Open
Abstract
The clathrin-associated, heterotetrameric adaptor protein (AP) complexes, AP-1, AP-2, and AP-3, recognize signals in the cytosolic domains of transmembrane proteins, leading to their sorting to endosomes, lysosomes, lysosome-related organelles, and/or the basolateral membrane of polarized epithelial cells. One type of signal, referred to as "dileucine-based," fits the consensus motif (D/E)XXXL(L/I). Previous biochemical analyses showed that (D/E)XXXL(L/I) signals bind to a combination of two subunits of each AP complex, namely the AP-1 γ-σ1, AP-2 α-σ2, and AP-3 δ-σ3 hemicomplexes, and structural studies revealed that an imperfect variant of this motif lacking the (D/E) residue binds to a site straddling the interface of α and σ2. Herein, we report mutational and binding analyses showing that canonical (D/E)XXXL(L/I) signals bind to this same site on AP-2, and to similar sites on AP-1 and AP-3. The strength and amino acid requirements of different interactions depend on the specific signals and AP complexes involved. We also demonstrate the occurrence of diverse AP-1 heterotetramers by combinatorial assembly of various γ and σ1 subunit isoforms encoded by different genes. These AP-1 variants bind (D/E)XXXL(L/I) signals with marked preferences for certain sequences, implying that they are not functionally equivalent. Our results thus demonstrate that different AP complexes share a conserved binding site for (D/E)XXXL(L/I) signals. However, the characteristics of the binding site on each complex vary, providing for the specific recognition of a diverse repertoire of (D/E)XXXL(L/I) signals.
Collapse
Affiliation(s)
- Rafael Mattera
- From the Cell Biology and Metabolism Program, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Markus Boehm
- From the Cell Biology and Metabolism Program, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Rittik Chaudhuri
- From the Cell Biology and Metabolism Program, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Yogikala Prabhu
- From the Cell Biology and Metabolism Program, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Juan S. Bonifacino
- From the Cell Biology and Metabolism Program, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
385
|
CALM, A Clathrin Assembly Protein, Influences Cell Surface GluR2 Abundance. Neuromolecular Med 2011; 13:88-90. [DOI: 10.1007/s12017-010-8142-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 11/23/2010] [Indexed: 11/25/2022]
|
386
|
Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway. J Neurosci 2011; 30:16718-29. [PMID: 21148011 DOI: 10.1523/jneurosci.3686-10.2010] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The accurate trafficking of AMPA receptors (AMPARs) to and from the synapse is a critical component of learning and memory in the brain, whereas dysfunction of AMPAR trafficking is hypothesized to be an underlying mechanism of Alzheimer's disease. Previous work has shown that ubiquitination of integral membrane proteins is a common posttranslational modification used to mediate endocytosis and endocytic sorting of surface proteins in eukaryotic cells. Here we report that mammalian AMPARs become ubiquitinated in response to their activation. Using a mutant of GluA1 that is unable to be ubiquitinated at lysines on its C-terminus, we demonstrate that ubiquitination is required for internalization of surface AMPARs and their trafficking to the lysosome in response to the AMPAR agonist AMPA but not for internalization of AMPARs in response to the NMDA receptor agonist NMDA. Through overexpression or RNA interference-mediated knockdown, we identify that a specific E3 ligase, Nedd4-1 (neural-precursor cell-expressed developmentally downregulated gene 4-1), is necessary for this process. Finally, we show that ubiquitination of GluA1 by Nedd4-1 becomes more prevalent as neurons mature. Together, these data show that ubiquitination of GluA1-containing AMPARs by Nedd4-1 mediates their endocytosis and trafficking to the lysosome. Furthermore, these results provide insight into how hippocampal neurons regulate AMPAR trafficking and degradation with high specificity in response to differing neuronal signaling cues and suggest that changes to this pathway may occur as neurons mature.
Collapse
|
387
|
Visual deprivation suppresses L5 pyramidal neuron excitability by preventing the induction of intrinsic plasticity. Neuron 2011; 68:750-62. [PMID: 21092863 DOI: 10.1016/j.neuron.2010.09.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2010] [Indexed: 11/23/2022]
Abstract
In visual cortex monocular deprivation (MD) during a critical period (CP) reduces the ability of the deprived eye to activate cortex, but the underlying cellular plasticity mechanisms are incompletely understood. Here we show that MD reduces the intrinsic excitability of layer 5 (L5) pyramidal neurons and enhances long-term potentiation of intrinsic excitability (LTP-IE). Further, MD and LTP-IE induce reciprocal changes in K(v)2.1 current, and LTP-IE reverses the effects of MD on intrinsic excitability. Taken together these data suggest that MD reduces intrinsic excitability by preventing sensory-drive induced LTP-IE. The effects of MD on excitability were correlated with the classical visual system CP, and (like the functional effects of MD) could be rapidly reversed when vision was restored. These data establish LTP-IE as a candidate mechanism mediating loss of visual responsiveness within L5, and suggest that intrinsic plasticity plays an important role in experience-dependent refinement of visual cortical circuits.
Collapse
|
388
|
Valdembri D, Sandri C, Santambrogio M, Serini G. Regulation of integrins by conformation and traffic: it takes two to tango. MOLECULAR BIOSYSTEMS 2011; 7:2539-46. [DOI: 10.1039/c1mb05066d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
389
|
Benhra N, Lallet S, Cotton M, Le Bras S, Dussert A, Le Borgne R. AP-1 controls the trafficking of Notch and Sanpodo toward E-cadherin junctions in sensory organ precursors. Curr Biol 2010; 21:87-95. [PMID: 21194948 DOI: 10.1016/j.cub.2010.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/11/2010] [Accepted: 12/06/2010] [Indexed: 02/01/2023]
Abstract
In Drosophila melanogaster, external sensory organs develop from a single sensory organ precursor (SOP). The SOP divides asymmetrically to generate daughter cells, whose fates are governed by differential Notch activation. Here we show that the clathrin adaptor AP-1 complex, localized at the trans Golgi network and in recycling endosomes, acts as a negative regulator of Notch signaling. Inactivation of AP-1 causes ligand-dependent activation of Notch, leading to a fate transformation within sensory organs. Loss of AP-1 affects neither cell polarity nor the unequal segregation of the cell fate determinants Numb and Neuralized. Instead, it causes apical accumulation of the Notch activator Sanpodo and stabilization of both Sanpodo and Notch at the interface between SOP daughter cells, where DE-cadherin is localized. Endocytosis-recycling assays reveal that AP-1 acts in recycling endosomes to prevent internalized Spdo from recycling toward adherens junctions. Because AP-1 does not prevent endocytosis and recycling of the Notch ligand Delta, our data indicate that the DE-cadherin junctional domain may act as a launching pad through which endocytosed Notch ligand is trafficked for signaling.
Collapse
Affiliation(s)
- Najate Benhra
- CNRS UMR 6061-Institut de Génétique et Développement de Rennes, Université de Rennes 1, 2 avenue du Professeur Bernard, 35000 Rennes, France
| | | | | | | | | | | |
Collapse
|
390
|
Magnan R, Masri B, Escrieut C, Foucaud M, Cordelier P, Fourmy D. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists. J Biol Chem 2010; 286:6707-19. [PMID: 21156802 DOI: 10.1074/jbc.m110.196048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Given the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of β-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or β-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and β-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for β-arrestin recruitment. However, this region and β-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R·β-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor.
Collapse
Affiliation(s)
- Rémi Magnan
- INSERM, Unit 858, 12 MR, 1 Avenue Jean Poulhés, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|
391
|
Huang H, Feng X, Zhuang J, Fröhlich O, Klein JD, Cai H, Sands JM, Chen G. Internalization of UT-A1 urea transporter is dynamin dependent and mediated by both caveolae- and clathrin-coated pit pathways. Am J Physiol Renal Physiol 2010; 299:F1389-95. [PMID: 20861071 PMCID: PMC3006306 DOI: 10.1152/ajprenal.00718.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 09/20/2010] [Indexed: 11/22/2022] Open
Abstract
Dynamin is a large GTPase involved in several distinct modes of cell endocytosis. In this study, we examined the possible role of dynamin in UT-A1 internalization. The direct relationship of UT-A1 and dynamin was identified by coimmunoprecipitation. UT-A1 has cytosolic NH(2) and COOH termini and a large intracellular loop. Dynamin specifically binds to the intracellular loop of UT-A1, but not the NH(2) and COOH termini. In cell surface biotinylation experiments, coexpression of dynamin and UT-A1 in HEK293 cells resulted in a decrease of UT-A1 cell surface expression. Conversely, cells expressing dynamin mutant K44A, which is deficient in GTP binding, showed an increased accumulation of UT-A1 protein on the cell surface. Cell plasma membrane lipid raft fractionation experiments revealed that blocking endocytosis with dynamin K44A causes UT-A1 protein accumulation in both the lipid raft and nonlipid raft pools, suggesting that both caveolae- and clathrin-mediated mechanisms may be involved in the internalization of UT-A1. This was further supported by 1) small interfering RNA to knock down either caveolin-1 or μ2 reduced UT-A1 internalization in HEK293 cells and 2) inhibition of either the caveolae pathway by methyl-β-cyclodextrin or the clathrin pathway by concanavalin A caused UT-A1 cell membrane accumulation. Functionally, overexpression of dynamin, caveolin, or μ2 decreased UT-A1 urea transport activity and decreased UT-A1 cell surface expression. We conclude that UT-A1 endocytosis is dynamin-dependent and mediated by both caveolae- and clathrin-coated pit pathways.
Collapse
Affiliation(s)
- Haidong Huang
- Department of Medicine, Renal Division, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
392
|
Royle SJ, Lagnado L. Clathrin-mediated endocytosis at the synaptic terminal: bridging the gap between physiology and molecules. Traffic 2010; 11:1489-97. [PMID: 20633242 PMCID: PMC3371399 DOI: 10.1111/j.1600-0854.2010.01104.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It has long been known that the maintenance of fast communication between neurons requires that presynaptic terminals recycle the small vesicles from which neurotransmitter is released. But the mechanisms that retrieve vesicles from the cell surface are still not understood. Although we have a wealth of information about the molecular details of endocytosis in non-neuronal cells, it is clear that endocytosis at the synapse is faster and regulated in distinct ways. A satisfying understanding of these processes will require molecular events to be manipulated while observing endocytosis in living synapses. Here, we review recent work that seeks to bridge the gap between physiology and molecules to unravel the endocytic machinery operating at the synaptic terminal.
Collapse
Affiliation(s)
- Stephen J Royle
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | | |
Collapse
|
393
|
|
394
|
Kaplan OI, Molla-Herman A, Cevik S, Ghossoub R, Kida K, Kimura Y, Jenkins P, Martens JR, Setou M, Benmerah A, Blacque OE. The AP-1 clathrin adaptor facilitates cilium formation and functions with RAB-8 in C. elegans ciliary membrane transport. J Cell Sci 2010; 123:3966-77. [PMID: 20980383 DOI: 10.1242/jcs.073908] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clathrin adaptor (AP) complexes facilitate membrane trafficking between subcellular compartments. One such compartment is the cilium, whose dysfunction underlies disorders classified as ciliopathies. Although AP-1mu subunit (UNC-101) is linked to cilium formation and targeting of transmembrane proteins (ODR-10) to nematode sensory cilia at distal dendrite tips, these functions remain poorly understood. Here, using Caenorhabditis elegans sensory neurons and mammalian cell culture models, we find conservation of AP-1 function in facilitating cilium morphology, positioning and orientation, and microtubule stability and acetylation. These defects appear to be independent of IFT, because AP-1-depleted cells possess normal IFT protein localisation and motility. By contrast, disruption of chc-1 (clathrin) or rab-8 phenocopies unc-101 worms, preventing ODR-10 vesicle formation and causing misrouting of ODR-10 to all plasma membrane destinations. Finally, ODR-10 colocalises with RAB-8 in cell soma and they cotranslocate along dendrites, whereas ODR-10 and UNC-101 signals do not overlap. Together, these data implicate conserved roles for metazoan AP-1 in facilitating cilium structure and function, and suggest cooperation with RAB-8 to coordinate distinct early steps in neuronal ciliary membrane sorting and trafficking.
Collapse
Affiliation(s)
- Oktay I Kaplan
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Huang RB, Mocherla S, Heslinga MJ, Charoenphol P, Eniola-Adefeso O. Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery. Mol Membr Biol 2010; 27:312-27. [PMID: 21028938 DOI: 10.3109/09687688.2010.522117] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascular-targeted drug delivery systems could provide more efficient and effective pharmaceutical interventions for treating a variety of diseases including cardiovascular, pulmonary, inflammatory, and malignant disorders. However, several factors must be taken into account when designing these systems. The diverse blood hemodynamics and rheology, and the natural clearance process that tend to decrease the circulation time of foreign particles all lessen the probability of successful carrier interaction with the vascular wall. An effective vascular-targeted drug delivery system must be able to navigate through the bloodstream while avoiding immune clearance, attach to the vascular wall, and release its therapeutic cargo at the intended location. This review will summarize and analyze current literature reporting on (1) nanocarrier fabrication methods and materials that allow for optimum therapeutic encapsulation, protection, and release; (2) localization and binding dynamics of nanocarriers as influenced by hemodynamics and blood rheology in medium-to-large vessels; (3) blood cells' responses to various types of nanocarrier compositions and its effects on particle circulation time; and (4) properties that affect nanocarrier internalization at the target site.
Collapse
Affiliation(s)
- Ryan B Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
396
|
Dynamic interactions between clathrin and locally structured elements in a disordered protein mediate clathrin lattice assembly. J Mol Biol 2010; 404:274-90. [PMID: 20875424 DOI: 10.1016/j.jmb.2010.09.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 11/22/2022]
Abstract
Assembly of clathrin lattices is mediated by assembly/adaptor proteins that contain domains that bind lipids or membrane-bound cargo proteins and clathrin binding domains (CBDs) that recruit clathrin. Here, we characterize the interaction between clathrin and a large fragment of the CBD of the clathrin assembly protein AP180. Mutational, NMR chemical shift, and analytical ultracentrifugation analyses allowed us to precisely define two clathrin binding sites within this fragment, each of which is found to bind weakly to the N-terminal domain of the clathrin heavy chain (TD). The locations of the two clathrin binding sites are consistent with predictions from sequence alignments of previously identified clathrin binding elements and, by extension, indicate that the complete AP180 CBD contains ∼12 degenerate repeats, each containing a single clathrin binding site. Sequence and circular dichroism analyses have indicated that the AP180 CBD is predominantly unstructured and our NMR analyses confirm that this is largely the case for the AP180 fragment characterized here. Unexpectedly, unlike the many proteins that undergo binding-coupled folding upon interaction with their binding partners, the AP180 fragment is similarly unstructured in its bound and free states. Instead, we find that this fragment exhibits localized β-turn-like structures at the two clathrin binding sites both when free and when bound to clathrin. These observations are incorporated into a model in which weak binding by multiple, pre-structured clathrin binding elements regularly dispersed throughout a largely unstructured CBD allows efficient recruitment of clathrin to endocytic sites and dynamic assembly of the clathrin lattice.
Collapse
|
397
|
Vidal OM, Stec W, Bausek N, Smythe E, Zeidler MP. Negative regulation of Drosophila JAK-STAT signalling by endocytic trafficking. J Cell Sci 2010; 123:3457-66. [PMID: 20841381 DOI: 10.1242/jcs.066902] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Appropriate regulation of signal transduction pathways is essential for normal development and is often disrupted in disease. Therefore, many regulatory mechanisms and feedback loops have evolved to ensure appropriate signalling. One mechanism previously suggested to modulate a range of signal transduction pathways involves the internalisation and destruction of transmembrane receptors by the endocytic trafficking machinery. Strikingly, a recent report has suggested that the endocytic trafficking of the Drosophila JAK-STAT pathway receptor Domeless (Dome) does not act to downregulate pathway activity, but rather is necessary for in vivo signalling. Here, we examine this relationship to address the interaction of Drosophila JAK-STAT pathway signalling and endocytic trafficking. We show that Dome is trafficked through clathrin-mediated endocytosis and a directed RNAi screen identified several components of the endocytic machinery as negative regulators of pathway signalling. We demonstrate that Dome signals both from the plasma membrane and internalised vesicles and show, using knockdown experiments, that endocytic components negatively regulate JAK-STAT signalling in vivo. As such, disruption in endocytic trafficking represents a potent negative regulator of the disease relevant JAK-STAT signalling cascade.
Collapse
Affiliation(s)
- Oscar Marino Vidal
- MRC Centre for Developmental and Biomedical Genetics, The University of Sheffield, Firth Court, Sheffield S102TN, UK
| | | | | | | | | |
Collapse
|
398
|
Pizarro-Cerdá J, Bonazzi M, Cossart P. Clathrin-mediated endocytosis: what works for small, also works for big. Bioessays 2010; 32:496-504. [PMID: 20486136 DOI: 10.1002/bies.200900172] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clathrin and the endocytosis machinery has recently been described as being required in mammalian cells for the internalization of large particles including pathogenic bacteria, fungi, and large viruses. These apparently unexpected observations, within the framework of the classical mechanisms for the formation of clathrin-coated vesicles, are now considered as examples of a new non-classical function of clathrin, which can promote the internalization of membrane domains associated to planar clathrin lattices. The role of actin downstream of clathrin seems to be critical for this still poorly characterized process. The historical frontier between endocytosis and phagocytosis is vanishing in the light of this new role for clathrin.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
| | | | | |
Collapse
|
399
|
Cauwe B, Opdenakker G. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 2010; 45:351-423. [DOI: 10.3109/10409238.2010.501783] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
400
|
Huang RB, Mocherla S, Heslinga MJ, Charoenphol P, Eniola-Adefeso O. Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery (review). Mol Membr Biol 2010; 27:190-205. [PMID: 20615080 DOI: 10.3109/09687688.2010.499548] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vascular-targeted drug delivery systems could provide more efficient and effective pharmaceutical interventions for treating a variety of diseases including cardiovascular, pulmonary, inflammatory, and malignant disorders. However, several factors must be taken into account when designing these systems. The diverse blood hemodynamics and rheology, and the natural clearance process that tend to decrease the circulation time of foreign particles all lessen the probability of successful carrier interaction with the vascular wall. An effective vascular-targeted drug delivery system must be able to navigate through the bloodstream while avoiding immune clearance, attach to the vascular wall, and release its therapeutic cargo at the intended location. This review will summarize and analyze current literature reporting on (1) nanocarrier fabrication methods and materials that allow for optimum therapeutic encapsulation, protection, and release; (2) localization and binding dynamics of nanocarriers as influenced by hemodynamics and blood rheology in medium-to-large vessels; (3) blood cells' responses to various types of nanocarrier compositions and its effects on particle circulation time; and (4) properties that affect nanocarrier internalization at the target site.
Collapse
Affiliation(s)
- Ryan B Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|