351
|
Krienen FM, Yeo BTT, Ge T, Buckner RL, Sherwood CC. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain. Proc Natl Acad Sci U S A 2016; 113:E469-78. [PMID: 26739559 PMCID: PMC4739529 DOI: 10.1073/pnas.1510903113] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.
Collapse
Affiliation(s)
- Fenna M Krienen
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology and Institute for Neuroscience, The George Washington University, Washington, DC 20052;
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Clinical Imaging Research Centre, Singapore Institute for Neurotechnology & Memory Networks Program, National University of Singapore, Singapore 117583; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Tian Ge
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129; Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114
| | - Randy L Buckner
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114; Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology and Institute for Neuroscience, The George Washington University, Washington, DC 20052
| |
Collapse
|
352
|
|
353
|
Intra- and Inter-hemispheric Connectivity Supporting Hemispheric Specialization. MICRO-, MESO- AND MACRO-CONNECTOMICS OF THE BRAIN 2016. [DOI: 10.1007/978-3-319-27777-6_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
354
|
Román FJ, Lewis LB, Chen CH, Karama S, Burgaleta M, Martínez K, Lepage C, Jaeggi SM, Evans AC, Kremen WS, Colom R. Gray matter responsiveness to adaptive working memory training: a surface-based morphometry study. Brain Struct Funct 2015; 221:4369-4382. [PMID: 26701168 DOI: 10.1007/s00429-015-1168-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Here we analyze gray matter indices before and after completing a challenging adaptive cognitive training program based on the n-back task. The considered gray matter indices were cortical thickness (CT) and cortical surface area (CSA). Twenty-eight young women (age range 17-22 years) completed 24 training sessions over the course of 3 months (12 weeks, 24 sessions), showing expected performance improvements. CT and CSA values for the training group were compared with those of a matched control group. Statistical analyses were computed using a ROI framework defined by brain areas distinguished by their genetic underpinning. The interaction between group and time was analyzed. Middle temporal, ventral frontal, inferior parietal cortices, and pars opercularis were the regions where the training group showed conservation of gray matter with respect to the control group. These regions support working memory, resistance to interference, and inhibition. Furthermore, an interaction with baseline intelligence differences showed that the expected decreasing trend at the biological level for individuals showing relatively low intelligence levels at baseline was attenuated by the completed training.
Collapse
Affiliation(s)
| | - Lindsay B Lewis
- Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
| | | | - Sherif Karama
- Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
| | | | - Kenia Martínez
- Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Hospital Gregorio Marañon, Madrid, Spain
| | - Claude Lepage
- Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
| | | | - Alan C Evans
- Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
| | | | - Roberto Colom
- Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
355
|
Bonner MF, Price AR, Peelle JE, Grossman M. Semantics of the Visual Environment Encoded in Parahippocampal Cortex. J Cogn Neurosci 2015; 28:361-78. [PMID: 26679216 DOI: 10.1162/jocn_a_00908] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together, this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain.
Collapse
|
356
|
Yun JY, Kim SN, Lee TY, Chon MW, Kwon JS. Individualized covariance profile of cortical morphology for auditory hallucinations in first-episode psychosis. Hum Brain Mapp 2015; 37:1051-65. [PMID: 26678706 DOI: 10.1002/hbm.23083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/08/2015] [Accepted: 12/02/2015] [Indexed: 12/29/2022] Open
Abstract
Neocortical phenotype of cortical surface area (CSA) and thickness (CT) are influenced by distinctive genetic factors and undergo differential developmental trajectories, which could be captured using the individualized cortical structural covariance (ISC). Disturbed patterns of neocortical development and maturation underlie the perceptual disturbance of psychosis including auditory hallucination (AH). To demonstrate the utility of selected ISC features as primal biomarker of AH in first-episode psychosis (FEP) subjects experiencing AH (FEP-AH), we employed herein a support vector machine (SVM). A total of 147 subjects (FEP-AH, n = 27; FEP-NAH, n = 24; HC, n = 96) underwent T1 -weighted magnetic resonance imaging at 3T. The FreeSurfer software suite was used for cortical parcellation, with the CSA-ISC and CT-ISC then calculated. The most informative ISCs showing statistical significance (P < 0.001) across every run of leave-one-out group-comparison were aligned according to the absolute value of averaged t-statistics and were packaged into candidate feature sets for classification analysis using the SVM. An optimal feature set comprising three CSA-ISCs, including the intraparietal sulcus, Broca's complex, and the anterior insula, distinguished FEP-AH from FEP-NAH subjects with 83.6% accuracy (sensitivity = 82.8%; specificity = 85.7%). Furthermore, six CT-ISCs encompassing the executive control network and Wernicke's module classified FEP-AH from FEP-NAH subjects with 82.3% accuracy (sensitivity = 79.5%; specificity = 88.6%). Finally, extended sets of ISCs related to the default-mode network distinguished FEP-AH or FEP-NAH from HC subjects with 89.0-93.0% accuracy (sensitivity = 88.4-93.4%; specificity = 89.0-94.1%). This study established a distinctive intermediate phenotype of biological proneness for AH in FEP using CSA-ISCs as well as a state marker of disease progression using CT-ISCs.
Collapse
Affiliation(s)
- Je-Yeon Yun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Nyun Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- SNU-MRC, Institute of Human Behavioral Medicine, Seoul, Republic of Korea
| | - Myong-Wuk Chon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,SNU-MRC, Institute of Human Behavioral Medicine, Seoul, Republic of Korea.,Department of Brain and Cognitive Sciences, College of Natural Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
357
|
Jakab A, Pogledic I, Schwartz E, Gruber G, Mitter C, Brugger PC, Langs G, Schöpf V, Kasprian G, Prayer D. Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology. Semin Ultrasound CT MR 2015; 36:465-75. [DOI: 10.1053/j.sult.2015.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
358
|
Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC. Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc Natl Acad Sci U S A 2015; 112:14799-804. [PMID: 26627234 PMCID: PMC4672807 DOI: 10.1073/pnas.1512646112] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution.
Collapse
Affiliation(s)
- Aida Gómez-Robles
- Department of Anthropology, The George Washington University, Washington, DC 20052; Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052;
| | - William D Hopkins
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302; Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322
| | - Steven J Schapiro
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC 20052; Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| |
Collapse
|
359
|
Abstract
UNLABELLED Social hierarchy is an ubiquitous principle of social organization across animal species. Although some progress has been made in our understanding of how humans infer hierarchical identity, the neuroanatomical basis for perceiving key social dimensions of others remains unexplored. Here, we combined event-related potentials and structural MRI to reveal the neuroanatomical substrates of early status recognition. We designed a covertly simulated hierarchical setting in which participants performed a task either with a superior or with an inferior player. Participants showed higher amplitude in the N170 component when presented with a picture of a superior player compared with an inferior player. Crucially, the magnitude of this effect correlated with brain morphology of the posterior cingulate cortex, superior temporal gyrus, insula, fusiform gyrus, and caudate nucleus. We conclude that early recognition of social hierarchies relies on the structural properties of a network involved in the automatic recognition of social identity. SIGNIFICANCE STATEMENT Humans can perceive social hierarchies very rapidly, an ability that is key for social interactions. However, some individuals are more sensitive to hierarchical information than others. Currently, it is unknown how brain structure supports such fast-paced processes of social hierarchy perception and their individual differences. Here, we addressed this issue for the first time by combining the high temporal resolution of event-related potentials (ERPs) and the high spatial resolution of structural MRI. This methodological approach allowed us to unveil a novel association between ERP neuromarkers of social hierarchy perception and the morphology of several cortical and subcortical brain regions typically assumed to play a role in automatic processes of social cognition. Our results are a step forward in our understanding of the human social brain.
Collapse
|
360
|
Dehaene S, Meyniel F, Wacongne C, Wang L, Pallier C. The Neural Representation of Sequences: From Transition Probabilities to Algebraic Patterns and Linguistic Trees. Neuron 2015; 88:2-19. [DOI: 10.1016/j.neuron.2015.09.019] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
361
|
Li G, Wang L, Shi F, Gilmore JH, Lin W, Shen D. Construction of 4D high-definition cortical surface atlases of infants: Methods and applications. Med Image Anal 2015; 25:22-36. [PMID: 25980388 PMCID: PMC4540689 DOI: 10.1016/j.media.2015.04.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/24/2022]
Abstract
In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development.
Collapse
Affiliation(s)
- Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Feng Shi
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
362
|
Braga RM, Leech R. Echoes of the Brain: Local-Scale Representation of Whole-Brain Functional Networks within Transmodal Cortex. Neuroscientist 2015; 21:540-551. [PMID: 25948648 PMCID: PMC4586496 DOI: 10.1177/1073858415585730] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transmodal (nonsensory-specific) regions sit at the confluence of different information streams, and play an important role in cognition. These regions are thought to receive and integrate information from multiple functional networks. However, little is known about (1) how transmodal cortices are functionally organized and (2) how this organization might facilitate information processing. In this article, we discuss recent findings that transmodal cortices contain a detailed local functional architecture of adjacent and partially overlapping subregions. These subregions show relative specializations, and contain traces or "echoes" of the activity of different large-scale intrinsic connectivity networks. We propose that this finer-grained organization can (1) explain how the same transmodal region can play a role in multiple tasks and cognitive disorders, (2) provide a mechanism by which different types of signals can be simultaneously segregated and integrated within transmodal regions, and (3) enhance current network- and node-level models of brain function, by showing that non-stationary functional connectivity patterns may be a result of dynamic shifts in subnodal signals. Finally, we propose that LFA may have an important role in regulating neural dynamics and facilitating balanced activity across the cortex to enable efficient and flexible high-level cognition.
Collapse
Affiliation(s)
- Rodrigo M Braga
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Hammersmith Hospital Campus, Imperial College London, London, UK Center for Brain Science, Harvard University, Cambridge, MA, USA Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA, USA
| | - Robert Leech
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Hammersmith Hospital Campus, Imperial College London, London, UK
| |
Collapse
|
363
|
Corcoran CM, Keilp JG, Kayser J, Klim C, Butler PD, Bruder GE, Gur RC, Javitt DC. Emotion recognition deficits as predictors of transition in individuals at clinical high risk for schizophrenia: a neurodevelopmental perspective. Psychol Med 2015; 45:2959-2973. [PMID: 26040537 PMCID: PMC5080982 DOI: 10.1017/s0033291715000902] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Schizophrenia is characterized by profound and disabling deficits in the ability to recognize emotion in facial expression and tone of voice. Although these deficits are well documented in established schizophrenia using recently validated tasks, their predictive utility in at-risk populations has not been formally evaluated. METHOD The Penn Emotion Recognition and Discrimination tasks, and recently developed measures of auditory emotion recognition, were administered to 49 clinical high-risk subjects prospectively followed for 2 years for schizophrenia outcome, and 31 healthy controls, and a developmental cohort of 43 individuals aged 7-26 years. Deficit in emotion recognition in at-risk subjects was compared with deficit in established schizophrenia, and with normal neurocognitive growth curves from childhood to early adulthood. RESULTS Deficits in emotion recognition significantly distinguished at-risk patients who transitioned to schizophrenia. By contrast, more general neurocognitive measures, such as attention vigilance or processing speed, were non-predictive. The best classification model for schizophrenia onset included both face emotion processing and negative symptoms, with accuracy of 96%, and area under the receiver-operating characteristic curve of 0.99. In a parallel developmental study, emotion recognition abilities were found to reach maturity prior to traditional age of risk for schizophrenia, suggesting they may serve as objective markers of early developmental insult. CONCLUSIONS Profound deficits in emotion recognition exist in at-risk patients prior to schizophrenia onset. They may serve as an index of early developmental insult, and represent an effective target for early identification and remediation. Future studies investigating emotion recognition deficits at both mechanistic and predictive levels are strongly encouraged.
Collapse
Affiliation(s)
- C. M. Corcoran
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - J. G. Keilp
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - J. Kayser
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - C. Klim
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - P. D. Butler
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
| | - G. E. Bruder
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - R. C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - D. C. Javitt
- Department of Psychiatry, Columbia University, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
364
|
Spatial Patterns, Longitudinal Development, and Hemispheric Asymmetries of Cortical Thickness in Infants from Birth to 2 Years of Age. J Neurosci 2015; 35:9150-62. [PMID: 26085637 DOI: 10.1523/jneurosci.4107-14.2015] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cortical thickness (CT) is related to normal development and neurodevelopmental disorders. It remains largely unclear how the characteristic patterns of CT evolve in the first 2 years. In this paper, we systematically characterized for the first time the detailed vertex-wise patterns of spatial distribution, longitudinal development, and hemispheric asymmetries of CT at 0, 1, and 2 years of age, via surface-based analysis of 219 longitudinal magnetic resonance images from 73 infants. Despite the dynamic increase of CT in the first year and the little change of CT in the second year, we found that the overall spatial distribution of thin and thick cortices was largely present at birth, and evolved only modestly during the first 2 years. Specifically, the precentral gyrus, postcentral gyrus, occipital cortex, and superior parietal region had thin cortices, whereas the prefrontal, lateral temporal, insula, and inferior parietal regions had thick cortices. We revealed that in the first year thin cortices exhibited low growth rates of CT, whereas thick cortices exhibited high growth rates. We also found that gyri were thicker than sulci, and that the anterior bank of the central sulcus was thicker than the posterior bank. Moreover, we showed rightward hemispheric asymmetries of CT in the lateral temporal and posterior insula regions at birth, which shrank gradually in the first 2 years, and also leftward asymmetries in the medial prefrontal, paracentral, and anterior cingulate cortices, which expanded substantially during this period. This study provides the first comprehensive picture of early patterns and evolution of CT during infancy.
Collapse
|
365
|
Javitt DC, Sweet RA. Auditory dysfunction in schizophrenia: integrating clinical and basic features. Nat Rev Neurosci 2015; 16:535-50. [PMID: 26289573 PMCID: PMC4692466 DOI: 10.1038/nrn4002] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a complex neuropsychiatric disorder that is associated with persistent psychosocial disability in affected individuals. Although studies of schizophrenia have traditionally focused on deficits in higher-order processes such as working memory and executive function, there is an increasing realization that, in this disorder, deficits can be found throughout the cortex and are manifest even at the level of early sensory processing. These deficits are highly amenable to translational investigation and represent potential novel targets for clinical intervention. Deficits, moreover, have been linked to specific structural abnormalities in post-mortem auditory cortex tissue from individuals with schizophrenia, providing unique insights into underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Daniel C Javitt
- Division of Experimental Therapeutics, Departments of Psychiatry and Neuroscience, Columbia University College of Physicians and Surgeons, 1051 Riverside Drive, Unit 21, New York, New York 10032, USA
- Program in Cognitive Neuroscience and Schizophrenia, Nathan S. Kline Institute, 140 Old Orangeburg Rd, Orangeburg, New York 10962, USA
| | - Robert A Sweet
- Departments of Psychiatry and Neurology, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, Pennsylvania 15213, USA
- VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Research Office Building (151R), University Drive C, Pittsburgh, Pennsylvania 15240, USA
| |
Collapse
|
366
|
Wang L, Uhrig L, Jarraya B, Dehaene S. Representation of numerical and sequential patterns in macaque and human brains. Curr Biol 2015. [PMID: 26212883 DOI: 10.1016/j.cub.2015.06.035] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to extract deep structures from auditory sequences is a fundamental prerequisite of language acquisition. Using fMRI in untrained macaques and humans, we investigated the brain areas involved in representing two abstract properties of a series of tones: total number of items and tone-repetition pattern. Both species represented the number of tones in intraparietal and dorsal premotor areas and the tone-repetition pattern in ventral prefrontal cortex and basal ganglia. However, we observed a joint sensitivity to both parameters only in humans, within bilateral inferior frontal and superior temporal regions. In the left hemisphere, those sites coincided with areas involved in language processing. Thus, while some abstract properties of auditory sequences are available to non-human primates, a recently evolved circuit may endow humans with a unique ability for representing linguistic and non-linguistic sequences in a unified manner.
Collapse
Affiliation(s)
- Liping Wang
- Cognitive Neuroimaging Unit, INSERM, 91191 Gif-sur-Yvette, France; CEA, DSV, I2BM, NeuroSpin Center, 91191 Gif-sur-Yvette, France; Key Laboratory of Brain Functional Genomics (MOE and STCSM), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, 200062 Shanghai, China; NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, 200062 Shanghai, China.
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, INSERM, 91191 Gif-sur-Yvette, France; CEA, DSV, I2BM, NeuroSpin Center, 91191 Gif-sur-Yvette, France; Inserm Avenir-Bettencourt-Schueller Team, 91191 Gif-sur-Yvette, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, INSERM, 91191 Gif-sur-Yvette, France; CEA, DSV, I2BM, NeuroSpin Center, 91191 Gif-sur-Yvette, France; Inserm Avenir-Bettencourt-Schueller Team, 91191 Gif-sur-Yvette, France; Université Versailles Saint-Quentin-en-Yvelines, 78000 Versailles, France; Neuromodulation Unit, Department of Neurosurgery, Foch Hospital, 92150 Suresnes, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, 91191 Gif-sur-Yvette, France; CEA, DSV, I2BM, NeuroSpin Center, 91191 Gif-sur-Yvette, France; Collège de France, 75005 Paris, France; Université Paris-Sud, 91400 Orsay, France.
| |
Collapse
|
367
|
Kaas JH, Stepniewska I. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates. J Comp Neurol 2015; 524:595-608. [PMID: 26101180 DOI: 10.1002/cne.23838] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022]
Abstract
Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others.
Collapse
Affiliation(s)
- Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37240
| | - Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37240
| |
Collapse
|
368
|
Bauernfeind AL, Soderblom EJ, Turner ME, Moseley MA, Ely JJ, Hof PR, Sherwood CC, Wray GA, Babbitt CC. Evolutionary Divergence of Gene and Protein Expression in the Brains of Humans and Chimpanzees. Genome Biol Evol 2015; 7:2276-88. [PMID: 26163674 PMCID: PMC4558850 DOI: 10.1093/gbe/evv132] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although transcriptomic profiling has become the standard approach for exploring molecular differences in the primate brain, very little is known about how the expression levels of gene transcripts relate to downstream protein abundance. Moreover, it is unknown whether the relationship changes depending on the brain region or species under investigation. We performed high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses on two regions of the human and chimpanzee brain: The anterior cingulate cortex and caudate nucleus. In both brain regions, we found a lower correlation between mRNA and protein expression levels in humans and chimpanzees than has been reported for other tissues and cell types, suggesting that the brain may engage extensive tissue-specific regulation affecting protein abundance. In both species, only a few categories of biological function exhibited strong correlations between mRNA and protein expression levels. These categories included oxidative metabolism and protein synthesis and modification, indicating that the expression levels of mRNA transcripts supporting these biological functions are more predictive of protein expression compared with other functional categories. More generally, however, the two measures of molecular expression provided strikingly divergent perspectives into differential expression between human and chimpanzee brains: mRNA comparisons revealed significant differences in neuronal communication, ion transport, and regulatory processes, whereas protein comparisons indicated differences in perception and cognition, metabolic processes, and organization of the cytoskeleton. Our results highlight the importance of examining protein expression in evolutionary analyses and call for a more thorough understanding of tissue-specific protein expression levels.
Collapse
Affiliation(s)
- Amy L Bauernfeind
- Department of Anatomy and Neurobiology, Washington University Medical School Department of Anthropology, Washington University in St. Louis Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University
| | - Erik J Soderblom
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine Center for Genomic and Computational Biology, Duke University
| | - Meredith E Turner
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine Center for Genomic and Computational Biology, Duke University
| | - M Arthur Moseley
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine Center for Genomic and Computational Biology, Duke University
| | | | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York New York Consortium in Evolutionary Primatology, New York, New York
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University
| | - Gregory A Wray
- Center for Genomic and Computational Biology, Duke University Department of Biology, Duke University Department of Evolutionary Anthropology, Duke University
| | | |
Collapse
|
369
|
Gautam P, Anstey KJ, Wen W, Sachdev PS, Cherbuin N. Cortical gyrification and its relationships with cortical volume, cortical thickness, and cognitive performance in healthy mid-life adults. Behav Brain Res 2015; 287:331-9. [DOI: 10.1016/j.bbr.2015.03.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 02/04/2023]
|
370
|
Mueller S, Wang D, Pan R, Holt DJ, Liu H. Abnormalities in hemispheric specialization of caudate nucleus connectivity in schizophrenia. JAMA Psychiatry 2015; 72:552-60. [PMID: 25830688 PMCID: PMC4630217 DOI: 10.1001/jamapsychiatry.2014.3176] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Hemispheric specialization of the human brain is a marker of successful neurodevelopment. Altered brain asymmetry that has been repeatedly reported in schizophrenia may represent consequences of disrupted neurodevelopment in the disorder. However, a complete picture of functional specialization in the schizophrenic brain and its connectional substrates is yet to be unveiled. OBJECTIVES To quantify intrinsic hemispheric specialization at cortical and subcortical levels and to reveal potential disease effects in schizophrenia. DESIGN, SETTING, AND PARTICIPANTS Resting-state functional connectivity magnetic resonance imaging has been previously used to quantitatively measure hemispheric specialization in healthy individuals in a reliable manner. We quantified the intrinsic hemispheric specialization at the whole brain level in 31 patients with schizophrenia and 37 demographically matched healthy controls from November 28, 2007, through June 29, 2010, using resting-state functional magnetic resonance imaging. RESULTS The caudate nucleus and cortical regions with connections to the caudate nucleus had markedly abnormal hemispheric specialization in schizophrenia. Compared with healthy controls, patients exhibited weaker specialization in the left, but the opposite pattern in the right, caudate nucleus (P < .001). Patients with schizophrenia also had a disruption of the interhemispheric coordination among the cortical regions with connections to the caudate nucleus. A linear classifier based on the specialization of the caudate nucleus distinguished patients from controls with a classification accuracy of 74% (with a sensitivity of 68% and a specificity of 78%). CONCLUSIONS AND RELEVANCE These data suggest that hemispheric specialization could serve as a potential imaging biomarker of schizophrenia that, compared with task-based functional magnetic resonance imaging measures, is less prone to the confounding effects of variation in task compliance, cognitive ability, and command of language.
Collapse
Affiliation(s)
- Sophia Mueller
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Charlestown, MA
- Ludwig Maximilians University Munich, Institute of Clinical Radiology, Munich, Germany
| | - Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Charlestown, MA
| | - Ruiqi Pan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Charlestown, MA
| | - Daphne J. Holt
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Charlestown, MA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Charlestown, MA
| |
Collapse
|
371
|
Hutchison RM, Culham JC, Flanagan JR, Everling S, Gallivan JP. Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI. Neuroimage 2015; 116:10-29. [PMID: 25970649 DOI: 10.1016/j.neuroimage.2015.04.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/31/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022] Open
Abstract
Based on its diverse and wide-spread patterns of connectivity, primate posteromedial cortex (PMC) is well positioned to support roles in several aspects of sensory-, cognitive- and motor-related processing. Previous work in both humans and non-human primates (NHPs) using resting-state functional MRI (rs-fMRI) suggests that a subregion of PMC, the medial parieto-occipital cortex (mPOC), by virtue of its intrinsic functional connectivity (FC) with visual cortex, may only play a role in higher-order visual processing. Recent neuroanatomical tracer studies in NHPs, however, demonstrate that mPOC also has prominent cortico-cortical connections with several frontoparietal structures involved in movement planning and control, a finding consistent with increasing observations of reach- and grasp-related activity in the mPOC of both NHPs and humans. To reconcile these observations, here we used rs-fMRI data collected from both awake humans and anesthetized macaque monkeys to more closely examine and compare parcellations of mPOC across species and explore the FC patterns associated with these subdivisions. Seed-based and voxel-wise hierarchical cluster analyses revealed four broad spatially separated functional boundaries that correspond with graded differences in whole-brain FC patterns in each species. The patterns of FC observed are consistent with mPOC forming a critical hub of networks involved in action planning and control, spatial navigation, and working memory. In addition, our comparison between species indicates that while there are several similarities, there may be some species-specific differences in functional neural organization. These findings and the associated theoretical implications are discussed.
Collapse
Affiliation(s)
- R Matthew Hutchison
- Department of Psychology, Harvard University, Cambridge, MA, USA; Center for Brain Science, Harvard University, Cambridge, MA, USA; Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| | - Jody C Culham
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
372
|
Abstract
Human thought and language rely on the brain's ability to combine conceptual information. This fundamental process supports the construction of complex concepts from basic constituents. For example, both "jacket" and "plaid" can be represented as individual concepts, but they can also be integrated to form the more complex representation "plaid jacket." Although this process is central to the expression and comprehension of language, little is known about its neural basis. Here we present evidence for a neuroanatomic model of conceptual combination from three experiments. We predicted that the highly integrative region of heteromodal association cortex in the angular gyrus would be critical for conceptual combination, given its anatomic connectivity and its strong association with semantic memory in functional neuroimaging studies. Consistent with this hypothesis, we found that the process of combining concepts to form meaningful representations specifically modulates neural activity in the angular gyrus of healthy adults, independent of the modality of the semantic content integrated. We also found that individual differences in the structure of the angular gyrus in healthy adults are related to variability in behavioral performance on the conceptual combination task. Finally, in a group of patients with neurodegenerative disease, we found that the degree of atrophy in the angular gyrus is specifically related to impaired performance on combinatorial processing. These converging anatomic findings are consistent with a critical role for the angular gyrus in conceptual combination.
Collapse
|
373
|
Poh JS, Li Y, Ratnarajah N, Fortier MV, Chong YS, Kwek K, Saw SM, Gluckman PD, Meaney MJ, Qiu A. Developmental synchrony of thalamocortical circuits in the neonatal brain. Neuroimage 2015; 116:168-76. [PMID: 25812713 DOI: 10.1016/j.neuroimage.2015.03.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/17/2015] [Accepted: 03/14/2015] [Indexed: 11/15/2022] Open
Abstract
The thalamus is a deep gray matter structure and consists of axonal fibers projecting to the entire cortex, which provide the anatomical support for its sensorimotor and higher-level cognitive functions. There is limited in vivo evidence on the normal thalamocortical development, especially in early life. In this study, we aimed to investigate the developmental patterns of the cerebral cortex, the thalamic substructures, and their connectivity with the cortex in the first few weeks of the postnatal brain. We hypothesized that there is developmental synchrony of the thalamus, its cortical projections, and corresponding target cortical structures. We employed diffusion tensor imaging (DTI) and divided the thalamus into five substructures respectively connecting to the frontal, precentral, postcentral, temporal, and parietal and occipital cortex. T2-weighted magnetic resonance imaging (MRI) was used to measure cortical thickness. We found age-related increases in cortical thickness of bilateral frontal cortex and left temporal cortex in the early postnatal brain. We also found that the development of the thalamic substructures was synchronized with that of their respective thalamocortical connectivity in the first few weeks of the postnatal life. In particular, the right thalamo-frontal substructure had the fastest growth in the early postnatal brain. Our study suggests that the distinct growth patterns of the thalamic substructures are in synchrony with those of the cortex in early life, which may be critical for the development of the cortical and subcortical functional specialization.
Collapse
Affiliation(s)
- Joann S Poh
- Department of Biomedical Engineering, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Yue Li
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Nagulan Ratnarajah
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Kenneth Kwek
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore; Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Canada; Sackler Program for Epigenetics and Psychobiology, McGill University, Canada
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore; Clinical Imaging Research Centre, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
374
|
Barger N, Sheley MF, Schumann CM. Stereological study of pyramidal neurons in the human superior temporal gyrus from childhood to adulthood. J Comp Neurol 2015; 523:1054-72. [PMID: 25556320 DOI: 10.1002/cne.23707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/25/2014] [Accepted: 10/30/2014] [Indexed: 01/11/2023]
Abstract
The association cortex of the superior temporal gyrus (STG) is implicated in complex social and linguistic functions. Thus, reliable methods for quantifying cellular variation in this region could greatly benefit researchers interested in addressing the cellular correlates of typical and atypical function associated with these critical cognitive abilities. To facilitate this task, we first present a general set of cytoarchitectonic criteria targeted specifically toward stereological analyses of thick, Nissl-stained sections for the homotypical cortex of the STG, referred to here as BA22/TA. Second, we use the optical fractionator to estimate pyramidal neuron number and the nucleator for pyramidal somal and nuclear volume. We also investigated the influence of age and sex on these parameters, as well as set a typically developing baseline for future comparisons. In 11 typically developing cases aged 4-48 years, the most distinguishing features of BA22/TA were the presence of distinct granular layers, a prominent, jagged layer IIIc, and a distinctly staining VIa. The average number of neurons was 91 ± 15 million, the volume of pyramidal soma 1,512 µm(3) , and the nuclear volume 348 µm(3) . We found no correlation with age and neuron number. In contrast, pyramidal somal and nuclear volume were both negatively correlated and linearly associated with age in regression analyses. We found no significant sex differences. Overall, the data support the idea that postnatal neuron numbers are relatively stable through development but also suggest that neuronal volume may be subject to important developmental variation. Both measures are critical variables in the study of developmental neuropathology.
Collapse
Affiliation(s)
- Nicole Barger
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Sacramento, California, 95817
| | | | | |
Collapse
|
375
|
Elsworth JD, Groman SM, Jentsch JD, Leranth C, Redmond DE, Kim JD, Diano S, Roth RH. Primate phencyclidine model of schizophrenia: sex-specific effects on cognition, brain derived neurotrophic factor, spine synapses, and dopamine turnover in prefrontal cortex. Int J Neuropsychopharmacol 2015; 18:pyu048. [PMID: 25522392 PMCID: PMC4438537 DOI: 10.1093/ijnp/pyu048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/15/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits. METHODS The effects of repeated phencyclidine treatment on spine synapse number, dopamine turnover and BDNF expression in dorsolateral prefrontal cortex, and working memory accuracy were examined in pre-adult monkeys. RESULTS One week following phencyclidine treatment, juvenile and adolescent male monkeys demonstrated a greater loss of spine synapses in dorsolateral prefrontal cortex than adult male monkeys. Further studies indicated that in juvenile males, a cognitive deficit existed at 4 weeks following phencyclidine treatment, and this impairment was associated with decreased dopamine turnover, decreased brain derived neurotrophic factor messenger RNA, and a loss of dendritic spine synapses in dorsolateral prefrontal cortex. In contrast, female juvenile monkeys displayed no cognitive deficit at 4 weeks after phencyclidine treatment and no alteration in dopamine turnover or brain derived neurotrophic factor messenger RNA or spine synapse number in dorsolateral prefrontal cortex. In the combined group of male and female juvenile monkeys, significant linear correlations were detected between dopamine turnover, spine synapse number, and cognitive performance. CONCLUSIONS As the incidence of schizophrenia is greater in males than females, these findings support the validity of the juvenile primate phencyclidine model and highlight its potential usefulness in understanding the deficits in dorsolateral prefrontal cortex in schizophrenia and developing novel treatments for the cognitive deficits associated with schizophrenia.
Collapse
Affiliation(s)
- John D Elsworth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano).
| | - Stephanie M Groman
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - James D Jentsch
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Csaba Leranth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - D Eugene Redmond
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Jung D Kim
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Sabrina Diano
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Robert H Roth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| |
Collapse
|
376
|
Matsunaga E, Nambu S, Oka M, Iriki A. Comparative analysis of developmentally regulated expressions of Gadd45a, Gadd45b, and Gadd45g in the mouse and marmoset cerebral cortex. Neuroscience 2015; 284:566-580. [PMID: 25450958 DOI: 10.1016/j.neuroscience.2014.10.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/23/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022]
Abstract
The cerebral cortex is an indispensable region that is involved in higher cognitive function in the mammalian brain, and is particularly evolved in the primate brain. It has been demonstrated that cortical areas are formed by both innate and activity-dependent mechanisms. However, it remains unknown what molecular changes induce cortical expansion and complexity during primate evolution. Active DNA methylation/demethylation is one of the epigenetic mechanisms that can modify gene expression via the methylation/demethylation of promoter regions. Three growth arrest and DNA damage-inducible small nuclear proteins, Gadd45 alpha, beta, and gamma, have been identified as regulators of methylation status. To understand the involvement of epigenetic factors in primate cortical evolution, we started by analyzing expression of these demethylation genes in the developing common marmoset (Callithrix jacchus) and mouse (Mus musculus) brain. In the marmoset brain, we found that cortical expression levels of Gadd45 alpha and gamma were reduced during development, whereas there was high expression of Gadd45 beta in some areas of the adult brain, including the prefrontal, temporal, posterior parietal and insula cortices, which are particularly expanded in greater primates and humans. Compared to the marmoset brain, there were no clear regional differences and constant or reduced Gadd45 expression was seen between juvenile and adult mouse brain. Double staining with a neuronal marker revealed that most Gadd45-expressing cells were NeuN-positive neurons. Thus, these results suggest the possibility that differential Gadd45 expression affects neurons, contributing cortical evolution and diversity.
Collapse
Affiliation(s)
- E Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako 351-0198, Japan.
| | - S Nambu
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako 351-0198, Japan
| | - M Oka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako 351-0198, Japan
| | - A Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako 351-0198, Japan
| |
Collapse
|
377
|
Zhang Y, Inder TE, Neil JJ, Dierker DL, Alexopoulos D, Anderson PJ, Van Essen DC. Cortical structural abnormalities in very preterm children at 7 years of age. Neuroimage 2015; 109:469-79. [PMID: 25614973 DOI: 10.1016/j.neuroimage.2015.01.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/15/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022] Open
Abstract
We analyzed long-lasting alterations in brain morphometry associated with preterm birth using volumetric and surface-based analyses applied to children at age 7 years. Comparison of 24 children born very preterm (VPT) to 24 healthy term-born children revealed reductions in total cortical gray matter volume, white matter volume, cortical surface area and gyrification index. Regional cortical shape abnormalities in VPT children included the following: shallower anterior superior temporal sulci, smaller relative surface area in the inferior sensori-motor cortex and posterior superior temporal cortex, larger relative surface area and a cingulate sulcus that was shorter or more interrupted in medial frontoparietal cortex. These findings indicate a complex pattern of regional vulnerabilities in brain development that may contribute to the diverse and long-lasting neurobehavioral consequences that can occur after very premature birth.
Collapse
Affiliation(s)
- Yuning Zhang
- Division of Biomedical and Biological Science, Washington University School of Medicine, St Louis, MO, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Neil
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna L Dierker
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Peter J Anderson
- Clinical Sciences, Murdoch Children's Research Institute, Victoria, Australia
| | - David C Van Essen
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
378
|
Ferradal SL, Liao SM, Eggebrecht AT, Shimony JS, Inder TE, Culver JP, Smyser CD. Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography. Cereb Cortex 2015; 26:1558-68. [PMID: 25595183 DOI: 10.1093/cercor/bhu320] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While histological studies and conventional magnetic resonance imaging (MRI) investigations have elucidated the trajectory of structural changes in the developing brain, less is known regarding early functional cerebral development. Recent investigations have demonstrated that resting-state functional connectivity MRI (fcMRI) can identify networks of functional cerebral connections in infants. However, technical and logistical challenges frequently limit the ability to perform MRI scans early or repeatedly in neonates, particularly in those at greatest risk for adverse neurodevelopmental outcomes. High-density diffuse optical tomography (HD-DOT), a portable imaging modality, potentially enables early continuous and quantitative monitoring of brain function in infants. We introduce an HD-DOT imaging system that combines advancements in cap design, ergonomics, and data analysis methods to allow bedside mapping of functional brain development in infants. In a cohort of healthy, full-term neonates scanned within the first days of life, HD-DOT results demonstrate strong congruence with those obtained using co-registered, subject-matched fcMRI and reflect patterns of typical brain development. These findings represent a transformative advance in functional neuroimaging in infants, and introduce HD-DOT as a powerful and practical method for quantitative mapping of early functional brain development in normal and high-risk neonates.
Collapse
Affiliation(s)
- Silvina L Ferradal
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Steve M Liao
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph P Culver
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher D Smyser
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
379
|
Functional specialization in the human brain estimated by intrinsic hemispheric interaction. J Neurosci 2015; 34:12341-52. [PMID: 25209275 DOI: 10.1523/jneurosci.0787-14.2014] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human brain demonstrates functional specialization, including strong hemispheric asymmetries. Here specialization was explored using fMRI by examining the degree to which brain networks preferentially interact with ipsilateral as opposed to contralateral networks. Preferential within-hemisphere interaction was prominent in the heteromodal association cortices and minimal in the sensorimotor cortices. The frontoparietal control network exhibited strong within-hemisphere interactions but with distinct patterns in each hemisphere. The frontoparietal control network preferentially coupled to the default network and language-related regions in the left hemisphere but to attention networks in the right hemisphere. This arrangement may facilitate control of processing functions that are lateralized. Moreover, the regions most linked to asymmetric specialization also display the highest degree of evolutionary cortical expansion. Functional specialization that emphasizes processing within a hemisphere may allow the expanded hominin brain to minimize between-hemisphere connectivity and distribute domain-specific processing functions.
Collapse
|
380
|
Javitt DC, Freedman R. Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am J Psychiatry 2015; 172:17-31. [PMID: 25553496 PMCID: PMC4501403 DOI: 10.1176/appi.ajp.2014.13121691] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensory processing deficits, first investigated by Kraepelin and Bleuler as possible pathophysiological mechanisms in schizophrenia, are now being recharacterized in the context of our current understanding of the molecular and neurobiological brain mechanisms involved. The National Institute of Mental Health Research Domain Criteria position these deficits as intermediaries between molecular and cellular mechanisms and clinical symptoms of schizophrenia, such as hallucinations. The prepulse inhibition of startle responses by a weaker preceding tone, the inhibitory gating of response to paired sensory stimuli characterized using the auditory P50 evoked response, and the detection of slight deviations in patterns of sensory stimulation eliciting the cortical mismatch negativity potential demonstrate deficits in early sensory processing mechanisms, whose molecular and neurobiological bases are increasingly well understood. Deficits in sensory processing underlie more complex cognitive dysfunction and are in turn affected by higher-level cognitive difficulties. These deficits are now being used to identify genes involved in familial transmission of schizophrenia and to monitor potentially therapeutic drug effects for both treatment and prevention. This research also provides a clinical reminder that patients' sensory perception of the surrounding world, even during treatment sessions, may differ considerably from others' perceptions. A person's ability to understand and interact effectively with the surrounding world ultimately depends on an underlying sensory experience of it.
Collapse
Affiliation(s)
- Daniel C. Javitt
- Division of Experimental Therapeutics, Department of Psychiatry, Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute for Psychiatric Research/Columbia University Medical Center, New York, NY 10032, USA
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver School of Medicine, Mail Stop F546, Aurora, CO, 80045, USA
| |
Collapse
|
381
|
Abstract
Deletions and duplications of the recurrent ~600 kb chromosomal BP4-BP5 region of 16p11.2 are associated with a broad variety of neurodevelopmental outcomes including autism spectrum disorder. A clue to the pathogenesis of the copy number variant (CNV)'s effect on the brain is that the deletion is associated with a head size increase, whereas the duplication is associated with a decrease. Here we analyzed brain structure in a clinically ascertained group of human deletion (N = 25) and duplication (N = 17) carriers from the Simons Variation in Individuals Project compared with age-matched controls (N = 29 and 33, respectively). Multiple brain measures showed increased size in deletion carriers and reduced size in duplication carriers. The effects spanned global measures of intracranial volume, brain size, compartmental measures of gray matter and white matter, subcortical structures, and the cerebellum. Quantitatively, the largest effect was on the thalamus, but the collective results suggest a pervasive rather than a selective effect on the brain. Detailed analysis of cortical gray matter revealed that cortical surface area displays a strong dose-dependent effect of CNV (deletion > control > duplication), whereas average cortical thickness is less affected. These results suggest that the CNV may exert its opposing influences through mechanisms that influence early stages of embryonic brain development.
Collapse
|
382
|
Kelly KR, DeSimone KD, Gallie BL, Steeves JKE. Increased cortical surface area and gyrification following long-term survival from early monocular enucleation. NEUROIMAGE-CLINICAL 2014; 7:297-305. [PMID: 25610793 PMCID: PMC4300017 DOI: 10.1016/j.nicl.2014.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/26/2014] [Accepted: 11/29/2014] [Indexed: 12/13/2022]
Abstract
Purpose Retinoblastoma is typically diagnosed before 5 years of age and is often treated by enucleation (surgical removal) of the cancerous eye. Here, we sought to characterize morphological changes of the cortex following long-term survival from early monocular enucleation. Methods Nine adults with early right-eye enucleation (≤48 months of age) due to retinoblastoma were compared to 18 binocularly intact controls. Surface area, cortical thickness, and gyrification estimates were obtained from T1 weighted images and group differences were examined. Results Early monocular enucleation was associated with increased surface area and/or gyrification in visual (i.e., V1, inferior temporal), auditory (i.e., supramarginal), and multisensory (i.e., superior temporal, inferior parietal, superior parietal) cortices compared with controls. Visual cortex increases were restricted to the right hemisphere contralateral to the remaining eye, consistent with previous subcortical data showing asymmetrical lateral geniculate nucleus volume following early monocular enucleation. Conclusions Altered morphological development of visual, auditory, and multisensory regions occurs subsequent to long-time survival from early eye loss. Cortical morphology in early monocular enucleation was assessed. Enucleation resulted in increased surface area and gyrification of the cortex. Visual cortex increases were exhibited contralateral to the remaining eye. Non-visual cortex increases in surface area and gyrification were also found. Altered cortical development occurs following early monocular enucleation.
Collapse
Affiliation(s)
- Krista R Kelly
- Department of Psychology, York University, Toronto, Canada ; Centre for Vision Research, York University, Toronto, Canada
| | - Kevin D DeSimone
- Department of Psychology, York University, Toronto, Canada ; Centre for Vision Research, York University, Toronto, Canada
| | - Brenda L Gallie
- Department of Ophthalmology and Visual Sciences, The Hospital for Sick Children, Toronto, Canada
| | - Jennifer K E Steeves
- Department of Psychology, York University, Toronto, Canada ; Centre for Vision Research, York University, Toronto, Canada ; Department of Ophthalmology and Visual Sciences, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
383
|
A common brain network links development, aging, and vulnerability to disease. Proc Natl Acad Sci U S A 2014; 111:17648-53. [PMID: 25422429 DOI: 10.1073/pnas.1410378111] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Several theories link processes of development and aging in humans. In neuroscience, one model posits for instance that healthy age-related brain degeneration mirrors development, with the areas of the brain thought to develop later also degenerating earlier. However, intrinsic evidence for such a link between healthy aging and development in brain structure remains elusive. Here, we show that a data-driven analysis of brain structural variation across 484 healthy participants (8-85 y) reveals a largely--but not only--transmodal network whose lifespan pattern of age-related change intrinsically supports this model of mirroring development and aging. We further demonstrate that this network of brain regions, which develops relatively late during adolescence and shows accelerated degeneration in old age compared with the rest of the brain, characterizes areas of heightened vulnerability to unhealthy developmental and aging processes, as exemplified by schizophrenia and Alzheimer's disease, respectively. Specifically, this network, while derived solely from healthy subjects, spatially recapitulates the pattern of brain abnormalities observed in both schizophrenia and Alzheimer's disease. This network is further associated in our large-scale healthy population with intellectual ability and episodic memory, whose impairment contributes to key symptoms of schizophrenia and Alzheimer's disease. Taken together, our results suggest that the common spatial pattern of abnormalities observed in these two disorders, which emerge at opposite ends of the life spectrum, might be influenced by the timing of their separate and distinct pathological processes in disrupting healthy cerebral development and aging, respectively.
Collapse
|
384
|
Rogers CE, Barch DM, Sylvester CM, Pagliaccio D, Harms MP, Botteron KN, Luby JL. Altered gray matter volume and school age anxiety in children born late preterm. J Pediatr 2014; 165:928-35. [PMID: 25108541 PMCID: PMC4252475 DOI: 10.1016/j.jpeds.2014.06.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/28/2014] [Accepted: 06/27/2014] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To determine if late preterm (LP) children differ from full term (FT) children in volumes of the cortex, hippocampus, corpus callosum, or amygdala and whether these differences are associated with anxiety symptoms at school-age. STUDY DESIGN LP children born between 34 and 36 weeks gestation and FT children born between 39 and 41 weeks gestation from a larger longitudinal cohort had magnetic resonance imaging scans at school-age. Brain volumes, cortical surface area, and thickness measures were obtained. Anxiety symptoms were assessed using a structured diagnostic interview annually beginning at preschool-age and following the magnetic resonance imaging. RESULTS LP children (n = 21) had a smaller percentage of total, right parietal, and right temporal lobe gray matter volume than FT children (n = 87). There were no differences in hippocampal, callosal, or amygdala volumes or cortical thickness. LP children also had a relative decrease in right parietal lobe cortical surface area. LP children had greater anxiety symptoms over all assessments. The relationship between late prematurity and school-age anxiety symptoms was mediated by the relative decrease in right temporal lobe volume. CONCLUSIONS LP children, comprising 70% of preterm children, are also at increased risk for altered brain development particularly in the right temporal and parietal cortices. Alterations in the right temporal lobe cortical volume may underlie the increased rate of anxiety symptoms among these LP children. These findings suggest that LP delivery may disrupt temporal and parietal cortical development that persists until school-age with the right temporal lobe conferring risk for elevated anxiety symptoms.
Collapse
Affiliation(s)
- Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO.
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; Department of Psychology, Washington University in St. Louis, St. Louis, MO; The Program in Neuroscience, Washington University in St. Louis, St. Louis, MO
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - David Pagliaccio
- The Program in Neuroscience, Washington University in St. Louis, St. Louis, MO
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
385
|
Jakab A, Schwartz E, Kasprian G, Gruber GM, Prayer D, Schöpf V, Langs G. Fetal functional imaging portrays heterogeneous development of emerging human brain networks. Front Hum Neurosci 2014; 8:852. [PMID: 25374531 PMCID: PMC4205819 DOI: 10.3389/fnhum.2014.00852] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/03/2014] [Indexed: 01/17/2023] Open
Abstract
The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.
Collapse
Affiliation(s)
- András Jakab
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Gregor Kasprian
- Division for Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Gerlinde M Gruber
- Department of Systematic Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna Vienna, Austria
| | - Daniela Prayer
- Division for Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Veronika Schöpf
- Division for Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria ; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
386
|
Abstract
Imaging studies suggest that individual differences in cognition and behavior might relate to differences in brain connectivity, particularly in the higher order association regions. Understanding the extent to which two brains can differ is crucial in clinical and basic neuroscience research. Here we highlight two major sources of variance that contribute to intersubject variability in connectivity measurements but are often mixed: the spatial distribution variability and the connection strength variability. We then offer a hypothesis about how the cortical surface expansion during human evolution may have led to remarkable intersubject variability in brain connectivity. We propose that a series of changes in connectivity architecture occurred in response to the pressure for processing efficiency in the enlarged brain. These changes not only distinguish us from our evolutionary ancestors, but also enable each individual to develop more uniquely. This hypothesis may gain support from the significant spatial correlations among evolutionary cortical expansion, the density of long-range connections, hemispheric functional specialization, and intersubject variability in connectivity.
Collapse
Affiliation(s)
- Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA, USA
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
387
|
Yang Y, Dai B, Howell P, Wang X, Li K, Lu C. White and grey matter changes in the language network during healthy aging. PLoS One 2014; 9:e108077. [PMID: 25251441 PMCID: PMC4176722 DOI: 10.1371/journal.pone.0108077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/25/2014] [Indexed: 01/19/2023] Open
Abstract
Neural structures change with age but there is no consensus on the exact processes involved. This study tested the hypothesis that white and grey matter in the language network changes during aging according to a “last in, first out” process. The fractional anisotropy (FA) of white matter and cortical thickness of grey matter were measured in 36 participants whose ages ranged from 55 to 79 years. Within the language network, the dorsal pathway connecting the mid-to-posterior superior temporal cortex (STC) and the inferior frontal cortex (IFC) was affected more by aging in both FA and thickness than the other dorsal pathway connecting the STC with the premotor cortex and the ventral pathway connecting the mid-to-anterior STC with the ventral IFC. These results were independently validated in a second group of 20 participants whose ages ranged from 50 to 73 years. The pathway that is most affected during aging matures later than the other two pathways (which are present at birth). The results are interpreted as showing that the neural structures which mature later are affected more than those that mature earlier, supporting the “last in, first out” theory.
Collapse
Affiliation(s)
- Yanhui Yang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
- Key Laboratory for Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
| | - Bohan Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
| | - Peter Howell
- Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Xianling Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
- Key Laboratory for Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
- Beijing Key laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, P.R. China
- * E-mail: (CL); (KL)
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
- * E-mail: (CL); (KL)
| |
Collapse
|
388
|
Amlien IK, Fjell AM, Tamnes CK, Grydeland H, Krogsrud SK, Chaplin TA, Rosa MGP, Walhovd KB. Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy. Cereb Cortex 2014; 26:257-267. [PMID: 25246511 DOI: 10.1093/cercor/bhu214] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque.
Collapse
Affiliation(s)
- Inge K Amlien
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, Oslo, Norway
| | - Christian K Tamnes
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Håkon Grydeland
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Stine K Krogsrud
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Tristan A Chaplin
- Department of Physiology.,Monash Vision Group, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, VIC, Australia
| | - Marcello G P Rosa
- Department of Physiology.,Monash Vision Group, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, VIC, Australia
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
389
|
Zakszewski E, Adluru N, Tromp DPM, Kalin N, Alexander AL. A diffusion-tensor-based white matter atlas for rhesus macaques. PLoS One 2014; 9:e107398. [PMID: 25203614 PMCID: PMC4159318 DOI: 10.1371/journal.pone.0107398] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/11/2014] [Indexed: 01/20/2023] Open
Abstract
Atlases of key white matter (WM) structures in humans are widely available, and are very useful for region of interest (ROI)-based analyses of WM properties. There are histology-based atlases of cortical areas in the rhesus macaque, but none currently of specific WM structures. Since ROI-based analysis of WM pathways is also useful in studies using rhesus diffusion tensor imaging (DTI) data, we have here created an atlas based on a publicly available DTI-based template of young rhesus macaques. The atlas was constructed to mimic the structure of an existing human atlas that is widely used, making results translatable between species. Parcellations were carefully hand-drawn on a principle-direction color-coded fractional anisotropy image of the population template. The resulting atlas can be used as a reference to which registration of individual rhesus data can be performed for the purpose of white-matter parcellation. Alternatively, specific ROIs from the atlas may be warped into individual space to be used in ROI-based group analyses. This atlas will be made publicly available so that it may be used as a resource for DTI studies of rhesus macaques.
Collapse
Affiliation(s)
- Elizabeth Zakszewski
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- Department of Medical Physics, University of Wisconsin - Madison, Wisconsin Institutes for Medical Research, Madison, Wisconsin, United States of America
| | - Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Do P. M. Tromp
- Health Emotions Research Institute, University of Wisconsin - Madison, Health Emotions Research Institute Madison, Wisconsin, United States of America
| | - Ned Kalin
- Health Emotions Research Institute, University of Wisconsin - Madison, Health Emotions Research Institute Madison, Wisconsin, United States of America
- Department of Psychiatry, University of Wisconsin - Madison, Wisconsin Psychiatric Institute & Clinics, Madison, Wisconsin, United States of America
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- Department of Psychiatry, University of Wisconsin - Madison, Wisconsin Psychiatric Institute & Clinics, Madison, Wisconsin, United States of America
- Department of Medical Physics, University of Wisconsin - Madison, Wisconsin Institutes for Medical Research, Madison, Wisconsin, United States of America
| |
Collapse
|
390
|
Savadjiev P, Rathi Y, Bouix S, Smith AR, Schultz RT, Verma R, Westin CF. Fusion of white and gray matter geometry: a framework for investigating brain development. Med Image Anal 2014; 18:1349-60. [PMID: 25066750 DOI: 10.1016/j.media.2014.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 06/05/2014] [Accepted: 06/30/2014] [Indexed: 01/11/2023]
Abstract
Current neuroimaging investigation of the white matter typically focuses on measurements derived from diffusion tensor imaging, such as fractional anisotropy (FA). In contrast, imaging studies of the gray matter oftentimes focus on morphological features such as cortical thickness, folding and surface curvature. As a result, it is not clear how to combine findings from these two types of approaches in order to obtain a consistent picture of morphological changes in both gray and white matter. In this paper, we propose a joint investigation of gray and white matter morphology by combining geometrical information from white and the gray matter. To achieve this, we first introduce a novel method for computing multi-scale white matter tract geometry. Its formulation is based on the differential geometry of curve sets and is easily incorporated into a continuous scale-space framework. We then incorporate this method into a novel framework for "fusing" white and gray matter geometrical information. Given a set of fiber tracts originating in a particular cortical region, the key idea is to compute two scalar fields that represent geometrical characteristics of the white matter and of the surface of the cortical region. A quantitative marker is created by combining the distributions of these scalar values using Mutual Information. This marker can be then used in the study of normal and pathological brain structure and development. We apply this framework to a study on autism spectrum disorder in children. Our preliminary results support the view that autism may be characterized by early brain overgrowth, followed by reduced or arrested growth (Courchesne, 2004).
Collapse
Affiliation(s)
- Peter Savadjiev
- Laboratory for Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alex R Smith
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ragini Verma
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl-Fredrik Westin
- Laboratory for Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
391
|
Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants. Neuroimage 2014; 100:206-18. [PMID: 24945660 DOI: 10.1016/j.neuroimage.2014.06.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/20/2014] [Accepted: 06/04/2014] [Indexed: 01/05/2023] Open
Abstract
Sulcal pits, the locally deepest points in sulci of the highly convoluted and variable cerebral cortex, are found to be spatially consistent across human adult individuals. It is suggested that sulcal pits are genetically controlled and have close relationships with functional areas. To date, the existing imaging studies of sulcal pits are mainly focused on adult brains, yet little is known about the spatial distribution and temporal development of sulcal pits in the first 2 years of life, which is the most dynamic and critical period of postnatal brain development. Studying sulcal pits during this period would greatly enrich our limited understandings of the origins and developmental trajectories of sulcal pits, and would also provide important insights into many neurodevelopmental disorders associated with abnormal cortical foldings. In this paper, by using surface-based morphometry, for the first time, we systemically investigated the spatial distribution and temporal development of sulcal pits in major cortical sulci from 73 healthy infants, each with three longitudinal 3T MR scans at term birth, 1 year, and 2 years of age. Our results suggest that the spatially consistent distributions of sulcal pits in major sulci across individuals have already existed at term birth and this spatial distribution pattern keeps relatively stable in the first 2 years of life, despite that the cerebral cortex expands dramatically and the sulcal depth increases considerably during this period. Specially, the depth of sulcal pits increases regionally heterogeneously, with more rapid growth in the high-order association cortex, including the prefrontal and temporal cortices, than the sensorimotor cortex in the first 2 years of life. Meanwhile, our results also suggest that there exist hemispheric asymmetries of the spatial distributions of sulcal pits in several cortical regions, such as the central, superior temporal and postcentral sulci, consistently from birth to 2 years of age, which likely has close relationships with the lateralization of brain functions of these regions. This study provides detailed insights into the spatial distribution and temporal development of deep sulcal landmarks in infants.
Collapse
|
392
|
Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog Neurobiol 2014; 117:20-40. [PMID: 24548606 DOI: 10.1016/pneurobio.2014.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/19/2013] [Accepted: 02/05/2014] [Indexed: 05/28/2023]
Abstract
What can be expected in normal aging, and where does normal aging stop and pathological neurodegeneration begin? With the slow progression of age-related dementias such as Alzheimer's disease (AD), it is difficult to distinguish age-related changes from effects of undetected disease. We review recent research on changes of the cerebral cortex and the hippocampus in aging and the borders between normal aging and AD. We argue that prominent cortical reductions are evident in fronto-temporal regions in elderly even with low probability of AD, including regions overlapping the default mode network. Importantly, these regions show high levels of amyloid deposition in AD, and are both structurally and functionally vulnerable early in the disease. This normalcy-pathology homology is critical to understand, since aging itself is the major risk factor for sporadic AD. Thus, rather than necessarily reflecting early signs of disease, these changes may be part of normal aging, and may inform on why the aging brain is so much more susceptible to AD than is the younger brain. We suggest that regions characterized by a high degree of life-long plasticity are vulnerable to detrimental effects of normal aging, and that this age-vulnerability renders them more susceptible to additional, pathological AD-related changes. We conclude that it will be difficult to understand AD without understanding why it preferably affects older brains, and that we need a model that accounts for age-related changes in AD-vulnerable regions independently of AD-pathology.
Collapse
Affiliation(s)
- Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway.
| | - Linda McEvoy
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA
| | - Dominic Holland
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, CA, USA
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA; Department of Radiology, University of California, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, CA, USA
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| |
Collapse
|
393
|
Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions. Brain Struct Funct 2014; 220:2315-31. [DOI: 10.1007/s00429-014-0789-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 04/25/2014] [Indexed: 01/06/2023]
|
394
|
Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J Neurosci 2014; 34:4228-38. [PMID: 24647943 DOI: 10.1523/jneurosci.3976-13.2014] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human cortical folding is believed to correlate with cognitive functions. This likely correlation may have something to do with why abnormalities of cortical folding have been found in many neurodevelopmental disorders. However, little is known about how cortical gyrification, the cortical folding process, develops in the first 2 years of life, a period of dynamic and regionally heterogeneous cortex growth. In this article, we show how we developed a novel infant-specific method for mapping longitudinal development of local cortical gyrification in infants. By using this method, via 219 longitudinal 3T magnetic resonance imaging scans from 73 healthy infants, we systemically and quantitatively characterized for the first time the longitudinal cortical global gyrification index (GI) and local GI (LGI) development in the first 2 years of life. We found that the cortical GI had age-related and marked development, with 16.1% increase in the first year and 6.6% increase in the second year. We also found marked and regionally heterogeneous cortical LGI development in the first 2 years of life, with the high-growth regions located in the association cortex, whereas the low-growth regions located in sensorimotor, auditory, and visual cortices. Meanwhile, we also showed that LGI growth in most cortical regions was positively correlated with the brain volume growth, which is particularly significant in the prefrontal cortex in the first year. In addition, we observed gender differences in both cortical GIs and LGIs in the first 2 years, with the males having larger GIs than females at 2 years of age. This study provides valuable information on normal cortical folding development in infancy and early childhood.
Collapse
|
395
|
Abstract
A parietal-frontal network in primates is thought to support many behaviors occurring in the space around the body, including interpersonal interactions and maintenance of a particular "comfort zone" or distance from other people ("personal space"). To better understand this network in humans, we used functional MRI to measure the responses to moving objects (faces, cars, simple spheres) and the functional connectivity of two regions in this network, the dorsal intraparietal sulcus (DIPS) and the ventral premotor cortex (PMv). We found that both areas responded more strongly to faces that were moving toward (vs away from) subjects, but did not show this bias in response to comparable motion in control stimuli (cars or spheres). Moreover, these two regions were functionally interconnected. Tests of activity-behavior associations revealed that the strength of DIPS-PMv connectivity was correlated with the preferred distance that subjects chose to stand from an unfamiliar person (personal space size). In addition, the magnitude of DIPS and PMv responses was correlated with the preferred level of social activity. Together, these findings suggest that this parietal-frontal network plays a role in everyday interactions with others.
Collapse
|
396
|
Mills KL, Tamnes CK. Methods and considerations for longitudinal structural brain imaging analysis across development. Dev Cogn Neurosci 2014; 9:172-90. [PMID: 24879112 PMCID: PMC6989768 DOI: 10.1016/j.dcn.2014.04.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/14/2014] [Accepted: 04/25/2014] [Indexed: 11/29/2022] Open
Abstract
There have now been several longitudinal studies of structural brain development. We discuss current methods and analysis techniques in longitudinal MRI. We relate MRI measures to possible underlying physiological mechanisms. We encourage more open discussion amongst researchers regarding best practices.
Magnetic resonance imaging (MRI) has allowed the unprecedented capability to measure the human brain in vivo. This technique has paved the way for longitudinal studies exploring brain changes across the entire life span. Results from these studies have given us a glimpse into the remarkably extended and multifaceted development of our brain, converging with evidence from anatomical and histological studies. Ever-evolving techniques and analytical methods provide new avenues to explore and questions to consider, requiring researchers to balance excitement with caution. This review addresses what MRI studies of structural brain development in children and adolescents typically measure and how. We focus on measurements of brain morphometry (e.g., volume, cortical thickness, surface area, folding patterns), as well as measurements derived from diffusion tensor imaging (DTI). By integrating finding from multiple longitudinal investigations, we give an update on current knowledge of structural brain development and how it relates to other aspects of biological development and possible underlying physiological mechanisms. Further, we review and discuss current strategies in image processing, analysis techniques and modeling of brain development. We hope this review will aid current and future longitudinal investigations of brain development, as well as evoke a discussion amongst researchers regarding best practices.
Collapse
Affiliation(s)
- Kathryn L Mills
- Institute of Cognitive Neuroscience, University College London, London, UK; Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | - Christian K Tamnes
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
397
|
Comparative analysis of the macroscale structural connectivity in the macaque and human brain. PLoS Comput Biol 2014; 10:e1003529. [PMID: 24676052 PMCID: PMC3967942 DOI: 10.1371/journal.pcbi.1003529] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 02/07/2014] [Indexed: 01/29/2023] Open
Abstract
The macaque brain serves as a model for the human brain, but its suitability is challenged by unique human features, including connectivity reconfigurations, which emerged during primate evolution. We perform a quantitative comparative analysis of the whole brain macroscale structural connectivity of the two species. Our findings suggest that the human and macaque brain as a whole are similarly wired. A region-wise analysis reveals many interspecies similarities of connectivity patterns, but also lack thereof, primarily involving cingulate regions. We unravel a common structural backbone in both species involving a highly overlapping set of regions. This structural backbone, important for mediating information across the brain, seems to constitute a feature of the primate brain persevering evolution. Our findings illustrate novel evolutionary aspects at the macroscale connectivity level and offer a quantitative translational bridge between macaque and human research. What are the commonalities and differences of human brains when compared to the brains of other primates? The brain can be conceived as a complex network. Its topological properties constrain its function. Ethical and technical reasons necessitate the use of animal brains, like the macaque monkey, as models for the human brain. However, evolutionary changes, including “brain rewiring”, might result in unique human features. Hence, a detailed and quantitative comparative analysis of the connectivity of the brains of the two species is needed. Here, we undertake this task by adopting techniques analogous to those used in comparative studies in other scientific fields. Our approach reveals converging but also diverging wiring patterns. The brain of the two species as a whole is similarly wired. The majority of the brain regions appear to have evolutionary conserved connectivity patterns while for certain regions this appears not to be the case. We also uncover an evolutionary conserved “structural backbone” in the brain of the two species. Our findings highlight common and unique “wiring properties” of the brains of these two primate species and offer a quantitative basis for translating findings from macaque research to human research.
Collapse
|
398
|
Fjell AM, Amlien IK, Sneve MH, Grydeland H, Tamnes CK, Chaplin TA, Rosa MGP, Walhovd KB. The Roots of Alzheimer's Disease: Are High-Expanding Cortical Areas Preferentially Targeted?†. Cereb Cortex 2014; 25:2556-65. [PMID: 24658616 DOI: 10.1093/cercor/bhu055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is regarded a human-specific condition, and it has been suggested that brain regions highly expanded in humans compared with other primates are selectively targeted. We calculated shared and unique variance in the distribution of AD atrophy accounted for by cortical expansion between macaque and human, affiliation to the default mode network (DMN), ontogenetic development and normal aging. Cortical expansion was moderately related to atrophy, but a critical discrepancy was seen in the medial temporo-parietal episodic memory network. Identification of "hotspots" and "coldspots" of expansion across several primate species did not yield compelling evidence for the hypothesis that highly expanded regions are specifically targeted. Controlling for distribution of atrophy in aging substantially attenuated the expansion-AD relationship. A path model showed that all variables explained unique variance in AD atrophy but were generally mediated through aging. This supports a systems-vulnerability model, where critical networks are subject to various negative impacts, aging in particular, rather than being selectively targeted in AD. An alternative approach is suggested, focused on the interplay of the phylogenetically old and preserved medial temporal lobe areas with more highly expanded association cortices governed by different principles of plasticity and stability.
Collapse
Affiliation(s)
- Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Norway Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, 0424 Norway
| | - Inge K Amlien
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Norway
| | - Markus H Sneve
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Norway
| | - Håkon Grydeland
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Norway
| | - Christian K Tamnes
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Norway
| | - Tristan A Chaplin
- Department of Physiology and Monash Vision Group, Monash University, Clayton, Victoria 3800, Australia ARC Centre of Excellence for Integrative Brain Function, Clayton, Victoria 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Monash Vision Group, Monash University, Clayton, Victoria 3800, Australia ARC Centre of Excellence for Integrative Brain Function, Clayton, Victoria 3800, Australia
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Norway Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, 0424 Norway
| |
Collapse
|
399
|
Abstract
Pletikos et al. (2014) demonstrate in this issue of Neuron that the human neocortex has an "hourglass" temporal gene expression pattern with robust and dynamic transcriptome differences during the prenatal and adolescent/adult periods. Similar changes are not observed in the nonhuman primate-is this what makes us human?
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| | - Károly Mirnics
- Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
400
|
Lyall AE, Shi F, Geng X, Woolson S, Li G, Wang L, Hamer RM, Shen D, Gilmore JH. Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood. Cereb Cortex 2014; 25:2204-12. [PMID: 24591525 DOI: 10.1093/cercor/bhu027] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cortical thickness (CT) and surface area (SA) are altered in many neuropsychiatric disorders and are correlated with cognitive functioning. Little is known about how these components of cortical gray matter develop in the first years of life. We studied the longitudinal development of regional CT and SA expansion in healthy infants from birth to 2 years. CT and SA have distinct and heterogeneous patterns of development that are exceptionally dynamic; overall CT increases by an average of 36.1%, while cortical SA increases 114.6%. By age 2, CT is on average 97% of adult values, compared with SA, which is 69%. This suggests that early identification, prevention, and intervention strategies for neuropsychiatric illness need to be targeted to this period of rapid postnatal brain development, and that SA expansion is the principal driving factor in cortical volume after 2 years of age.
Collapse
Affiliation(s)
| | - Feng Shi
- Biomedical Research Imaging Center Department of Radiology
| | | | | | - Gang Li
- Biomedical Research Imaging Center Department of Radiology
| | - Li Wang
- Biomedical Research Imaging Center Department of Radiology
| | - Robert M Hamer
- Department of Psychiatry Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7160, USA
| | - Dinggang Shen
- Biomedical Research Imaging Center Department of Radiology
| | - John H Gilmore
- Department of Psychiatry Biomedical Research Imaging Center
| |
Collapse
|