351
|
Barger N, Sheley MF, Schumann CM. Stereological study of pyramidal neurons in the human superior temporal gyrus from childhood to adulthood. J Comp Neurol 2015; 523:1054-72. [PMID: 25556320 DOI: 10.1002/cne.23707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/25/2014] [Accepted: 10/30/2014] [Indexed: 01/11/2023]
Abstract
The association cortex of the superior temporal gyrus (STG) is implicated in complex social and linguistic functions. Thus, reliable methods for quantifying cellular variation in this region could greatly benefit researchers interested in addressing the cellular correlates of typical and atypical function associated with these critical cognitive abilities. To facilitate this task, we first present a general set of cytoarchitectonic criteria targeted specifically toward stereological analyses of thick, Nissl-stained sections for the homotypical cortex of the STG, referred to here as BA22/TA. Second, we use the optical fractionator to estimate pyramidal neuron number and the nucleator for pyramidal somal and nuclear volume. We also investigated the influence of age and sex on these parameters, as well as set a typically developing baseline for future comparisons. In 11 typically developing cases aged 4-48 years, the most distinguishing features of BA22/TA were the presence of distinct granular layers, a prominent, jagged layer IIIc, and a distinctly staining VIa. The average number of neurons was 91 ± 15 million, the volume of pyramidal soma 1,512 µm(3) , and the nuclear volume 348 µm(3) . We found no correlation with age and neuron number. In contrast, pyramidal somal and nuclear volume were both negatively correlated and linearly associated with age in regression analyses. We found no significant sex differences. Overall, the data support the idea that postnatal neuron numbers are relatively stable through development but also suggest that neuronal volume may be subject to important developmental variation. Both measures are critical variables in the study of developmental neuropathology.
Collapse
Affiliation(s)
- Nicole Barger
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Sacramento, California, 95817
| | | | | |
Collapse
|
352
|
Elsworth JD, Groman SM, Jentsch JD, Leranth C, Redmond DE, Kim JD, Diano S, Roth RH. Primate phencyclidine model of schizophrenia: sex-specific effects on cognition, brain derived neurotrophic factor, spine synapses, and dopamine turnover in prefrontal cortex. Int J Neuropsychopharmacol 2015; 18:pyu048. [PMID: 25522392 PMCID: PMC4438537 DOI: 10.1093/ijnp/pyu048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/15/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits. METHODS The effects of repeated phencyclidine treatment on spine synapse number, dopamine turnover and BDNF expression in dorsolateral prefrontal cortex, and working memory accuracy were examined in pre-adult monkeys. RESULTS One week following phencyclidine treatment, juvenile and adolescent male monkeys demonstrated a greater loss of spine synapses in dorsolateral prefrontal cortex than adult male monkeys. Further studies indicated that in juvenile males, a cognitive deficit existed at 4 weeks following phencyclidine treatment, and this impairment was associated with decreased dopamine turnover, decreased brain derived neurotrophic factor messenger RNA, and a loss of dendritic spine synapses in dorsolateral prefrontal cortex. In contrast, female juvenile monkeys displayed no cognitive deficit at 4 weeks after phencyclidine treatment and no alteration in dopamine turnover or brain derived neurotrophic factor messenger RNA or spine synapse number in dorsolateral prefrontal cortex. In the combined group of male and female juvenile monkeys, significant linear correlations were detected between dopamine turnover, spine synapse number, and cognitive performance. CONCLUSIONS As the incidence of schizophrenia is greater in males than females, these findings support the validity of the juvenile primate phencyclidine model and highlight its potential usefulness in understanding the deficits in dorsolateral prefrontal cortex in schizophrenia and developing novel treatments for the cognitive deficits associated with schizophrenia.
Collapse
Affiliation(s)
- John D Elsworth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano).
| | - Stephanie M Groman
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - James D Jentsch
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Csaba Leranth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - D Eugene Redmond
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Jung D Kim
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Sabrina Diano
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Robert H Roth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| |
Collapse
|
353
|
Matsunaga E, Nambu S, Oka M, Iriki A. Comparative analysis of developmentally regulated expressions of Gadd45a, Gadd45b, and Gadd45g in the mouse and marmoset cerebral cortex. Neuroscience 2015; 284:566-580. [PMID: 25450958 DOI: 10.1016/j.neuroscience.2014.10.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/23/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022]
Abstract
The cerebral cortex is an indispensable region that is involved in higher cognitive function in the mammalian brain, and is particularly evolved in the primate brain. It has been demonstrated that cortical areas are formed by both innate and activity-dependent mechanisms. However, it remains unknown what molecular changes induce cortical expansion and complexity during primate evolution. Active DNA methylation/demethylation is one of the epigenetic mechanisms that can modify gene expression via the methylation/demethylation of promoter regions. Three growth arrest and DNA damage-inducible small nuclear proteins, Gadd45 alpha, beta, and gamma, have been identified as regulators of methylation status. To understand the involvement of epigenetic factors in primate cortical evolution, we started by analyzing expression of these demethylation genes in the developing common marmoset (Callithrix jacchus) and mouse (Mus musculus) brain. In the marmoset brain, we found that cortical expression levels of Gadd45 alpha and gamma were reduced during development, whereas there was high expression of Gadd45 beta in some areas of the adult brain, including the prefrontal, temporal, posterior parietal and insula cortices, which are particularly expanded in greater primates and humans. Compared to the marmoset brain, there were no clear regional differences and constant or reduced Gadd45 expression was seen between juvenile and adult mouse brain. Double staining with a neuronal marker revealed that most Gadd45-expressing cells were NeuN-positive neurons. Thus, these results suggest the possibility that differential Gadd45 expression affects neurons, contributing cortical evolution and diversity.
Collapse
Affiliation(s)
- E Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako 351-0198, Japan.
| | - S Nambu
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako 351-0198, Japan
| | - M Oka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako 351-0198, Japan
| | - A Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako 351-0198, Japan
| |
Collapse
|
354
|
Zhang Y, Inder TE, Neil JJ, Dierker DL, Alexopoulos D, Anderson PJ, Van Essen DC. Cortical structural abnormalities in very preterm children at 7 years of age. Neuroimage 2015; 109:469-79. [PMID: 25614973 DOI: 10.1016/j.neuroimage.2015.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/15/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022] Open
Abstract
We analyzed long-lasting alterations in brain morphometry associated with preterm birth using volumetric and surface-based analyses applied to children at age 7 years. Comparison of 24 children born very preterm (VPT) to 24 healthy term-born children revealed reductions in total cortical gray matter volume, white matter volume, cortical surface area and gyrification index. Regional cortical shape abnormalities in VPT children included the following: shallower anterior superior temporal sulci, smaller relative surface area in the inferior sensori-motor cortex and posterior superior temporal cortex, larger relative surface area and a cingulate sulcus that was shorter or more interrupted in medial frontoparietal cortex. These findings indicate a complex pattern of regional vulnerabilities in brain development that may contribute to the diverse and long-lasting neurobehavioral consequences that can occur after very premature birth.
Collapse
Affiliation(s)
- Yuning Zhang
- Division of Biomedical and Biological Science, Washington University School of Medicine, St Louis, MO, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Neil
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna L Dierker
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Peter J Anderson
- Clinical Sciences, Murdoch Children's Research Institute, Victoria, Australia
| | - David C Van Essen
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
355
|
Ferradal SL, Liao SM, Eggebrecht AT, Shimony JS, Inder TE, Culver JP, Smyser CD. Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography. Cereb Cortex 2015; 26:1558-68. [PMID: 25595183 DOI: 10.1093/cercor/bhu320] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While histological studies and conventional magnetic resonance imaging (MRI) investigations have elucidated the trajectory of structural changes in the developing brain, less is known regarding early functional cerebral development. Recent investigations have demonstrated that resting-state functional connectivity MRI (fcMRI) can identify networks of functional cerebral connections in infants. However, technical and logistical challenges frequently limit the ability to perform MRI scans early or repeatedly in neonates, particularly in those at greatest risk for adverse neurodevelopmental outcomes. High-density diffuse optical tomography (HD-DOT), a portable imaging modality, potentially enables early continuous and quantitative monitoring of brain function in infants. We introduce an HD-DOT imaging system that combines advancements in cap design, ergonomics, and data analysis methods to allow bedside mapping of functional brain development in infants. In a cohort of healthy, full-term neonates scanned within the first days of life, HD-DOT results demonstrate strong congruence with those obtained using co-registered, subject-matched fcMRI and reflect patterns of typical brain development. These findings represent a transformative advance in functional neuroimaging in infants, and introduce HD-DOT as a powerful and practical method for quantitative mapping of early functional brain development in normal and high-risk neonates.
Collapse
Affiliation(s)
- Silvina L Ferradal
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Steve M Liao
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph P Culver
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher D Smyser
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
356
|
Functional specialization in the human brain estimated by intrinsic hemispheric interaction. J Neurosci 2015; 34:12341-52. [PMID: 25209275 DOI: 10.1523/jneurosci.0787-14.2014] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human brain demonstrates functional specialization, including strong hemispheric asymmetries. Here specialization was explored using fMRI by examining the degree to which brain networks preferentially interact with ipsilateral as opposed to contralateral networks. Preferential within-hemisphere interaction was prominent in the heteromodal association cortices and minimal in the sensorimotor cortices. The frontoparietal control network exhibited strong within-hemisphere interactions but with distinct patterns in each hemisphere. The frontoparietal control network preferentially coupled to the default network and language-related regions in the left hemisphere but to attention networks in the right hemisphere. This arrangement may facilitate control of processing functions that are lateralized. Moreover, the regions most linked to asymmetric specialization also display the highest degree of evolutionary cortical expansion. Functional specialization that emphasizes processing within a hemisphere may allow the expanded hominin brain to minimize between-hemisphere connectivity and distribute domain-specific processing functions.
Collapse
|
357
|
Javitt DC, Freedman R. Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am J Psychiatry 2015; 172:17-31. [PMID: 25553496 PMCID: PMC4501403 DOI: 10.1176/appi.ajp.2014.13121691] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensory processing deficits, first investigated by Kraepelin and Bleuler as possible pathophysiological mechanisms in schizophrenia, are now being recharacterized in the context of our current understanding of the molecular and neurobiological brain mechanisms involved. The National Institute of Mental Health Research Domain Criteria position these deficits as intermediaries between molecular and cellular mechanisms and clinical symptoms of schizophrenia, such as hallucinations. The prepulse inhibition of startle responses by a weaker preceding tone, the inhibitory gating of response to paired sensory stimuli characterized using the auditory P50 evoked response, and the detection of slight deviations in patterns of sensory stimulation eliciting the cortical mismatch negativity potential demonstrate deficits in early sensory processing mechanisms, whose molecular and neurobiological bases are increasingly well understood. Deficits in sensory processing underlie more complex cognitive dysfunction and are in turn affected by higher-level cognitive difficulties. These deficits are now being used to identify genes involved in familial transmission of schizophrenia and to monitor potentially therapeutic drug effects for both treatment and prevention. This research also provides a clinical reminder that patients' sensory perception of the surrounding world, even during treatment sessions, may differ considerably from others' perceptions. A person's ability to understand and interact effectively with the surrounding world ultimately depends on an underlying sensory experience of it.
Collapse
Affiliation(s)
- Daniel C. Javitt
- Division of Experimental Therapeutics, Department of Psychiatry, Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute for Psychiatric Research/Columbia University Medical Center, New York, NY 10032, USA
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver School of Medicine, Mail Stop F546, Aurora, CO, 80045, USA
| |
Collapse
|
358
|
Abstract
Deletions and duplications of the recurrent ~600 kb chromosomal BP4-BP5 region of 16p11.2 are associated with a broad variety of neurodevelopmental outcomes including autism spectrum disorder. A clue to the pathogenesis of the copy number variant (CNV)'s effect on the brain is that the deletion is associated with a head size increase, whereas the duplication is associated with a decrease. Here we analyzed brain structure in a clinically ascertained group of human deletion (N = 25) and duplication (N = 17) carriers from the Simons Variation in Individuals Project compared with age-matched controls (N = 29 and 33, respectively). Multiple brain measures showed increased size in deletion carriers and reduced size in duplication carriers. The effects spanned global measures of intracranial volume, brain size, compartmental measures of gray matter and white matter, subcortical structures, and the cerebellum. Quantitatively, the largest effect was on the thalamus, but the collective results suggest a pervasive rather than a selective effect on the brain. Detailed analysis of cortical gray matter revealed that cortical surface area displays a strong dose-dependent effect of CNV (deletion > control > duplication), whereas average cortical thickness is less affected. These results suggest that the CNV may exert its opposing influences through mechanisms that influence early stages of embryonic brain development.
Collapse
|
359
|
Kelly KR, DeSimone KD, Gallie BL, Steeves JKE. Increased cortical surface area and gyrification following long-term survival from early monocular enucleation. NEUROIMAGE-CLINICAL 2014; 7:297-305. [PMID: 25610793 PMCID: PMC4300017 DOI: 10.1016/j.nicl.2014.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/26/2014] [Accepted: 11/29/2014] [Indexed: 12/13/2022]
Abstract
Purpose Retinoblastoma is typically diagnosed before 5 years of age and is often treated by enucleation (surgical removal) of the cancerous eye. Here, we sought to characterize morphological changes of the cortex following long-term survival from early monocular enucleation. Methods Nine adults with early right-eye enucleation (≤48 months of age) due to retinoblastoma were compared to 18 binocularly intact controls. Surface area, cortical thickness, and gyrification estimates were obtained from T1 weighted images and group differences were examined. Results Early monocular enucleation was associated with increased surface area and/or gyrification in visual (i.e., V1, inferior temporal), auditory (i.e., supramarginal), and multisensory (i.e., superior temporal, inferior parietal, superior parietal) cortices compared with controls. Visual cortex increases were restricted to the right hemisphere contralateral to the remaining eye, consistent with previous subcortical data showing asymmetrical lateral geniculate nucleus volume following early monocular enucleation. Conclusions Altered morphological development of visual, auditory, and multisensory regions occurs subsequent to long-time survival from early eye loss. Cortical morphology in early monocular enucleation was assessed. Enucleation resulted in increased surface area and gyrification of the cortex. Visual cortex increases were exhibited contralateral to the remaining eye. Non-visual cortex increases in surface area and gyrification were also found. Altered cortical development occurs following early monocular enucleation.
Collapse
Affiliation(s)
- Krista R Kelly
- Department of Psychology, York University, Toronto, Canada ; Centre for Vision Research, York University, Toronto, Canada
| | - Kevin D DeSimone
- Department of Psychology, York University, Toronto, Canada ; Centre for Vision Research, York University, Toronto, Canada
| | - Brenda L Gallie
- Department of Ophthalmology and Visual Sciences, The Hospital for Sick Children, Toronto, Canada
| | - Jennifer K E Steeves
- Department of Psychology, York University, Toronto, Canada ; Centre for Vision Research, York University, Toronto, Canada ; Department of Ophthalmology and Visual Sciences, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
360
|
A common brain network links development, aging, and vulnerability to disease. Proc Natl Acad Sci U S A 2014; 111:17648-53. [PMID: 25422429 DOI: 10.1073/pnas.1410378111] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Several theories link processes of development and aging in humans. In neuroscience, one model posits for instance that healthy age-related brain degeneration mirrors development, with the areas of the brain thought to develop later also degenerating earlier. However, intrinsic evidence for such a link between healthy aging and development in brain structure remains elusive. Here, we show that a data-driven analysis of brain structural variation across 484 healthy participants (8-85 y) reveals a largely--but not only--transmodal network whose lifespan pattern of age-related change intrinsically supports this model of mirroring development and aging. We further demonstrate that this network of brain regions, which develops relatively late during adolescence and shows accelerated degeneration in old age compared with the rest of the brain, characterizes areas of heightened vulnerability to unhealthy developmental and aging processes, as exemplified by schizophrenia and Alzheimer's disease, respectively. Specifically, this network, while derived solely from healthy subjects, spatially recapitulates the pattern of brain abnormalities observed in both schizophrenia and Alzheimer's disease. This network is further associated in our large-scale healthy population with intellectual ability and episodic memory, whose impairment contributes to key symptoms of schizophrenia and Alzheimer's disease. Taken together, our results suggest that the common spatial pattern of abnormalities observed in these two disorders, which emerge at opposite ends of the life spectrum, might be influenced by the timing of their separate and distinct pathological processes in disrupting healthy cerebral development and aging, respectively.
Collapse
|
361
|
Rogers CE, Barch DM, Sylvester CM, Pagliaccio D, Harms MP, Botteron KN, Luby JL. Altered gray matter volume and school age anxiety in children born late preterm. J Pediatr 2014; 165:928-35. [PMID: 25108541 PMCID: PMC4252475 DOI: 10.1016/j.jpeds.2014.06.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/28/2014] [Accepted: 06/27/2014] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To determine if late preterm (LP) children differ from full term (FT) children in volumes of the cortex, hippocampus, corpus callosum, or amygdala and whether these differences are associated with anxiety symptoms at school-age. STUDY DESIGN LP children born between 34 and 36 weeks gestation and FT children born between 39 and 41 weeks gestation from a larger longitudinal cohort had magnetic resonance imaging scans at school-age. Brain volumes, cortical surface area, and thickness measures were obtained. Anxiety symptoms were assessed using a structured diagnostic interview annually beginning at preschool-age and following the magnetic resonance imaging. RESULTS LP children (n = 21) had a smaller percentage of total, right parietal, and right temporal lobe gray matter volume than FT children (n = 87). There were no differences in hippocampal, callosal, or amygdala volumes or cortical thickness. LP children also had a relative decrease in right parietal lobe cortical surface area. LP children had greater anxiety symptoms over all assessments. The relationship between late prematurity and school-age anxiety symptoms was mediated by the relative decrease in right temporal lobe volume. CONCLUSIONS LP children, comprising 70% of preterm children, are also at increased risk for altered brain development particularly in the right temporal and parietal cortices. Alterations in the right temporal lobe cortical volume may underlie the increased rate of anxiety symptoms among these LP children. These findings suggest that LP delivery may disrupt temporal and parietal cortical development that persists until school-age with the right temporal lobe conferring risk for elevated anxiety symptoms.
Collapse
Affiliation(s)
- Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO.
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; Department of Psychology, Washington University in St. Louis, St. Louis, MO; The Program in Neuroscience, Washington University in St. Louis, St. Louis, MO
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - David Pagliaccio
- The Program in Neuroscience, Washington University in St. Louis, St. Louis, MO
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
362
|
Jakab A, Schwartz E, Kasprian G, Gruber GM, Prayer D, Schöpf V, Langs G. Fetal functional imaging portrays heterogeneous development of emerging human brain networks. Front Hum Neurosci 2014; 8:852. [PMID: 25374531 PMCID: PMC4205819 DOI: 10.3389/fnhum.2014.00852] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/03/2014] [Indexed: 01/17/2023] Open
Abstract
The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.
Collapse
Affiliation(s)
- András Jakab
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Gregor Kasprian
- Division for Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Gerlinde M Gruber
- Department of Systematic Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna Vienna, Austria
| | - Daniela Prayer
- Division for Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Veronika Schöpf
- Division for Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria ; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
363
|
Abstract
Imaging studies suggest that individual differences in cognition and behavior might relate to differences in brain connectivity, particularly in the higher order association regions. Understanding the extent to which two brains can differ is crucial in clinical and basic neuroscience research. Here we highlight two major sources of variance that contribute to intersubject variability in connectivity measurements but are often mixed: the spatial distribution variability and the connection strength variability. We then offer a hypothesis about how the cortical surface expansion during human evolution may have led to remarkable intersubject variability in brain connectivity. We propose that a series of changes in connectivity architecture occurred in response to the pressure for processing efficiency in the enlarged brain. These changes not only distinguish us from our evolutionary ancestors, but also enable each individual to develop more uniquely. This hypothesis may gain support from the significant spatial correlations among evolutionary cortical expansion, the density of long-range connections, hemispheric functional specialization, and intersubject variability in connectivity.
Collapse
Affiliation(s)
- Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA, USA
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
364
|
Yang Y, Dai B, Howell P, Wang X, Li K, Lu C. White and grey matter changes in the language network during healthy aging. PLoS One 2014; 9:e108077. [PMID: 25251441 PMCID: PMC4176722 DOI: 10.1371/journal.pone.0108077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/25/2014] [Indexed: 01/19/2023] Open
Abstract
Neural structures change with age but there is no consensus on the exact processes involved. This study tested the hypothesis that white and grey matter in the language network changes during aging according to a “last in, first out” process. The fractional anisotropy (FA) of white matter and cortical thickness of grey matter were measured in 36 participants whose ages ranged from 55 to 79 years. Within the language network, the dorsal pathway connecting the mid-to-posterior superior temporal cortex (STC) and the inferior frontal cortex (IFC) was affected more by aging in both FA and thickness than the other dorsal pathway connecting the STC with the premotor cortex and the ventral pathway connecting the mid-to-anterior STC with the ventral IFC. These results were independently validated in a second group of 20 participants whose ages ranged from 50 to 73 years. The pathway that is most affected during aging matures later than the other two pathways (which are present at birth). The results are interpreted as showing that the neural structures which mature later are affected more than those that mature earlier, supporting the “last in, first out” theory.
Collapse
Affiliation(s)
- Yanhui Yang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
- Key Laboratory for Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
| | - Bohan Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
| | - Peter Howell
- Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Xianling Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
- Key Laboratory for Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
- Beijing Key laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, P.R. China
- * E-mail: (CL); (KL)
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
- * E-mail: (CL); (KL)
| |
Collapse
|
365
|
Amlien IK, Fjell AM, Tamnes CK, Grydeland H, Krogsrud SK, Chaplin TA, Rosa MGP, Walhovd KB. Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy. Cereb Cortex 2014; 26:257-267. [PMID: 25246511 DOI: 10.1093/cercor/bhu214] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque.
Collapse
Affiliation(s)
- Inge K Amlien
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, Oslo, Norway
| | - Christian K Tamnes
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Håkon Grydeland
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Stine K Krogsrud
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Tristan A Chaplin
- Department of Physiology.,Monash Vision Group, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, VIC, Australia
| | - Marcello G P Rosa
- Department of Physiology.,Monash Vision Group, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, VIC, Australia
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
366
|
Zakszewski E, Adluru N, Tromp DPM, Kalin N, Alexander AL. A diffusion-tensor-based white matter atlas for rhesus macaques. PLoS One 2014; 9:e107398. [PMID: 25203614 PMCID: PMC4159318 DOI: 10.1371/journal.pone.0107398] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/11/2014] [Indexed: 01/20/2023] Open
Abstract
Atlases of key white matter (WM) structures in humans are widely available, and are very useful for region of interest (ROI)-based analyses of WM properties. There are histology-based atlases of cortical areas in the rhesus macaque, but none currently of specific WM structures. Since ROI-based analysis of WM pathways is also useful in studies using rhesus diffusion tensor imaging (DTI) data, we have here created an atlas based on a publicly available DTI-based template of young rhesus macaques. The atlas was constructed to mimic the structure of an existing human atlas that is widely used, making results translatable between species. Parcellations were carefully hand-drawn on a principle-direction color-coded fractional anisotropy image of the population template. The resulting atlas can be used as a reference to which registration of individual rhesus data can be performed for the purpose of white-matter parcellation. Alternatively, specific ROIs from the atlas may be warped into individual space to be used in ROI-based group analyses. This atlas will be made publicly available so that it may be used as a resource for DTI studies of rhesus macaques.
Collapse
Affiliation(s)
- Elizabeth Zakszewski
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- Department of Medical Physics, University of Wisconsin - Madison, Wisconsin Institutes for Medical Research, Madison, Wisconsin, United States of America
| | - Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Do P. M. Tromp
- Health Emotions Research Institute, University of Wisconsin - Madison, Health Emotions Research Institute Madison, Wisconsin, United States of America
| | - Ned Kalin
- Health Emotions Research Institute, University of Wisconsin - Madison, Health Emotions Research Institute Madison, Wisconsin, United States of America
- Department of Psychiatry, University of Wisconsin - Madison, Wisconsin Psychiatric Institute & Clinics, Madison, Wisconsin, United States of America
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- Department of Psychiatry, University of Wisconsin - Madison, Wisconsin Psychiatric Institute & Clinics, Madison, Wisconsin, United States of America
- Department of Medical Physics, University of Wisconsin - Madison, Wisconsin Institutes for Medical Research, Madison, Wisconsin, United States of America
| |
Collapse
|
367
|
Savadjiev P, Rathi Y, Bouix S, Smith AR, Schultz RT, Verma R, Westin CF. Fusion of white and gray matter geometry: a framework for investigating brain development. Med Image Anal 2014; 18:1349-60. [PMID: 25066750 DOI: 10.1016/j.media.2014.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 06/05/2014] [Accepted: 06/30/2014] [Indexed: 01/11/2023]
Abstract
Current neuroimaging investigation of the white matter typically focuses on measurements derived from diffusion tensor imaging, such as fractional anisotropy (FA). In contrast, imaging studies of the gray matter oftentimes focus on morphological features such as cortical thickness, folding and surface curvature. As a result, it is not clear how to combine findings from these two types of approaches in order to obtain a consistent picture of morphological changes in both gray and white matter. In this paper, we propose a joint investigation of gray and white matter morphology by combining geometrical information from white and the gray matter. To achieve this, we first introduce a novel method for computing multi-scale white matter tract geometry. Its formulation is based on the differential geometry of curve sets and is easily incorporated into a continuous scale-space framework. We then incorporate this method into a novel framework for "fusing" white and gray matter geometrical information. Given a set of fiber tracts originating in a particular cortical region, the key idea is to compute two scalar fields that represent geometrical characteristics of the white matter and of the surface of the cortical region. A quantitative marker is created by combining the distributions of these scalar values using Mutual Information. This marker can be then used in the study of normal and pathological brain structure and development. We apply this framework to a study on autism spectrum disorder in children. Our preliminary results support the view that autism may be characterized by early brain overgrowth, followed by reduced or arrested growth (Courchesne, 2004).
Collapse
Affiliation(s)
- Peter Savadjiev
- Laboratory for Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alex R Smith
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ragini Verma
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl-Fredrik Westin
- Laboratory for Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
368
|
Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants. Neuroimage 2014; 100:206-18. [PMID: 24945660 DOI: 10.1016/j.neuroimage.2014.06.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/20/2014] [Accepted: 06/04/2014] [Indexed: 01/05/2023] Open
Abstract
Sulcal pits, the locally deepest points in sulci of the highly convoluted and variable cerebral cortex, are found to be spatially consistent across human adult individuals. It is suggested that sulcal pits are genetically controlled and have close relationships with functional areas. To date, the existing imaging studies of sulcal pits are mainly focused on adult brains, yet little is known about the spatial distribution and temporal development of sulcal pits in the first 2 years of life, which is the most dynamic and critical period of postnatal brain development. Studying sulcal pits during this period would greatly enrich our limited understandings of the origins and developmental trajectories of sulcal pits, and would also provide important insights into many neurodevelopmental disorders associated with abnormal cortical foldings. In this paper, by using surface-based morphometry, for the first time, we systemically investigated the spatial distribution and temporal development of sulcal pits in major cortical sulci from 73 healthy infants, each with three longitudinal 3T MR scans at term birth, 1 year, and 2 years of age. Our results suggest that the spatially consistent distributions of sulcal pits in major sulci across individuals have already existed at term birth and this spatial distribution pattern keeps relatively stable in the first 2 years of life, despite that the cerebral cortex expands dramatically and the sulcal depth increases considerably during this period. Specially, the depth of sulcal pits increases regionally heterogeneously, with more rapid growth in the high-order association cortex, including the prefrontal and temporal cortices, than the sensorimotor cortex in the first 2 years of life. Meanwhile, our results also suggest that there exist hemispheric asymmetries of the spatial distributions of sulcal pits in several cortical regions, such as the central, superior temporal and postcentral sulci, consistently from birth to 2 years of age, which likely has close relationships with the lateralization of brain functions of these regions. This study provides detailed insights into the spatial distribution and temporal development of deep sulcal landmarks in infants.
Collapse
|
369
|
Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog Neurobiol 2014; 117:20-40. [PMID: 24548606 DOI: 10.1016/pneurobio.2014.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/19/2013] [Accepted: 02/05/2014] [Indexed: 05/28/2023]
Abstract
What can be expected in normal aging, and where does normal aging stop and pathological neurodegeneration begin? With the slow progression of age-related dementias such as Alzheimer's disease (AD), it is difficult to distinguish age-related changes from effects of undetected disease. We review recent research on changes of the cerebral cortex and the hippocampus in aging and the borders between normal aging and AD. We argue that prominent cortical reductions are evident in fronto-temporal regions in elderly even with low probability of AD, including regions overlapping the default mode network. Importantly, these regions show high levels of amyloid deposition in AD, and are both structurally and functionally vulnerable early in the disease. This normalcy-pathology homology is critical to understand, since aging itself is the major risk factor for sporadic AD. Thus, rather than necessarily reflecting early signs of disease, these changes may be part of normal aging, and may inform on why the aging brain is so much more susceptible to AD than is the younger brain. We suggest that regions characterized by a high degree of life-long plasticity are vulnerable to detrimental effects of normal aging, and that this age-vulnerability renders them more susceptible to additional, pathological AD-related changes. We conclude that it will be difficult to understand AD without understanding why it preferably affects older brains, and that we need a model that accounts for age-related changes in AD-vulnerable regions independently of AD-pathology.
Collapse
Affiliation(s)
- Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway.
| | - Linda McEvoy
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA
| | - Dominic Holland
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, CA, USA
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA; Department of Radiology, University of California, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, CA, USA
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| |
Collapse
|
370
|
Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions. Brain Struct Funct 2014; 220:2315-31. [DOI: 10.1007/s00429-014-0789-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 04/25/2014] [Indexed: 01/06/2023]
|
371
|
Abstract
A parietal-frontal network in primates is thought to support many behaviors occurring in the space around the body, including interpersonal interactions and maintenance of a particular "comfort zone" or distance from other people ("personal space"). To better understand this network in humans, we used functional MRI to measure the responses to moving objects (faces, cars, simple spheres) and the functional connectivity of two regions in this network, the dorsal intraparietal sulcus (DIPS) and the ventral premotor cortex (PMv). We found that both areas responded more strongly to faces that were moving toward (vs away from) subjects, but did not show this bias in response to comparable motion in control stimuli (cars or spheres). Moreover, these two regions were functionally interconnected. Tests of activity-behavior associations revealed that the strength of DIPS-PMv connectivity was correlated with the preferred distance that subjects chose to stand from an unfamiliar person (personal space size). In addition, the magnitude of DIPS and PMv responses was correlated with the preferred level of social activity. Together, these findings suggest that this parietal-frontal network plays a role in everyday interactions with others.
Collapse
|
372
|
Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J Neurosci 2014; 34:4228-38. [PMID: 24647943 DOI: 10.1523/jneurosci.3976-13.2014] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human cortical folding is believed to correlate with cognitive functions. This likely correlation may have something to do with why abnormalities of cortical folding have been found in many neurodevelopmental disorders. However, little is known about how cortical gyrification, the cortical folding process, develops in the first 2 years of life, a period of dynamic and regionally heterogeneous cortex growth. In this article, we show how we developed a novel infant-specific method for mapping longitudinal development of local cortical gyrification in infants. By using this method, via 219 longitudinal 3T magnetic resonance imaging scans from 73 healthy infants, we systemically and quantitatively characterized for the first time the longitudinal cortical global gyrification index (GI) and local GI (LGI) development in the first 2 years of life. We found that the cortical GI had age-related and marked development, with 16.1% increase in the first year and 6.6% increase in the second year. We also found marked and regionally heterogeneous cortical LGI development in the first 2 years of life, with the high-growth regions located in the association cortex, whereas the low-growth regions located in sensorimotor, auditory, and visual cortices. Meanwhile, we also showed that LGI growth in most cortical regions was positively correlated with the brain volume growth, which is particularly significant in the prefrontal cortex in the first year. In addition, we observed gender differences in both cortical GIs and LGIs in the first 2 years, with the males having larger GIs than females at 2 years of age. This study provides valuable information on normal cortical folding development in infancy and early childhood.
Collapse
|
373
|
Mills KL, Tamnes CK. Methods and considerations for longitudinal structural brain imaging analysis across development. Dev Cogn Neurosci 2014; 9:172-90. [PMID: 24879112 PMCID: PMC6989768 DOI: 10.1016/j.dcn.2014.04.004] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/14/2014] [Accepted: 04/25/2014] [Indexed: 11/29/2022] Open
Abstract
There have now been several longitudinal studies of structural brain development. We discuss current methods and analysis techniques in longitudinal MRI. We relate MRI measures to possible underlying physiological mechanisms. We encourage more open discussion amongst researchers regarding best practices.
Magnetic resonance imaging (MRI) has allowed the unprecedented capability to measure the human brain in vivo. This technique has paved the way for longitudinal studies exploring brain changes across the entire life span. Results from these studies have given us a glimpse into the remarkably extended and multifaceted development of our brain, converging with evidence from anatomical and histological studies. Ever-evolving techniques and analytical methods provide new avenues to explore and questions to consider, requiring researchers to balance excitement with caution. This review addresses what MRI studies of structural brain development in children and adolescents typically measure and how. We focus on measurements of brain morphometry (e.g., volume, cortical thickness, surface area, folding patterns), as well as measurements derived from diffusion tensor imaging (DTI). By integrating finding from multiple longitudinal investigations, we give an update on current knowledge of structural brain development and how it relates to other aspects of biological development and possible underlying physiological mechanisms. Further, we review and discuss current strategies in image processing, analysis techniques and modeling of brain development. We hope this review will aid current and future longitudinal investigations of brain development, as well as evoke a discussion amongst researchers regarding best practices.
Collapse
Affiliation(s)
- Kathryn L Mills
- Institute of Cognitive Neuroscience, University College London, London, UK; Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | - Christian K Tamnes
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
374
|
Comparative analysis of the macroscale structural connectivity in the macaque and human brain. PLoS Comput Biol 2014; 10:e1003529. [PMID: 24676052 PMCID: PMC3967942 DOI: 10.1371/journal.pcbi.1003529] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 02/07/2014] [Indexed: 01/29/2023] Open
Abstract
The macaque brain serves as a model for the human brain, but its suitability is challenged by unique human features, including connectivity reconfigurations, which emerged during primate evolution. We perform a quantitative comparative analysis of the whole brain macroscale structural connectivity of the two species. Our findings suggest that the human and macaque brain as a whole are similarly wired. A region-wise analysis reveals many interspecies similarities of connectivity patterns, but also lack thereof, primarily involving cingulate regions. We unravel a common structural backbone in both species involving a highly overlapping set of regions. This structural backbone, important for mediating information across the brain, seems to constitute a feature of the primate brain persevering evolution. Our findings illustrate novel evolutionary aspects at the macroscale connectivity level and offer a quantitative translational bridge between macaque and human research. What are the commonalities and differences of human brains when compared to the brains of other primates? The brain can be conceived as a complex network. Its topological properties constrain its function. Ethical and technical reasons necessitate the use of animal brains, like the macaque monkey, as models for the human brain. However, evolutionary changes, including “brain rewiring”, might result in unique human features. Hence, a detailed and quantitative comparative analysis of the connectivity of the brains of the two species is needed. Here, we undertake this task by adopting techniques analogous to those used in comparative studies in other scientific fields. Our approach reveals converging but also diverging wiring patterns. The brain of the two species as a whole is similarly wired. The majority of the brain regions appear to have evolutionary conserved connectivity patterns while for certain regions this appears not to be the case. We also uncover an evolutionary conserved “structural backbone” in the brain of the two species. Our findings highlight common and unique “wiring properties” of the brains of these two primate species and offer a quantitative basis for translating findings from macaque research to human research.
Collapse
|
375
|
Fjell AM, Amlien IK, Sneve MH, Grydeland H, Tamnes CK, Chaplin TA, Rosa MGP, Walhovd KB. The Roots of Alzheimer's Disease: Are High-Expanding Cortical Areas Preferentially Targeted?†. Cereb Cortex 2014; 25:2556-65. [PMID: 24658616 DOI: 10.1093/cercor/bhu055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is regarded a human-specific condition, and it has been suggested that brain regions highly expanded in humans compared with other primates are selectively targeted. We calculated shared and unique variance in the distribution of AD atrophy accounted for by cortical expansion between macaque and human, affiliation to the default mode network (DMN), ontogenetic development and normal aging. Cortical expansion was moderately related to atrophy, but a critical discrepancy was seen in the medial temporo-parietal episodic memory network. Identification of "hotspots" and "coldspots" of expansion across several primate species did not yield compelling evidence for the hypothesis that highly expanded regions are specifically targeted. Controlling for distribution of atrophy in aging substantially attenuated the expansion-AD relationship. A path model showed that all variables explained unique variance in AD atrophy but were generally mediated through aging. This supports a systems-vulnerability model, where critical networks are subject to various negative impacts, aging in particular, rather than being selectively targeted in AD. An alternative approach is suggested, focused on the interplay of the phylogenetically old and preserved medial temporal lobe areas with more highly expanded association cortices governed by different principles of plasticity and stability.
Collapse
Affiliation(s)
- Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Norway Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, 0424 Norway
| | - Inge K Amlien
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Norway
| | - Markus H Sneve
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Norway
| | - Håkon Grydeland
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Norway
| | - Christian K Tamnes
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Norway
| | - Tristan A Chaplin
- Department of Physiology and Monash Vision Group, Monash University, Clayton, Victoria 3800, Australia ARC Centre of Excellence for Integrative Brain Function, Clayton, Victoria 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Monash Vision Group, Monash University, Clayton, Victoria 3800, Australia ARC Centre of Excellence for Integrative Brain Function, Clayton, Victoria 3800, Australia
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Norway Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, 0424 Norway
| |
Collapse
|
376
|
Abstract
Pletikos et al. (2014) demonstrate in this issue of Neuron that the human neocortex has an "hourglass" temporal gene expression pattern with robust and dynamic transcriptome differences during the prenatal and adolescent/adult periods. Similar changes are not observed in the nonhuman primate-is this what makes us human?
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| | - Károly Mirnics
- Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
377
|
Lyall AE, Shi F, Geng X, Woolson S, Li G, Wang L, Hamer RM, Shen D, Gilmore JH. Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood. Cereb Cortex 2014; 25:2204-12. [PMID: 24591525 DOI: 10.1093/cercor/bhu027] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cortical thickness (CT) and surface area (SA) are altered in many neuropsychiatric disorders and are correlated with cognitive functioning. Little is known about how these components of cortical gray matter develop in the first years of life. We studied the longitudinal development of regional CT and SA expansion in healthy infants from birth to 2 years. CT and SA have distinct and heterogeneous patterns of development that are exceptionally dynamic; overall CT increases by an average of 36.1%, while cortical SA increases 114.6%. By age 2, CT is on average 97% of adult values, compared with SA, which is 69%. This suggests that early identification, prevention, and intervention strategies for neuropsychiatric illness need to be targeted to this period of rapid postnatal brain development, and that SA expansion is the principal driving factor in cortical volume after 2 years of age.
Collapse
Affiliation(s)
| | - Feng Shi
- Biomedical Research Imaging Center Department of Radiology
| | | | | | - Gang Li
- Biomedical Research Imaging Center Department of Radiology
| | - Li Wang
- Biomedical Research Imaging Center Department of Radiology
| | - Robert M Hamer
- Department of Psychiatry Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7160, USA
| | - Dinggang Shen
- Biomedical Research Imaging Center Department of Radiology
| | - John H Gilmore
- Department of Psychiatry Biomedical Research Imaging Center
| |
Collapse
|
378
|
Román FJ, Abad FJ, Escorial S, Burgaleta M, Martínez K, Álvarez-Linera J, Quiroga MÁ, Karama S, Haier RJ, Colom R. Reversed hierarchy in the brain for general and specific cognitive abilities: a morphometric analysis. Hum Brain Mapp 2014; 35:3805-18. [PMID: 24677433 DOI: 10.1002/hbm.22438] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/16/2013] [Accepted: 11/11/2013] [Indexed: 11/12/2022] Open
Abstract
Intelligence is composed of a set of cognitive abilities hierarchically organized. General and specific abilities capture distinguishable, but related, facets of the intelligence construct. Here, we analyze gray matter with three morphometric indices (volume, cortical surface area, and cortical thickness) at three levels of the intelligence hierarchy (tests, first-order factors, and a higher-order general factor, g). A group of one hundred and four healthy young adults completed a cognitive battery and underwent high-resolution structural MRI. Latent scores were computed for the intelligence factors and tests were also analyzed. The key finding reveals substantial variability in gray matter correlates at the test level, which is substantially reduced for the first-order and the higher-order factors. This supports a reversed hierarchy in the brain with respect to cognitive abilities at different psychometric levels: the greater the generality, the smaller the number of relevant gray matter clusters accounting for individual differences in intelligent performance.
Collapse
Affiliation(s)
- Francisco J Román
- Facultad de Psicología, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Fundación CIEN - Fundación Reina Sofía, 28031, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Vuoksimaa E, Panizzon MS, Chen CH, Fiecas M, Eyler LT, Fennema-Notestine C, Hagler DJ, Fischl B, Franz CE, Jak A, Lyons MJ, Neale MC, Rinker DA, Thompson WK, Tsuang MT, Dale AM, Kremen WS. The Genetic Association Between Neocortical Volume and General Cognitive Ability Is Driven by Global Surface Area Rather Than Thickness. Cereb Cortex 2014; 25:2127-37. [PMID: 24554725 DOI: 10.1093/cercor/bhu018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Total gray matter volume is associated with general cognitive ability (GCA), an association mediated by genetic factors. It is expectable that total neocortical volume should be similarly associated with GCA. Neocortical volume is the product of thickness and surface area, but global thickness and surface area are unrelated phenotypically and genetically in humans. The nature of the genetic association between GCA and either of these 2 cortical dimensions has not been examined. Humans possess greater cognitive capacity than other species, and surface area increases appear to be the primary driver of the increased size of the human cortex. Thus, we expected neocortical surface area to be more strongly associated with cognition than thickness. Using multivariate genetic analysis in 515 middle-aged twins, we demonstrated that both the phenotypic and genetic associations between neocortical volume and GCA are driven primarily by surface area rather than thickness. Results were generally similar for each of 4 specific cognitive abilities that comprised the GCA measure. Our results suggest that emphasis on neocortical surface area, rather than thickness, could be more fruitful for elucidating neocortical-GCA associations and identifying specific genes underlying those associations.
Collapse
Affiliation(s)
- Eero Vuoksimaa
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Matthew S Panizzon
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory
| | - Chi-Hua Chen
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory
| | - Mark Fiecas
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory
| | - Lisa T Eyler
- Department of Psychiatry Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| | | | | | - Bruce Fischl
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carol E Franz
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory
| | - Amy Jak
- Department of Psychiatry Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Michael J Lyons
- Department of Psychology, Boston University, Boston, MA, USA
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | | | - Ming T Tsuang
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory
| | - Anders M Dale
- Department of Radiology and Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - William S Kremen
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
380
|
Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog Neurobiol 2014; 117:20-40. [PMID: 24548606 DOI: 10.1016/j.pneurobio.2014.02.004] [Citation(s) in RCA: 523] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/19/2013] [Accepted: 02/05/2014] [Indexed: 01/18/2023]
Abstract
What can be expected in normal aging, and where does normal aging stop and pathological neurodegeneration begin? With the slow progression of age-related dementias such as Alzheimer's disease (AD), it is difficult to distinguish age-related changes from effects of undetected disease. We review recent research on changes of the cerebral cortex and the hippocampus in aging and the borders between normal aging and AD. We argue that prominent cortical reductions are evident in fronto-temporal regions in elderly even with low probability of AD, including regions overlapping the default mode network. Importantly, these regions show high levels of amyloid deposition in AD, and are both structurally and functionally vulnerable early in the disease. This normalcy-pathology homology is critical to understand, since aging itself is the major risk factor for sporadic AD. Thus, rather than necessarily reflecting early signs of disease, these changes may be part of normal aging, and may inform on why the aging brain is so much more susceptible to AD than is the younger brain. We suggest that regions characterized by a high degree of life-long plasticity are vulnerable to detrimental effects of normal aging, and that this age-vulnerability renders them more susceptible to additional, pathological AD-related changes. We conclude that it will be difficult to understand AD without understanding why it preferably affects older brains, and that we need a model that accounts for age-related changes in AD-vulnerable regions independently of AD-pathology.
Collapse
Affiliation(s)
- Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway.
| | - Linda McEvoy
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA
| | - Dominic Holland
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, CA, USA
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA; Department of Radiology, University of California, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, CA, USA
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| |
Collapse
|
381
|
Wierenga LM, Langen M, Oranje B, Durston S. Unique developmental trajectories of cortical thickness and surface area. Neuroimage 2014; 87:120-6. [DOI: 10.1016/j.neuroimage.2013.11.010] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022] Open
|
382
|
Longitudinal four-dimensional mapping of subcortical anatomy in human development. Proc Natl Acad Sci U S A 2014; 111:1592-7. [PMID: 24474784 DOI: 10.1073/pnas.1316911111] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Growing access to large-scale longitudinal structural neuroimaging data has fundamentally altered our understanding of cortical development en route to human adulthood, with consequences for basic science, medicine, and public policy. In striking contrast, basic anatomical development of subcortical structures such as the striatum, pallidum, and thalamus has remained poorly described--despite these evolutionarily ancient structures being both intimate working partners of the cortical sheet and critical to diverse developmentally emergent skills and disorders. Here, to begin addressing this disparity, we apply methods for the measurement of subcortical volume and shape to 1,171 longitudinally acquired structural magnetic resonance imaging brain scans from 618 typically developing males and females aged 5-25 y. We show that the striatum, pallidum, and thalamus each follow curvilinear trajectories of volume change, which, for the striatum and thalamus, peak after cortical volume has already begun to decline and show a relative delay in males. Four-dimensional mapping of subcortical shape reveals that (i) striatal, pallidal, and thalamic domains linked to specific fronto-parietal association cortices contract with age whereas other subcortical territories expand, and (ii) each structure harbors hotspots of sexually dimorphic change over adolescence--with relevance for sex-biased mental disorders emerging in youth. By establishing the developmental dynamism, spatial heterochonicity, and sexual dimorphism of human subcortical maturation, these data bring our spatiotemporal understanding of subcortical development closer to that of the cortex--allowing evolutionary, basic, and clinical neuroscience to be conducted within a more comprehensive developmental framework.
Collapse
|
383
|
Elvsåshagen T, Moberget T, Bøen E, Hol PK, Malt UF, Andersson S, Westlye LT. The surface area of early visual cortex predicts the amplitude of the visual evoked potential. Brain Struct Funct 2014; 220:1229-36. [DOI: 10.1007/s00429-013-0703-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 12/30/2013] [Indexed: 01/17/2023]
|
384
|
Affiliation(s)
- Sarah-Jayne Blakemore
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3HT United Kingdom;
| | - Kathryn L. Mills
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3HT United Kingdom;
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
385
|
Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 2013; 80:807-15. [PMID: 24183029 DOI: 10.1016/j.neuron.2013.10.044] [Citation(s) in RCA: 741] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Twenty-five years ago the first human functional neuroimaging studies of cognition discovered a surprising response in the cerebellum that could not be attributed to motor demands. This controversial observation challenged the well-entrenched view that the cerebellum solely contributes to the planning and execution of movement. Recurring neuroimaging findings combined with key insights from anatomy and case studies of neurological patients motivated a reconsideration of the traditional model of cerebellar organization and function. The majority of the human cerebellum maps to cerebral association networks in an orderly manner that includes a mirroring of the prominent cerebral asymmetries for language and attention. These findings inspire exploration of the cerebellum's contributions to a diverse array of functional domains and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Randy L Buckner
- Harvard University Department of Psychology, Center for Brain Science, Cambridge, MA 02138, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
386
|
Li G, Nie J, Wang L, Shi F, Gilmore JH, Lin W, Shen D. Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces. Neuroimage 2013; 90:266-79. [PMID: 24374075 DOI: 10.1016/j.neuroimage.2013.12.038] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 12/19/2022] Open
Abstract
Quantitative measurement of the dynamic longitudinal cortex development during early postnatal stages is of great importance to understand the early cortical structural and functional development. Conventional methods usually reconstruct the cortical surfaces of longitudinal images from the same subject independently, which often generate longitudinally-inconsistent cortical surfaces and thus lead to inaccurate measurement of cortical changes, especially for vertex-wise mapping of cortical development. This paper aims to address this problem by presenting a method to reconstruct temporally-consistent cortical surfaces from longitudinal infant brain MR images, for accurate and consistent measurement of the dynamic cortex development in infants. Specifically, the longitudinal development of the inner cortical surface is first modeled by a deformable growth sheet with elasto-plasticity property to establish longitudinally smooth correspondences of the inner cortical surfaces. Then, the modeled longitudinal inner cortical surfaces are jointly deformed to locate both inner and outer cortical surfaces with a spatial-temporal deformable surface method. The method has been applied to 13 healthy infants, each with 6 serial MR scans acquired at 2 weeks, 3 months, 6 months, 9 months, 12 months and 18 months of age. Experimental results showed that our method with the incorporated longitudinal constraints can reconstruct the longitudinally-dynamic cortical surfaces from serial infant MR images more consistently and accurately than the previously published methods. By using our method, for the first time, we can characterize the vertex-wise longitudinal cortical thickness development trajectory at multiple time points in the first 18 months of life. Specifically, we found the highly age-related and regionally-heterogeneous developmental trajectories of the cortical thickness during this period, with the cortical thickness increased most from 3 to 6 months (16.2%) and least from 9 to 12 months (less than 0.1%). Specifically, the central sulcus only underwent significant increase of cortical thickness from 6 to 9 months and the occipital cortex underwent significant increase from 0 to 9 months, while the frontal, temporal and parietal cortices grew continuously in this first 18 months of life. The adult-like spatial patterns of cortical thickness were generally present at 18 months of age. These results provided detailed insights into the dynamic trajectory of the cortical thickness development in infants.
Collapse
Affiliation(s)
- Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Jingxin Nie
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA; School of Psychology, South China Normal University, Guangdong, China
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Feng Shi
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea.
| |
Collapse
|
387
|
Pletikos M, Sousa AMM, Sedmak G, Meyer KA, Zhu Y, Cheng F, Li M, Kawasawa YI, Sestan N. Temporal specification and bilaterality of human neocortical topographic gene expression. Neuron 2013; 81:321-32. [PMID: 24373884 DOI: 10.1016/j.neuron.2013.11.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 01/09/2023]
Abstract
Transcriptional events involved in the development of human cerebral neocortex are poorly understood. Here, we analyzed the temporal dynamics and laterality of gene expression in human and macaque monkey neocortex. We found that interareal differences exhibit a temporal hourglass pattern, dividing the human neocortical development into three major phases. The first phase, corresponding to prenatal development, is characterized by the highest number of differential expressed genes among areas and gradient-like expression patterns, including those that are different between human and macaque. The second, preadolescent phase, is characterized by lesser interareal expression differences and by an increased synchronization of areal transcriptomes. During the third phase, from adolescence onward, differential expression among areas increases again driven predominantly by a subset of areas, without obvious gradient-like patterns. Analyses of left-right gene expression revealed population-level global symmetry throughout the fetal and postnatal time span. Thus, human neocortical topographic gene expression is temporally specified and globally symmetric.
Collapse
Affiliation(s)
- Mihovil Pletikos
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Graduate Program in Neuroscience, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - André M M Sousa
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Goran Sedmak
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Graduate Program in Neuroscience, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Kyle A Meyer
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ying Zhu
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Feng Cheng
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Mingfeng Li
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yuka Imamura Kawasawa
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
388
|
Eisen A, Turner MR, Lemon R. Tools and talk: An evolutionary perspective on the functional deficits associated with amyotrophic lateral sclerosis. Muscle Nerve 2013; 49:469-77. [DOI: 10.1002/mus.24132] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/28/2013] [Accepted: 11/21/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Andrew Eisen
- Division of Neurology; University of British Columbia; 2826 Highbury Street Vancouver BC V6R 3T6 Canada
| | - Martin R. Turner
- Medical Research Council and Motor Neurone Disease Association Lady Edith Wolfson Senior Clinical Fellow; Oxford University Nuffield Department of Clinical Neurosciences; Oxford United Kingdom
| | - Roger Lemon
- Sobell Department of Motor Neuroscience and Movement Disorders; Institute of Neurology; Queen Square London United Kingdom
| |
Collapse
|
389
|
Perez SE, Raghanti MA, Hof PR, Kramer L, Ikonomovic MD, Lacor PN, Erwin JM, Sherwood CC, Mufson EJ. Alzheimer's disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla). J Comp Neurol 2013; 521:4318-38. [PMID: 23881733 PMCID: PMC6317365 DOI: 10.1002/cne.23428] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/28/2013] [Accepted: 07/10/2013] [Indexed: 12/11/2022]
Abstract
The two major histopathologic hallmarks of Alzheimer's disease (AD) are amyloid beta protein (Aβ) plaques and neurofibrillary tangles (NFT). Aβ pathology is a common feature in the aged nonhuman primate brain, whereas NFT are found almost exclusively in humans. Few studies have examined AD-related pathology in great apes, which are the closest phylogenetic relatives of humans. In the present study, we examined Aβ and tau-like lesions in the neocortex and hippocampus of aged male and female western lowland gorillas using immunohistochemistry and histochemistry. Analysis revealed an age-related increase in Aβ-immunoreactive plaques and vasculature in the gorilla brain. Aβ plaques were more abundant in the neocortex and hippocampus of females, whereas Aβ-positive blood vessels were more widespread in male gorillas. Plaques were also Aβ40-, Aβ42-, and Aβ oligomer-immunoreactive, but only weakly thioflavine S- or 6-CN-PiB-positive in both sexes, indicative of the less fibrillar (diffuse) nature of Aβ plaques in gorillas. Although phosphorylated neurofilament immunostaining revealed a few dystrophic neurites and neurons, choline acetyltransferase-immunoreactive fibers were not dystrophic. Neurons stained for the tau marker Alz50 were found in the neocortex and hippocampus of gorillas at all ages. Occasional Alz50-, MC1-, and AT8-immunoreactive astrocyte and oligodendrocyte coiled bodies and neuritic clusters were seen in the neocortex and hippocampus of the oldest gorillas. This study demonstrates the spontaneous presence of both Aβ plaques and tau-like lesions in the neocortex and hippocampus in old male and female western lowland gorillas, placing this species at relevance in the context of AD research.
Collapse
Affiliation(s)
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242
- Cleveland Metroparks Zoo, Cleveland, Ohio 44109
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | | | - Milos D. Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pennsylvania 15213
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pennsylvania 15213
| | - Pascale N. Lacor
- Neurobiology Department and Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University, Evanston, Illinois 60208
| | - Joseph M. Erwin
- Department of Anthropology, The George Washington University, Washington, DC 20052
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC 20052
| | | |
Collapse
|
390
|
Teffer K, Buxhoeveden DP, Stimpson CD, Fobbs AJ, Schapiro SJ, Baze WB, McArthur MJ, Hopkins WD, Hof PR, Sherwood CC, Semendeferi K. Developmental changes in the spatial organization of neurons in the neocortex of humans and common chimpanzees. J Comp Neurol 2013; 521:4249-59. [PMID: 23839595 PMCID: PMC4041080 DOI: 10.1002/cne.23412] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/16/2013] [Accepted: 06/28/2013] [Indexed: 01/01/2023]
Abstract
In adult humans the prefrontal cortex possesses wider minicolumns and more neuropil space than other cortical regions. These aspects of prefrontal cortex architecture, furthermore, are increased in comparison to chimpanzees and other great apes. In order to determine the developmental appearance of this human cortical specialization, we examined the spatial organization of neurons in four cortical regions (frontal pole [Brodmann's area 10], primary motor [area 4], primary somatosensory [area 3b], and prestriate visual cortex [area 18]) in chimpanzees and humans from birth to approximately the time of adolescence (11 years of age). Horizontal spacing distance (HSD) and gray level ratio (GLR) of layer III neurons were measured in Nissl-stained sections. In both human and chimpanzee area 10, HSD was significantly higher in the postweaning specimens compared to the preweaning ones. No significant age-related differences were seen in the other regions in either species. In concert with other recent studies, the current findings suggest that there is a relatively slower maturation of area 10 in both humans and chimpanzees as compared to other cortical regions, and that further refinement of the spatial organization of neurons within this prefrontal area in humans takes place after the postweaning periods included here.
Collapse
Affiliation(s)
- Kate Teffer
- Anthropology Department, University of California, San Diego, 92093
| | | | - Cheryl D. Stimpson
- Anthropology Department, The George Washington University, Washington DC, 20052
| | | | - Steven J. Schapiro
- Department of Veterinary Sciences, The University of Texas M. D. Anderson Cancer Center, Bastrop, TX, 78602
| | - Wallace B. Baze
- Department of Veterinary Sciences, The University of Texas M. D. Anderson Cancer Center, Bastrop, TX, 78602
| | - Mark J. McArthur
- Department of Veterinary Sciences, The University of Texas M. D. Anderson Cancer Center, Bastrop, TX, 78602
| | - William D. Hopkins
- Institute for Neuroscience, Georgia State University, Atlanta, GA, 30303
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- New York Consortium in Evolutionary Primatology, New York, NY
| | - Chet C. Sherwood
- Anthropology Department, The George Washington University, Washington DC, 20052
| | - Katerina Semendeferi
- Anthropology Department, University of California, San Diego, 92093
- Neuroscience Graduate Program, University of California, San Diego, 92093
| |
Collapse
|
391
|
Buckner RL, Krienen FM. The evolution of distributed association networks in the human brain. Trends Cogn Sci 2013; 17:648-65. [DOI: 10.1016/j.tics.2013.09.017] [Citation(s) in RCA: 475] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/28/2013] [Accepted: 09/30/2013] [Indexed: 01/25/2023]
|
392
|
Bonte M, Frost MA, Rutten S, Ley A, Formisano E, Goebel R. Development from childhood to adulthood increases morphological and functional inter-individual variability in the right superior temporal cortex. Neuroimage 2013; 83:739-50. [DOI: 10.1016/j.neuroimage.2013.07.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 01/05/2023] Open
|
393
|
Abstract
The layout of areas in the cerebral cortex of different primates is quite similar, despite significant variations in brain size. However, it is clear that larger brains are not simply scaled up versions of smaller brains: some regions of the cortex are disproportionately large in larger species. It is currently debated whether these expanded areas arise through natural selection pressures for increased cognitive capacity or as a result of the application of a common developmental sequence on different scales. Here, we used computational methods to map and quantify the expansion of the cortex in simian primates of different sizes to investigate whether there is any common pattern of cortical expansion. Surface models of the marmoset, capuchin, and macaque monkey cortex were registered using the software package CARET and the spherical landmark vector difference algorithm. The registration was constrained by the location of identified homologous cortical areas. When comparing marmosets with both capuchins and macaques, we found a high degree of expansion in the temporal parietal junction, the ventrolateral prefrontal cortex, and the dorsal anterior cingulate cortex, all of which are high-level association areas typically involved in complex cognitive and behavioral functions. These expanded maps correlated well with previously published macaque to human registrations, suggesting that there is a general pattern of primate cortical scaling.
Collapse
|
394
|
Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance. Brain Struct Funct 2013; 219:1149-67. [DOI: 10.1007/s00429-013-0662-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022]
|
395
|
Yeo BTT, Krienen FM, Chee MWL, Buckner RL. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. Neuroimage 2013; 88:212-27. [PMID: 24185018 DOI: 10.1016/j.neuroimage.2013.10.046] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/30/2022] Open
Abstract
The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP.
Collapse
Affiliation(s)
- B T Thomas Yeo
- Center for Cognitive Neuroscience, Duke-NUS Graduate Medical School, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Fenna M Krienen
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, USA
| | - Michael W L Chee
- Center for Cognitive Neuroscience, Duke-NUS Graduate Medical School, Singapore
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, USA
| |
Collapse
|
396
|
Burgaleta M, Johnson W, Waber DP, Colom R, Karama S. Cognitive ability changes and dynamics of cortical thickness development in healthy children and adolescents. Neuroimage 2013; 84:810-9. [PMID: 24071525 DOI: 10.1016/j.neuroimage.2013.09.038] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/15/2013] [Indexed: 01/18/2023] Open
Abstract
Intelligence quotient (IQ) scores tend to remain stable across the lifespan. Nevertheless, in some healthy individuals, significant decreases or increases in IQ have been observed over time. It is unclear whether such changes reflect true functional change or merely measurement error. Here, we applied surface-based corticometry to investigate vertex-wise cortical surface area and thickness correlates of changes in Full Scale IQ (FSIQ), Performance IQ (PIQ) and Verbal IQ (VIQ) in a representative sample of children and adolescents (n=188, mean age=11.59years) assessed two years apart as part of the NIH Study of Normal Brain Development. No significant associations between changes in IQ measures and changes in cortical surface area were observed, whereas changes in FSIQ, PIQ, and VIQ were related to rates of cortical thinning, mainly in left frontal areas. Participants who showed reliable gains in FSIQ showed no significant changes in cortical thickness on average, whereas those who exhibited no significant FSIQ change showed moderate declines in cortical thickness. Importantly, individuals who showed large decreases in FSIQ displayed the steepest and most significant reductions in cortical thickness. Results support the view that there can be meaningful cognitive ability changes that impact IQ within relatively short developmental periods and show that such changes are associated with the dynamics of cortical thickness development.
Collapse
Affiliation(s)
- Miguel Burgaleta
- Universidad Autónoma de Madrid, Spain; Universitat Pompeu Fabra, Spain
| | | | | | | | | |
Collapse
|
397
|
Kilb W, Kirischuk S, Luhmann HJ. Role of tonic GABAergic currents during pre- and early postnatal rodent development. Front Neural Circuits 2013; 7:139. [PMID: 24027498 PMCID: PMC3760143 DOI: 10.3389/fncir.2013.00139] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/16/2013] [Indexed: 11/13/2022] Open
Abstract
In the last three decades it became evident that the GABAergic system plays an essential role for the development of the central nervous system, by influencing the proliferation of neuronal precursors, neuronal migration and differentiation, as well as by controlling early activity patterns and thus formation of neuronal networks. GABA controls neuronal development via depolarizing membrane responses upon activation of ionotropic GABA receptors. However, many of these effects occur before the onset of synaptic GABAergic activity and thus require the presence of extrasynaptic tonic currents in neuronal precursors and immature neurons. This review summarizes our current knowledge about the role of tonic GABAergic currents during early brain development. In this review we compare the temporal sequence of the expression and functional relevance of different GABA receptor subunits, GABA synthesizing enzymes and GABA transporters. We also refer to other possible endogenous agonists of GABAA receptors. In addition, we describe functional consequences mediated by the GABAergic system during early developmental periods and discuss current models about the origin of extrasynaptic GABA and/or other endogenous GABAergic agonists during early developmental states. Finally, we present evidence that tonic GABAergic activity is also critically involved in the generation of physiological as well as pathophysiological activity patterns before and after the establishment of functional GABAergic synaptic connections.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology and Pathophysiology, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | | | | |
Collapse
|
398
|
Fjell AM, Westlye LT, Amlien I, Tamnes CK, Grydeland H, Engvig A, Espeseth T, Reinvang I, Lundervold AJ, Lundervold A, Walhovd KB. High-expanding cortical regions in human development and evolution are related to higher intellectual abilities. Cereb Cortex 2013; 25:26-34. [PMID: 23960203 DOI: 10.1093/cercor/bht201] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cortical surface area has tremendously expanded during human evolution, and similar patterns of cortical expansion have been observed during childhood development. An intriguing hypothesis is that the high-expanding cortical regions also show the strongest correlations with intellectual function in humans. However, we do not know how the regional distribution of correlations between intellectual function and cortical area maps onto expansion in development and evolution. Here, in a sample of 1048 participants, we show that regions in which cortical area correlates with visuospatial reasoning abilities are generally high expanding in both development and evolution. Several regions in the frontal cortex, especially the anterior cingulate, showed high expansion in both development and evolution. The area of these regions was related to intellectual functions in humans. Low-expanding areas were not related to cognitive scores. These findings suggest that cortical regions involved in higher intellectual functions have expanded the most during development and evolution. The radial unit hypothesis provides a common framework for interpretation of the findings in the context of evolution and prenatal development, while additional cellular mechanisms, such as synaptogenesis, gliogenesis, dendritic arborization, and intracortical myelination, likely impact area expansion in later childhood.
Collapse
Affiliation(s)
- Anders M Fjell
- Department of Psychology, Research Group for Lifespan Changes in Brain and Cognition
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Inge Amlien
- Department of Psychology, Research Group for Lifespan Changes in Brain and Cognition
| | - Christian K Tamnes
- Department of Psychology, Research Group for Lifespan Changes in Brain and Cognition
| | - Håkon Grydeland
- Department of Psychology, Research Group for Lifespan Changes in Brain and Cognition
| | - Andreas Engvig
- Department of Psychology, Research Group for Lifespan Changes in Brain and Cognition
| | | | - Ivar Reinvang
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Astri J Lundervold
- Department of Biological and Medical Psychology K.G. Jebsen Center for Research on Neuropsychiatric Disorders
| | - Arvid Lundervold
- Department of Biomedicine, University of Bergen, Bergen, Norway and Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kristine B Walhovd
- Department of Psychology, Research Group for Lifespan Changes in Brain and Cognition
| |
Collapse
|
399
|
Mesmoudi S, Perlbarg V, Rudrauf D, Messe A, Pinsard B, Hasboun D, Cioli C, Marrelec G, Toro R, Benali H, Burnod Y. Resting state networks' corticotopy: the dual intertwined rings architecture. PLoS One 2013; 8:e67444. [PMID: 23894288 PMCID: PMC3722222 DOI: 10.1371/journal.pone.0067444] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/20/2013] [Indexed: 11/18/2022] Open
Abstract
How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called "the dual intertwined rings architecture") that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or "corticotopy"). Recent results suggest that the resting state networks (RSNs) are organized into two large families: 1) a sensorimotor family that includes visual, somatic, and auditory areas and 2) a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1) the RSN functional roles by using a projection of the results on task based networks (TBNs) as referenced in large databases of fMRI activation studies; and (2) relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring). The second ring integrates distant parietal, temporal and frontal regions (PTF ring) through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This "dual intertwined architecture" suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi-temporal integration (i.e., relates past, present, and future representations at different temporal scales).
Collapse
Affiliation(s)
- Salma Mesmoudi
- UMR-S 678, Laboratoire d'Imagerie Fonctionnelle, Inserm Univ. Pierre et Marie Curie, Paris 6, Paris, France
- Univ. Paris 1, MATRICE Program, Paris, France
| | - Vincent Perlbarg
- UMR-S 678, Laboratoire d'Imagerie Fonctionnelle, Inserm Univ. Pierre et Marie Curie, Paris 6, Paris, France
- CENIR, Institut du Cerveau et de la Moelle épiniere, Hôpital Pitié-Salpêtrière, Paris, France
- ICM-Institut du Cerveau et de la Moelle épiniere, Hôpital Pitié-Salpêtrière, Paris, France
| | - David Rudrauf
- UMR-S 678, Laboratoire d'Imagerie Fonctionnelle, Inserm Univ. Pierre et Marie Curie, Paris 6, Paris, France
| | - Arnaud Messe
- UMR-S 678, Laboratoire d'Imagerie Fonctionnelle, Inserm Univ. Pierre et Marie Curie, Paris 6, Paris, France
| | - Basile Pinsard
- UMR-S 678, Laboratoire d'Imagerie Fonctionnelle, Inserm Univ. Pierre et Marie Curie, Paris 6, Paris, France
- CENIR, Institut du Cerveau et de la Moelle épiniere, Hôpital Pitié-Salpêtrière, Paris, France
- ICM-Institut du Cerveau et de la Moelle épiniere, Hôpital Pitié-Salpêtrière, Paris, France
| | - Dominique Hasboun
- UMR-S 975, INSERM, Paris, France
- UMR 7225, CNRS, Univ. Pierre et Marie Curie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Claudia Cioli
- UMR-S 678, Laboratoire d'Imagerie Fonctionnelle, Inserm Univ. Pierre et Marie Curie, Paris 6, Paris, France
| | - Guillaume Marrelec
- UMR-S 678, Laboratoire d'Imagerie Fonctionnelle, Inserm Univ. Pierre et Marie Curie, Paris 6, Paris, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS URA 2182 “Genes, synapses and cognition”, Institut Pasteur, Paris, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - Habib Benali
- UMR-S 678, Laboratoire d'Imagerie Fonctionnelle, Inserm Univ. Pierre et Marie Curie, Paris 6, Paris, France
| | - Yves Burnod
- UMR-S 678, Laboratoire d'Imagerie Fonctionnelle, Inserm Univ. Pierre et Marie Curie, Paris 6, Paris, France
| |
Collapse
|
400
|
Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder. Proc Natl Acad Sci U S A 2013; 110:13222-7. [PMID: 23878213 DOI: 10.1073/pnas.1221880110] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions that are accompanied by atypical brain connectivity. So far, in vivo evidence for atypical structural brain connectivity in ASD has mainly been based on neuroimaging studies of cortical white matter. However, genetic studies suggest that abnormal connectivity in ASD may also affect neural connections within the cortical gray matter. Such intrinsic gray-matter connections are inherently more difficult to describe in vivo but may be inferred from a variety of surface-based geometric features that can be measured using magnetic resonance imaging. Here, we present a neuroimaging study that examines the intrinsic cortico-cortical connectivity of the brain in ASD using measures of "cortical separation distances" to assess the global and local intrinsic "wiring costs" of the cortex (i.e., estimated length of horizontal connections required to wire the cortex within the cortical sheet). In a sample of 68 adults with ASD and matched controls, we observed significantly reduced intrinsic wiring costs of cortex in ASD, both globally and locally. Differences in global and local wiring cost were predominantly observed in fronto-temporal regions and also significantly predicted the severity of social and repetitive symptoms (respectively). Our study confirms that atypical cortico-cortical "connectivity" in ASD is not restricted to the development of white-matter connections but may also affect the intrinsic gray-matter architecture (and connectivity) within the cortical sheet. Thus, the atypical connectivity of the brain in ASD is complex, affecting both gray and white matter, and forms part of the core neural substrates underlying autistic symptoms.
Collapse
|