351
|
Schmeiser HH. Chemical and molecular basis of the toxicity of Aristolochia and plants containing pyrrolizidine alkoids. Toxicology 2007. [DOI: 10.1016/j.tox.2007.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
352
|
Tang J, Akao T, Nakamura N, Wang ZT, Takagawa K, Sasahara M, Hattori M. In Vitro Metabolism of Isoline, a Pyrrolizidine Alkaloid fromLigularia duciformis, by Rodent Liver Microsomal Esterase and Enhanced Hepatotoxicity by Esterase Inhibitors. Drug Metab Dispos 2007; 35:1832-9. [PMID: 17639025 DOI: 10.1124/dmd.107.016311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isoline, a major retronecine-type pyrrolizidine alkaloid (PA) from the Chinese medicinal herb Ligularia duciformis, was suggested to be the most toxic known PA. Its in vitro metabolism was thus examined in rat and mouse liver microsomes, and its toxicity was compared with that of clivorine and monocrotaline after i.p. injection in mice. Isoline was more rapidly metabolized by both microsomes than clivorine and monocrotaline and converted to two polar metabolites M1 and M2, which were spectroscopically determined to be bisline (a deacetylated metabolite of isoline) and bisline lactone, respectively. Both metabolites were formed in the presence or absence of an NADPH-generating system with liver microsomes but not cytosol. Their formation was completely inhibited by the esterase inhibitors, triorthocresyl phosphate (TOCP) and phenylmethylsulfonyl fluoride, but not at all or partially by cytochrome P450 (P450) inhibitors, alpha-naphthoflavone and proadifen (SKF 525A), respectively. These results demonstrated that both metabolites were produced by microsomal esterase(s) but not P450 isozymes. The esterase(s) involved showed not only quite different activities but also responses to different inhibitors in rat and mouse liver microsomes, suggesting that different key isozyme(s) or combinations might be responsible for the deacetylation of isoline. Isoline injected i.p. into mice induced liver-specific toxicity that was much greater than that with either clivorine or monocrotaline, as judged by histopathology as well as serum alanine aminotransferase and aspartate aminotransferase levels. Isoline-induced hepatotoxicity was remarkably enhanced by the esterase inhibitor TOCP but was reduced by the P450 inhibitor SKF 525A, indicating that rodent hepatic esterase(s) played a principal role in the detoxification of isoline via rapid deacetylation in vivo.
Collapse
Affiliation(s)
- Jun Tang
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | |
Collapse
|
353
|
Valerio LG, Arvidson KB, Chanderbhan RF, Contrera JF. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Toxicol Appl Pharmacol 2007; 222:1-16. [PMID: 17482223 DOI: 10.1016/j.taap.2007.03.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/27/2007] [Accepted: 03/08/2007] [Indexed: 12/24/2022]
Abstract
Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest is MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200 chemicals, comprised primarily of pharmaceutical, industrial and some natural products developed under an FDA-MDL cooperative research and development agreement (CRADA). The predictive performance for this group of dietary natural products and the control group was 97% sensitivity and 80% concordance. Specificity was marginal at 53%. This study finds that the in silico QSAR analysis employing this software's rodent carcinogenicity database is capable of identifying the rodent carcinogenic potential of naturally occurring organic molecules found in the human diet with a high degree of sensitivity. It is the first study to demonstrate successful QSAR predictive modeling of naturally occurring carcinogens found in the human diet using an external validation test. Further test validation of this software and expansion of the training data set for dietary chemicals will help to support the future use of such QSAR methods for screening and prioritizing the risk of dietary chemicals when actual animal data are inadequate, equivocal, or absent.
Collapse
Affiliation(s)
- Luis G Valerio
- Division of Biotechnology and GRAS Notice Review, US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, HFS-255, 5100 Paint Branch Parkway, College Park, MD 20740, USA.
| | | | | | | |
Collapse
|
354
|
Opinion of the Panel on contaminants in the food chain [CONTAM] related to pyrrolizidine alkaloids as undesirable substances in animal feed. EFSA J 2007. [DOI: 10.2903/j.efsa.2007.447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
355
|
Lin G, Tang J, Liu XQ, Jiang Y, Zheng J. Deacetylclivorine: A Gender-Selective Metabolite of Clivorine Formed in Female Sprague-Dawley Rat Liver Microsomes. Drug Metab Dispos 2007; 35:607-13. [PMID: 17237157 DOI: 10.1124/dmd.106.014100] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clivorine, a naturally occurring pyrrolizidine alkaloid, causes liver toxicity via its metabolic activation to generate toxic metabolite (pyrrolic ester). Female Sprague-Dawley (SD) rats are reported to be less susceptible to clivorine intoxication than male SD rats. However, the biochemical mechanism causing such gender difference is largely unknown. The present study investigated hepatic microsomal metabolism of clivorine in female rats to delineate the mechanism of the gender difference. Two pathways, which directly metabolize clivorine, were observed. First, the metabolic activation to produce the toxic pyrrolic ester followed by formations of bound pyrroles, dehydroretronecine, 7-glutathionyldehydroretronecine, and clivoric acid were found in female rats, and CYP3A1/2 isozymes were identified to catalyze the metabolic activation. Compared with male rats ( approximately 21%), the metabolic activation in female rats was significantly lower ( approximately 4%) possibly because of significantly lower CYP3A1/2 levels expressed in female rats. Second, a direct hydrolysis to generate the novel female rat-specific metabolite deacetylclivorine was shown as the predominant pathway ( approximately 16% clivorine metabolism) in female rat liver microsomes and was determined to be mediated by microsomal hydrolase A. Furthermore, when the metabolic activation was completely inhibited by ketoconazole, the amount of deacetylclivorine formed in a 1-h incubation significantly increased from 19.44 +/- 3.00 to 54.87 +/- 9.30 nmol/mg protein, suggesting that the two pathways compete with each other. Therefore, the lower susceptibility of female SD rats to clivorine intoxication is suggested to be caused by the significantly higher extent of the direct hydrolysis and a lower degree of the metabolic activation.
Collapse
Affiliation(s)
- Ge Lin
- Department of Pharmacology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR.
| | | | | | | | | |
Collapse
|
356
|
Guo L, Lobenhofer EK, Wang C, Shippy R, Harris SC, Zhang L, Mei N, Chen T, Herman D, Goodsaid FM, Hurban P, Phillips KL, Xu J, Deng X, Sun YA, Tong W, Dragan YP, Shi L. Rat toxicogenomic study reveals analytical consistency across microarray platforms. Nat Biotechnol 2006; 24:1162-9. [PMID: 17061323 DOI: 10.1038/nbt1238] [Citation(s) in RCA: 337] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To validate and extend the findings of the MicroArray Quality Control (MAQC) project, a biologically relevant toxicogenomics data set was generated using 36 RNA samples from rats treated with three chemicals (aristolochic acid, riddelliine and comfrey) and each sample was hybridized to four microarray platforms. The MAQC project assessed concordance in intersite and cross-platform comparisons and the impact of gene selection methods on the reproducibility of profiling data in terms of differentially expressed genes using distinct reference RNA samples. The real-world toxicogenomic data set reported here showed high concordance in intersite and cross-platform comparisons. Further, gene lists generated by fold-change ranking were more reproducible than those obtained by t-test P value or Significance Analysis of Microarrays. Finally, gene lists generated by fold-change ranking with a nonstringent P-value cutoff showed increased consistency in Gene Ontology terms and pathways, and hence the biological impact of chemical exposure could be reliably deduced from all platforms analyzed.
Collapse
Affiliation(s)
- Lei Guo
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Mei N, Guo L, Zhang L, Shi L, Sun YA, Fung C, Moland CL, Dial SL, Fuscoe JC, Chen T. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale). BMC Bioinformatics 2006; 7 Suppl 2:S16. [PMID: 17118137 PMCID: PMC1683566 DOI: 10.1186/1471-2105-7-s2-s16] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. Results In this study, we identified comfrey-induced gene expression profile in the livers of rats. Groups of 6 male transgenic Big Blue rats were fed a basal diet and a diet containing 8% comfrey roots, a dose that resulted in liver tumors in a previous carcinogenicity bioassay. The animals were treated for 12 weeks and sacrificed one day after the final treatment. We used a rat microarray containing 26,857 genes to perform genome-wide gene expression studies. Dietary comfrey resulted in marked changes in liver gene expression, as well as in significant decreases in the body weight and increases in liver mutant frequency. When a two-fold cutoff value and a P-value less than 0.01 were selected, 2,726 genes were identified as differentially expressed in comfrey-fed rats compared to control animals. Among these genes, there were 1,617 genes associated by Ingenuity Pathway Analysis with particular functions, and the differentially expressed genes in comfrey-fed rat livers were involved in metabolism, injury of endothelial cells, and liver injury and abnormalities, including liver fibrosis and cancer development. Conclusion The gene expression profile provides us a better understanding of underlying mechanisms for comfrey-induced hepatic toxicity. Integration of gene expression changes with known pathological changes can be used to formulate a mechanistic scheme for comfrey-induced liver toxicity and tumorigenesis.
Collapse
Affiliation(s)
- Nan Mei
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Lei Guo
- Division of Systems Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Lu Zhang
- Molecular Biology-SDS/Arrays, Applied Biosystems, Foster City, CA 94404, USA
- Solexa, Inc., 25861 Industrial Boulevard, Hayward, CA 94545, USA
| | - Leming Shi
- Division of Systems Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Yongming Andrew Sun
- Molecular Biology-SDS/Arrays, Applied Biosystems, Foster City, CA 94404, USA
| | - Chris Fung
- Molecular Biology-SDS/Arrays, Applied Biosystems, Foster City, CA 94404, USA
| | - Carrie L Moland
- Division of Systems Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Stacey L Dial
- Division of Systems Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - James C Fuscoe
- Division of Systems Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Tao Chen
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| |
Collapse
|
358
|
Santos FV, Colus IMS, Silva MA, Vilegas W, Varanda EA. Assessment of DNA damage by extracts and fractions of Strychnos pseudoquina, a Brazilian medicinal plant with antiulcerogenic activity. Food Chem Toxicol 2006; 44:1585-9. [PMID: 16730111 DOI: 10.1016/j.fct.2006.03.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 03/07/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
Strychnos pseudoquina St. Hil. is a native plant of the Brazilian Savannah, used in popular medicine to treat a number of conditions. Since it contains large quantities of alkaloids with proven antiulcer activity, we tested the genotoxic potential of crude extracts and fractions containing alkaloids and flavonoids from the leaves of this plant, on Salmonella typhimurium and performed the micronucleus test on peripheral blood cells of mice treated in vivo. The results showed that the methanol extract of the leaves of S. pseudoquina is mutagenic to the TA98 (-S9) and TA100 (+S9, -S9) strains of Salmonella. The dichloromethane extract was not mutagenic to any of the tested strains. Fractions enriched with alkaloids or flavonoids were not mutagenic. In vivo tests were done on the crude methanol extract in albino Swiss mice, which were treated, by gavage, with three different doses of the extract. The highest dose tested (1800 mg/kgb.w.) induced micronuclei after acute treatment, confirming the mutagenic potential of the methanol extract of the leaves of S. pseudoquina. In high doses, constituents of S. pseudoquina compounds act on DNA, causing breaks and giving rise to micronuclei in the blood cells of treated animals.
Collapse
Affiliation(s)
- F V Santos
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, SP, Brazil
| | | | | | | | | |
Collapse
|
359
|
Frölich C, Hartmann T, Ober D. Tissue distribution and biosynthesis of 1,2-saturated pyrrolizidine alkaloids in Phalaenopsis hybrids (Orchidaceae). PHYTOCHEMISTRY 2006; 67:1493-502. [PMID: 16815502 DOI: 10.1016/j.phytochem.2006.05.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 05/18/2006] [Accepted: 05/19/2006] [Indexed: 05/10/2023]
Abstract
Phalaenopsis hybrids contain two 1,2-saturated pyrrolizidine monoesters, T-phalaenopsine (necine base trachelanthamidine) and its stereoisomer Is-phalaenopsine (necine base isoretronecanol). T-Phalaenopsine is the major alkaloid accounting for more than 90% of total alkaloid. About equal amounts of alkaloid were genuinely present as free base and its N-oxide. The structures were confirmed by GC-MS. The quantitative distribution of phalaenopsine in various organs and tissues of vegetative rosette plants and flowering plants revealed alkaloid in all tissues. The highest concentrations were found in young and developing tissues (e.g., root tips and young leaves), peripheral tissues (e.g., of flower stalks) and reproductive organs (flower buds and flowers). Within flowers, parts that usually attract insect visitors (e.g., labellum with colorful crests as well as column and pollinia) show the highest alkaloid levels. Tracer feeding experiments with (14)C-labeled putrecine revealed that in rosette plants the aerial roots were the sites of phalaenopsine biosynthesis. However active biosynthesis was only observed in roots still attached to the plant but not in excised roots. There is a slow but substantial translocation of newly synthesized alkaloid from the roots to other plant organs. A long-term tracer experiment revealed that phalaenopsine shows neither turnover nor degradation. The results are discussed in the context of a polyphyletic molecular origin of the biosynthetic pathways of pyrrolizidine alkaloids in various scattered angiosperm taxa. The ecological role of the so called non-toxic 1,2-saturated pyrrolizidine alkaloids is discussed in comparison to the pro-toxic 1,2-unsaturated pyrrolizidine alkaloids. Evidence from the plant-insect interphase is presented indicating a substantial role of the 1,2-saturated alkaloids in plant and insect defense.
Collapse
Affiliation(s)
- Cordula Frölich
- Institut für Pharmazeutische Biologie, Technische Universität Braunschweig, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany
| | | | | |
Collapse
|
360
|
Xia Q, Chou MW, Edgar JA, Doerge DR, Fu PP. Formation of DHP-derived DNA adducts from metabolic activation of the prototype heliotridine-type pyrrolizidine alkaloid, lasiocarpine. Cancer Lett 2006; 231:138-45. [PMID: 16356839 DOI: 10.1016/j.canlet.2005.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Revised: 01/10/2005] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are probably the most common poisonous plants affecting livestock, wildlife, and humans. The PAs that have been found to be tumorigenic in experimental animals belong to the retronecine-, heliotridine-, and otonecine-type PAs. Our recent mechanistic studies indicated that riddelliine, a tumorigenic retronecine-type PA, induced tumors via a genotoxic mechanism mediated by the formation of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts. The same adducts were formed from clivorine, a tumorigenic otonecine-type PA from metabolism of clivorine by rat liver microsomes in the presence of calf thymus DNA. In this study, we report that metabolism of lasiocarpine, the prototype heliotridine PA, by F344 rat liver microsomes resulted in the formation of DHP. When incubated in the presence of calf thymus DNA, the same DHP-derived DNA adducts were formed. These results suggest that these DHP-derived DNA adducts are potential biomarkers of exposure and tumorigenicity for all types of PAs.
Collapse
Affiliation(s)
- Qingsu Xia
- Division of Biochemical Toxicology, National Center for Toxicological Research, 3,900 NCTR Road, HFT0-110, Jefferson, AR 72079, USA
| | | | | | | | | |
Collapse
|
361
|
Dearing MD, Foley WJ, McLean S. The Influence of Plant Secondary Metabolites on the Nutritional Ecology of Herbivorous Terrestrial Vertebrates. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2005. [DOI: 10.1146/annurev.ecolsys.36.102003.152617] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Denise Dearing
- Department of Biology, University of Utah, Salt Lake City, Utah 84112;
| | - William J. Foley
- School of Botany and Zoology, Australian National University, Canberra ACT 0200, Australia;
| | - Stuart McLean
- School of Pharmacy, University of Tasmania, Hobart, Tasmania 7005, Australia;
| |
Collapse
|
362
|
Hartmann T, Theuring C, Beuerle T, Bernays EA, Singer MS. Acquisition, transformation and maintenance of plant pyrrolizidine alkaloids by the polyphagous arctiid Grammia geneura. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:1083-99. [PMID: 16102415 DOI: 10.1016/j.ibmb.2005.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/06/2005] [Accepted: 05/06/2005] [Indexed: 05/04/2023]
Abstract
The polyphagous arctiid Grammia geneura appears well adapted to utilize for its protection plant pyrrolizidine alkaloids of almost all known structural types. Plant-acquired alkaloids that are maintained through all life-stages include various classes of macrocyclic diesters (typically occurring in the Asteraceae tribe Senecioneae and Fabaceae), macrocyclic triesters (Apocynaceae) and open-chain esters of the lycopsamine type (Asteraceae tribe Eupatorieae, Boraginaceae and Apocynaceae). As in other arctiids, all sequestered and processed pyrrolizidine alkaloids are maintained as non-toxic N-oxides. The only type of pyrrolizidine alkaloids that is neither sequestered nor metabolized are the pro-toxic otonecine-derivatives, e.g. the senecionine analog senkirkine that cannot be detoxified by N-oxidation. In its sequestration behavior, G. geneura resembles the previously studied highly polyphagous Estigmene acrea. Both arctiids are adapted to exploit pyrrolizidine alkaloid-containing plants as "drug sources". However, unlike E. acrea, G. geneura is not known to synthesize the pyrrolizidine-derived male courtship pheromone, hydroxydanaidal, and differs distinctly in its metabolic processing of the plant-acquired alkaloids. Necine bases obtained from plant acquired pyrrolizidine alkaloids are re-esterified yielding two distinct classes of insect-specific ester alkaloids, the creatonotines, also present in E. acrea, and the callimorphines, missing in E. acrea. The creatonotines are preferentially found in pupae; in adults they are largely replaced by the callimorphines. Before eclosion the creatonotines are apparently converted into the callimorphines by trans-esterification. Open-chain ester alkaloids such as the platynecine ester sarracine and the orchid alkaloid phalaenopsine, that do not possess the unique necic acid moiety of the lycopsamine type, are sequestered by larvae but they need to be converted into the respective creatonotines and callimorphines by trans-esterification in order to be transferred to the adult stage. In the case of the orchid alkaloids, evidence is presented that during this processing the necine base (trachelanthamidine) is converted into its 7-(R)-hydroxy derivative (turneforcidine), indicating the ability of G. geneura to introduce a hydroxyl group at C-7 of a necine base. The creatonotines and callimorphines display a striking similarity to plant necine monoesters of the lycopsamine type to which G. geneura is well adapted. The possible function of insect-specific trans-esterification in the acquisition of necine bases derived from plant acquired alkaloids, especially from those that cannot be maintained through all life-stages, is discussed.
Collapse
Affiliation(s)
- T Hartmann
- Institut für Pharmazeutische Biologie der Technischen Universität Braunschweig, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
363
|
Pelser PB, de Vos H, Theuring C, Beuerle T, Vrieling K, Hartmann T. Frequent gain and loss of pyrrolizidine alkaloids in the evolution of Senecio section Jacobaea (Asteraceae). PHYTOCHEMISTRY 2005; 66:1285-95. [PMID: 15904942 DOI: 10.1016/j.phytochem.2005.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 01/12/2005] [Accepted: 04/07/2005] [Indexed: 05/02/2023]
Abstract
Pyrrolizidine alkaloids (PAs) of the macrocyclic senecionine type are secondary metabolites characteristic for most species of the genus Senecio (Asteraceae). These PAs are deterrent and toxic to most vertebrates and insects and provide plants with a chemical defense against herbivores. We studied the PA composition of 24 out of 26 species of Senecio section Jacobaea using GC-MS. The PA profiles of eight of these species have not been studied before and additional PAs were identified for most other species that were included in previous studies. With one exception (senecivernine) all 26 PAs identified in sect. Jacobaea can be regarded as derivatives of the biosynthetic backbone structure senecionine. Based on the PA profiles of the species of sect. Jacobaea and the results of previous tracer studies, we constructed two hypothetical biosynthetic scenarios of senecionine diversification. Both scenarios contain two major reactions: the conversion of the necine base moiety retronecine into the otonecine moiety and site-specific epoxidations within the necic acid moiety. Further reactions are site-specific hydroxylations, sometimes followed by O-acetylations, site-specific dehydrogenations, E, Z-isomerizations, and epoxide hydrolysis and chlorolysis. The GC-MS data and both biosynthetic scenarios were subsequently used to study the evolution of PA formation in sect. Jacobaea by reconstructing the evolutionary history of qualitative PA variation in this section. This was achieved by optimizing additive presence/absence data of PAs and types of enzymatic conversions on a maximum parsimony cladogram of section Jacobaea inferred from DNA sequence and morphological data. Besides showing large intra- and interspecific variation, PA distribution appears to be largely incidental within the whole clade. These results together with the finding that all but one of the PAs identified in sect. Jacobaea are also present in species of other sections of Senecio indicate that differences in PA profiles in Senecio can not be explained by the gain and loss of PA specific genes, but rather by a transient switch-off and switch-on of the expression of genes encoding PA pathway-specific enzymes.
Collapse
Affiliation(s)
- Pieter B Pelser
- Department of Botany, Miami University, Oxford, OH 45056, USA.
| | | | | | | | | | | |
Collapse
|
364
|
Hartmann T, Theuring C, Beuerle T, Klewer N, Schulz S, Singer MS, Bernays EA. Specific recognition, detoxification and metabolism of pyrrolizidine alkaloids by the polyphagous arctiid Estigmene acrea. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:391-411. [PMID: 15804574 DOI: 10.1016/j.ibmb.2004.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/10/2004] [Accepted: 12/14/2004] [Indexed: 05/24/2023]
Abstract
Evidence is presented that the polyphagous arctiid Estigmene acrea is well adapted to sequester and specifically handle pyrrolizidine alkaloids of almost all known structural types representative of the major plant families with pyrrolizidine alkaloid-containing species, i.e. Asteraceae with the tribes Senecioneae and Eupatorieae, Boraginaceae, Fabaceae, Apocynaceae and Orchidaceae. The adaptation of E. acrea to pyrrolizidine alkaloids includes a number of specialized characters: (i) highly sensitive recognition of alkaloid sources by pyrrolizidine alkaloid-specific taste receptors; (ii) detoxification of pyrrolizidine alkaloids by N-oxidation catalyzed by a specific flavin-dependent monooxygenase; (iii) transfer and maintenance of all types of pyrrolizidine N-oxides through all developmental stages; (iv) conversion of the various structures into the male courtship pheromone hydroxydanaidal most probably through retronecine and insect specific retronecine esters (creatonotines) as common intermediates; (v) specific integration into mating behavior and defense strategies. Toxic otonecine derivatives, e.g. the senecionine analogue senkirkine, which often accompany the common retronecine derivatives and which cannot be detoxified by N-oxidation do not affect the development of E. acrea larvae. Senkirkine is not sequestered at all. Non-toxic 1,2-saturated platynecine derivatives that frequently occur together with toxic retronecine esters are sequestered and metabolized to hydroxydanaidal, indicating the ability of E. acrea to aromatize saturated pyrrolizidines. Although pyrrolizidine alkaloids, even if they are offered continuously at a high level (2%) in the larval diet, are non-toxic, E. acrea larvae are not able to develop exclusively on a pyrrolizidine alkaloid-containing plant like Crotalaria. Therefore, E. acrea appears to be specifically adapted to exploit pyrrolizidine alkaloid-containing plants as "drug source" but not as a food source.
Collapse
Affiliation(s)
- T Hartmann
- Institut für Pharmazeutische Biologie der Technischen Universität Braunschweig, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
365
|
Mei N, Guo L, Fu PP, Heflich RH, Chen T. Mutagenicity of comfrey (Symphytum Officinale) in rat liver. Br J Cancer 2005; 92:873-5. [PMID: 15726100 PMCID: PMC2361893 DOI: 10.1038/sj.bjc.6602420] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Comfrey is a rat liver toxin and carcinogen that has been used as a vegetable and herbal remedy by humans. In order to evaluate the mechanisms underlying its carcinogenicity, we examined the mutagenicity of comfrey in the transgenic Big Blue rat model. Our results indicate that comfrey is mutagenic in rat liver and the types of mutations induced by comfrey suggest that its tumorigenicity results from the genotoxicity of pyrrolizidine alkaloids in the plant.
Collapse
Affiliation(s)
- N Mei
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, US Food and Drug Administration, HFT-130, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - L Guo
- Center for Hepatotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - P P Fu
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - R H Heflich
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, US Food and Drug Administration, HFT-130, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - T Chen
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, US Food and Drug Administration, HFT-130, 3900 NCTR Road, Jefferson, AR 72079, USA
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, US Food and Drug Administration, HFT-130, 3900 NCTR Road, Jefferson, AR 72079, USA. E-mail:
| |
Collapse
|
366
|
Mei N, Heflich RH, Chou MW, Chen T. Mutations induced by the carcinogenic pyrrolizidine alkaloid riddelliine in the liver cII gene of transgenic big blue rats. Chem Res Toxicol 2005; 17:814-8. [PMID: 15206902 PMCID: PMC6375673 DOI: 10.1021/tx049955b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Riddelliine is a naturally occurring pyrrolizidine alkaloid that forms a number of different mononucleotide and dinucleotide adducts in DNA. It is a rodent carcinogen and a potential human hazard via food contamination. To examine the mutagenicity of riddelliine, groups of six female transgenic Big Blue rats were gavaged with 0.1, 0.3, and 1.0 mg riddelliine per kg body weight. The middle and high doses resulted in liver tumors in a previous carcinogenesis bioassay. The animals were treated 5 days a week for 12 weeks and sacrificed 1 day after the last treatment. The liver DNA was isolated for analysis of the mutant frequency (MF) in the transgenic cII gene, and the types of mutations were characterized by sequencing the mutants. A significant dose-dependent increase in MF was found, increasing from 30 x 10(-)(6) in the control animals to 47, 55, and 103 x 10(-)(6) in the low, middle, and high dose groups, respectively. Molecular analysis of the mutants indicated that there was a statistically significant difference between the mutational spectra from the riddelliine-treated and the control rats. A G:C --> T:A transversion (35%) was the major type of mutation in rats treated with riddelliine, whereas a G:C --> A:T transition (55%) was the predominant mutation in the controls. In addition, mutations from the riddelliine-treated rats included an unusually high frequency (8%) of tandem base substitutions of GG --> TT and GG --> AT. These results indicate that riddelliine is a genotoxic carcinogen in rat liver and that the types of mutations induced by riddelliine are consistent with riddelliine adducts involving G:C base pairs.
Collapse
Affiliation(s)
- Nan Mei
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079, USA.
| | | | | | | |
Collapse
|
367
|
Dieter RK, Chen N, Watson RT. Copper mediated scalemic organolithium reagents in alkaloid syntheses. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.01.094] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
368
|
Wang YP, Yan J, Fu PP, Chou MW. Human liver microsomal reduction of pyrrolizidine alkaloid N-oxides to form the corresponding carcinogenic parent alkaloid. Toxicol Lett 2005; 155:411-20. [PMID: 15649625 DOI: 10.1016/j.toxlet.2004.11.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 11/15/2004] [Accepted: 11/22/2004] [Indexed: 11/28/2022]
Abstract
Retronecine-based pyrrolizidine alkaloids, such as riddelliine, retrorsine, and monocrotaline, are toxic to domestic livestock and carcinogenic to laboratory rodents. Previous in vitro metabolism studies showed that (+/-)6,7-dihydro-7-hydroxy-1-(hydroxymethyl)-5H-pyrrolizine (DHP) and pyrrolizidine alkaloid N-oxides were the major metabolites of these compounds. DHP is the reactive metabolite of pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides are generally regarded as detoxification products. However, a previous study of rat liver microsomal metabolism of riddelliine N-oxide demonstrated that DHP and its parent compound, riddelliine, were generated as the major metabolites of riddelliine N-oxide. In this study the metabolic activation of the three retronecine-based pyrrolizidine alkaloid N-oxides by human liver microsomes is investigated under oxidative and hypoxic conditions. Results shows that both the DHP and the corresponding parent pyrrolizidine alkaloids are the major metabolites of the human liver microsomal metabolism of pyrrolizidine alkaloid N-oxides. Under oxidative conditions, reduction of the N-oxide to pyrrolizidine alkaloid is inhibited and while under hypoxic conditions, DHP formation is dramatically decreased. The oxidative and reductive products generated from the metabolism of pyrrolizidine alkaloid N-oxides are substrate-, enzyme- and time-dependent. In the presence of troleandomycin, a microsomal CYP3A inhibitor, DHP formation is inhibited by more than 70%, while the N-oxide reduction was not affected. The level of microsomal enzyme activity in human liver is comparable with rats. The rate of in vitro metabolism by either human and rat liver microsomes follows the order of riddelliine > or = retrorsine > monocrotaline, and DHP-derived DNA adducts are detected and quantified by 32P-postlabeling/HPLC analysis. Similar DHP-derived DNA adducts are found in liver DNA of F344 rats gavaged with the pyrrolizidine alkaloid N-oxides (1.0 mg/kg). The levels of in vivo DHP-DNA adduct formation is correlated with the level of in vitro DHP formation. Our results indicate that pyrrolizidine alkaloid N-oxides may be hepatocarcinogenic to rats through a genotoxic mechanism via the conversion of the N-oxides to their corresponding parent pyrrolizidine alkaloids, and these results may be relevant to humans.
Collapse
Affiliation(s)
- Yu-Ping Wang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | | | | | | |
Collapse
|
369
|
Mei N, Chou MW, Fu PP, Heflich RH, Chen T. Differential mutagenicity of riddelliine in liver endothelial and parenchymal cells of transgenic big blue rats. Cancer Lett 2004; 215:151-8. [PMID: 15488633 PMCID: PMC6370022 DOI: 10.1016/j.canlet.2004.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 05/25/2004] [Accepted: 06/01/2004] [Indexed: 11/17/2022]
Abstract
Riddelliine is a naturally occurring pyrrolizidine alkaloid that induces liver hemangiosarcomas in rats and mice. We previously reported higher levels of DNA adducts in liver endothelial cells than in liver parenchymal cells of riddelliine-treated mice and rats [Cancer Lett. 193 (2003) 119], suggesting that the tumor specificity is due to higher levels of DNA damage in the cells that form hemangosarcomas. In the present study, we evaluated the cell-specificity of riddelliine mutagenicity in rat liver. Female transgenic Big Blue rats were treated by gavage with 0.3 mg riddelliine per kg body weight, 5 days a week for 12 weeks. One day after the last treatment, the rats were sacrificed and liver parenchymal and endothelial cell fractions were isolated and purified. DNA was extracted from the cell fractions and used to assay for mutant frequency (MF) in the cII transgene. While there was no difference in the cII MFs of liver parenchymal cells in control and riddelliine-treated rats, the cII MF of liver endothelial cells from treated rats was significantly greater than the cII MF of endothelial cells from control rats. Molecular analysis of the mutants in liver endothelial cells indicated that G:C-->T:A transversion, a mutation that is characteristically induced by riddelliine, accounted for only 9% of all mutations in control rats, but made up 17% of mutations in treated rats. In contrast, G:C-->A:T transition, the major mutation in control rats where it made up 54% of all mutations, was reduced to 40% of mutations in riddelliine-treated rats. These results suggest that the relatively high mutagenicity of riddelliine in rat liver endothelial cells may be partially responsible for the tumorigenic specificity of this agent.
Collapse
Affiliation(s)
- Nan Mei
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.
| | | | | | | | | |
Collapse
|