351
|
Finsterer J. Glofitamab-Associated Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS) Presenting as Serial Seizures and Responding Positively to Antiseizure Drugs and Anakinra: A Case Report. Cureus 2024; 16:e60833. [PMID: 38910651 PMCID: PMC11189692 DOI: 10.7759/cureus.60833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Immune effector cell-associated neurotoxicity syndrome (ICANS) is a well-known side effect of chimeric antigen receptor (CAR) T-cell therapy but has occasionally been described with immune checkpoint inhibitors as well. Glofitamab-associated ICANS with a bispecific monoclonal antibody has rarely been reported. The patient is a 63-year-old male with a history of mantle cell lymphoma, diagnosed at age 37, and aggressive large-cell B-cell lymphoma, diagnosed at age 50. Despite adequate chemotherapy, immunotherapy, autologous stem cell transplantation, and CAR T-cell therapy, there were several relapses, including meningeal carcinomatosis at age 61 and intracerebral lymphoma at age 62. For this reason, glofitamab was started. One week after the ninth cycle, the patient developed drowsiness, behavioral changes, word-finding difficulties, aphasia, focal to bilateral tonic-clonic seizures, and focal onset seizures, which resolved after 16 days with levetiracetam, valproic acid, lorazepam, and midazolam. Since there was no infectious disease, electrolyte disturbance, metabolic disorder, cardiovascular disease, or relapse of lymphoma, glofitamab-associated ICANS was suspected, and anakinra was administered. The case shows that ICANS with drowsiness, behavioral changes, aphasia, and seizures can develop with glofitamab and that patients with structural brain abnormalities may be prone to this.
Collapse
Affiliation(s)
- Josef Finsterer
- Neurology, Neurology and Neurophysiology Center, Vienna, AUT
| |
Collapse
|
352
|
Jimkap N, El Baroudi O, Lemoine J, Pievani D, Pastoret C, Houot R. Management of immunosuppression in post-transplant lymphoproliferative disorders treated with CAR T cells. Br J Haematol 2024; 204:2112-2116. [PMID: 38411293 DOI: 10.1111/bjh.19355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Affiliation(s)
- Nathacha Jimkap
- Hematology Department, Rennes University Hospital, Rennes University, Rennes, France
- Internal Medicine Department, Douala General Hospital, Douala, Cameroon
| | - Oussama El Baroudi
- Hematology Department, Rennes University Hospital, Rennes University, Rennes, France
- Hematology Department, University Hospital of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Jean Lemoine
- Hematology Department, AP-HP, Université Paris Cité, Paris, France
| | - Daniele Pievani
- Immunology-Hematology Department, Hôpital Saint Louis, Paris, France
| | - Cédric Pastoret
- Hematology Biology Department, Rennes University Hospital, Rennes University, Rennes, France
| | - Roch Houot
- Hematology Department, Rennes University Hospital, Rennes University, Rennes, France
| |
Collapse
|
353
|
Shumnalieva R, Velikova T, Monov S. Expanding the role of CAR T-cell therapy: From B-cell hematological malignancies to autoimmune rheumatic diseases. Int J Rheum Dis 2024; 27:e15182. [PMID: 38742463 DOI: 10.1111/1756-185x.15182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/04/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a form of immunotherapy where the lymphocytes, mostly T-cells, are redirected to specifically recognize and eliminate a target antigen by coupling them with CARs. The binding of CAR and target cell surface antigens leads to vigorous T cell activation and robust anti-tumor immune responses. Areas of implication of CAR T-cell therapies include mainly hematological malignancies (i.e., advanced B-cell cancers); however, recent studies have proven the unprecedented success of the new immunotherapy also in autoimmune rheumatic diseases. We aim to review the recent advances in CAR T-cell therapies in rheumatology but also to address the limitations of their use in the real clinical practice based on the data on their efficacy and safety.
Collapse
Affiliation(s)
- Russka Shumnalieva
- Department of Rheumatology, Clinic of Rheumatology, Medical University-Sofia, Faculty of Medicine, Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University "St. Kliment Ohridski"- Sofia, Sofia, Bulgaria
| | - Simeon Monov
- Department of Rheumatology, Clinic of Rheumatology, Medical University-Sofia, Faculty of Medicine, Sofia, Bulgaria
| |
Collapse
|
354
|
Xu Z, Sun L, Yin C, Wu H, Wang X, Yang Y, Wang Z. Developmental stage and infection status may affect drug distribution in the prostate of rats. Xenobiotica 2024; 54:248-256. [PMID: 38634734 DOI: 10.1080/00498254.2024.2343892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Prostate inflammation is often treated with drugs which are ineffective. Antibacterial agents fail to reach the prostate epithelium, and the blood-prostate barrier (BPB) may affect the drug transport process. Factors affecting drug efficacy remain unclear.Rats were categorised into groups A and B, corresponding to adulthood and puberty, respectively. Group C included the model of chronic prostate infection. Dialysates of levofloxacin and cefradine were collected from the prostate gland and jugular vein and evaluated. Pharmacokinetic analysis was conducted.The free concentrations of antimicrobials in the prostate and plasma samples of all groups peaked at 20 min, then gradually decreased. The mean AUC0-tprostate/AUC0-tplasma ratio in the levofloxacin group were 0.86, 0.53, and 0.95, and the mean values of AUC0-∞prostate/AUC0-∞plasma ratio were 0.85, 0.63, and 0.97. The corresponding values in the cefradine group were 0.67, 0.30 and 0.84, and 0.66, 0.31, and 0.85, respectively. The mean values in group B were lower than those in group A, and those in group C were higher than those in group B.The maturity of the prostate may affect the ability of the drug to cross the BPB. Infection may disrupt the BPB, affecting drug permeability.
Collapse
Affiliation(s)
- Ziyang Xu
- Department of Pharmacy, Shanghai Changhai Hospital, the First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lianzhan Sun
- Department of Pharmacy, Shanghai Changhai Hospital, the First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chang Yin
- Department of Pharmacy, Shanghai Changhai Hospital, the First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Handa Wu
- Department of Pharmacy, Shanghai Changhai Hospital, the First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xue Wang
- Department of Pharmacy, Shanghai Changhai Hospital, the First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yunyun Yang
- Department of Pharmacy, Shanghai Changhai Hospital, the First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhuo Wang
- Department of Pharmacy, Shanghai Changhai Hospital, the First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
355
|
Lee WH, Graham CE, Wiggin HR, Nolan HK, Graham KJ, Korell F, Leick MB, Barselau AL, Emmanuel-Alejandro E, Trailor MA, Gildea JM, Preffer F, Frigault MJ, Maus MV, Gallagher KME. Optimization of a flow cytometry test for routine monitoring of B cell maturation antigen targeted CAR in peripheral blood. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:162-170. [PMID: 38418432 DOI: 10.1002/cyto.b.22165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/01/2024]
Abstract
Chimeric antigen receptor (CAR) modified T cell therapies targeting BCMA have displayed impressive activity in the treatment of multiple myeloma. There are currently two FDA licensed products, ciltacabtagene autoleucel and idecabtagene vicleucel, for treating relapsed and refractory disease. Although correlative analyses performed by product manufacturers have been reported in clinical trials, there are limited options for reliable BCMA CAR T detection assays for physicians and researchers looking to explore it as a biomarker for clinical outcome. Given the known association of CAR T cell expansion kinetics with toxicity and response, being able to quantify BCMA CAR T cells routinely and accurately in the blood of patients can serve as a valuable asset. Here, we optimized an accurate and sensitive flow cytometry test using a PE-conjugated soluble BCMA protein, with a lower limit of quantitation of 0.19% of CD3+ T cells, suitable for use as a routine assay for monitoring the frequency of BCMA CAR T cells in the blood of patients receiving either ciltacabtagene autoleucel or idecabtagene vicleucel.
Collapse
Affiliation(s)
- Won-Ho Lee
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Charlotte E Graham
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hadley R Wiggin
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hannah K Nolan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kiana J Graham
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Felix Korell
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark B Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexis L Barselau
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Estelle Emmanuel-Alejandro
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael A Trailor
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Juliane M Gildea
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Frederic Preffer
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathleen M E Gallagher
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
356
|
Cherng HJJ, Herrera A. Circulating Tumor DNA in Diffuse Large B-Cell Lymphoma: from Bench to Bedside? Curr Treat Options Oncol 2024; 25:659-678. [PMID: 38656685 DOI: 10.1007/s11864-024-01201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
OPINION STATEMENT Diffuse large B-cell lymphoma (DLBCL) is a curable disease with variable outcomes due to underlying heterogeneous clinical and molecular features-features that are insufficiently characterized with our current tools. Due to these limitations, treatment largely remains a "one-size-fits-all" approach. Circulating tumor DNA (ctDNA) is a novel biomarker in cancers that is increasingly utilized for risk stratification and response assessment. ctDNA is readily detectable from the plasma of patients with DLBCL but has not yet been incorporated into clinical care to guide treatment. Here, we describe how ctDNA sequencing represents a promising technology in development to personalize the care of patients with DLBCL. We will review the different types of ctDNA assays being studied and the rapidly growing body of evidence supporting the utility of ctDNA in different treatment settings in DLBCL. Risk stratification by estimation of tumor burden and liquid genotyping, molecular response assessment during treatment, and monitoring for measurable residual disease (MRD) to identify therapy resistance and predict clinical relapse are all potential applications of ctDNA. It is time for clinical trials in DLBCL to utilize ctDNA as an integral biomarker for patient selection, response-adapted designs, and surrogate endpoints. As more ctDNA assays become commercially available for routine use, clinicians should consider liquid biopsy when treatment response is equivocal on imaging. Incorporating MRD may also guide decision-making if patients experience severe treatment toxicities. Though important barriers remain, we believe that ctDNA will soon be ready to transition from bench to bedside to individualize treatment for our patients with DLBCL.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/genetics
- Humans
- Circulating Tumor DNA/blood
- Biomarkers, Tumor/blood
- Liquid Biopsy/methods
- Disease Management
- Translational Research, Biomedical
- Precision Medicine/methods
- Prognosis
- Clinical Decision-Making
- Disease Susceptibility
Collapse
Affiliation(s)
- Hua-Jay J Cherng
- Lymphoma Service, Division of Hematology & Oncology, Columbia University Irving Medical Center, 177 Fort Washington Avenue, 6GN-Rm 435, New York, NY, 10032, USA.
| | - Alex Herrera
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
357
|
Gao C, Li X, Xu Y, Zhang T, Zhu H, Yao D. Recent advances in CAR-T cell therapy for acute myeloid leukaemia. J Cell Mol Med 2024; 28:e18369. [PMID: 38712978 PMCID: PMC11075639 DOI: 10.1111/jcmm.18369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a fatal and refractory haematologic cancer that primarily affects adults. It interferes with bone marrow cell proliferation. Patients have a 5 years survival rate of less than 30% despite the availability of several treatments, including chemotherapy, allogeneic haematopoietic stem cell transplantation (Allo-HSCT), and receptor antagonist drugs. Allo-HSCT is the mainstay of acute myeloid leukaemia treatment. Although it does work, there are severe side effects, such as graft-versus-host disease (GVHD). In recent years, chimeric antigen receptor (CAR)-T cell therapies have made significant progress in the treatment of cancer. These engineered T cells can locate and recognize tumour cells in vivo and release a large number of effectors through immune action to effectively kill tumour cells. CAR-T cells are among the most effective cancer treatments because of this property. CAR-T cells have demonstrated positive therapeutic results in the treatment of acute myeloid leukaemia, according to numerous clinical investigations. This review highlights recent progress in new targets for AML immunotherapy, and the limitations, and difficulties of CAR-T therapy for AML.
Collapse
Affiliation(s)
- Chi Gao
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Xin Li
- College of BiotechnologyTianjin University of Science and TechnologyTianjinChina
| | - Yao Xu
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Tongcun Zhang
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
- Institute of Biology and MedicineWuhan University of Science and TechnologyWuhanChina
| | - Haichuan Zhu
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Di Yao
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| |
Collapse
|
358
|
Harrer DC, Li SS, Kaljanac M, Bezler V, Barden M, Pan H, Herr W, Abken H. Magnetic CAR T cell purification using an anti-G4S linker antibody. J Immunol Methods 2024; 528:113667. [PMID: 38574803 DOI: 10.1016/j.jim.2024.113667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Chimeric antigen receptor (CAR) redirected T cells are successfully employed in the combat against several hematological malignancies, however, are often compromised by low transduction rates making refinement of the CAR T cell products necessary. Here, we report a broadly applicable enrichment protocol relying on marking CAR T cells with an anti-glycine4-serine (G4S) linker antibody followed by magnetic activated cell sorting (MACS). The protocol is broadly applicable since the G4S peptide is an integral part of the vast majority of CARs as it links the VH and VL recognition domains. We demonstrate the feasibility by using the canonical second generation CARs specific for CEA and Her2, respectively, obtaining highly purified CAR T cell products in a one-step procedure without impairing cell viability. The protocol is also applicable to a dual specific CAR (tandem CAR). Except for CD39, T cell activation/exhaustion markers were not upregulated after separation. Purified CAR T cells retained their functionality with respect to antigen-specific cytokine secretion, cytotoxicity, and the capacity to proliferate and eliminate cognate tumor cells upon repetitive stimulation. Collectively, the one-step protocol for purifying CAR T cells extends the toolbox for preclinical research and specifically for clinical CAR T cell manufacturing.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Internal Medicine III - Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany.
| | - Sin-Syue Li
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany; Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Marcell Kaljanac
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany
| | - Valerie Bezler
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany
| | - Markus Barden
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany
| | - Hong Pan
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III - Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany
| |
Collapse
|
359
|
Jin J, Lin L, Meng J, Jiang L, Zhang M, Fang Y, Liu W, Xin X, Long X, Kuang D, Ding X, Zheng M, Zhang Y, Xiao Y, Chen L. High-multiplex single-cell imaging analysis reveals tumor immune contexture associated with clinical outcomes after CAR T cell therapy. Mol Ther 2024; 32:1252-1265. [PMID: 38504519 PMCID: PMC11081919 DOI: 10.1016/j.ymthe.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has made great progress in treating lymphoma, yet patient outcomes still vary greatly. The lymphoma microenvironment may be an important factor in the efficacy of CAR T therapy. In this study, we designed a highly multiplexed imaging mass cytometry (IMC) panel to simultaneously quantify 31 biomarkers from 13 patients with relapsed/refractory diffuse large B cell lymphoma (DLBCL) who received CAR19/22 T cell therapy. A total of 20 sections were sampled before CAR T cell infusion or after infusion when relapse occurred. A total of 35 cell clusters were identified, annotated, and subsequently redefined into 10 metaclusters. The CD4+ T cell fraction was positively associated with remission duration. Significantly higher Ki67, CD57, and TIM3 levels and lower CD69 levels in T cells, especially the CD8+/CD4+ Tem and Te cell subsets, were seen in patients with poor outcomes. Cellular neighborhood containing more immune cells was associated with longer remission. Fibroblasts and vascular endothelial cells resided much closer to tumor cells in patients with poor response and short remission after CAR T therapy. Our work comprehensively and systematically dissects the relationship between cell composition, state, and spatial arrangement in the DLBCL microenvironment and the outcomes of CAR T cell therapy, which is beneficial to predict CAR T therapy efficacy.
Collapse
Affiliation(s)
- Jin Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China; Department of Hematology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Jiao Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin 150010, China
| | - Lijun Jiang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Man Zhang
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China
| | - Yuekun Fang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Wanying Liu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Xiangke Xin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Xiaolu Long
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Dong Kuang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xilai Ding
- Biomedical Research Core Facilities, Westlake University, Hangzhou 310024, China
| | - Miao Zheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China.
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China.
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China; Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518000, China.
| |
Collapse
|
360
|
Eigendorff F, Filimonova I, Scholl S, Sayer-Klink A, Rummler S, Kunert C, Pietschmann K, Wittig A, Hochhaus A, Schnetzke U. Effective bridging strategies prior to infusion with tisagenlecleucel results in high response rates and long-term remission in relapsed/refractory large B-cell lymphoma: findings from a German monocentric study. J Cancer Res Clin Oncol 2024; 150:224. [PMID: 38693452 PMCID: PMC11062962 DOI: 10.1007/s00432-024-05765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Incorporating chimeric antigen receptor (CAR)-T cell therapy into relapsed or refractory large B-cell lymphoma (rr LBCL) treatment algorithms has yielded remarkable response rates and durable remissions, yet a substantial portion of patients experience progression or relapse. Variations in outcomes across treatment centers may be attributed to different bridging strategies and remission statuses preceding CAR-T cell therapy. PATIENTS Twenty-nine consecutive adult patients receiving tisagenlecleucel (tisa-cel) for rr LBCL from December 2019 to February 2023 at Jena University Hospital were analyzed. RESULTS The median age was 63, with a median of 3 prior treatments. Twenty patients (69%) were refractory to any systemic therapy before CAR-T cell treatment. Following leukapheresis, 25 patients (86%) received bridging therapy with the majority undergoing chemotherapy (52%) or combined modality therapy (32%). Radiotherapy (RT) was part of the bridging strategy in 44%, with moderately hypofractionated involved site RT (30.0 Gy/2.5 Gy) being applied most frequently (64%). Post-CAR-T infusion, the objective response rate at 30 days was 83%, with 55% achieving complete response. Twelve-month progression-free (PFS) and overall survival (OS) were 60% and 74%, respectively, with a median follow up of 11.1 months for PFS and 17.9 months for OS. Factors significantly associated with PFS were chemotherapy sensitivity pre-leukapheresis and response to bridging. CONCLUSION The study underscores the importance of minimal tumor burden at CAR-T initiation, emphasizing the need for suitable bridging regimens. The findings advocate for clinical trials and further real-world analyses to optimize CAR-T cell therapy outcomes by identifying the most effective bridging strategies.
Collapse
MESH Headings
- Humans
- Male
- Middle Aged
- Female
- Aged
- Immunotherapy, Adoptive/methods
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Adult
- Remission Induction
- Neoplasm Recurrence, Local/therapy
- Neoplasm Recurrence, Local/pathology
- Germany
- Receptors, Antigen, T-Cell/therapeutic use
- Retrospective Studies
- Combined Modality Therapy
Collapse
Affiliation(s)
- Farina Eigendorff
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Irina Filimonova
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Sebastian Scholl
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Anne Sayer-Klink
- Institut für Transfusionsmedizin, Universitätsklinikum Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Silke Rummler
- Institut für Transfusionsmedizin, Universitätsklinikum Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Christa Kunert
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Klaus Pietschmann
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Andrea Wittig
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Jena, Jena, Germany
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Andreas Hochhaus
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Ulf Schnetzke
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany.
| |
Collapse
|
361
|
Short L, Holt RA, Cullis PR, Evgin L. Direct in vivo CAR T cell engineering. Trends Pharmacol Sci 2024; 45:406-418. [PMID: 38614815 DOI: 10.1016/j.tips.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
T cells modified to express intelligently designed chimeric antigen receptors (CARs) are exceptionally powerful therapeutic agents for relapsed and refractory blood cancers and have the potential to revolutionize therapy for many other diseases. To circumvent the complexity and cost associated with broad-scale implementation of ex vivo manufactured adoptive cell therapy products, alternative strategies to generate CAR T cells in vivo by direct infusion of nanoparticle-formulated nucleic acids or engineered viral vectors under development have received a great deal of attention in the past few years. Here, we outline the ex vivo manufacturing process as a motivating framework for direct in vivo strategies and discuss emerging data from preclinical models to highlight the potency of the in vivo approach, the applicability for new disease indications, and the remaining challenges associated with clinical readiness, including delivery specificity, long term efficacy, and safety.
Collapse
Affiliation(s)
- Lauralie Short
- Michael Smith Genome Sciences Department, BC Cancer Research Institute, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Robert A Holt
- Michael Smith Genome Sciences Department, BC Cancer Research Institute, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Laura Evgin
- Michael Smith Genome Sciences Department, BC Cancer Research Institute, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
362
|
Pajarillo R, Paruzzo L, Carturan A, Ugwuanyi O, White G, Guruprasad P, Ballard HJ, Patel RP, Zhang Y, Lee YG, Hong SJA, Dittami GM, Ruella M. Streamlined measurement of chimeric antigen receptor T-cell concentration, size, viability and two-color phenotyping during manufacturing. Cytotherapy 2024; 26:506-511. [PMID: 38483365 PMCID: PMC11259153 DOI: 10.1016/j.jcyt.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 01/10/2024] [Accepted: 01/27/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND AIMS The successful development of CD19-targeted chimeric antigen receptor (CAR) T-cell therapies has led to an exponential increase in the number of patients recieving treatment and the advancement of novel CAR T products. Therefore, there is a strong need to develop streamlined platforms that allow rapid, cost-effective, and accurate measurement of the key characteristics of CAR T cells during manufacturing (i.e., cell number, cell size, viability, and basic phenotype). METHODS In this study, we compared the novel benchtop cell analyzer Moxi GO II (ORFLO Technologies), which enables simultaneous evaluation of all the aforementioned parameters, with current gold standards in the field: the Multisizer Coulter Counter (cell counter) and the BD LSRFortessa (flow cytometer). RESULTS Our results demonstrated that the Moxi GO II can accurately measure cell number and cell size (i.e., cell volume) while simultaneously assessing simple two-color flow cytometry parameters, such as CAR T-cell viability and CD4 or CAR expression. CONCLUSIONS These measurements are comparable with those of gold standard instruments, demonstrating that the Moxi GO II is a promising platform for quickly monitoring CAR T-cell growth and phenotype in research-grade and clinical samples.
Collapse
Affiliation(s)
- Raymone Pajarillo
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Luca Paruzzo
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alberto Carturan
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ositadimma Ugwuanyi
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Griffin White
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Puneeth Guruprasad
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hatcher J Ballard
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ruchi P Patel
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yunlin Zhang
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yong Gu Lee
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seok Jae Albert Hong
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Marco Ruella
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
363
|
Stepanov AV, Xie J, Zhu Q, Shen Z, Su W, Kuai L, Soll R, Rader C, Shaver G, Douthit L, Zhang D, Kalinin R, Fu X, Zhao Y, Qin T, Baran PS, Gabibov AG, Bushnell D, Neri D, Kornberg RD, Lerner RA. Control of the antitumour activity and specificity of CAR T cells via organic adapters covalently tethering the CAR to tumour cells. Nat Biomed Eng 2024; 8:529-543. [PMID: 37798444 DOI: 10.1038/s41551-023-01102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/25/2023] [Indexed: 10/07/2023]
Abstract
On-target off-tumour toxicity limits the anticancer applicability of chimaeric antigen receptor (CAR) T cells. Here we show that the tumour-targeting specificity and activity of T cells with a CAR consisting of an antibody with a lysine residue that catalytically forms a reversible covalent bond with a 1,3-diketone hapten can be regulated by the concentration of a small-molecule adapter. This adapter selectively binds to the hapten and to a chosen tumour antigen via a small-molecule binder identified via a DNA-encoded library. The adapter therefore controls the formation of a covalent bond between the catalytic antibody and the hapten, as well as the tethering of the CAR T cells to the tumour cells, and hence the cytotoxicity and specificity of the cytotoxic T cells, as we show in vitro and in mice with prostate cancer xenografts. Such small-molecule switches of T-cell cytotoxicity and specificity via an antigen-independent 'universal' CAR may enhance the control and safety profile of CAR-based cellular immunotherapies.
Collapse
Affiliation(s)
- Alexey V Stepanov
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Wenji Su
- WuXi AppTec Co., Ltd, Shanghai, China
| | | | | | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Geramie Shaver
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Lacey Douthit
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ding Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Roman Kalinin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Xiang Fu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Yingying Zhao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Tian Qin
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Alexander G Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - David Bushnell
- Structural Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Roger D Kornberg
- Structural Biology, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
364
|
Leland P, Degheidy H, Lea A, Bauer SR, Puri RK, Joshi BH. Identification and characterisation of novel CAR-T cells to target IL13Rα2 positive human glioma in vitro and in vivo. Clin Transl Med 2024; 14:e1664. [PMID: 38685487 PMCID: PMC11058282 DOI: 10.1002/ctm2.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Previously, we discovered that human solid tumours, but not normal human tissues, preferentially overexpress interleukin-13Receptor alpha2, a high binding receptor for IL-13. To develop novel anti-cancer approaches, we constructed a chimeric antigen receptor construct using a high binding and codon optimised scFv-IL-13Rα2 fragment fused with CD3ζ and co-stimulatory cytoplasmic domains of CD28 and 4-1BB. METHODS We developed a scFv clone, designated 14-1, by biopanning the bound scFv phages using huIL-13Rα2Fc chimeric protein and compared its binding with our previously published clone 4-1. We performed bioinformatic analyses for complementary determining regions (CDR) framework and residue analyses of the light and heavy chains. This construct was packaged with helper plasmids to produce CAR-lentivirus and transduced human Jurkat T or activated T cells from peripheral blood mononuclear cells (PBMCs) to produce CAR-T cells and tested for their quality attributes in vitro and in vivo. Serum enzymes including body weight from non-tumour bearing mice were tested for assessing general toxicity of CAR-T cells. RESULTS The binding of 14-1 clone is to IL-13Rα2Fc-chimeric protein is ∼5 times higher than our previous clone 4-1. The 14-1-CAR-T cells grew exponentially in the presence of cytokines and maintained phenotype and biological attributes such as cell viability, potency, migration and T cell activation. Clone 14-1 migrated to IL-13Rα2Fc and cell free supernatants only from IL-13Rα2+ve confluent glioma tumour cells in a chemotaxis assay. scFv-IL-13Rα2-CAR-T cells specifically killed IL-13Rα2+ve but not IL-13Rα2-ve tumour cells in vitro and selectively caused significant release of IFN-γ only from IL-13Rα2+ve co-cultures. These CAR-T cells regressed IL-13Rα2+ve glioma xenografts in vivo without any general toxicity. In contrast, the IL-13Rα2 gene knocked-down U251 and U87 xenografts failed to respond to the CAR-T therapy. CONCLUSION Taken together, we conclude that the novel scFv-IL-13Rα2 CAR-T cell therapy may offer an effective therapeutic option after designing a careful pre-clinical and clinical study.
Collapse
Affiliation(s)
- Pamela Leland
- Tumor Vaccine and Biotechnology BranchDivision of Cell Therapy IISilver SpringMarylandUSA
| | - Heba Degheidy
- Cellular and Tissue Therapy Branch, Office of Cellular Therapy & Human Tissues, Office of Therapeutic ProductsCenter for Biologics Evaluation and ResearchU.S. Food and Drug Administration, White OakSilver SpringMarylandUSA
| | - Ashley Lea
- Tumor Vaccine and Biotechnology BranchDivision of Cell Therapy IISilver SpringMarylandUSA
| | - Steven R. Bauer
- Cellular and Tissue Therapy Branch, Office of Cellular Therapy & Human Tissues, Office of Therapeutic ProductsCenter for Biologics Evaluation and ResearchU.S. Food and Drug Administration, White OakSilver SpringMarylandUSA
- Wake Forest Institute for Regenerative MedicineWinston‐SalemNorth CarolinaUSA
| | - Raj K. Puri
- Tumor Vaccine and Biotechnology BranchDivision of Cell Therapy IISilver SpringMarylandUSA
- Iovance Biotherapeutics, Inc.FrederickMarylandUSA
| | - Bharat H. Joshi
- Tumor Vaccine and Biotechnology BranchDivision of Cell Therapy IISilver SpringMarylandUSA
| |
Collapse
|
365
|
Yamauchi N, Maruyama D. Current development of chimeric antigen receptor T-cell therapy for diffuse large B-cell lymphoma and high-grade B-cell lymphoma. Eur J Haematol 2024; 112:662-677. [PMID: 38168033 DOI: 10.1111/ejh.14166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has become a commercially available treatment option for relapsed or refractory (r/r) diffuse large B-cell lymphoma (DLBCL) with two or more lines of prior therapies, and recently for high-risk r/r DLBCL with one prior line of therapy. The successful development of CAR T-cell therapy for multiple relapsed DLBCL has led to a boom in subsequent trials that investigated its utility in patients with other r/r B-cell lymphoma subtypes. However, CAR T-cell therapy is a multistep process that includes leukapheresis and manipulation which take several weeks. Therefore, patients with rapidly progressing or bulky disease may not be able to complete the therapeutic regimen involving CAR T-cell products. This raises the question of the generalizability of the results of pivotal studies to the entire population. In this review, we summarize the development of CAR-T cell therapy for B-cell lymphoma and discuss strategies to further improve the clinical outcomes of this treatment.
Collapse
Affiliation(s)
- Nobuhiko Yamauchi
- Department of Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Dai Maruyama
- Department of Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| |
Collapse
|
366
|
Al-Ibraheem A, Abdlkadir AS, Lopci E, Allouzi S, Paez D, Alkuwari M, Makoseh M, Novruzov F, Usmani S, Al-Rabi K, Mansour A. FDG-PET in Chimeric Antigen Receptor T-Cell (CAR T-Cell) Therapy Toxicity: A Systematic Review. Cancers (Basel) 2024; 16:1728. [PMID: 38730680 PMCID: PMC11083368 DOI: 10.3390/cancers16091728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The utilization of chimeric antigen receptor (CAR) T-cell therapy to target cluster of differentiation (CD)19 in cancer immunotherapy has been a recent and significant advancement. Although this approach is highly specific and selective, it is not without complications. Therefore, a systematic review was conducted to assess the current state of positron emission tomography (PET) in evaluating the adverse effects induced by CAR T-cell therapy. A thorough search of relevant articles was performed in databases such as PubMed, Scopus, and Web of Science up until March 2024. Two reviewers independently selected articles and extracted data, which was then organized and categorized using Microsoft Excel. The risk of bias and methodological quality was assessed. In total, 18 articles were examined, involving a total of 753 patients, in this study. A wide range of utilities were analyzed, including predictive, correlative, and diagnostic utilities. While positive outcomes were observed in all the mentioned areas, quantitative analysis of the included studies was hindered by their heterogeneity and use of varying PET-derived parameters. This study offers a pioneering exploration of this promising field, with the goal of encouraging further and more focused research in upcoming clinical trials.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan; (A.S.A.); (S.A.)
- School of Medicine, University of Jordan, Amman 11942, Jordan
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan; (A.S.A.); (S.A.)
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy;
| | - Sudqi Allouzi
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan; (A.S.A.); (S.A.)
| | - Diana Paez
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, 1220 Vienna, Austria;
| | - Maryam Alkuwari
- Clinical Imaging Department, Hamad Medical Corporation, Doha 7GPR+3M9, Qatar;
| | - Mohammad Makoseh
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (M.M.); (K.A.-R.)
| | - Fuad Novruzov
- Department of Nuclear Medicine, The National Centre of Oncology, Ministry of Health of Azerbaijan Republic, Baku AZ1012, Azerbaijan;
| | - Sharjeel Usmani
- Sultan Qaboos Comprehensive Cancer Care and Research Centre, Muscat 5661, Oman;
| | - Kamal Al-Rabi
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (M.M.); (K.A.-R.)
| | - Asem Mansour
- Department of Radiology, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan;
| |
Collapse
|
367
|
Weiss JM, Phillips TJ. Taking a BiTE out of Lymphoma: Bispecific Antibodies in B-Cell Non-Hodgkin Lymphoma. Cancers (Basel) 2024; 16:1724. [PMID: 38730677 PMCID: PMC11083268 DOI: 10.3390/cancers16091724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
B-cell non-Hodgkin's lymphoma (NHL) refers to a heterogenous group of diseases, all of which have a wide range of treatment strategies and patient outcomes. There have been multiple novel, immune-based therapies approved in NHL in the last decade, including bispecific antibodies (BsAbs) and chimeric antigen receptor therapy (CAR-T). With a host of new therapies, an important next step will be determining how these therapies should be sequenced in contemporary management strategies. This review seeks to offer a framework for the ways in which BsABs can be incorporated into the current management paradigm for NHL, with special attention paid to diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and mantle cell lymphoma (MCL).
Collapse
Affiliation(s)
- Jonathan M. Weiss
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Tycel J. Phillips
- City of Hope Comprehensive Cancer Center, Department of Hematology and Hematopoietic Cell Transplantation, Division of Lymphoma, Duarte, CA 91010, USA
| |
Collapse
|
368
|
Winidmanokul P, Panya A, Okada S. Tri-specific killer engager: unleashing multi-synergic power against cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:432-448. [PMID: 38745768 PMCID: PMC11090690 DOI: 10.37349/etat.2024.00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/13/2023] [Indexed: 05/16/2024] Open
Abstract
Cancer continues to be a global health concern, necessitating innovative solutions for treatment. Tri-specific killer engagers (TriKEs) have emerged as a promising class of immunotherapeutic agents, offering a multifaceted approach to cancer treatment. TriKEs simultaneously engage and activate natural killer (NK) cells while specifically targeting cancer cells, representing an outstanding advancement in immunotherapy. This review explores the generation and mechanisms of TriKEs, highlighting their advantages over other immunotherapies and discussing their potential impact on clinical trials and cancer treatment. TriKEs are composed of three distinct domains, primarily antibody-derived building blocks, linked together by short amino acid sequences. They incorporate critical elements, anti-cluster of differentiation 16 (CD16) and interleukin-15 (IL-15), which activate and enhance NK cell function, together with specific antibody to target each cancer. TriKEs exhibit remarkable potential in preclinical and early clinical studies across various cancer types, making them a versatile tool in cancer immunotherapy. Comparative analyses with other immunotherapies, such as chimeric antigen receptor-T (CAR-T) cell therapy, immune checkpoint inhibitors (ICIs), cytokine therapies, and monoclonal antibodies (mAbs), reveal the unique advantages of TriKEs. They offer a safer pathway for immunotherapy by targeting cancer cells without hyperactivating T cells, reducing off-target effects and complications. The future of TriKEs involves addressing challenges related to dosing, tumor-associated antigen (TAA) expression, and NK cell suppression. Researchers are exploring innovative dosing strategies, enhancing specificity through tumor-specific antigens (TSAs), and combining TriKEs with other therapies for increased efficacy.
Collapse
Affiliation(s)
- Peeranut Winidmanokul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Cell Engineering for Cancer Therapy Research Group, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
369
|
Hassan SH, Alshahrani MY, Saleh RO, Mohammed BA, Kumar A, Almalki SG, Alkhafaji AT, Ghildiyal P, Al-Tameemi AR, Elawady A. A new vision of the efficacy of both CAR-NK and CAR-T cells in treating cancers and autoimmune diseases. Med Oncol 2024; 41:127. [PMID: 38656354 DOI: 10.1007/s12032-024-02362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Chimeric Antigen Receptor (CAR) based therapies are becoming increasingly important in treating patients. CAR-T cells have been shown to be highly effective in the treatment of hematological malignancies. However, harmful therapeutic barriers have been identified, such as the potential for graft-versus-host disease (GVHD), neurotoxicity, and cytokine release syndrome (CRS). As a result, CAR NK-cell therapy is expected to be a new therapeutic option. NK cells act as cytotoxic lymphocytes, supporting the innate immune response against autoimmune diseases and cancer cells by precisely detecting and eliminating malignant cells. Genetic modification of these cells provides a dual approach to the treatment of AD and cancer. It can be used through both CAR-independent and CAR-dependent mechanisms. The use of CAR-based cell therapies has been successful in treating cancer patients, leading to further investigation of this innovative treatment for alternative diseases, including AD. The complementary roles of CAR T and CAR NK cells have stimulated exploration in this area. Our study examines the latest research on the therapeutic effectiveness of these cells in treating both cancer and ADs.
Collapse
Affiliation(s)
- Salim Hussein Hassan
- Community Health Department, Technical Institute of Karbala, AL-Furat Al-Awsat Technical University, Najaf, Iraq.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, 11952, Majmaah, Saudi Arabia
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
370
|
Amorós-Pérez B, Rivas-Pardo B, Gómez del Moral M, Subiza JL, Martínez-Naves E. State of the Art in CAR-T Cell Therapy for Solid Tumors: Is There a Sweeter Future? Cells 2024; 13:725. [PMID: 38727261 PMCID: PMC11083689 DOI: 10.3390/cells13090725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has proven to be a powerful treatment for hematological malignancies. The situation is very different in the case of solid tumors, for which no CAR-T-based therapy has yet been approved. There are many factors contributing to the absence of response in solid tumors to CAR-T cells, such as the immunosuppressive tumor microenvironment (TME), T cell exhaustion, or the lack of suitable antigen targets, which should have a stable and specific expression on tumor cells. Strategies being developed to improve CAR-T-based therapy for solid tumors include the use of new-generation CARs such as TRUCKs or bi-specific CARs, the combination of CAR therapy with chemo- or radiotherapy, the use of checkpoint inhibitors, and the use of oncolytic viruses. Furthermore, despite the scarcity of targets, a growing number of phase I/II clinical trials are exploring new solid-tumor-associated antigens. Most of these antigens are of a protein nature; however, there is a clear potential in identifying carbohydrate-type antigens associated with tumors, or carbohydrate and proteoglycan antigens that emerge because of aberrant glycosylations occurring in the context of tumor transformation.
Collapse
Affiliation(s)
- Beatriz Amorós-Pérez
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Inmunotek S.L., 28805 Madrid, Spain;
| | - Benigno Rivas-Pardo
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Manuel Gómez del Moral
- Department of Cellular Biology, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain;
| | | | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
371
|
Carniti C, Caldarelli NM, Agnelli L, Torelli T, Ljevar S, Jonnalagadda S, Zanirato G, Fardella E, Stella F, Lorenzini D, Brich S, Arienti F, Dodero A, Chiappella A, Magni M, Corradini P. Monocytes in leukapheresis products affect the outcome of CD19-targeted CAR T-cell therapy in patients with lymphoma. Blood Adv 2024; 8:1968-1980. [PMID: 38359407 PMCID: PMC11017285 DOI: 10.1182/bloodadvances.2024012563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
ABSTRACT CD19-directed chimeric antigen receptor (CAR) T cells can induce durable remissions in relapsed/refractory large B-cell lymphomas (R/R LBCLs), but 60% of patients do not respond or relapse. Biological mechanisms explaining lack of response are emerging, but they are largely unsuccessful in predicting disease response at the patient level. Additionally, to maximize the cost-effectiveness of CAR T-cell therapy, biomarkers able to predict response and survival before CAR T-cell manufacturing would be desirable. We performed transcriptomic and functional evaluations of leukapheresis products in 95 patients with R/R LBCL enrolled in a prospective observational study, to identify correlates of response and survival to tisagenlecleucel and axicabtagene ciloleucel. A signature composed of 4 myeloid genes expressed by T cells isolated from leukapheresis products is able to identify patients with a very short progression-free survival (PFS), highlighting the impact of monocytes in CAR T-cell therapy response. Accordingly, response and PFS were also negatively influenced by high circulating absolute monocyte counts at the time of leukapheresis. The combined evaluation of peripheral blood monocytes at the time of leukapheresis and the 4-gene signature represents a novel tool to identify patients with R/R LBCL at very high risk of progression after CAR T-cell therapy and could be used to plan trials evaluating CAR T cells vs other novel treatments or allogeneic CAR T cells. However, it also highlights the need to incorporate monocyte depletion strategies for better CAR T production.
Collapse
Affiliation(s)
- Cristiana Carniti
- Hematology Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nicole M. Caldarelli
- Hematology Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- School of Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luca Agnelli
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Molecular Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tommaso Torelli
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Molecular Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silva Ljevar
- Biostatistics for Clinical Research Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sadhana Jonnalagadda
- Hematology Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giada Zanirato
- Hematology Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eugenio Fardella
- Hematology Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- School of Medicine, Università degli Studi di Milano, Milan, Italy
| | - Federico Stella
- Hematology Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- School of Medicine, Università degli Studi di Milano, Milan, Italy
| | - Daniele Lorenzini
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Brich
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Flavio Arienti
- Service of Immunohematology & Transfusion Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna Dodero
- Hematology Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annalisa Chiappella
- Hematology Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Martina Magni
- Hematology Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Corradini
- Hematology Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- School of Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
372
|
Blüm P, Kayser S. Chimeric Antigen Receptor (CAR) T-Cell Therapy in Hematologic Malignancies: Clinical Implications and Limitations. Cancers (Basel) 2024; 16:1599. [PMID: 38672680 PMCID: PMC11049267 DOI: 10.3390/cancers16081599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has become a powerful treatment option in B-cell and plasma cell malignancies, and many patients have benefited from its use. To date, six CAR T-cell products have been approved by the FDA and EMA, and many more are being developed and investigated in clinical trials. The whole field of adoptive cell transfer has experienced an unbelievable development process, and we are now at the edge of a new era of immune therapies that will have its impact beyond hematologic malignancies. Areas of interest are, e.g., solid oncology, autoimmune diseases, infectious diseases, and others. Although much has been achieved so far, there is still a huge effort needed to overcome significant challenges and difficulties. We are witnessing a rapid expansion of knowledge, induced by new biomedical technologies and CAR designs. The era of CAR T-cell therapy has just begun, and new products will widen the therapeutic landscape in the future. This review provides a comprehensive overview of the clinical applications of CAR T-cells, focusing on the approved products and emphasizing their benefits but also indicating limitations and challenges.
Collapse
Affiliation(s)
- Philipp Blüm
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany;
| | - Sabine Kayser
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany;
- NCT Trial Center, National Center of Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
373
|
Simon S, Bugos G, Prins R, Rajan A, Palani A, Heyer K, Stevens A, Zeng L, Thompson K, Price JP, Kluesner MK, Jaeger-Ruckstuhl C, Shabaneh TB, Olson JM, Su X, Riddell SR. Sensitive bispecific chimeric T cell receptors for cancer therapy. RESEARCH SQUARE 2024:rs.3.rs-4253777. [PMID: 38746248 PMCID: PMC11092799 DOI: 10.21203/rs.3.rs-4253777/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The expression of a synthetic chimeric antigen receptor (CAR) to redirect antigen specificity of T cells is transforming the treatment of hematological malignancies and autoimmune diseases [1-7]. In cancer, durable efficacy is frequently limited by the escape of tumors that express low levels or lack the target antigen [8-12]. These clinical results emphasize the need for immune receptors that combine high sensitivity and multispecificity to improve outcomes. Current mono- and bispecific CARs do not faithfully recapitulate T cell receptor (TCR) function and require high antigen levels on tumor cells for recognition [13-17]. Here, we describe a novel synthetic chimeric TCR (ChTCR) that exhibits superior antigen sensitivity and is readily adapted for bispecific targeting. Bispecific ChTCRs mimic TCR structure, form classical immune synapses, and exhibit TCR-like proximal signaling. T cells expressing Bi-ChTCRs more effectively eliminated tumors with heterogeneous antigen expression in vivo compared to T cells expressing optimized bispecific CARs. The Bi-ChTCR architecture is resilient and can be designed to target multiple B cell lineage and multiple myeloma antigens. Our findings identify a broadly applicable approach for engineering T cells to target hematologic malignancies with heterogeneous antigen expression, thereby overcoming the most frequent mechanism of relapse after current CAR T therapies.
Collapse
Affiliation(s)
- Sylvain Simon
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Grace Bugos
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Rachel Prins
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Anusha Rajan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Arulmozhi Palani
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kersten Heyer
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew Stevens
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Longhui Zeng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Kirsten Thompson
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jason P Price
- Seattle Children's Research Institute, Ben Towne Center For Childhood Cancer Research, Seattle, WA 98105, USA
| | - Mitchell K Kluesner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Carla Jaeger-Ruckstuhl
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tamer B Shabaneh
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James M Olson
- Seattle Children's Research Institute, Ben Towne Center For Childhood Cancer Research, Seattle, WA 98105, USA
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Stanley R Riddell
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
374
|
Xu J, Zhang W, Tong J, Liu C, Zhang Q, Cao L, Yu J, Zhou A, Ma J. A phase I trial of autologous RAK cell immunotherapy in metastatic renal cell carcinoma. Cancer Immunol Immunother 2024; 73:107. [PMID: 38642109 PMCID: PMC11032301 DOI: 10.1007/s00262-024-03680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Treatment of metastatic renal cell carcinoma (mRCC) remains a challenge worldwide. Here, we introduced a phase I trial of autologous RAK cell therapy in patients with mRCC whose cancers progressed after prior systemic therapy. Although RAK cells have been used in clinic for many years, there has been no dose-escalation study to demonstrate its safety and efficacy. METHODS We conducted a phase I trial with a 3 + 3 dose-escalation design to investigate the dose-related safety and efficacy of RAK cells in patients with mRCC whose cancers have failed to response to systemic therapy (ChiCTR1900021334). RESULTS Autologous RAK cells, primarily composed of CD8+ T and NKT cells, were infused intravenously to patients at a dose of 5 × 109, 1 × 1010 or 1.5 × 1010 cells every 28 days per cycle. Our study demonstrated general safety of RAK cells in a total of 12 patients. Four patients (33.3%) showed tumor shrinkage, two of them achieved durable partial responses. Peripheral blood analysis showed a significant increase in absolute counts of CD3+ and CD8+ T cells after infusion, with a greater fold change observed in naive CD8+ T cells (CD8+CD45RA+). Higher peak values of IL-2 and IFN-γ were observed in responders after RAK infusion. CONCLUSION This study suggests that autologous RAK cell immunotherapy is safe and has clinical activity in previously treated mRCC patients. The improvement in peripheral blood immune profiling after RAK cell infusion highlights its potential as a cancer treatment. Further investigation is necessary to understand its clinical utility.
Collapse
Affiliation(s)
- Jing Xu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wen Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Jinlian Tong
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Caixia Liu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qiaohui Zhang
- Clinical Department, Everbright Cell Medical Biotech Inc., Beijing, 100061, People's Republic of China
| | - Liren Cao
- Clinical Department, Everbright Cell Medical Biotech Inc., Beijing, 100061, People's Republic of China
| | - Jiangyong Yu
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Aiping Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, People's Republic of China.
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
375
|
Salvino MA, Mussetti A, Peña M, Paviglianiti A, Carreira AS, Rizky D, Sureda A. CAR T-cell therapy and the onco-nephrologist. FRONTIERS IN NEPHROLOGY 2024; 4:1378250. [PMID: 38706889 PMCID: PMC11066316 DOI: 10.3389/fneph.2024.1378250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
Cell therapy, specifically the revolutionary chimeric antigen receptor (CAR) T-cell therapy, has transformed the landscape of oncology, making substantial strides in practical treatment approaches. Today, established guidelines for diseases such as lymphomas, myelomas, and leukemias actively advocate the utilization of these once-unconventional therapies. The practical impact of these therapies is underscored by their unparalleled efficacy, reshaping the way we approach and implement treatments in the realm of oncology. However, CAR T-cell therapy, with its performance in anti-tumor aggression through cellular action and inflammatory response, also comes with various adverse events, one of which is kidney injury. Therefore, the management of these side effects is extremely important. The integration of knowledge between oncologists and specialized nephrologists has led to the emergence of a new sub-area of expertise for onco-nephrologists specializing in managing kidney complications from immune effector therapies.
Collapse
Affiliation(s)
- Marco Aurelio Salvino
- Programa Pos Graduacao Medicina Saude (PPGMS), Universidade Federal da Bahia, Salvador, Brazil
- L’Hospitalet, Institut Català de Oncologia, Barcelona, Spain
- Hematology Department, Instituto D´or de Pesquisa e Ensino-Bahia (IDOR Ba), Salvador, Brazil
| | | | - Marta Peña
- L’Hospitalet, Institut Català de Oncologia, Barcelona, Spain
| | | | | | - Daniel Rizky
- L’Hospitalet, Institut Català de Oncologia, Barcelona, Spain
- Hematology Medical Oncology, Dr. Kariadi General Hospital, Semarang, Indonesia
| | - Anna Sureda
- L’Hospitalet, Institut Català de Oncologia, Barcelona, Spain
- Institut d’Investigació Biomédica de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
376
|
Xiong Q, Wang H, Shen Q, Wang Y, Yuan X, Lin G, Jiang P. The development of chimeric antigen receptor T-cells against CD70 for renal cell carcinoma treatment. J Transl Med 2024; 22:368. [PMID: 38637886 PMCID: PMC11025280 DOI: 10.1186/s12967-024-05101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
In this study, we investigated CD70 as a promising target for renal cell carcinoma (RCC) therapy and developed a potent chimeric antigen receptor T (CAR-T) cells for potential clinical testing. CD70, found to be highly expressed in RCC tumors, was associated with decreased survival. We generated CAR-T cells expressing VHH sequence of various novel nanobodies from immunized alpaca and a single-chain variable fragment (scFv) derived from human antibody (41D12). In our in vitro experiments, anti-CD70 CAR-T cells effectively eliminated CD70-positive tumor cells while sparing CD70-negative cells. The nanobody-based CAR-T cells demonstrated significantly higher production of cytokines such as IL-2, IFN-γ and TNF-ɑ during co-culture, indicating their potential for enhanced functionality. In xenograft mouse model, these CAR-T cells exhibited remarkable anti-tumor activity, leading to the eradication of RCC tumor cells. Importantly, human T cell expansion after infusion was significantly higher in the VHH groups compared to the scFv CAR-T group. Upon re-challenging mice with RCC tumor cells, the VHH CAR-T treated group remained tumor-free, suggesting a robust and long-lasting anti-tumor response. These findings provide strong support for the potential of nanobody-based CD70 CAR-T cells as a promising therapeutic option for RCC. This warrants further development and consideration for future clinical trials and applications.
Collapse
Affiliation(s)
- Qinghui Xiong
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China.
| | - Haiying Wang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China.
| | - Qiushuang Shen
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Yan Wang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Xiujie Yuan
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Guangyao Lin
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Pengfei Jiang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| |
Collapse
|
377
|
Liu W, Liu W, Zou H, Chen L, Huang W, Lv R, Xu Y, Liu H, Shi Y, Wang K, Wang Y, Xiong W, Deng S, Yi S, Sui W, Peng G, Ma Y, Wang H, Lv L, Wang J, Wei J, Qiu L, Zheng W, Zou D. Combinational therapy of CAR T-cell and HDT/ASCT demonstrates impressive clinical efficacy and improved CAR T-cell behavior in relapsed/refractory large B-cell lymphoma. J Immunother Cancer 2024; 12:e008857. [PMID: 38631712 PMCID: PMC11029269 DOI: 10.1136/jitc-2024-008857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Approximately two-thirds of patients with relapsed or refractory large B-cell lymphoma (R/R LBCL) do not respond to or relapse after anti-CD19 chimeric antigen receptor T (CAR T)-cell therapy, leading to poor outcomes. Previous studies have suggested that intensified lymphodepletion and hematological stem cell infusion can promote adoptively transferred T-cell expansion, enhancing antitumor effects. Therefore, we conducted a phase I/II clinical trial in which CNCT19 (an anti-CD19 CAR T-cell) was administered after myeloablative high-dose chemotherapy and autologous stem cell transplantation (HDT/ASCT) in patients with R/R LBCL. METHODS Transplant-eligible patients with LBCL who were refractory to first-line immunochemotherapy or experiencing R/R status after salvage chemotherapy were enrolled. The study aimed to evaluate the safety and efficacy of this combinational therapy. Additionally, frozen peripheral blood mononuclear cell samples from this trial and CNCT19 monotherapy studies for R/R LBCL were used to evaluate the impact of the combination therapy on the in vivo behavior of CNCT19 cells. RESULTS A total of 25 patients with R/R LBCL were enrolled in this study. The overall response and complete response rates were 92.0% and 72.0%, respectively. The 2-year progression-free survival rate was 62.3%, and the overall survival was 68.5% after a median follow-up of 27.0 months. No unexpected toxicities were observed. All cases of cytokine release syndrome were of low grade. Two cases (8%) experienced grade 3 or higher CAR T-cell-related encephalopathy syndrome. The comparison of CNCT19 in vivo behavior showed that patients in the combinational therapy group exhibited enhanced in vivo expansion of CNCT19 cells and reduced long-term exhaustion formation, as opposed to those receiving CNCT19 monotherapy. CONCLUSIONS The combinational therapy of HDT/ASCT and CNCT19 demonstrates impressive efficacy, improved CNCT19 behavior, and a favorable safety profile. TRIAL REGISTRATION NUMBERS ChiCTR1900025419 and NCT04690192.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hesong Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lianting Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Rui Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huimin Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yin Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Kefei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yi Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenjie Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Guangxin Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yueshen Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lulu Lv
- Juventas Cell Therapy Ltd, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin, China
| | - Jun Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenting Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin, China
| |
Collapse
|
378
|
Darnell EP, Maus MV. Context matters: Tumor microenvironments impact cellular therapy success. Cell Rep Med 2024; 5:101491. [PMID: 38631291 PMCID: PMC11031417 DOI: 10.1016/j.xcrm.2024.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
In a recent publication, Locke et al. present data from pretreatment tumor biopsies taken on the ZUMA-7 trial. Their results identify tumor microenvironment (TME) contexts and level of CD19 expression as prognostic indicators for responses to axicabtagene ciloleucel (axi-cel).
Collapse
Affiliation(s)
- Eli P Darnell
- Cellular Immunotherapy Program, Mass General Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Marcela V Maus
- Cellular Immunotherapy Program, Mass General Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
379
|
Hay ZL, Kim DD, Cimons JM, Knapp JR, Kohler ME, Quansah M, Zúñiga TM, Camp FA, Fujita M, Wang XJ, O’Connor BP, Slansky JE. Granzyme F: Exhaustion Marker and Modulator of Chimeric Antigen Receptor T Cell-Mediated Cytotoxicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1381-1391. [PMID: 38416029 PMCID: PMC10984789 DOI: 10.4049/jimmunol.2300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/03/2024] [Indexed: 02/29/2024]
Abstract
Granzymes are a family of proteases used by CD8 T cells to mediate cytotoxicity and other less-defined activities. The substrate and mechanism of action of many granzymes are unknown, although they diverge among the family members. In this study, we show that mouse CD8+ tumor-infiltrating lymphocytes (TILs) express a unique array of granzymes relative to CD8 T cells outside the tumor microenvironment in multiple tumor models. Granzyme F was one of the most highly upregulated genes in TILs and was exclusively detected in PD1/TIM3 double-positive CD8 TILs. To determine the function of granzyme F and to improve the cytotoxic response to leukemia, we constructed chimeric Ag receptor T cells to overexpress a single granzyme, granzyme F or the better-characterized granzyme A or B. Using these doubly recombinant T cells, we demonstrated that granzyme F expression improved T cell-mediated cytotoxicity against target leukemia cells and induced a form of cell death other than chimeric Ag receptor T cells expressing only endogenous granzymes or exogenous granzyme A or B. However, increasing expression of granzyme F also had a detrimental impact on the viability of the host T cells, decreasing their persistence in circulation in vivo. These results suggest a unique role for granzyme F as a marker of terminally differentiated CD8 T cells with increased cytotoxicity, but also increased self-directed cytotoxicity, suggesting a potential mechanism for the end of the terminal exhaustion pathway.
Collapse
Affiliation(s)
- Zachary L.Z. Hay
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dale D. Kim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer M. Cimons
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer R. Knapp
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - M. Eric Kohler
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado and Department of Pediatrics, Aurora, CO, USA
| | - Mary Quansah
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tiffany M. Zúñiga
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Faye A. Camp
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mayumi Fujita
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA and Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
| | - Xiao-Jing Wang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA and Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA, and since moved to Department of Pathology and Laboratory Medicine, University of California Davis, CA, USA
| | - Brian P. O’Connor
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Jill E. Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
380
|
Yu T, Lu Y, Fang J, Jiang X, Lu Y, Zheng J, Shang X, Shen H, Fu P. Chimeric antigen receptor-based immunotherapy in breast cancer: Recent progress in China. Cancer 2024; 130:1378-1391. [PMID: 37950749 DOI: 10.1002/cncr.35096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/13/2023]
Abstract
Breast cancer (BC) is the fourth most prevalent cancer in China. Despite conventional treatment strategies, BC patients often have poor therapeutic outcomes, leading to significant global cancer mortality rates. Chimeric antigen receptor (CAR)-based immunotherapy is a promising and innovative approach for cancer treatment that redirects immune cells to attack tumor cells expressing selected tumor antigens (TAs). T cells, natural killer (NK) cells, and macrophages, key components of the immune system, are used in CAR-based immunotherapies. Although remarkable progress has been made with CAR-T cells in hematologic malignancies, the application of CAR-based immunotherapy to BC has lagged. This is partly due to obstacles such as tumor heterogeneity, which is further associated with the TA and BC subtypes, and the immunosuppressive tumor microenvironment (TME). Several combinatorial approaches, including the use of immune checkpoint inhibitors, oncolytic viruses, and antitumor drugs, have been proposed to overcome these obstacles in BC treatment. Furthermore, several CAR-based immunotherapies for BC have been translated into clinical trials. This review provides an overview of the recent progress in CAR-based immunotherapy for BC treatment, including targeting of TAs, consideration of BC subtypes, assessment of the TME, and exploration of combinatorial therapies. The authors focused on preclinical studies and clinical trials of CAR-T cells, CAR-NK cells, and CAR-macrophages especially conducted in China, followed by an internal comparison and discussion of current limits. In conclusion, this review elucidates China's contribution to CAR-based immunotherapies for BC and provides inspiration for further research. PLAIN LANGUAGE SUMMARY: Despite conventional treatment strategies, breast cancer (BC) patients in China often have poor therapeutic outcomes. Chimeric antigen receptor (CAR)-based immunotherapy, a promising approach, can redirect immune cells to kill tumor cells expressing selected tumor antigens (TAs). However, obstacles such as TA selection, BC subtypes, and immunosuppressive tumor microenvironment still exist. Therefore, various combinatorial approaches have been proposed. This article elucidates several Chinese CAR-based preclinical and clinical studies in BC treatment with comparisons of foreign research, and CAR-immune cells are analyzed, providing inspiration for further research.
Collapse
Affiliation(s)
- Tianze Yu
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianwen Fang
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaocong Jiang
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Lu
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Jingyan Zheng
- Department of Breast and Thyroid Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xi Shang
- Department of Breast and Thyroid Surgery, Taizhou Hospital, Zhejiang University, Taizhou, China
| | - Haixing Shen
- Department of Breast and Thyroid Surgery, Cixi People's Hospital, Cixi, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
381
|
Szulc A, Woźniak M. Targeting Pivotal Hallmarks of Cancer for Enhanced Therapeutic Strategies in Triple-Negative Breast Cancer Treatment-In Vitro, In Vivo and Clinical Trials Literature Review. Cancers (Basel) 2024; 16:1483. [PMID: 38672570 PMCID: PMC11047913 DOI: 10.3390/cancers16081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This literature review provides a comprehensive overview of triple-negative breast cancer (TNBC) and explores innovative targeted therapies focused on specific hallmarks of cancer cells, aiming to revolutionize breast cancer treatment. TNBC, characterized by its lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents distinct features, categorizing these invasive breast tumors into various phenotypes delineated by key elements in molecular assays. This article delves into the latest advancements in therapeutic strategies targeting components of the tumor microenvironment and pivotal hallmarks of cancer: deregulating cellular metabolism and the Warburg effect, acidosis and hypoxia, the ability to metastasize and evade the immune system, aiming to enhance treatment efficacy while mitigating systemic toxicity. Insights from in vitro and in vivo studies and clinical trials underscore the promising effectiveness and elucidate the mechanisms of action of these novel therapeutic interventions for TNBC, particularly in cases refractory to conventional treatments. The integration of targeted therapies tailored to the molecular characteristics of TNBC holds significant potential for optimizing clinical outcomes and addressing the pressing need for more effective treatment options for this aggressive subtype of breast cancer.
Collapse
Affiliation(s)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
382
|
Solé C, Royo M, Sandoval S, Moliné T, Gabaldón A, Cortés-Hernández J. Precise Targeting of Autoantigen-Specific B Cells in Lupus Nephritis with Chimeric Autoantibody Receptor T Cells. Int J Mol Sci 2024; 25:4226. [PMID: 38673811 PMCID: PMC11050013 DOI: 10.3390/ijms25084226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Despite conventional therapy, lupus nephritis (LN) remains a significant contributor to short- and long-term morbidity and mortality. B cell abnormalities and the production of autoantibodies against nuclear complexes like anti-dsDNA are recognised as key players in the pathogenesis of LN. To address the challenges of chronic immunosuppression associated with current therapies, we have engineered T cells to express chimeric autoantibody receptors (DNA-CAART) for the precise targeting of B cells expressing anti-dsDNA autoantibodies. T cells from LN patients were transduced using six different CAAR vectors based on their antigen specificity, including alpha-actinin, histone-1, heparan sulphate, or C1q. The cytotoxicity, cytokine production, and cell-cell contact of DNA-CAART were thoroughly investigated in co-culture experiments with B cells isolated from patients, both with and without anti-dsDNA positivity. The therapeutic effects were further evaluated using an in vitro immune kidney LN organoid. Among the six proposed DNA-CAART, DNA4 and DNA6 demonstrated superior selectively cytotoxic activity against anti-dsDNA+ B cells. Notably, DNA4-CAART exhibited improvements in organoid morphology, apoptosis, and the inflammatory process in the presence of IFNα-stimulated anti-dsDNA+ B cells. Based on these findings, DNA4-CAART emerge as promising candidates for modulating autoimmunity and represent a novel approach for the treatment of LN.
Collapse
Affiliation(s)
- Cristina Solé
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Maria Royo
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Sebastian Sandoval
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Teresa Moliné
- Department of Pathology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (A.G.)
| | - Alejandra Gabaldón
- Department of Pathology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (A.G.)
| | - Josefina Cortés-Hernández
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| |
Collapse
|
383
|
Tsutsué S, Makita S, Asou H, Matsuda H, Yamaura R, Taylor TD. Cost-effectiveness analysis 3L of axicabtagene ciloleucel vs tisagenlecleucel and lisocabtagene maraleucel in Japan. Future Oncol 2024; 20:1333-1349. [PMID: 38597742 PMCID: PMC11321402 DOI: 10.2217/fon-2023-1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
Aim: Cost-effectiveness analysis (CEA) was performed to compare axicabtagene ciloleucel (axi-cel) with tisagenlecleucel (tisa-cel) and lisocabtagene (liso-cel) for treatment of relapsed or refractory large B-cell lymphoma in adult patients after ≥2 lines of therapy in Japan. Materials & methods: Cost-effectiveness analysis was conducted using the partition survival mixture cure model based on the ZUMA-1 trial and adjusted to the JULIET and TRANSCEND trials using matching-adjusted indirect comparisons. Results & conclusion: Axi-cel was associated with greater incremental life years (3.13 and 2.85) and incremental quality-adjusted life-years (2.65 and 2.24), thus generated lower incremental direct medical costs (-$976.29 [-¥137,657] and -$242.00 [-¥34,122]), compared with tisa-cel and liso-cel. Axi-cel was cost-effective option compared with tisa-cel and liso-cel from a Japanese payer's perspective.
Collapse
MESH Headings
- Humans
- Cost-Benefit Analysis
- Japan/epidemiology
- Quality-Adjusted Life Years
- Male
- Female
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/economics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Antigens, CD19/economics
- Antigens, CD19/immunology
- Antigens, CD19/therapeutic use
- Receptors, Antigen, T-Cell/therapeutic use
- Immunotherapy, Adoptive/economics
- Immunotherapy, Adoptive/methods
- Middle Aged
- Adult
- Cancer Vaccines/economics
- Cancer Vaccines/administration & dosage
- Aged
- Biological Products/economics
- Biological Products/therapeutic use
- Cost-Effectiveness Analysis
Collapse
Affiliation(s)
- Saaya Tsutsué
- Gilead Sciences Japan,1-9-2 Marunouchi, Chiyoda-ku, Tokyo, 100-6616, Japan
| | - Shinichi Makita
- National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroya Asou
- Gilead Sciences Japan,1-9-2 Marunouchi, Chiyoda-ku, Tokyo, 100-6616, Japan
| | - Hiroyuki Matsuda
- IQVIA Solutions, Japan, 4-10-18 Takanawa Minato-ku, Tokyo, 108-0074, Japan
| | - Reiko Yamaura
- IQVIA Solutions, Japan, 4-10-18 Takanawa Minato-ku, Tokyo, 108-0074, Japan
| | - Todd D Taylor
- IQVIA Solutions, Japan, 4-10-18 Takanawa Minato-ku, Tokyo, 108-0074, Japan
| |
Collapse
|
384
|
Kampouri E, Ibrahimi SS, Xie H, Wong ER, Hecht JB, Sekhon MK, Vo A, Stevens-Ayers TL, Green DJ, Gauthier J, Maloney DG, Perez A, Jerome KR, Leisenring WM, Boeckh MJ, Hill JA. Cytomegalovirus (CMV) Reactivation and CMV-Specific Cell-Mediated Immunity After Chimeric Antigen Receptor T-Cell Therapy. Clin Infect Dis 2024; 78:1022-1032. [PMID: 37975819 PMCID: PMC11006113 DOI: 10.1093/cid/ciad708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The epidemiology of cytomegalovirus (CMV) after chimeric antigen receptor-modified T-cell immunotherapy (CARTx) is poorly understood owing to a lack of routine surveillance. METHODS We prospectively enrolled 72 adult CMV-seropositive CD19-, CD20-, or BCMA-targeted CARTx recipients and tested plasma samples for CMV before and weekly up to 12 weeks after CARTx. We assessed CMV-specific cell-mediated immunity (CMV-CMI) before and 2 and 4 weeks after CARTx, using an interferon γ release assay to quantify T-cell responses to IE-1 and pp65. We tested pre-CARTx samples to calculate a risk score for cytopenias and infection (CAR-HEMATOTOX). We used Cox regression to evaluate CMV risk factors and evaluated the predictive performance of CMV-CMI for CMV reactivation in receiver operator characteristic curves. RESULTS CMV was detected in 1 patient (1.4%) before and in 18 (25%) after CARTx, for a cumulative incidence of 27% (95% confidence interval, 16.8-38.2). The median CMV viral load (interquartile range) was 127 (interquartile range, 61-276) IU/mL, with no end-organ disease observed; 5 patients received preemptive therapy based on clinical results. CMV-CMI values reached a nadir 2 weeks after infusion and recovered to baseline levels by week 4. In adjusted models, BCMA-CARTx (vs CD19/CD20) and corticosteroid use for >3 days were significantly associated with CMV reactivation, and possible associations were detected for lower week 2 CMV-CMI and more prior antitumor regimens. The cumulative incidence of CMV reactivation almost doubled when stratified by BCMA-CARTx target and use of corticosteroids for >3 days (46% and 49%, respectively). CONCLUSIONS CMV testing could be considered between 2 and 6 weeks in high-risk CARTx recipients.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sarah S Ibrahimi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hu Xie
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Elizabeth R Wong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jessica B Hecht
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mandeep K Sekhon
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Alythia Vo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Terry L Stevens-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Damian J Green
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jordan Gauthier
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - David G Maloney
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ailyn Perez
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Wendy M Leisenring
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael J Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
385
|
Lieberman MM, Tong JH, Odukwe NU, Chavel CA, Purdon TJ, Burchett R, Gillard BM, Brackett CM, McGray AJR, Bramson JL, Brentjens RJ, Lee KP, Olejniczak SH. Endogenous CD28 drives CAR T cell responses in multiple myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586084. [PMID: 38562904 PMCID: PMC10983979 DOI: 10.1101/2024.03.21.586084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Recent FDA approvals of chimeric antigen receptor (CAR) T cell therapy for multiple myeloma (MM) have reshaped the therapeutic landscape for this incurable cancer. In pivotal clinical trials B cell maturation antigen (BCMA) targeted, 4-1BB co-stimulated (BBζ) CAR T cells dramatically outperformed standard-of-care chemotherapy, yet most patients experienced MM relapse within two years of therapy, underscoring the need to improve CAR T cell efficacy in MM. We set out to determine if inhibition of MM bone marrow microenvironment (BME) survival signaling could increase sensitivity to CAR T cells. In contrast to expectations, blocking the CD28 MM survival signal with abatacept (CTLA4-Ig) accelerated disease relapse following CAR T therapy in preclinical models, potentially due to blocking CD28 signaling in CAR T cells. Knockout studies confirmed that endogenous CD28 expressed on BBζ CAR T cells drove in vivo anti-MM activity. Mechanistically, CD28 reprogrammed mitochondrial metabolism to maintain redox balance and CAR T cell proliferation in the MM BME. Transient CD28 inhibition with abatacept restrained rapid BBζ CAR T cell expansion and limited inflammatory cytokines in the MM BME without significantly affecting long-term survival of treated mice. Overall, data directly demonstrate a need for CD28 signaling for sustained in vivo function of CAR T cells and indicate that transient CD28 blockade could reduce cytokine release and associated toxicities.
Collapse
Affiliation(s)
- Mackenzie M. Lieberman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jason H. Tong
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Nkechi U. Odukwe
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Colin A. Chavel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Terence J. Purdon
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Rebecca Burchett
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Bryan M. Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - A. J. Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jonathan L. Bramson
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Renier J. Brentjens
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kelvin P. Lee
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Scott H. Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
386
|
Khvorost D, Kendall B, Jazirehi AR. Immunotherapy of Hematological Malignancies of Human B-Cell Origin with CD19 CAR T Lymphocytes. Cells 2024; 13:662. [PMID: 38667277 PMCID: PMC11048755 DOI: 10.3390/cells13080662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphoma (NHL) are hematological malignancies with high incidence rates that respond relatively well to conventional therapies. However, a major issue is the clinical emergence of patients with relapsed or refractory (r/r) NHL or ALL. In such circumstances, opportunities for complete remission significantly decline and mortality rates increase. The recent FDA approval of multiple cell-based therapies, Kymriah (tisagenlecleucel), Yescarta (axicabtagene ciloleucel), Tecartus (Brexucabtagene autoleucel KTE-X19), and Breyanzi (Lisocabtagene Maraleucel), has provided hope for those with r/r NHL and ALL. These new cell-based immunotherapies use genetically engineered chimeric antigen receptor (CAR) T-cells, whose success can be attributed to CAR's high specificity in recognizing B-cell-specific CD19 surface markers present on various B-cell malignancies and the subsequent initiation of anti-tumor activity. The efficacy of these treatments has led to promising results in many clinical trials, but relapses and adverse reactions such as cytokine release syndrome (CRS) and neurotoxicity (NT) remain pervasive, leaving areas for improvement in current and subsequent trials. In this review, we highlight the current information on traditional treatments of NHL and ALL, the design and manufacturing of various generations of CAR T-cells, the FDA approval of Kymriah, Yescarta Tecartus, and Breyanzi, and a summary of prominent clinical trials and the notable disadvantages of treatments. We further discuss approaches to potentially enhance CAR T-cell therapy for these malignancies, such as the inclusion of a suicide gene and use of FDA-approved drugs.
Collapse
Affiliation(s)
- Darya Khvorost
- Department of Life Sciences, Los Angeles City College (LACC), 855 N. Vermont Ave., Los Angeles, CA 90029, USA or (B.K.)
| | - Brittany Kendall
- Department of Life Sciences, Los Angeles City College (LACC), 855 N. Vermont Ave., Los Angeles, CA 90029, USA or (B.K.)
| | - Ali R. Jazirehi
- Department of Life Sciences, Los Angeles City College (LACC), 855 N. Vermont Ave., Los Angeles, CA 90029, USA or (B.K.)
- Department of Biological Sciences, College of Natural and Social Sciences, California State University, Los Angeles (CSULA), Los Angeles, CA 90032, USA
| |
Collapse
|
387
|
Gatwood K, Mahmoudjafari Z, Baer B, Pak S, Lee B, Kim H, Abernathy K, Dholaria B, Oluwole O. Outpatient CAR T-Cell Therapy as Standard of Care: Current Perspectives and Considerations. Clin Hematol Int 2024; 6:11-20. [PMID: 38817307 PMCID: PMC11086991 DOI: 10.46989/001c.115793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 06/01/2024] Open
Abstract
Chimeric antigen receptor T-cell therapy (CAR-T) has altered the treatment landscape of several hematologic malignancies. Until recently, most CAR-T infusions have been administered in the inpatient setting, due to their toxicity profile. However, the advent of new product constructs, as well as improved detection and management of adverse effects, have greatly increased the safety in administering these therapies. CAR-T indications continue to expand, and inpatient administration is associated with increased healthcare resource utilization and overall cost. Therefore, transitioning CAR-T administration to the outpatient setting has been of great interest in an effort to improve access, reduce financial burden, and improve patient satisfaction. Establishment of a successful outpatient CAR-T requires several components, including a multidisciplinary cellular therapy team and an outpatient center with appropriate clinical space and personnel. Additionally, clear criteria for outpatient administration eligibility and for inpatient admission with pathways for prompt toxicity evaluation and admission, and toxicity management guidelines should be implemented. Education about CAR-T therapy and its associated toxicities is imperative for all clinical staff, as well as patients and their caregivers. Finally, rigorous financial planning and close collaboration with payers to ensure equitable access, while effectively managing cost, are essential to program success and sustainability. This review provides a summary of currently published experiences, as well as expert opinion regarding implementation of an outpatient CAR-T program.
Collapse
Affiliation(s)
| | | | | | - Stacy Pak
- PharmacyCity Of Hope National Medical Center
| | | | - Hoim Kim
- City Of Hope National Medical Center
| | | | | | - Olalekan Oluwole
- MedicineHematology and oncologyVanderbilt University Medical Center
| |
Collapse
|
388
|
Xiang M, Li H, Zhan Y, Ma D, Gao Q, Fang Y. Functional CRISPR screens in T cells reveal new opportunities for cancer immunotherapies. Mol Cancer 2024; 23:73. [PMID: 38581063 PMCID: PMC10996278 DOI: 10.1186/s12943-024-01987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
T cells are fundamental components in tumour immunity and cancer immunotherapies, which have made immense strides and revolutionized cancer treatment paradigm. However, recent studies delineate the predicament of T cell dysregulation in tumour microenvironment and the compromised efficacy of cancer immunotherapies. CRISPR screens enable unbiased interrogation of gene function in T cells and have revealed functional determinators, genetic regulatory networks, and intercellular interactions in T cell life cycle, thereby providing opportunities to revamp cancer immunotherapies. In this review, we briefly described the central roles of T cells in successful cancer immunotherapies, comprehensively summarised the studies of CRISPR screens in T cells, elaborated resultant master genes that control T cell activation, proliferation, fate determination, effector function, and exhaustion, and highlighted genes (BATF, PRDM1, and TOX) and signalling cascades (JAK-STAT and NF-κB pathways) that extensively engage in multiple branches of T cell responses. In conclusion, this review bridged the gap between discovering element genes to a specific process of T cell activities and apprehending these genes in the global T cell life cycle, deepened the understanding of T cell biology in tumour immunity, and outlined CRISPR screens resources that might facilitate the development and implementation of cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Minghua Xiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
389
|
Tumuluru S, Godfrey JK, Cooper A, Yu J, Chen X, MacNabb BW, Venkataraman G, Zha Y, Pelzer B, Song J, Duns G, Sworder BJ, Bolen C, Penuel E, Postovalova E, Kotlov N, Bagaev A, Fowler N, Smith SM, Alizadeh AA, Steidl C, Kline J. Integrative genomic analysis identifies unique immune environments associated with immunotherapy response in diffuse large B cell lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576100. [PMID: 38328071 PMCID: PMC10849512 DOI: 10.1101/2024.01.17.576100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Most diffuse large B-cell lymphoma (DLBCL) patients treated with bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was employed to characterize DLBCL immune environments, which effectively segregated DLBCLs into four quadrants - termed DLBCL-immune quadrants (IQ) - defined by cell-of-origin and immune-related gene set expression scores. Recurrent genomic alterations were enriched in each IQ, suggesting that lymphoma cell-intrinsic alterations contribute to orchestrating unique DLBCL immune environments. In relapsed/refractory DLBCL patients, DLBCL-IQ assignment correlated significantly with clinical benefit with the CD20 x CD3 BsAb, mosunetuzumab, but not with CD19-directed CAR T cells. DLBCL-IQ provides a new framework to conceptualize the DLBCL immune landscape and uncovers the differential impact of the endogenous immune environment on outcomes to BsAb and CAR T cell treatment.
Collapse
|
390
|
Rodriguez-Sevilla JJ, Colla S. T-cell dysfunctions in myelodysplastic syndromes. Blood 2024; 143:1329-1343. [PMID: 38237139 DOI: 10.1182/blood.2023023166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 03/25/2024] Open
Abstract
ABSTRACT Escape from immune surveillance is a hallmark of cancer. Immune deregulation caused by intrinsic and extrinsic cellular factors, such as altered T-cell functions, leads to immune exhaustion, loss of immune surveillance, and clonal proliferation of tumoral cells. The T-cell immune system contributes to the pathogenesis, maintenance, and progression of myelodysplastic syndrome (MDS). Here, we comprehensively reviewed our current biological knowledge of the T-cell compartment in MDS and recent advances in the development of immunotherapeutic strategies, such as immune checkpoint inhibitors and T-cell- and antibody-based adoptive therapies that hold promise to improve the outcome of patients with MDS.
Collapse
Affiliation(s)
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
391
|
Carrillo MA, Zhen A, Mu W, Rezek V, Martin H, Peterson CW, Kiem HP, Kitchen SG. Stem cell-derived CAR T cells show greater persistence, trafficking, and viral control compared to ex vivo transduced CAR T cells. Mol Ther 2024; 32:1000-1015. [PMID: 38414243 PMCID: PMC11163220 DOI: 10.1016/j.ymthe.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Adoptive cell therapy (ACT) using T cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of in vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing T cells are needed. In our studies using the humanized bone marrow/liver/thymus (BLT) mouse model and nonhuman primate (NHP) model of HIV infection, we evaluated two CAR-based gene therapy approaches. In the ACT approach, we used cytokine enhancement and preconditioning to generate greater persistence of anti-HIV CAR+ T cells. We observed limited persistence and expansion of anti-HIV CAR T cells, which led to minimal control of the virus. In our stem cell-based approach, we modified hematopoietic stem/progenitor cells (HSPCs) with anti-HIV CAR to generate anti-HIV CAR T cells in vivo. We observed CAR-expressing T cell expansion, which led to better plasma viral load suppression. HSPC-derived CAR cells in infected NHPs showed superior trafficking and persistence in multiple tissues. Our results suggest that a stem cell-based CAR T cell approach may be superior in generating long-term persistence and functional antiviral responses against HIV infection.
Collapse
Affiliation(s)
- Mayra A Carrillo
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wenli Mu
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Valerie Rezek
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Heather Martin
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christopher W Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Scott G Kitchen
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Broad Stem Cell Research Center, Jonsson Comprehensive Cancer Center, and Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
392
|
Capella MP, Esfahani K. A Review of Practice-Changing Therapies in Oncology in the Era of Personalized Medicine. Curr Oncol 2024; 31:1913-1919. [PMID: 38668046 PMCID: PMC11049499 DOI: 10.3390/curroncol31040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/17/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In the past decade, a lot of insight was gathered into the composition of the host and tumor factors that promote oncogenesis and treatment resistance. This in turn has led to the ingenious design of multiple new classes of drugs, which have now become the new standards of care in cancer therapy. These include novel antibody-drug conjugates, chimeric antigen receptor T cell therapies (CAR-T), and bispecific T cell engagers (BitTE). Certain host factors, such as the microbiome composition, are also emerging not only as biomarkers for the response and toxicity to anti-cancer therapies but also as potentially useful tools to modulate anti-tumor responses. The field is slowly moving away from one-size-fits-all treatment options to personalized treatments tailored to the host and tumor. This commentary aims to cover the basic concepts associated with these emerging therapies and the promises and challenges to fight cancer.
Collapse
Affiliation(s)
- Mariana Pilon Capella
- Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Departments of Medicine and Oncology, McGill University, Montreal, QC H3T 1E9, Canada;
| | - Khashayar Esfahani
- Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Departments of Medicine and Oncology, McGill University, Montreal, QC H3T 1E9, Canada;
- St Mary’s Hospital, Departments of Medicine and Oncology, McGill University, Montreal, QC H3T 1M5, Canada
| |
Collapse
|
393
|
Hickmann K, Sweeney R, Peterson C, Faringer K, Riley M, Bunker M, Hadi A, Khan C, Samhouri Y. Successful Treatment of Refractory Post-Transplant Lymphoproliferative Disorder With Chimeric Antigen Receptor T-Cell Therapy in a Heart Transplant Recipient. J Hematol 2024; 13:34-38. [PMID: 38644987 PMCID: PMC11027773 DOI: 10.14740/jh1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 04/23/2024] Open
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) are opportunistic malignancies that complicate the success of hematopoietic stem cell or solid organ transplantation. These disorders often arise post-transplant due to the immunosuppression required for minimizing the risk of rejection of donor tissue. First-line treatment of these disorders includes limiting immunosuppression when permissible. Subsequent treatment includes the use of monoclonal anti-CD20 antibody (rituximab), and/or combination chemotherapy. Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment paradigm in many lymphoid malignancies. It is not approved for PTLD due to exclusion of PTLD patients from pivotal clinical trials. Also, its utilization post-transplant can be complex and multidisciplinary care is of utmost importance for successful administration of a potentially curative treatment. We present a 68-year-old patient with history of heart transplant for non-ischemic cardiomyopathy, diagnosed with PTLD that was refractory to treatment using current guidelines until successfully receiving CAR T-cell therapy.
Collapse
Affiliation(s)
| | - Ryan Sweeney
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - Chelsea Peterson
- Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | - Kathleen Faringer
- Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | - Madeline Riley
- Department of Anatomic and Clinical Pathology, Allegheny Health Network, Pittsburgh, PA, USA
| | - Mark Bunker
- Department of Anatomic and Clinical Pathology, Allegheny Health Network, Pittsburgh, PA, USA
| | - Azam Hadi
- Advanced Heart Failure and Transplant, AGH McGinnis Cardiovascular Institute, Pittsburgh, PA, USA
| | - Cyrus Khan
- Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | - Yazan Samhouri
- Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
394
|
Qian H, Yang X, Zhang T, Zou P, Zhang Y, Tian W, Mao Z, Wei J. Improving the safety of CAR-T-cell therapy: The risk and prevention of viral infection for patients with relapsed or refractory B-cell lymphoma undergoing CAR-T-cell therapy. Am J Hematol 2024; 99:662-678. [PMID: 38197307 DOI: 10.1002/ajh.27198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy, an innovative immunotherapeutic against relapsed/refractory B-cell lymphoma, faces challenges due to frequent viral infections. Despite this, a comprehensive review addressing risk assessment, surveillance, and treatment management is notably absent. This review elucidates immune response compromises during viral infections in CAR-T recipients, collates susceptibility risk factors, and deliberates on preventive strategies. In the post-pandemic era, marked by the Omicron variant, new and severe threats to CAR-T therapy emerge, necessitating exploration of preventive and treatment measures for COVID-19. Overall, the review provides recommendations for viral infection prophylaxis and management, enhancing CAR-T product safety and recipient survival.
Collapse
Affiliation(s)
- Hu Qian
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Zhang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Ping Zou
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zekai Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
395
|
Jamali A, Ho N, Braun A, Adabi E, Thalheimer FB, Buchholz CJ. Early induction of cytokine release syndrome by rapidly generated CAR T cells in preclinical models. EMBO Mol Med 2024; 16:784-804. [PMID: 38514793 PMCID: PMC11018744 DOI: 10.1038/s44321-024-00055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Cytokine release syndrome (CRS) is a significant side-effect of conventional chimeric antigen receptor (CAR) T-cell therapy. To facilitate patient accessibility, short-term (st) CAR T cells, which are administered to patients only 24 h after vector exposure, are in focus of current investigations. Their impact on the incidence and severity of CRS has been poorly explored. Here, we evaluated CD19-specific stCAR T cells in preclinical models. In co-culture with tumor cells and monocytes, stCAR T cells exhibited anti-tumoral activity and potent release of CRS-related cytokines (IL-6, IFN-γ, TNF-α, GM-CSF, IL-2, IL-10). When administered to NSG-SGM3 mice, stCAR T cells, but not conventional CAR T cells, induced severe acute adverse events within 24 h, including hypothermia and weight loss, as well as high body scores, independent of the presence of tumor target cells. Human (IFN-γ, TNF-α, IL-2, IL-10) and murine (MCP-1, IL-6, G-CSF) cytokines, typical for severe CRS, were systemically elevated. Our data highlight potential safety risks of rapidly manufactured CAR T cells and suggest NSG-SGM3 mice as sensitive model for their preclinical safety evaluation.
Collapse
Affiliation(s)
- Arezoo Jamali
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Naphang Ho
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Angela Braun
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elham Adabi
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Frederic B Thalheimer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- Hematology, Cell and Gene Therapy (HZG), Paul-Ehrlich-Institut, Langen, Germany
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany.
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
396
|
Bansal R, Vergidis P, Tosh PK, Wilson J, Hathcock M, Khurana A, Bennani NN, Paludo J, Villasboas JC, Wang Y, Ansell SM, Johnston PB, Freeman C, Lin Y. Serial Evaluation of Preimmunization Antibody Titers in Lymphoma Patients Receiving Chimeric Antigen Receptor T Cell Therapy. Transplant Cell Ther 2024; 30:455.e1-455.e7. [PMID: 38346643 DOI: 10.1016/j.jtct.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Antibody titers and the potential need for immunization have not been formally studied in recipients of chimeric antigen receptor T cell therapy (CAR-T). Prior studies have shown that CD19-targeted CAR-T can induce persistent B cell aplasia but preserve plasma cells for humoral response. Aiming to assess the immune repertoire and antibody titer status of CAR-T recipients, we conducted a retrospective study of immune cell recovery and antibody titers to vaccines in anti-CD19 CAR-T recipients at Mayo Clinic, Rochester. In our cohort of 95 CAR-T recipients, almost one-half had low CD4 T and B cell counts prior to CAR-T that remained persistently low post-CAR-T. Prior to CAR-T, the seronegative rate was lowest for tetanus and highest for pneumococcus irrespective of prior transplantation status (within 2 years of CAR-T). At 3 months post-CAR-T, overall seronegativity rates were similar to pre-CAR-T rates for the prior transplantation and no prior transplantation groups. For patients who received IVIG, loss of seropositivity was seen for hepatitis A (1 of 7; 14%). No seroconversion was noted for pneumococcus. For patients who did not receive IVIG, loss of seropositivity was seen for pneumococcus (2 of 5; 40%) and hepatitis A (1 of 4; 25%). CAR-T recipients commonly experience T cell and B cell lymphopenia and might not have adequate antibody titers against vaccine-preventable diseases despite IVIG supplementation. Loss of antibody titers post-CAR-T is possible, highlighting the need for revaccination. Additional studies with long-term follow-up are needed to inform the optimal timing of immunization post-CAR-T.
Collapse
Affiliation(s)
- Radhika Bansal
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | - Pritish K Tosh
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | - John Wilson
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | | | - Arushi Khurana
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - N Nora Bennani
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Jonas Paludo
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | - Yucai Wang
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Catherine Freeman
- Division of Asthma, Allergy and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona
| | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
397
|
Cheok KPL, Farrow A, Springell D, O'Reilly M, Morley S, Stone N, Roddie C. Mucormycosis after CD19 chimeric antigen receptor T-cell therapy: results of a US Food and Drug Administration adverse events reporting system analysis and a review of the literature. THE LANCET. INFECTIOUS DISEASES 2024; 24:e256-e265. [PMID: 38310904 DOI: 10.1016/s1473-3099(23)00563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 02/06/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy leads to durable remissions in relapsed B-cell cancers, but treatment-associated immunocompromise leads to a substantial morbidity and mortality risk from atypical infection. Mucormycosis is an aggressive and invasive fungal infection with a mortality risk of 40-80% in patients with haematological malignancies. In this Grand Round, we report a case of mucormycosis in a 54-year-old patient undergoing CAR T-cell therapy who reached complete clinical control of Mucorales with combined aggressive surgical debridement, antifungal pharmacotherapy, and reversal of underlying risk factors, but with substantial morbidity from extensive oro-facial surgery affecting the patient's speech and swallowing. For broader context, we present our case alongside an US Food and Drugs Administration adverse events reporting database analysis and a review of the literature to fully evaluate the clinical burden of mucormycosis in patients treated with CAR T-cell therapy. We discuss epidemiology, clinical features, diagnostic tools, and current frameworks for treatment and prophylaxis. We did this analysis to promote increased vigilance for mucormycosis among physicians specialising in CAR T-cell therapy and microbiologists and to illustrate the importance of early initiation of therapy to effectively manage this condition. Mucormycosis prevention and early diagnosis, through targeted surveillance and mould prevention in patients at highest risk and Mucorales-specific screening assays, is likely to be key to improving outcomes in patients treated with CAR T-cell therapy.
Collapse
Affiliation(s)
- Kathleen P L Cheok
- University College London Hospital NHS Foundation Trust, London, UK; University College London Cancer Institute, London, UK.
| | - Adrian Farrow
- University College London Hospital NHS Foundation Trust, London, UK
| | | | - Maeve O'Reilly
- University College London Hospital NHS Foundation Trust, London, UK
| | - Simon Morley
- University College London Hospital NHS Foundation Trust, London, UK
| | - Neil Stone
- University College London Hospital NHS Foundation Trust, London, UK
| | - Claire Roddie
- University College London Hospital NHS Foundation Trust, London, UK; University College London Cancer Institute, London, UK
| |
Collapse
|
398
|
Kitamura W, Urata T, Fujii K, Fukumi T, Ikeuchi K, Seike K, Fujiwara H, Asada N, Ennishi D, Matsuoka KI, Otsuka F, Maeda Y, Fujii N. Collection efficiency and safety of large-volume leukapheresis for the manufacturing of tisagenlecleucel. Transfusion 2024; 64:674-684. [PMID: 38419458 DOI: 10.1111/trf.17765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND In patients with relapsed or refractory B cell acute lymphoblastic leukemia or B cell non-Hodgkin lymphoma (r/r B-ALL/B-NHL) with low CD3+ cells in the peripheral blood (PB), sufficient CD3+ cell yield in a single day may not be obtained with normal-volume leukapheresis (NVL). Large-volume leukapheresis (LVL) refers to the processing of more than three times the total blood volume (TBV) in a single session for PB apheresis; however, the efficiency and safety of LVL for manufacturing of tisagenlecleucel (tisa-cel) remain unclear. This study aimed to investigate the tolerability of LVL. STUDY DESIGN AND METHODS We retrospectively collected data on LVL (≥3-fold TBV) and NVL (<3-fold TBV) performed for patients with r/r B-ALL/B-NHL in our institution during November 2019 and September 2023. All procedures were performed using a continuous mononuclear cell collection (cMNC) protocol with the Spectra Optia. RESULTS Although pre-apheresis CD3+ cells in the PB were significantly lower in LVL procedures (900 vs. 348/μL, p < .01), all patients could obtain sufficient CD3+ cell yield in a single day with a comparably successful rate of final products (including out-of-specification) between the two groups (97.2% vs. 100.0%, p = 1.00). The incidence and severity of citrate toxicity (no patients with grade ≥ 3) during procedures was not significantly different between the two groups (22.2% vs. 26.1%, p = .43) and no patient discontinued leukapheresis due to any complications. CONCLUSION LVL procedures using Spectra Optia cMNC protocol was well tolerated and did not affect the manufacturing of tisa-cel.
Collapse
Affiliation(s)
- Wataru Kitamura
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan
| | - Tomohiro Urata
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan
| | - Keiko Fujii
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Division of Clinical Laboratory, Okayama University Hospital, Okayama, Japan
| | - Takuya Fukumi
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan
| | - Kazuhiro Ikeuchi
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan
| | - Keisuke Seike
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Daisuke Ennishi
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Fumio Otsuka
- Division of Clinical Laboratory, Okayama University Hospital, Okayama, Japan
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Nobuharu Fujii
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
399
|
Saha P, Ettel P, Weichhart T. Leveraging macrophage metabolism for anticancer therapy: opportunities and pitfalls. Trends Pharmacol Sci 2024; 45:335-349. [PMID: 38494408 DOI: 10.1016/j.tips.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute an important part of the tumor microenvironment (TME) that regulates tumor progression. Tumor-derived signals, hypoxia, and competition for nutrients influence TAMs to reprogram their cellular metabolism. This altered metabolic profile creates a symbiotic communication between tumor and other immune cells to support tumor growth. In addition, the metabolic profile of TAMs regulates the expression of immune checkpoint molecules. The dynamic plasticity also allows TAMs to reshape their metabolism in response to modern therapeutic strategies. Therefore, over the years, a significant number of approaches have been implicated to reprogram cancer-promoting metabolism in TAMs. In this review, we discuss the current strategies and pitfalls, along with upcoming promising opportunities in leveraging TAM metabolism for developing better therapeutic approaches against cancer.
Collapse
Affiliation(s)
- Piyal Saha
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria.
| |
Collapse
|
400
|
Barata A, Dhawale T, Newcomb RA, Amonoo HL, Nelson AM, Yang D, Karpinski K, Holmbeck K, Farnam E, Frigault M, Johnson PC, El-Jawahri A. Quality of Life and Prognostic Awareness in Caregivers of Patients Receiving Chimeric Antigen Receptor T Cell Therapy. Transplant Cell Ther 2024; 30:452.e1-452.e11. [PMID: 38242441 DOI: 10.1016/j.jtct.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Caregivers of patients undergoing chimeric antigen receptor T cell therapy (CAR-T) play a critical role during treatment, yet their experience remains largely unaddressed. We aimed to longitudinally describe quality of life (QoL) and psychological distress, as well as prognostic awareness, in caregivers and explore the association of prognosis awareness with baseline psychological distress. We conducted a longitudinal study of caregivers of patients undergoing CAR-T and examined QoL (CAReGiverOncology QoL questionnaire) and psychological distress (Hospital Anxiety and Depression Scale) prior to CAR-T (baseline) and at days 7, 30, 90, and 180 post-CAR-T. At baseline, caregivers and patients completed the Prognostic Awareness Impact Scale, which examines cognitive understanding of prognosis, emotional coping with prognosis, and adaptive response (ie, capacity to use prognostic awareness to inform life decisions). We enrolled 58% (69 of 120) of eligible caregivers. Caregivers reported QoL impairments that did not change over time (B = 0.09; P = .452). The rates of clinically significant depression and anxiety symptoms were 47.7% and 20.0%, respectively, at baseline, and 39.1% and 17.4% at 180 days. One-third (32%) of the caregivers and patients reported that their oncologist said the cancer is curable. Caregivers' greater emotional coping with prognosis was associated with fewer symptoms of anxiety (B = -.17; P < .001) and depression (B = -.02; P < .001). Cognitive understanding of prognosis and adaptive response were not associated with psychological distress. Caregivers reported QoL impairments throughout the study period. A substantial proportion of caregivers experienced psychological distress and reported misperceptions about the prognosis, highlighting the need for supportive care interventions.
Collapse
Affiliation(s)
- Anna Barata
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Tejaswini Dhawale
- Harvard Medical School, Boston, Massachusetts; Department of Medicine, Division of Hematology & Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Richard A Newcomb
- Harvard Medical School, Boston, Massachusetts; Department of Medicine, Division of Hematology & Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hermioni L Amonoo
- Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts; Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ashley M Nelson
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Daniel Yang
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Kyle Karpinski
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Katherine Holmbeck
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Emelia Farnam
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Matt Frigault
- Harvard Medical School, Boston, Massachusetts; Department of Medicine, Division of Hematology & Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - P Connor Johnson
- Harvard Medical School, Boston, Massachusetts; Department of Medicine, Division of Hematology & Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Areej El-Jawahri
- Harvard Medical School, Boston, Massachusetts; Department of Medicine, Division of Hematology & Oncology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|