351
|
Ma JC, Huang X, Shen YW, Zheng C, Su QH, Xu JK, Zhao J. Tenascin-C promotes migration of hepatic stellate cells and production of type I collagen. Biosci Biotechnol Biochem 2016; 80:1470-7. [PMID: 27031437 DOI: 10.1080/09168451.2016.1165600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tenascin-C (TN-C) is an extracellular matrix glycoprotein markedly upregulated during liver fibrosis. The study is performed to explore the role of TN-C during the growth and activation of hepatic stellate cells (HSCs). We found that TN-C was accumulated accompanying with the HSC activation. Our data on cell migration assay revealed that the rTN-C treatment enhanced HSC migration in a dose- and time-dependent manner, but did not influence their proliferation. HSCs transfected with pTARGET-TN-C overexpression vector displayed increased the type I collagen (Col I) production. TN-C overexpression enhanced the process of HSC activation through TGF-β1 signaling. Moreover, the anti-α9β1 integrin antibody treatment blocked the TN-C-driven Col I increase in rat HSCs. Collectively, TN-C had a positive role in activation of HSCs mediated by TGF-β1 and α9β1 integrin, manifesting elevation of Col I production and promotion of cell migration. Our results provide a potential insight for the therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Jian-Cang Ma
- a Department of General Surgery , Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Xin Huang
- b Department of General Surgery , Xi'an Central Hospital, Xi'an Jiaotong University , Xi'an , China
| | - Ya-Wei Shen
- b Department of General Surgery , Xi'an Central Hospital, Xi'an Jiaotong University , Xi'an , China
| | - Chen Zheng
- b Department of General Surgery , Xi'an Central Hospital, Xi'an Jiaotong University , Xi'an , China
| | - Qing-Hua Su
- a Department of General Surgery , Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Jin-Kai Xu
- a Department of General Surgery , Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Jun Zhao
- a Department of General Surgery , Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
352
|
El Mourabit H, Loeuillard E, Lemoinne S, Cadoret A, Housset C. Culture Model of Rat Portal Myofibroblasts. Front Physiol 2016; 7:120. [PMID: 27065888 PMCID: PMC4814710 DOI: 10.3389/fphys.2016.00120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/17/2016] [Indexed: 01/20/2023] Open
Abstract
Myofibroblasts are matrix-producing cells with contractile properties, usually characterized by de novo expression of alpha-smooth muscle actin, that arise in fibrotic diseases. Hepatic stellate cells (HSCs), known as perisinusoidal cells containing auto-fluorescent vitamin A, are the major although not exclusive source of myofibroblasts in the injured liver. Portal myofibroblasts (PMFs) have been defined as liver myofibroblasts derived from cells that are distinct from HSCs and located in the portal tract. Here, we describe the protocol we have established to obtain rat PMFs in culture. In this method, the biliary tree is (i) separated from the liver parenchyma by in situ enzymatic perfusion of the liver, (ii) minced and further digested in vitro, until bile duct segments are isolated by sequential filtration. Bile duct isolates free of HSC contaminants, form small cell clusters, which initially comprise a large majority of epithelial cells. In culture conditions (fetal bovine serum) that provide a growth advantage to mesenchymal cells over epithelial cells, the epithelial cells die and detach from the substrate, while spindle-shaped cells outgrow from the periphery of the cell clusters, as shown by video-microscopy. These cells are highly proliferative and after 4–5 days, the culture is composed exclusively of fully differentiated myofibroblasts, which express alpha-smooth muscle actin and collagen 1, and secrete abundant collagen. We found no evidence for epithelial-mesenchymal transition, i.e., no co-expression of alpha-smooth muscle actin and cytokeratin at any stage, while cytokeratin becomes undetectable in the confluent cells. PMFs obtained by this method express the genes that were previously reported to be overexpressed in non-HSC or portal fibroblast-derived liver myofibroblasts as compared to HSC-derived myofibroblasts, including the most discriminant, collagen 15, fibulin 2, and Thy-1. After one passage, PMFs retain the same phenotypic features as in primary culture. In conclusion, this straightforward and reproducible method of PMF culture, can be used to identify new markers of PMFs at different stages of differentiation, to compare their phenotype with those of HSC-MFs and ultimately determine their progenitors and specific functions in liver wound-healing.
Collapse
Affiliation(s)
- Haquima El Mourabit
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938 Paris, France
| | - Emilien Loeuillard
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938 Paris, France
| | - Sara Lemoinne
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares des Maladies Inflammatoires des Voies Biliaires, Service d'HépatologieParis, France
| | - Axelle Cadoret
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938 Paris, France
| | - Chantal Housset
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares des Maladies Inflammatoires des Voies Biliaires, Service d'HépatologieParis, France
| |
Collapse
|
353
|
Sun KH, Chang Y, Reed NI, Sheppard D. α-Smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis. Am J Physiol Lung Cell Mol Physiol 2016; 310:L824-36. [PMID: 26944089 DOI: 10.1152/ajplung.00350.2015] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/29/2016] [Indexed: 01/18/2023] Open
Abstract
Fibrosis is a common pathological sequela of tissue injury or inflammation, and is a major cause of organ failure. Subsets of fibroblasts contribute to tissue fibrosis in multiple ways, including generating contractile force to activate integrin-bound, latent TGFβ and secreting excess amounts of collagens and other extracellular matrix proteins (ECM) that make up pathologic scar. However, the precise fibroblast subsets that drive fibrosis have been poorly understood. In the absence of well-characterized markers, α-smooth muscle actin (αSMA) is often used to identify pathologic fibroblasts, and some authors have equated αSMA(+) cells with contractile myofibroblasts and proposed that these cells are the major source of ECM. Here, we investigated how well αSMA expression describes fibroblast subsets responsible for TGFβ activation and collagen production in three commonly used models of organ fibrosis that we previously reported could be inhibited by loss of αv integrins on all fibroblasts (using PDGFRβ-Cre). Interestingly, αSMA-directed deletion of αv integrins protected mice from CCl4-induced hepatic fibrosis, but not bleomycin-induced pulmonary or unilateral ureteral obstruction-induced renal fibrosis. Using Col-EGFP/αSMA-RFP dual reporter mice, we found that only a minority of collagen-producing cells coexpress αSMA in the fibrotic lung and kidney. Notably, Col-EGFP(+)αSMA-RFP(-) cells isolated from the fibrotic lung and kidney were equally capable of activating TGFβ as were Col-EGFP(+)αSMA-RFP(+) cells from the same organ, and this TGFβ activation was blocked by a TGFβ-blocking antibody and an inhibitor of nonmuscle myosin, respectively. Taken together, our results suggest that αSMA is an inconsistent marker of contractile and collagen-producing fibroblasts in murine experimental models of organ fibrosis.
Collapse
Affiliation(s)
- Kai-Hui Sun
- Lung Biology Center, Department of Medicine, University of California, San Francisco; and
| | - Yongen Chang
- Lung Biology Center, Department of Medicine, University of California, San Francisco; and Division of Nephrology, Department of Medicine, University of California, Irvine, Orange, California
| | - Nilgun I Reed
- Lung Biology Center, Department of Medicine, University of California, San Francisco; and
| | - Dean Sheppard
- Lung Biology Center, Department of Medicine, University of California, San Francisco; and
| |
Collapse
|
354
|
Affiliation(s)
- Xiao Liu
- Department of Medicine, University of California, La Jolla, California 92093, USA
| | - David A Brenner
- Department of Medicine, University of California, La Jolla, California 92093, USA
| |
Collapse
|
355
|
Page A, Paoli P, Salvador EM, White S, French J, Mann J. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol 2016; 64:661-73. [PMID: 26632634 PMCID: PMC4904781 DOI: 10.1016/j.jhep.2015.11.024] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/13/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS DNA methylation (5-mC) is an epigenetic mark that is an established regulator of transcriptional repression with an important role in liver fibrosis. Currently, there is very little knowledge available as to how DNA methylation controls the phenotype of hepatic stellate cell (HSC), the key cell type responsible for onset and progression of liver fibrosis. Moreover, recently discovered DNA hydroxymethylation (5-hmC) is involved in transcriptional activation and its patterns are often altered in human diseases. The aim of this study is to investigate the role of DNA methylation/hydroxymethylation in liver fibrosis. METHODS Levels of 5-mC and 5-hmC were assessed by slot blot in a range of animal liver fibrosis models and human liver diseases. Expression levels of TET and DNMT enzymes were measured by qRT-PCR and Western blotting. Reduced representation bisulfite sequencing (RRBS) method was used to examine 5-mC and 5-hmC patterns in quiescent and in vivo activated rat HSC. RESULTS We demonstrate global alteration in 5-mC and 5-hmC and their regulatory enzymes that accompany liver fibrosis and HSC transdifferentiation. Using RRBS, we show exact genomic positions of changed methylation patterns in quiescent and in vivo activated rat HSC. In addition, we demonstrate that reduction in DNMT3a expression leads to attenuation of pro-fibrogenic phenotype in activated HSC. CONCLUSIONS Our data suggest that DNA 5-mC/5-hmC is a crucial step in HSC activation and therefore fibrogenesis. Changes in DNA methylation during HSC activation may bring new insights into the molecular events underpinning fibrogenesis and may provide biomarkers for disease progression as well as potential new drug targets.
Collapse
Affiliation(s)
- Agata Page
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Pier Paoli
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Eva Moran Salvador
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Steve White
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jeremy French
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jelena Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
356
|
Ibba-Manneschi L, Rosa I, Manetti M. Telocyte implications in human pathology: An overview. Semin Cell Dev Biol 2016; 55:62-9. [PMID: 26805444 DOI: 10.1016/j.semcdb.2016.01.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/18/2016] [Indexed: 12/23/2022]
Abstract
Telocytes are a recently described interstitial cell population widely distributed in the stromal compartment of many organs in vertebrates, including humans. Owing to their close spatial relationship with multiple cell types, telocytes are universally considered as 'connecting cells' mostly committed to intercellular signaling by converting the interstitium into an integrated system that drives organ development and contributes to the maintenance of local tissue homeostasis. Increasing evidence indicates that telocytes may cooperate with tissue-resident stem cells to foster organ repair and regeneration, and that telocyte damage and dysfunction may occur in several disorders. The goal of this review is to provide an overview of the most recent findings concerning the implication of telocytes in a variety of pathologic conditions in humans, including heart disease, chronic inflammation and multiorgan fibrosis. Based on recent promising experimental data, there is realistic hope that by targeting telocytes alone or in tandem with stem cells, we might be able to promote organ regeneration and/or prevent irreversible end-stage organ damage in different pathologies.
Collapse
Affiliation(s)
- Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
357
|
Taura K, Iwaisako K, Hatano E, Uemoto S. Controversies over the Epithelial-to-Mesenchymal Transition in Liver Fibrosis. J Clin Med 2016; 5:jcm5010009. [PMID: 26784242 PMCID: PMC4730134 DOI: 10.3390/jcm5010009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/03/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis is a universal consequence of chronic liver diseases. It is accompanied by activation of collagen-producing myofibroblasts, resulting in excessive deposition of extracellular matrix. The origin of myofibroblasts in the fibrotic liver has not been completely resolved and remains a matter of debate. Recently, the epithelial-to-mesenchymal transition (EMT) was proposed as one of the mechanisms that give rise to collagen-producing myofibroblasts in liver fibrosis. However, subsequent studies contradicted this hypothesis, and the EMT theory has become one of the most controversial and debatable issues in the field of liver fibrosis research. This review will summarize the existing literature on EMT in liver fibrosis and will analyze the causes for the contradictory results to draw a reasonable conclusion based on current knowledge in the field.
Collapse
Affiliation(s)
- Kojiro Taura
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Keiko Iwaisako
- Department of Target Therapy Oncology Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Etsuro Hatano
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Shinji Uemoto
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| |
Collapse
|
358
|
Abstract
Telocytes (TCs), a novel peculiar interstitial cell found in many tissues and organs, play pivotal roles in maintaining tissue homeostasis and regulating tissue and organ development and immune surveillance. In recent years, the existence of TCs in liver has been confirmed. In this chapter, we evaluate the role of TCs on promoting liver regeneration and the therapeutic effects on liver fibrosis.
Collapse
Affiliation(s)
- Yingying Zhao
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - Xiaoyu Chen
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China.
| |
Collapse
|
359
|
Pathogenesis of Type 2 Epithelial to Mesenchymal Transition (EMT) in Renal and Hepatic Fibrosis. J Clin Med 2015; 5:jcm5010004. [PMID: 26729181 PMCID: PMC4730129 DOI: 10.3390/jcm5010004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT), particularly, type 2 EMT, is important in progressive renal and hepatic fibrosis. In this process, incompletely regenerated renal epithelia lose their epithelial characteristics and gain migratory mesenchymal qualities as myofibroblasts. In hepatic fibrosis (importantly, cirrhosis), the process also occurs in injured hepatocytes and hepatic progenitor cells (HPCs), as well as ductular reaction-related bile epithelia. Interestingly, the ductular reaction contributes partly to hepatocarcinogenesis of HPCs, and further, regenerating cholangiocytes after injury may be derived from hepatic stellate cells via mesenchymal to epithelia transition, a reverse phenomenon of type 2 EMT. Possible pathogenesis of type 2 EMT and its differences between renal and hepatic fibrosis are reviewed based on our experimental data.
Collapse
|
360
|
Lei X, Yin H, Bai XL, Yan WT, Yang GM, Gui LL, Tan HB. Changes of endogenous hydrogen sulfide in myocardial tissue of rats with cirrhotic cardiomyopathy. Shijie Huaren Xiaohua Zazhi 2015; 23:5606-5612. [DOI: 10.11569/wcjd.v23.i35.5606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the changes of endogenous hydrogen sulfide (H2S) in myocardial tissue of rats with cirrhotic cardiomyopathy (CCM) of different severities, in order to investigate the role of H2S in the pathogenesis of CCM.
METHODS: Forty SPF-grade male SD rats, weighing 220-250 g, were randomly divided into a blank control group (group N, n = 9) and a CCM model group (group M, n = 31). Group N was fed an ordinary diet and given tap water. Group M was subcutaneously injected with CCl4 (3 mL/kg, given double dose for the first time) twice a week and given 100 mL/L ethanol in drinking water in the first two weeks, and 200 mL/L ethanol was given for the next two weeks. From the fifth week, rats with CCM started to drink 300 mL/L ethanol. At the end of the twelfth week, 9 rats (group M1) were randomly selected from group M and killed, while the rest (group M2) were killed at the fourteen week. Alanine aminotransferase (ALT), aspartate transaminase (AST), and total protein (TP) were detected. The concentration of H2S in the myocardium was measured. Myocardial and liver pathology was assessed.
RESULTS: The levels of ALT and AST significantly increased and TP significantly decreased in the M1 and M2 groups compared with group N (P < 0.01). ALT and AST levels were also significantly higher in group M2 than in group M1. Compared with group N, the concentration of H2S in groups M1 and M2 declined by up to 18% (P < 0.05) and 38% (P < 0.01), respectively, and the decrease was more significant in group M2 than in group M1 (P < 0.05). Group N had normal liver tissue, and groups M1 and M2 had hepatic cirrhosis, which was more severe in group M2. Group N had normal myocardial tissue. Myocardial cells were grossly normal but myocardial edema was seen in group M1. Myocardial edema and necrosis were observed in group M2.
CONCLUSION: In the process of liver cirrhosis, the protection on the myocardium becomes weak with the decreased level of endogenous hydrogen sulfide, which may play a crucial role in the pathogenesis of CCM.
Collapse
|
361
|
PDGF-Mediated Regulation of Liver Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
362
|
Kawada N. Cytoglobin as a Marker of Hepatic Stellate Cell-derived Myofibroblasts. Front Physiol 2015; 6:329. [PMID: 26617531 PMCID: PMC4643130 DOI: 10.3389/fphys.2015.00329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
Myofibroblasts play important roles in inflammation, fibrosis and tumorigenesis in chronically inflamed liver. Liver myofibroblasts originate from hepatic stellate cells, portal fibroblasts or mesothelial cells, and they are localized in and around fibrotic septum and portal tracts. Liver myofibroblasts are the source of extracellular matrix materials, including type I collagen and multiple fibrogenic growth factors, such as transforming growth factor-β and vascular endothelial growth factor. Although a detailed characterization of the function of individual myofibroblasts has not been conducted, owing to the lack of appropriate cell markers, recent lineage-tracing technology has revealed the limited contribution of myofibroblasts that are derived from portal fibroblasts to various types of liver fibrosis, as compared with the contribution of hepatic stellate cells. In addition, cytoglobin, which is the fourth globin in mammals and function as a local gas sensor, provides a new perspective on the involvement of stellate cells in fibrosis and carcinogenesis, possibly through its anti-oxidative properties and is a promising new marker that discriminates between myofibroblasts derived from stellate cells and those from portal fibroblasts.
Collapse
Affiliation(s)
- Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University Osaka, Japan
| |
Collapse
|
363
|
L(59) TGF-β LAP degradation products serve as a promising blood biomarker for liver fibrogenesis in mice. FIBROGENESIS & TISSUE REPAIR 2015; 8:17. [PMID: 26379781 PMCID: PMC4570586 DOI: 10.1186/s13069-015-0034-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/20/2015] [Indexed: 02/08/2023]
Abstract
Background Hepatic fibrosis, which is the excessive accumulation of extracellular matrices (ECMs) produced mainly from activated hepatic stellate cells (HSCs), develops to cirrhosis over several decades. There are no validated biomarkers that can non-invasively monitor excessive production of ECM (i.e., fibrogenesis). Transforming growth factor (TGF)-β, a key driver of fibrogenesis, is produced as an inactive latent complex, in which active TGF-β is enveloped by its pro-peptide, the latency-associated protein (LAP). Thus, active TGF-β must be released from the complex for binding to its receptor and inducing ECM synthesis. We recently reported that during the pathogenesis of liver fibrosis, plasma kallikrein (PLK) activates TGF-β by cleavage between R58 and L59 residues within LAP and that one of its by-products, the N-terminal side LAP degradation products ending at residue R58 (R58 LAP-DPs), can be detected mainly around activated HSCs by specific antibodies against R58 cleavage edges and functions as a footprint of PLK-dependent TGF-β activation. Here, we describe a sandwich enzyme-linked immunosorbent assay (ELISA) that detects the other by-products, the C-terminal side LAP-DPs starting from residue L59 (L59 LAP-DPs). We demonstrated that the L59 LAP-DPs are a potentially novel blood biomarker reflecting hepatic fibrogenesis. Results We established a specific sandwich ELISA to quantify L59 LAP-DPs as low as 2 pM and measured L59 LAP-DP levels in the culture media of a human activated HSC line, TWNT-4 cells. L59 LAP-DPs could be detected in their media, and after treatment of TWNT-4 cells with a TGF-β receptor kinase inhibitor, SB431542, a simultaneous reduction was observed in both L59 LAP-DP levels in the culture media and the mRNA expression levels of collagen type (I) α1. In carbon tetrachloride- and bile duct ligation-induced liver fibrosis models in mice, plasma L59 LAP-DP levels increased prior to increase of hepatic hydroxyproline (HDP) contents and well correlated with α-smooth muscle actin (αSMA) expression in liver tissues. At this time, αSMA-positive cells as well as R58 LAP-DPs were seen in their liver tissues. Conclusions L59 LAP-DPs reflect PLK-dependent TGF-β activation and the increase in αSMA-positive activated HSCs in liver injury, thereby serving as a novel blood biomarker for liver fibrogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13069-015-0034-9) contains supplementary material, which is available to authorized users.
Collapse
|
364
|
Page A, Mann DA. Epigenetic regulation of liver fibrosis. Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1:S64-8. [PMID: 26189981 DOI: 10.1016/j.clinre.2015.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/10/2015] [Indexed: 02/04/2023]
Abstract
Fibrosis is a common and important pathology associated with progressive chronic liver diseases and underlies the development of cirrhosis and hepatocellular carcinoma. Research into the molecular regulation of fibrosis has discovered that it is under the control of a number of epigenetic mechanisms including DNA methylation, histone modifications and the activities of non-coding RNAs. A deeper understanding of how epigenetic regulators such as DNA methyltranserases, methyl-DNA binding proteins, histone modifying enzymes and regulatory RNA molecules impact on the fibrogenic process is expected to result in new biomarkers for disease progression as well as novel therapeutic targets. The aim of this mini-review is to briefly introduce the reader to the major epigenetic regulators so far identified as being implicated in fibrosis.
Collapse
Affiliation(s)
- Agata Page
- Fibrosis Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Derek A Mann
- Fibrosis Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
365
|
Abstract
Liver fibrosis is a serious health problem worldwide, which can be induced by a wide spectrum of chronic liver injuries. However, until today, there is no effective therapy available for liver fibrosis except the removal of underlying etiology or liver transplantation. Recent studies indicate that liver fibrosis is reversible when the causative agent(s) is removed. Understanding of mechanisms of liver fibrosis regression will lead to the identification of new therapeutic targets for liver fibrosis. This review summarizes recent research progress on mechanisms of reversibility of liver fibrosis. While most of the research has been focused on HSCs/myofibroblasts and inflammatory pathways, the crosstalk between different organs, various cell types and multiple signaling pathways should not be overlooked. Future studies that lead to fully understanding of the crosstalk between different cell types and the molecular mechanism underlying the reversibility of liver fibrosis will definitely give rise to new therapeutic strategies to treat liver fibrosis.
Collapse
Affiliation(s)
- Mengxi Sun
- Department of Surgery, University of California, San Diego, La Jolla, 92093 California, United States
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, 92093 California, United States.
| |
Collapse
|
366
|
Torok N, Dranoff JA, Schuppan D, Friedman SL. Strategies and endpoints of antifibrotic drug trials: Summary and recommendations from the AASLD Emerging Trends Conference, Chicago, June 2014. Hepatology 2015; 62:627-34. [PMID: 25626988 PMCID: PMC4515973 DOI: 10.1002/hep.27720] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022]
Abstract
There is an urgent need to develop antifibrotic therapies for chronic liver disease, and clarify which endpoints in antifibrotic trials will be acceptable to regulatory agencies. The American Association for the Study of Liver Diseases sponsored an endpoints conference to help accelerate the efficient testing of antifibrotic agents and develop recommendations on clinical trial design for liver fibrosis. In this review, we summarize the salient and novel elements of this conference and provide directions for future clinical trial design. The article follows the structure of the conference and is organized into five areas: (1) antifibrotic trial design; (2) preclinical proof-of-concept studies; (3) pharmacological targets, including rationale and lessons to learn; (4) rational drug design and development; and (5) consensus and recommendations on design of clinical trials in liver fibrosis. Expert overviews and collaborative discussions helped to summarize the key unmet needs and directions for the future, including: (1) greater clarification of at-risk populations and study groups; (2) standardization of all elements of drug discovery and testing; (3) standardization of clinical trial approaches; (4) accelerated development of improved noninvasive markers; and (5) need for exploration of potential off-target toxicities of future antifibrotic drugs.
Collapse
Affiliation(s)
- Natalie Torok
- Department of Gastroenterology and Hepatology, UC Davis Medical Center, Sacramento, CA and VA Northern California Healthcare System, Mather CA
| | - Jonathan A. Dranoff
- Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR and Research Service, Central Arkansas VA Healthcare System, Little Rock AR
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Mainz, Germany, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
367
|
Fan Z, Hao C, Li M, Dai X, Qin H, Li J, Xu H, Wu X, Zhang L, Fang M, Zhou B, Tian W, Xu Y. MKL1 is an epigenetic modulator of TGF-β induced fibrogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1219-28. [PMID: 26241940 DOI: 10.1016/j.bbagrm.2015.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/13/2015] [Accepted: 07/31/2015] [Indexed: 12/29/2022]
Abstract
Transforming growth factor (TGF-β) induced activation of portal fibroblast cells serves as a primary cause for liver fibrosis following cholestatic injury. The underlying epigenetic mechanism is not clear. We studied the role of a transcriptional modulator, megakaryoblastic leukemia 1 (MKL1) in this process. We report here that MKL1 deficiency ameliorated BDL-induced liver fibrosis in mice as assessed by histological stainings and expression levels of pro-fibrogenic genes. MKL1 silencing by small interfering RNA (siRNA) abrogated TGF-β induced transactivation of pro-fibrogenic genes in portal fibroblast cells. TGF-β stimulated the binding of MKL1 on the promoters of pro-fibrogenic genes and promoted the interaction between MKL1 and SMAD3. While SMAD3 was necessary for MKL1 occupancy on the gene promoters, MKL1 depletion impaired SMAD3 binding reciprocally. TGF-β treatment induced the accumulation of trimethylated histone H3K4 on the gene promoters by recruiting a methyltransferase complex. Knockdown of individual members of this complex significantly weakened the binding of SMAD3 and down-regulated the activation of portal fibroblast cells. In conclusion, we have identified an epigenetic pathway that dictates TGF-β induced pro-fibrogenic transcription in portal fibroblast thereby providing novel insights for the development of therapeutic solutions to treat liver fibrosis.
Collapse
Affiliation(s)
- Zhiwen Fan
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Chenzhi Hao
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xin Dai
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hao Qin
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jianfei Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liping Zhang
- Department of Biochemistry, Xinjiang Medical University, Urumqi, China
| | - Mingming Fang
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China
| | - Bisheng Zhou
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenfang Tian
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
368
|
Isolation and time lapse microscopy of highly pure hepatic stellate cells. Anal Cell Pathol (Amst) 2015; 2015:417023. [PMID: 26258009 PMCID: PMC4519541 DOI: 10.1155/2015/417023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022] Open
Abstract
Hepatic stellate cells (HSC) are the main effector cells for liver fibrosis. We aimed at optimizing HSC isolation by an additional step of fluorescence-activated cell sorting (FACS) via a UV laser. HSC were isolated from livers of healthy mice and animals subjected to experimental fibrosis. HSC isolation by iohexol- (Nycodenz) based density centrifugation was compared to a method with subsequent FACS-based sorting. We assessed cellular purity, viability, morphology, and functional properties like proliferation, migration, activation marker, and collagen expression. FACS-augmented isolation resulted in a significantly increased purity of stellate cells (>99%) compared to iohexol-based density centrifugation (60–95%), primarily by excluding doublets of HSC and Kupffer cells (KC). Importantly, this method is also applicable to young animals and mice with liver fibrosis. Viability, migratory properties, and HSC transdifferentiation in vitro were preserved upon FACS-based isolation, as assessed using time lapse microscopy. During maturation of HSC in culture, we did not observe HSC cell division using time lapse microscopy. Strikingly, FACS-isolated, differentiated HSC showed very limited molecular and functional responses to LPS stimulation. In conclusion, isolating HSC from mouse liver by additional FACS significantly increases cell purity by removing contaminations from other cell populations especially KC, without affecting HSC viability, migration, or differentiation.
Collapse
|
369
|
Abstract
Liver fibrosis is the pathological consequence of chronic liver diseases, where an excessive deposition of extracellular matrix (ECM) proteins occurs, concomitantly with the processes of repair and regeneration. It is characterized by increased production of matrix proteins, in particular collagens, and decreased matrix remodelling. The principal source of ECM accumulation is myofibroblasts (MFB). Most fibrogenic MFB are endogenous to the liver, coming from hepatic stellate cells (HSC) and portal fibroblasts. Dysregulated inflammatory responses have been associated with most (if not all) hepatotoxic insults and chronic oxidative stress play a role during the initial liver inflammatory phase and its progression to fibrosis. Redox-regulated processes are responsible for activation of HSC to MFB, as well as maintenance of the MFB function. Increased oxidative stress also induces hepatocyte apoptosis, which contributes to increase the liver injury and to transdifferentiate HSC to MFB, favouring the fibrogenic process. Mitochondria and other redox-active enzymes can generate superoxide and hydrogen peroxide as a by-product in liver cells. Moreover, accumulating evidence indicates that NADPH oxidases (NOXs), which play a critical role in the inflammatory response, may contribute to reactive oxygen species (ROS) production during liver fibrosis, being important players in HSC activation and hepatocyte apoptosis. Based on the knowledge of the pathogenic role of ROS, different strategies to prevent or reverse the oxidative damage have been developed to be used as therapeutic tools in liver fibrosis. This review will update all these concepts, highlighting the relevance of redox biology in chronic fibrogenic liver pathologies. Oxidative stress is a major cause for initiation/progression of liver fibrosis. Redox-regulated processes activate hepatic stellate cells to myofibroblasts. Increased oxidative stress induces hepatocyte apoptosis. NOX inhibitors are considered as a new strategy to prevent/reverse liver fibrosis. NADPH oxidases (NOX) have been involved in liver fibrogenic responses.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain; Department of Physiological Sciences II, University of Barcelona, L'Hospitalet, Barcelona, Spain.
| |
Collapse
|
370
|
Yanguas SC, Cogliati B, Willebrords J, Maes M, Colle I, van den Bossche B, de Oliveira CPMS, Andraus W, Alves VAF, Leclercq I, Vinken M. Experimental models of liver fibrosis. Arch Toxicol 2015; 90:1025-1048. [PMID: 26047667 DOI: 10.1007/s00204-015-1543-4] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/28/2015] [Indexed: 02/08/2023]
Abstract
Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research.
Collapse
Affiliation(s)
- Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Colle
- Department of Hepato-Gastroenterology, Algemeen Stedelijk Ziekenhuis, Aalst, Belgium
| | - Bert van den Bossche
- Department of Abdominal Surgery and Hepato-Pancreatico-Biliary Surgery, Algemeen Stedelijk Ziekenhuis, Aalst, Belgium
| | | | - Wellington Andraus
- Laboratory of Medical Investigation, Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Isabelle Leclercq
- Laboratoire d'Hépato-Gastro-Entérologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
371
|
Greenhalgh SN, Conroy KP, Henderson NC. Cre-ativity in the liver: transgenic approaches to targeting hepatic nonparenchymal cells. Hepatology 2015; 61:2091-9. [PMID: 25412828 PMCID: PMC4657490 DOI: 10.1002/hep.27606] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/08/2014] [Indexed: 01/08/2023]
Abstract
Rapid evolution in transgenic (Tg) mouse technology now permits cell-specific and temporal control of fluorescent cell-labeling and gene inactivation. Here, we discuss the principal strategies that have been utilized to target, label, and manipulate hepatic nonparenchymal cells, with emphasis on the utility of constitutive and inducible Cre-lox systems. We summarize key findings of studies employing Tg technology to target hepatic stellate cells, myofibroblasts, liver sinusoidal endothelial cells, and macrophages to illustrate the power of these approaches in identifying cell-specific molecular mechanisms critical to the pathophysiology of liver disease. Increasing adoption of Tg techniques will help to answer fundamental questions regarding the pathogenesis of hepatic diseases and provide the mechanistic rationale to allow identification of novel drug targets, ultimately translating into effective therapies for patients with liver disease.
Collapse
Affiliation(s)
- Stephen N Greenhalgh
- MRC Center for Inflammation Research, The Queen’s Medical Research Institute, University of EdinburghEdinburgh, UK
| | - Kylie P Conroy
- MRC Center for Inflammation Research, The Queen’s Medical Research Institute, University of EdinburghEdinburgh, UK
| | - Neil C Henderson
- MRC Center for Inflammation Research, The Queen’s Medical Research Institute, University of EdinburghEdinburgh, UK,
Address reprint requests to: Neil Henderson, B.Sc. (Hons.), M.B.Ch.B., Ph.D., MRC Center for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK. E-mail: ; fax: +44(0)131 2429101
| |
Collapse
|
372
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to review advances in both the pathogenesis and clinical management of biliary atresia. RECENT FINDINGS Immunologic studies have further characterized roles of helper T-cells, B-cells, and natural killer cells in the immune dysregulation following viral replication within and damage of biliary epithelium. Prominin-1-expressing portal fibroblasts may play an integral role in the biliary fibrosis associated with biliary atresia. A number of genetic polymorphisms have been characterized as leading to susceptibility for biliary atresia. Postoperative corticosteroid therapy is not associated with greater transplant-free survival. Newborn screening may improve outcomes of infants with biliary atresia and may also provide a long-term cost benefit. SUMMARY Although recent advances have enhanced our understanding of pathogenesis and clinical management, biliary atresia remains a significant challenge requiring further investigation.
Collapse
|
373
|
Xu J, Kisseleva T. Bone marrow-derived fibrocytes contribute to liver fibrosis. Exp Biol Med (Maywood) 2015; 240:691-700. [PMID: 25966982 DOI: 10.1177/1535370215584933] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 12/30/2022] Open
Abstract
Chronic liver injury often leads to hepatic fibrosis, a condition associated with increased levels of circulating TGF-β1 and lipopolysaccharide, activation of myofibroblasts, and extensive deposition of extracellular matrix, mostly collagen Type I. Hepatic stellate cells are considered to be the major(1) but not the only source of myofibroblasts in the injured liver.(2) Hepatic myofibroblasts may also originate from portal fibroblasts, mesenchymal cells, and fibrocytes.(3) Since the discovery of fibrocytes in 1994 by Dr. Bucala and colleagues, this bone marrow (BM)-derived collagen Type I-producing CD45(+) cells remain the most fascinating cells of the hematopoietic system. Due to the ability to differentiate into collagen Type I producing cells/myofibroblasts, fibrocytes were implicated in the pathogenesis of liver, skin, lung, and kidney fibrosis. However, studies of different organs often contain controversial results on the number of fibrocytes recruited to the site of injury and their biological function. Furthermore, fibrocytes were implicated in the pathogenesis of sepsis and were shown to possess antimicrobial activity. Finally, in response to specific stimuli, fibrocytes can give rise to fully differentiated macrophages, suggesting that in concurrence with the high plasticity of hematopoietic cells, fibrocytes exhibit progenitor properties. Here, we summarize our current understanding of the role of CD45(+)Collagen Type I(+) BM-derived cells in response to fibrogenic liver injury and septicemia and discuss the most recent evidence supporting the critical role of fibrocytes in the mediation of pro-fibrogenic and/or pro-inflammatory responses.
Collapse
Affiliation(s)
- Jun Xu
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, CA 92093, USA
| |
Collapse
|
374
|
Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut 2015; 64:830-41. [PMID: 25681399 PMCID: PMC4477794 DOI: 10.1136/gutjnl-2014-306842] [Citation(s) in RCA: 651] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022]
Abstract
Reversibility of hepatic fibrosis and cirrhosis following antiviral therapy for hepatitis B or C has advanced the prospect of developing antifibrotic therapies for patients with chronic liver diseases, especially non-alcoholic steatohepatitis. Mechanisms of fibrosis have focused on hepatic stellate cells, which become fibrogenic myofibroblasts during injury through 'activation', and are at the nexus of efforts to define novel drug targets. Recent studies have clarified pathways of stellate cell gene regulation and epigenetics, emerging pathways of fibrosis regression through the recruitment and amplification of fibrolytic macrophages, nuanced responses of discrete inflammatory cell subsets and the identification of the 'ductular reaction' as a marker of severe injury and repair. Based on our expanded knowledge of fibrosis pathogenesis, attention is now directed towards strategies for antifibrotic therapies and regulatory challenges for conducting clinical trials with these agents. New therapies are attempting to: 1) Control or cure the primary disease or reduce tissue injury; 2) Target receptor-ligand interactions and intracellular signaling; 3) Inhibit fibrogenesis; and 4) Promote resolution of fibrosis. Progress is urgently needed in validating non-invasive markers of fibrosis progression and regression that can supplant biopsy and shorten the duration of clinical trials. Both scientific and clinical challenges remain, however the past three decades of steady progress in understanding liver fibrosis have contributed to an emerging translational success story, with realistic hopes for antifibrotic therapies to treat patients with chronic liver disease in the near future.
Collapse
Affiliation(s)
- Youngmin A Lee
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael C Wallace
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
375
|
Seki E, Brenner DA. Recent advancement of molecular mechanisms of liver fibrosis. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2015; 22:512-8. [PMID: 25869468 DOI: 10.1002/jhbp.245] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
Abstract
Liver fibrosis occurs in response to any etiology of chronic liver injury including hepatitis B and C, alcohol consumption, fatty liver disease, cholestasis, and autoimmune hepatitis. Hepatic stellate cells (HSCs) are the primary source of activated myofibroblasts that produce extracellular matrix (ECM) in the liver. Various inflammatory and fibrogenic pathways contribute to the activation of HSCs. Recent studies also discovered that liver fibrosis is reversible and activated HSCs can revert to quiescent HSCs when causative agents are removed. Although the basic research for liver fibrosis has progressed remarkably, sensitive and specific biomarkers as non-invasive diagnostic tools, and effective anti-fibrotic agents have not been developed yet. This review highlights the recent advances in cellular and molecular mechanisms of liver fibrosis, especially focusing on origin of myofibroblasts, inflammatory signaling, autophagy, cellular senescence, HSC inactivation, angiogenesis, and reversibility of liver fibrosis.
Collapse
Affiliation(s)
- Ekihiro Seki
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, DAVIS, Suite D2099, Los Angeles, CA, 90048, USA.
| | - David A Brenner
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
376
|
Fausther M, Goree JR, Lavoie ÉG, Graham AL, Sévigny J, Dranoff JA. Establishment and characterization of rat portal myofibroblast cell lines. PLoS One 2015; 10:e0121161. [PMID: 25822334 PMCID: PMC4378927 DOI: 10.1371/journal.pone.0121161] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/10/2015] [Indexed: 01/13/2023] Open
Abstract
The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC) and portal fibroblasts (PF). In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5’-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myo)fibroblasts and their contribution to the progression of liver fibrosis.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, AR, United States of America
- * E-mail:
| | - Jessica R. Goree
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, AR, United States of America
| | - Élise G. Lavoie
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, AR, United States of America
| | - Alicia L. Graham
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, QC, Canada
- Centre de Recherche du CHU de Québec, QC, Canada
| | - Jonathan A. Dranoff
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, AR, United States of America
| |
Collapse
|
377
|
Dyson JK, Hirschfield GM, Adams DH, Beuers U, Mann DA, Lindor KD, Jones DEJ. Novel therapeutic targets in primary biliary cirrhosis. Nat Rev Gastroenterol Hepatol 2015; 12:147-58. [PMID: 25645973 DOI: 10.1038/nrgastro.2015.12] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary biliary cirrhosis (PBC) is a chronic immune-mediated liver disease characterized by progressive cholestasis, biliary fibrosis and eventually cirrhosis. It results in characteristic symptoms with marked effects on life quality. The advent of large patient cohorts has challenged the view of PBC as a benign condition treated effectively by the single licensed therapy-ursodeoxycholic acid (UDCA). UDCA nonresponse or under-response has a major bearing on outcome, substantially increasing the likelihood that liver transplantation will be required or that patients will die of the disease. In patients with high-risk, treatment-unresponsive or highly symptomatic disease the need for new treatment approaches is clear. Evolution in our understanding of disease mechanisms is rapidly leading to the advent of new and re-purposed therapeutic agents targeting key processes. Notable opportunities are offered by targeting what could be considered as the 'upstream' immune response, 'midstream' biliary injury and 'downstream' fibrotic processes. Combination therapy targeting several pathways or the development of novel agents addressing multiple components of the disease pathway might be required. Ultimately, PBC therapeutics will require a stratified approach to be adopted in practice. This Review provides a current perspective on potential approaches to PBC treatment, and highlights the challenges faced in evaluating and implementing those treatments.
Collapse
Affiliation(s)
- Jessica K Dyson
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gideon M Hirschfield
- Centre for Liver Research, NIHR Biomedical Research Unit, University of Birmingham, Wolfson Drive, Birmingham B15 2TT, UK
| | - David H Adams
- Centre for Liver Research, NIHR Biomedical Research Unit, University of Birmingham, Wolfson Drive, Birmingham B15 2TT, UK
| | - Ulrich Beuers
- Department of Gastroenterology &Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, G4-216, University of Amsterdam, PO Box 22600, NL-1100 DD, Amsterdam, Netherlands
| | - Derek A Mann
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Keith D Lindor
- College of Health Solutions, Arizona State University, 550 North 3rd Street, Phoenix, AZ 85004, USA
| | - David E J Jones
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
378
|
Fausther M, Dranoff JA. Beyond scar formation: portal myofibroblast-mediated angiogenesis in the fibrotic liver. Hepatology 2015; 61:766-8. [PMID: 25502320 PMCID: PMC5115210 DOI: 10.1002/hep.27653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Michel Fausther
- University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR
| | | |
Collapse
|
379
|
Xu J, Cong M, Park TJ, Scholten D, Brenner DA, Kisseleva T. Contribution of bone marrow-derived fibrocytes to liver fibrosis. Hepatobiliary Surg Nutr 2015; 4:34-47. [PMID: 25713803 DOI: 10.3978/j.issn.2304-3881.2015.01.01] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/26/2014] [Indexed: 12/17/2022]
Abstract
Since the discovery of fibrocytes in 1994 by Dr. Bucala and colleagues, these bone marrow (BM)-derived collagen Type I producing CD45(+) cells remain the most fascinating cells of the hematopoietic system. Despite recent reports on the emerging contribution of fibrocytes to fibrosis of parenchymal and non-parenchymal organs and tissues, fibrocytes remain the most understudied pro-fibrogenic cellular population. In the past years fibrocytes were implicated in the pathogenesis of liver, skin, lung, and kidney fibrosis by giving rise to collagen type I producing cells/myofibroblasts. Hence, the role of fibrocytes in fibrosis is not well defined since different studies often contain controversial results on the number of fibrocytes recruited to the site of injury versus the number of fibrocyte-derived myofibroblasts in the same fibrotic organ. Furthermore, many studies were based on the in vitro characterization of fibrocytes formed after outgrowth of BM and/or peripheral blood cultures. Therefore, the fibrocyte function(s) still remain(s) lack of understanding, mostly due to (I) the lack of mouse models that can provide complimentary in vivo real-time and cell fate mapping studies of the dynamic differentiation of fibrocytes and their progeny into collagen type I producing cells (and/or possibly, other cell types of the hematopoietic system); (II) the complexity of hematopoietic cell differentiation pathways in response to various stimuli; (III) the high plasticity of hematopoietic cells. Here we summarize the current understanding of the role of CD45(+) collagen type I(+) BM-derived cells in the pathogenesis of liver injury. Based on data obtained from various organs undergoing fibrogenesis or other type of chronic injury, here we also discuss the most recent evidence supporting the critical role of fibrocytes in the mediation of pro-fibrogenic and/or pro-inflammatory responses.
Collapse
Affiliation(s)
- Jun Xu
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Cong
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tae Jun Park
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Scholten
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - David A Brenner
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
380
|
Fu S, Wang F, Cao Y, Huang Q, Xiao J, Yang C, Popescu LM. Telocytes in human liver fibrosis. J Cell Mol Med 2015; 19:676-83. [PMID: 25661250 PMCID: PMC4369823 DOI: 10.1111/jcmm.12542] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 12/23/2014] [Indexed: 12/26/2022] Open
Abstract
Liver fibrosis is a wound-healing response which engages a variety of cell types to encapsulate injury. Telocyte (TC), a novel type of interstitial cell, has been identified in a variety of tissues and organs including liver. TCs have been reported to be reduced in fibrotic areas after myocardial infarction, human interstitial wall's fibrotic remodelling caused either by ulcerative colitis or Crohn's disease, and skin of systemic sclerosis. However, the role of TCs in human liver fibrosis remains unclear. Liver samples from human liver biopsy were collected. All samples were stained with Masson's trichrome to determine fibrosis. TCs were identified by several immunofluorescence stainings including double labelling for CD34 and c-kit/CD117, or vimentin, or PDGF Receptor-α, or β. We found that hepatic TCs were significantly decreased by 27%-60% in human liver fibrosis, suggesting that loss of TCs might lead to the altered organization of extracellular matrix and loss the control of fibroblast/myofibroblast activity and favour the genesis of fibrosis. Adding TCs might help to develop effective and targeted antifibrotic therapies for human liver fibrosis.
Collapse
Affiliation(s)
- Siyi Fu
- Regeneration and Ageing Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China; Innovative Drug Research Center of Shanghai University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
381
|
Kikuchi A, Monga SP. PDGFRα in liver pathophysiology: emerging roles in development, regeneration, fibrosis, and cancer. Gene Expr 2015; 16:109-27. [PMID: 25700367 PMCID: PMC4410163 DOI: 10.3727/105221615x14181438356210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Platelet-derived growth factor receptor α (PDGFRα) is an isoform of the PDGFR family of tyrosine kinase receptors involved in cell proliferation, survival, differentiation, and growth. In this review, we highlight the role of PDGFRα and the current evidence of its expression and activities in liver development, regeneration, and pathology-including fibrosis, cirrhosis, and liver cancer. Studies elucidating PDGFRα signaling in processes ranging from profibrotic signaling, angiogenesis, and oxidative stress to epithelial-to-mesenchymal transition point toward PDGFRα as a potential therapeutic target in various hepatic pathologies, including hepatic fibrosis and liver cancer. Furthermore, PDGFRα localization and modulation during liver development and regeneration may lend insight into its potential roles in various pathologic states. We will also briefly discuss some of the current targeted treatments for PDGFRα, including multi receptor tyrosine kinase inhibitors and PDGFRα-specific inhibitors.
Collapse
Affiliation(s)
- Alexander Kikuchi
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
382
|
Kang N, Shah VH, Urrutia R. Membrane-to-Nucleus Signals and Epigenetic Mechanisms for Myofibroblastic Activation and Desmoplastic Stroma: Potential Therapeutic Targets for Liver Metastasis? Mol Cancer Res 2014; 13:604-12. [PMID: 25548101 DOI: 10.1158/1541-7786.mcr-14-0542] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022]
Abstract
Cancer-associated fibroblasts (CAFs), the most abundant cells in the tumor microenvironment (TME), are a key source of the extracellular matrix (ECM) that constitutes the desmoplastic stroma. Through remodeling of the reactive tumor stroma and paracrine actions, CAFs regulate cancer initiation, progression, and metastasis, as well as tumor resistance to therapies. The CAFs found in stroma-rich primary hepatocellular carcinomas (HCC) and liver metastases of primary cancers of other organs predominantly originate from hepatic stellate cells (HSTC), which are pericytes associated with hepatic sinusoids. During tumor invasion, HSTCs transdifferentiate into myofibroblasts in response to paracrine signals emanating from either tumor cells or a heterogeneous cell population within the hepatic tumor microenvironment. Mechanistically, HSTC-to-myofibroblast transdifferentiation, also known as, HSTC activation, requires cell surface receptor activation, intracellular signal transduction, gene transcription, and epigenetic signals, which combined ultimately modulate distinct gene expression profiles that give rise to and maintain a new phenotype. The current review defines a paradigm that explains how HSTCs are activated into CAFs to promote liver metastasis. Furthermore, a focus on the most relevant intracellular signaling networks and epigenetic mechanisms that control HSTC activation is provided. Finally, we discuss the feasibility of targeting CAF/activated HSTCs, in isolation or in conjunction with targeting cancer cells, which constitutes a promising and viable therapeutic approach for the treatment of primary stroma-rich liver cancers and liver metastasis.
Collapse
Affiliation(s)
- Ningling Kang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, Minnesota.
| | - Vijay H Shah
- GI Research Unit, Division of Gastroenterology and Hepatology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raul Urrutia
- GI Research Unit, Division of Gastroenterology and Hepatology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
383
|
Abstract
Portal fibroblasts are a minor population in the normal liver, found in the periportal mesenchyme surrounding the bile ducts. While many researchers have hypothesized that they are an important myofibroblast precursor population in biliary fibrosis, responsible for matrix deposition in early fibrosis and for recruiting hepatic stellate cells, the role of portal fibroblasts relative to hepatic stellate cells is controversial. Several papers published in the past year have addressed this point and have identified other potential roles for portal fibroblasts in biliary fibrosis. The goal of this review is to critically assess these recent studies, to highlight gaps in our knowledge of portal fibroblasts, and to suggest directions for future research.
Collapse
Affiliation(s)
- Rebecca G Wells
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|