351
|
Zhu L, He D, Han L, Cao H. Stroke Research in China over the Past Decade: Analysis of NSFC Funding. Transl Stroke Res 2015; 6:253-6. [DOI: 10.1007/s12975-015-0404-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022]
|
352
|
De Vico Fallani F, Richiardi J, Chavez M, Achard S. Graph analysis of functional brain networks: practical issues in translational neuroscience. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0521. [PMID: 25180301 DOI: 10.1098/rstb.2013.0521] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes.
Collapse
Affiliation(s)
- Fabrizio De Vico Fallani
- INRIA Paris-Rocquencourt, ARAMIS team, Paris, France CNRS, UMR-7225, Paris, France INSERM, U1227, Paris, France Institut du Cerveau et de la Moelle épinière, Paris, France Univ. Sorbonne UPMC, UMR S1127, Paris, France
| | - Jonas Richiardi
- Functional Imaging in Neuropsychiatric Disorders Laboratory, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA Laboratory for Neuroimaging and Cognition, Department of Neurology and Department of Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Sophie Achard
- Univ. Grenoble Alpes, GIPSA-Lab, F-38000 Grenoble, France CNRS, GIPSA-Lab, F-38000 Grenoble, France
| |
Collapse
|
353
|
Schulz R, Koch P, Zimerman M, Wessel M, Bönstrup M, Thomalla G, Cheng B, Gerloff C, Hummel FC. Parietofrontal motor pathways and their association with motor function after stroke. Brain 2015; 138:1949-60. [DOI: 10.1093/brain/awv100] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/07/2015] [Indexed: 11/14/2022] Open
|
354
|
Quantifying motor recovery after stroke using independent vector analysis and graph-theoretical analysis. NEUROIMAGE-CLINICAL 2015; 8:298-304. [PMID: 26106554 PMCID: PMC4474175 DOI: 10.1016/j.nicl.2015.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 02/01/2023]
Abstract
The assessment of neuroplasticity after stroke through functional magnetic resonance imaging (fMRI) analysis is a developing field where the objective is to better understand the neural process of recovery and to better target rehabilitation interventions. The challenge in this population stems from the large amount of individual spatial variability and the need to summarize entire brain maps by generating simple, yet discriminating features to highlight differences in functional connectivity. Independent vector analysis (IVA) has been shown to provide superior performance in preserving subject variability when compared with widely used methods such as group independent component analysis. Hence, in this paper, graph-theoretical (GT) analysis is applied to IVA-generated components to effectively exploit the individual subjects' connectivity to produce discriminative features. The analysis is performed on fMRI data collected from individuals with chronic stroke both before and after a 6-week arm and hand rehabilitation intervention. Resulting GT features are shown to capture connectivity changes that are not evident through direct comparison of the group t-maps. The GT features revealed increased small worldness across components and greater centrality in key motor networks as a result of the intervention, suggesting improved efficiency in neural communication. Clinically, these results bring forth new possibilities as a means to observe the neural processes underlying improvements in motor function. IVA is used to capture subject variability, which is considerable in stroke data. We quantify post-rehabilitation improvements using graph-theoretical features. Motor recovery shown through centrality calculations and task correlation Graph theory is shown to discriminate between groups better than t-maps.
Collapse
|
355
|
The microstructural status of the corpus callosum is associated with the degree of motor function and neurological deficit in stroke patients. PLoS One 2015; 10:e0122615. [PMID: 25875333 PMCID: PMC4398463 DOI: 10.1371/journal.pone.0122615] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/23/2015] [Indexed: 11/19/2022] Open
Abstract
Human neuroimaging studies and animal models have suggested that white matter damage from ischemic stroke leads to the functional and structural reorganization of perilesional and remote brain regions. However, the quantitative relationship between the transcallosal tract integrity and clinical motor performance score after stroke remains unexplored. The current study employed a tract-based spatial statistics (TBSS) analysis on diffusion tensor imaging (DTI) to investigate the relationship between white matter diffusivity changes and the clinical scores in stroke patients. Probabilistic fiber tracking was also used to identify structural connectivity patterns in the patients. Thirteen ischemic stroke patients and fifteen healthy control subjects participated in this study. TBSS analyses showed that the corpus callosum (CC) and bilateral corticospinal tracts (CST) in the stroke patients exhibited significantly decreased fractional anisotropy and increased axial and radial diffusivity compared with those of the controls. Correlation analyses revealed that the motor and neurological deficit scores in the stroke patients were associated with the value of diffusivity indices in the CC. Compared with the healthy control group, probabilistic fiber tracking analyses revealed that significant changes in the inter-hemispheric fiber connections between the left and right motor cortex in the stroke patients were primarily located in the genu and body of the CC, left anterior thalamic radiation and inferior fronto-occipital fasciculus, bilateral CST, anterior/superior corona radiate, cingulum and superior longitudinal fasciculus, strongly suggesting that ischemic induces inter-hemispheric network disturbances and disrupts the white matter fibers connecting motor regions. In conclusion, the results of the present study show that DTI-derived measures in the CC can be used to predict the severity of motor skill and neurological deficit in stroke patients. Changes in structural connectivity pattern tracking between the left and right motor areas, particularly in the body of the CC, might reflect functional reorganization and behavioral deficit.
Collapse
|
356
|
Bajaj S, Butler AJ, Drake D, Dhamala M. Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation. Front Hum Neurosci 2015; 9:173. [PMID: 25870557 PMCID: PMC4378298 DOI: 10.3389/fnhum.2015.00173] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/12/2015] [Indexed: 12/18/2022] Open
Abstract
Multiple cortical areas of the human brain motor system interact coherently in the low frequency range (<0.1 Hz), even in the absence of explicit tasks. Following stroke, cortical interactions are functionally disturbed. How these interactions are affected and how the functional organization is regained from rehabilitative treatments as people begin to recover motor behaviors has not been systematically studied. We recorded the intrinsic functional magnetic resonance imaging (fMRI) signals from 30 participants: 17 young healthy controls and 13 aged stroke survivors. Stroke participants underwent mental practice (MP) or both mental practice and physical therapy (MP+PT) within 14-51 days following stroke. We investigated the network activity of five core areas in the motor-execution network, consisting of the left primary motor area (LM1), the right primary motor area (RM1), the left pre-motor cortex (LPMC), the right pre-motor cortex (RPMC) and the supplementary motor area (SMA). We discovered that (i) the network activity dominated in the frequency range 0.06-0.08 Hz for all the regions, and for both able-bodied and stroke participants (ii) the causal information flow between the regions: LM1 and SMA, RPMC and SMA, RPMC and LM1, SMA and RM1, SMA and LPMC, was reduced significantly for stroke survivors (iii) the flow did not increase significantly after MP alone and (iv) the flow among the regions during MP+PT increased significantly. We also found that sensation and motor scores were significantly higher and correlated with directed functional connectivity measures when the stroke-survivors underwent MP+PT but not MP alone. The findings provide evidence that a combination of mental practice and physical therapy can be an effective means of treatment for stroke survivors to recover or regain the strength of motor behaviors, and that the spectra of causal information flow can be used as a reliable biomarker for evaluating rehabilitation in stroke survivors.
Collapse
Affiliation(s)
- Sahil Bajaj
- Department of Physics and Astronomy, Georgia State University Atlanta, GA, USA
| | - Andrew J Butler
- Department of Physical Therapy, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University Atlanta, GA, USA ; Department of Veteran's Affairs, Atlanta Rehabilitation Research and Development Center of Excellence Decatur, GA, USA ; Neuroscience Institute, Joint Center for Advanced Brain Imaging, Center for Behavioral Neuroscience, Georgia State University Atlanta, GA, USA
| | - Daniel Drake
- Department of Physical Therapy, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University Atlanta, GA, USA
| | - Mukesh Dhamala
- Department of Physics and Astronomy, Georgia State University Atlanta, GA, USA ; Neuroscience Institute, Joint Center for Advanced Brain Imaging, Center for Behavioral Neuroscience, Georgia State University Atlanta, GA, USA
| |
Collapse
|
357
|
Elnady AM, Zhang X, Xiao ZG, Yong X, Randhawa BK, Boyd L, Menon C. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform. Front Hum Neurosci 2015; 9:168. [PMID: 25870554 PMCID: PMC4378300 DOI: 10.3389/fnhum.2015.00168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/11/2015] [Indexed: 12/31/2022] Open
Abstract
Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain–computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants’ ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke.
Collapse
Affiliation(s)
- Ahmed Mohamed Elnady
- MENRVA Research Group, School of Engineering Science, Simon Fraser University , Burnaby, BC , Canada
| | - Xin Zhang
- MENRVA Research Group, School of Engineering Science, Simon Fraser University , Burnaby, BC , Canada
| | - Zhen Gang Xiao
- MENRVA Research Group, School of Engineering Science, Simon Fraser University , Burnaby, BC , Canada
| | - Xinyi Yong
- MENRVA Research Group, School of Engineering Science, Simon Fraser University , Burnaby, BC , Canada
| | - Bubblepreet Kaur Randhawa
- MENRVA Research Group, School of Engineering Science, Simon Fraser University , Burnaby, BC , Canada
| | - Lara Boyd
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Carlo Menon
- MENRVA Research Group, School of Engineering Science, Simon Fraser University , Burnaby, BC , Canada
| |
Collapse
|
358
|
Jin SH, Jeong W, Chung CK. Mesial temporal lobe epilepsy with hippocampal sclerosis is a network disorder with altered cortical hubs. Epilepsia 2015; 56:772-9. [PMID: 25809843 DOI: 10.1111/epi.12966] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Electrophysiologic hubs within the large-scale functional networks in mesial temporal lobe epilepsy (mTLE) with hippocampal sclerosis (HS) have not been investigated. We hypothesized that mTLE with HS has different resting-state network hubs in their large-scale functional networks compared to the hubs in healthy controls (HC). We also hypothesized that the hippocampus would be a functional hub in mTLE patients with HS. METHODS Resting-state functional networks, identified by using magnetoencephalography (MEG) signals in the theta, alpha, beta, and gamma frequency bands, were evaluated. Networks in 44 mTLE patients with HS (left mTLE = 22; right mTLE = 22) were compared with those in 46 age-matched HC. We investigated betweenness centrality at the source-level MEG network. RESULTS The main network hubs were at the pole of the left superior temporal gyrus in the beta band, the pole of the left middle temporal gyrus in the beta and gamma bands, left hippocampus in the theta and alpha bands, and right posterior cingulate gyrus in all four frequency bands in mTLE patients; all of which were different from the main network hubs in HC. Only patients with left mTLE showed profound differences from HC at the left hippocampus in the alpha band. SIGNIFICANCE Our analysis of resting-state MEG signals shows that altered electrophysiologic functional hubs in mTLE patients reflect pathophysiologic brain network reorganization. Because we detected network hubs in both hippocampal and extrahippocampal areas, it is probable that mTLE is a large-scale network disorder rather than a focal disorder. The hippocampus was a network hub in left mTLE but not in right mTLE patients, which may be due to intrinsic functional and structural asymmetries between left and right mTLE patients. The evaluation of cortical hubs, even in the spike-free resting-state, could be a clinical diagnostic marker of mTLE with HS.
Collapse
Affiliation(s)
- Seung-Hyun Jin
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea.,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Woorim Jeong
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea.,Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Science, Seoul, Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea.,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea.,Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Science, Seoul, Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| |
Collapse
|
359
|
Laney J, Westlake KP, Ma S, Woytowicz E, Calhoun VD, Adalı T. Capturing subject variability in fMRI data: A graph-theoretical analysis of GICA vs. IVA. J Neurosci Methods 2015; 247:32-40. [PMID: 25797843 DOI: 10.1016/j.jneumeth.2015.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent studies using simulated functional magnetic resonance imaging (fMRI) data show that independent vector analysis (IVA) is a superior solution for capturing spatial subject variability when compared with the widely used group independent component analysis (GICA). Retaining such variability is of fundamental importance for identifying spatially localized group differences in intrinsic brain networks. NEW METHODS Few studies on capturing subject variability and order selection have evaluated real fMRI data. Comparison of multivariate components generated by multiple algorithms is not straightforward. The main difficulties are finding concise methods to extract meaningful features and comparing multiple components despite lack of a ground truth. In this paper, we present a graph-theoretical (GT) approach to effectively compare the ability of multiple multivariate algorithms to capture subject variability for real fMRI data for effective group comparisons. The GT approach is applied to components generated from fMRI data, collected from individuals with stroke, before and after a rehabilitation intervention. COMPARISON WITH EXISTING METHOD IVA is compared with widely used GICA for the purpose of group discrimination in terms of GT features. In addition, masks are applied for motor related components generated by both algorithms. CONCLUSIONS Results show that IVA better captures subject variability producing more activated voxels and generating components with less mutual information in the spatial domain than Group ICA. IVA-generated components result in smaller p-values and clearer trends in GT features.
Collapse
Affiliation(s)
- Jonathan Laney
- University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| | - Kelly P Westlake
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sai Ma
- University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM 87106, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Tülay Adalı
- University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
360
|
Baldassarre A, Corbetta M. Special issue – Hearing, aging and cognitive disorders Resting state network changes in aging and cognitive decline. HEARING BALANCE AND COMMUNICATION 2015. [DOI: 10.3109/21695717.2015.1022986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
361
|
Compensatory motor network connectivity is associated with motor sequence learning after subcortical stroke. Behav Brain Res 2015; 286:136-45. [PMID: 25757996 DOI: 10.1016/j.bbr.2015.02.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/31/2022]
Abstract
Following stroke, functional networks reorganize and the brain demonstrates widespread alterations in cortical activity. Implicit motor learning is preserved after stroke. However the manner in which brain reorganization occurs, and how it supports behavior within the damaged brain remains unclear. In this functional magnetic resonance imaging (fMRI) study, we evaluated whole brain patterns of functional connectivity during the performance of an implicit tracking task at baseline and retention, following 5 days of practice. Following motor practice, a significant difference in connectivity within a motor network, consisting of bihemispheric activation of the sensory and motor cortices, parietal lobules, cerebellar and occipital lobules, was observed at retention. Healthy subjects demonstrated greater activity within this motor network during sequence learning compared to random practice. The stroke group did not show the same level of functional network integration, presumably due to the heterogeneity of functional reorganization following stroke. In a secondary analysis, a binary mask of the functional network activated from the aforementioned whole brain analyses was created to assess within-network connectivity, decreasing the spatial distribution and large variability of activation that exists within the lesioned brain. The stroke group demonstrated reduced clusters of connectivity within the masked brain regions as compared to the whole brain approach. Connectivity within this smaller motor network correlated with repeated sequence performance on the retention test. Increased functional integration within the motor network may be an important neurophysiological predictor of motor learning-related change in individuals with stroke.
Collapse
|
362
|
Bauer R, Fels M, Vukelić M, Ziemann U, Gharabaghi A. Bridging the gap between motor imagery and motor execution with a brain–robot interface. Neuroimage 2015; 108:319-27. [DOI: 10.1016/j.neuroimage.2014.12.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/31/2014] [Accepted: 12/09/2014] [Indexed: 01/29/2023] Open
|
363
|
Liu J, Qin W, Zhang J, Zhang X, Yu C. Enhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke. Stroke 2015; 46:1045-51. [PMID: 25721013 DOI: 10.1161/strokeaha.114.007044] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Motor recovery after stroke has been shown to be correlated with both the fractional anisotropy (FA) of the affected corticospinal tract (CST) and the interhemispheric resting-state functional connectivity (rsFC) of the primary motor cortex (M1). However, the role of the restoration or enhancement of the M1-M1 rsFC in motor recovery remains largely unknown. We aimed to clarify this issue by investigating the correlations between the M1-M1 rsFC and the integrity of the M1-M1 anatomic connection and the affected CST in chronic subcortical stroke patients with good motor outcomes. METHODS Twenty patients and 16 healthy controls underwent multimodal magnetic resonance imaging examinations. Diffusion tensor imaging was used to reconstruct the M1-M1 anatomic connection and bilateral CSTs. White matter integrity of these tracts was assessed using FA. Resting-state functional magnetic resonance imaging was used to calculate M1-M1 rsFC. Group differences in these measures were compared. Correlations between M1-M1 rsFC and FA of the M1-M1 anatomic connection and the affected CST were analyzed in patients with stroke. RESULTS Compared with healthy controls, patients with stroke exhibited significantly reduced FA in the affected CST and the M1-M1 anatomic connection and a significantly increased M1-M1 rsFC. The FA values of the affected CST were positively correlated with the M1-M1 anatomic connection, and these FA values were negatively correlated with the M1-M1 rsFC in these patients. CONCLUSIONS Our findings suggest that the M1-M1 anatomic connection impairment is secondary to CST damage, and the M1-M1 rsFC enhancement may reflect compensatory or reactive neural plasticity in stroke patients with CST impairment.
Collapse
Affiliation(s)
- Jingchun Liu
- From the Departments of Radiology and Tianjin Key Laboratory of Functional Imaging (J.L., W.Q., J.Z., C.Y.), Tianjin Medical University General Hospital, Tianjin, China; and Department of Medical Imaging, School of Medical Imaging, Tianjin Medical University, Tianjin, China (X.Z.)
| | - Wen Qin
- From the Departments of Radiology and Tianjin Key Laboratory of Functional Imaging (J.L., W.Q., J.Z., C.Y.), Tianjin Medical University General Hospital, Tianjin, China; and Department of Medical Imaging, School of Medical Imaging, Tianjin Medical University, Tianjin, China (X.Z.)
| | - Jing Zhang
- From the Departments of Radiology and Tianjin Key Laboratory of Functional Imaging (J.L., W.Q., J.Z., C.Y.), Tianjin Medical University General Hospital, Tianjin, China; and Department of Medical Imaging, School of Medical Imaging, Tianjin Medical University, Tianjin, China (X.Z.)
| | - Xuejun Zhang
- From the Departments of Radiology and Tianjin Key Laboratory of Functional Imaging (J.L., W.Q., J.Z., C.Y.), Tianjin Medical University General Hospital, Tianjin, China; and Department of Medical Imaging, School of Medical Imaging, Tianjin Medical University, Tianjin, China (X.Z.).
| | - Chunshui Yu
- From the Departments of Radiology and Tianjin Key Laboratory of Functional Imaging (J.L., W.Q., J.Z., C.Y.), Tianjin Medical University General Hospital, Tianjin, China; and Department of Medical Imaging, School of Medical Imaging, Tianjin Medical University, Tianjin, China (X.Z.).
| |
Collapse
|
364
|
Cocchi L, Sale MV, Lord A, Zalesky A, Breakspear M, Mattingley JB. Dissociable effects of local inhibitory and excitatory theta-burst stimulation on large-scale brain dynamics. J Neurophysiol 2015; 113:3375-85. [PMID: 25717162 DOI: 10.1152/jn.00850.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/21/2015] [Indexed: 12/12/2022] Open
Abstract
Normal brain function depends on a dynamic balance between local specialization and large-scale integration. It remains unclear, however, how local changes in functionally specialized areas can influence integrated activity across larger brain networks. By combining transcranial magnetic stimulation with resting-state functional magnetic resonance imaging, we tested for changes in large-scale integration following the application of excitatory or inhibitory stimulation on the human motor cortex. After local inhibitory stimulation, regions encompassing the sensorimotor module concurrently increased their internal integration and decreased their communication with other modules of the brain. There were no such changes in modular dynamics following excitatory stimulation of the same area of motor cortex nor were there changes in the configuration and interactions between core brain hubs after excitatory or inhibitory stimulation of the same area. These results suggest the existence of selective mechanisms that integrate local changes in neural activity, while preserving ongoing communication between brain hubs.
Collapse
Affiliation(s)
- Luca Cocchi
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia;
| | - Martin V Sale
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Anton Lord
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Melbourne School of Engineering, The University of Melbourne, Melbourne, Australia; and
| | | | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia; School of Psychology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
365
|
Johnen VM, Neubert FX, Buch ER, Verhagen L, O'Reilly JX, Mars RB, Rushworth MFS. Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest. eLife 2015; 4:e04585. [PMID: 25664941 PMCID: PMC4353194 DOI: 10.7554/elife.04585] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/08/2015] [Indexed: 11/13/2022] Open
Abstract
Correlations in brain activity between two areas (functional connectivity) have been shown to relate to their underlying structural connections. We examine the possibility that functional connectivity also reflects short-term changes in synaptic efficacy. We demonstrate that paired transcranial magnetic stimulation (TMS) near ventral premotor cortex (PMv) and primary motor cortex (M1) with a short 8-ms inter-pulse interval evoking synchronous pre- and post-synaptic activity and which strengthens interregional connectivity between the two areas in a pattern consistent with Hebbian plasticity, leads to increased functional connectivity between PMv and M1 as measured with functional magnetic resonance imaging (fMRI). Moreover, we show that strengthening connectivity between these nodes has effects on a wider network of areas, such as decreasing coupling in a parallel motor programming stream. A control experiment revealed that identical TMS pulses at identical frequencies caused no change in fMRI-measured functional connectivity when the inter-pulse-interval was too long for Hebbian-like plasticity.
Collapse
Affiliation(s)
- Vanessa M Johnen
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Franz-Xaver Neubert
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences, Bethesda, United States
| | - Lennart Verhagen
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Jill X O'Reilly
- Centre for Functional Magnetic Resonance Imaging of the Brain, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Rogier B Mars
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Centre for Functional Magnetic Resonance Imaging of the Brain, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Matthew F S Rushworth
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
- Centre for Functional Magnetic Resonance Imaging of the Brain, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| |
Collapse
|
366
|
Silasi G, Murphy TH. Stroke and the connectome: how connectivity guides therapeutic intervention. Neuron 2015; 83:1354-68. [PMID: 25233317 DOI: 10.1016/j.neuron.2014.08.052] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2014] [Indexed: 11/30/2022]
Abstract
Connections between neurons are affected within 3 min of stroke onset by massive ischemic depolarization and then delayed cell death. Some connections can recover with prompt reperfusion; others associated with the dying infarct do not. Disruption in functional connectivity is due to direct tissue loss and indirect disconnections of remote areas known as diaschisis. Stroke is devastating, yet given the brain's redundant design, collateral surviving networks and their connections are well-positioned to compensate. Our perspective is that new treatments for stroke may involve a rational functional and structural connections-based approach. Surviving, affected, and at-risk networks can be identified and targeted with scenario-specific treatments. Strategies for recovery may include functional inhibition of the intact hemisphere, rerouting of connections, or setpoint-mediated network plasticity. These approaches may be guided by brain imaging and enabled by patient- and injury-specific brain stimulation, rehabilitation, and potential molecule-based strategies to enable new connections.
Collapse
Affiliation(s)
- Gergely Silasi
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
367
|
Markovič R, Stožer A, Gosak M, Dolenšek J, Marhl M, Rupnik MS. Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns. Sci Rep 2015; 5:7845. [PMID: 25598507 PMCID: PMC4297961 DOI: 10.1038/srep07845] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/16/2014] [Indexed: 01/11/2023] Open
Abstract
Collective beta cell activity in islets of Langerhans is critical for the supply of insulin within an organism. Even though individual beta cells are intrinsically heterogeneous, the presence of intercellular coupling mechanisms ensures coordinated activity and a well-regulated exocytosis of insulin. In order to get a detailed insight into the functional organization of the syncytium, we applied advanced analytical tools from the realm of complex network theory to uncover the functional connectivity pattern among cells composing the intact islet. The procedure is based on the determination of correlations between long temporal traces obtained from confocal functional multicellular calcium imaging of beta cells stimulated in a stepwise manner with a range of physiological glucose concentrations. Our results revealed that the extracted connectivity networks are sparse for low glucose concentrations, whereas for higher stimulatory levels they become more densely connected. Most importantly, for all ranges of glucose concentration beta cells within the islets form locally clustered functional sub-compartments, thereby indicating that their collective activity profiles exhibit a modular nature. Moreover, we show that the observed non-linear functional relationship between different network metrics and glucose concentration represents a well-balanced setup that parallels physiological insulin release.
Collapse
Affiliation(s)
- Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Andraž Stožer
- 1] Institute of Physiology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia [2] Centre for Open Innovations and Research, University of Maribor, Slomškov trg 15, 2000 Maribor, Slovenia
| | - Marko Gosak
- 1] Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia [2] Centre for Open Innovations and Research, University of Maribor, Slomškov trg 15, 2000 Maribor, Slovenia [3] Faculty of Education, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Marko Marhl
- 1] Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia [2] Centre for Open Innovations and Research, University of Maribor, Slomškov trg 15, 2000 Maribor, Slovenia [3] Faculty of Education, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Marjan Slak Rupnik
- 1] Institute of Physiology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia [2] Centre for Open Innovations and Research, University of Maribor, Slomškov trg 15, 2000 Maribor, Slovenia [3] Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraβe 17, A-1090 Vienna, Austria
| |
Collapse
|
368
|
Kim DH, Park W, Kim YH, Kim L, Kwon GH. Motor task-based differences in brain networks: preliminary results. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:4940-3. [PMID: 25571100 DOI: 10.1109/embc.2014.6944732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study examined characteristics of the brain networks related to upper limb grasp movements. EEG signal of 4 patients with chronic stroke were analyzed during different motor tasks. We compared the brain networks involved in the Active and Motor Imagery tasks by using the centrality and small-worldness (SW). There was a statistically significant difference between the centralities of two motor tasks in motor cortices of affected hemisphere in the high beta band (21-30 Hz). For SW, the Active task also decreased in the high beta band in contrast with the MI task. In this paper, we could support evidence that brain networks may different under the conditions of different motor tasks in both frequency and temporal domain.
Collapse
|
369
|
Repetitive transcranial magnetic stimulation for motor recovery of the upper limb after stroke. PROGRESS IN BRAIN RESEARCH 2015; 218:281-311. [DOI: 10.1016/bs.pbr.2014.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
370
|
Burianová H, Rich AN, Williams M, Morgan M, Marstaller L, Maruff P, Baker CI, Savage G. Long-term plasticity in adult somatosensory cortex: functional reorganization after surgical removal of an arteriovenous malformation. Neurocase 2015; 21:618-27. [PMID: 25265167 DOI: 10.1080/13554794.2014.960429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The temporal scale of neuroplasticity following acute alterations in brain structure due to neurosurgical intervention is still under debate. We conducted a longitudinal study with the objective of investigating the postoperative changes in a patient who underwent cerebrovascular surgery and who subsequently lost proprioception in the fingers of her right hand. The results show increased activation in contralesional somatosensory areas, additional recruitment of premotor and posterior parietal areas, and changes in functional connectivity with left postcentral gyrus. These findings demonstrate long-term modifications of cortical organization and as such have important implications for treatment strategies for patients with brain injury.
Collapse
Affiliation(s)
- Hana Burianová
- a Centre for Advanced Imaging , The University of Queensland , Brisbane , Australia
| | | | | | | | | | | | | | | |
Collapse
|
371
|
Thiel A, Vahdat S. Structural and resting-state brain connectivity of motor networks after stroke. Stroke 2014; 46:296-301. [PMID: 25477218 DOI: 10.1161/strokeaha.114.006307] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Alexander Thiel
- From the Department of Neurology and Neurosurgery (A.T.) and Department of Psychology (S.V.), McGill University, Montreal, Canada; Department of Neuroscience, Jewish General Hospital, Lady Davis Institute for Medical Research, Montreal, Canada (A.T.); and Functional Neuroimaging Unit, Department of Neuroscience, University of Montreal, Montreal, Canada (S.V.).
| | - Shahabeddin Vahdat
- From the Department of Neurology and Neurosurgery (A.T.) and Department of Psychology (S.V.), McGill University, Montreal, Canada; Department of Neuroscience, Jewish General Hospital, Lady Davis Institute for Medical Research, Montreal, Canada (A.T.); and Functional Neuroimaging Unit, Department of Neuroscience, University of Montreal, Montreal, Canada (S.V.)
| |
Collapse
|
372
|
Baldassarre A, Ramsey L, Hacker CL, Callejas A, Astafiev SV, Metcalf NV, Zinn K, Rengachary J, Snyder AZ, Carter AR, Shulman GL, Corbetta M. Large-scale changes in network interactions as a physiological signature of spatial neglect. Brain 2014; 137:3267-83. [PMID: 25367028 PMCID: PMC4240302 DOI: 10.1093/brain/awu297] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 01/26/2023] Open
Abstract
The relationship between spontaneous brain activity and behaviour following focal injury is not well understood. Here, we report a large-scale study of resting state functional connectivity MRI and spatial neglect following stroke in a large (n=84) heterogeneous sample of first-ever stroke patients (within 1-2 weeks). Spatial neglect, which is typically more severe after right than left hemisphere injury, includes deficits of spatial attention and motor actions contralateral to the lesion, and low general attention due to impaired vigilance/arousal. Patients underwent structural and resting state functional MRI scans, and spatial neglect was measured using the Posner spatial cueing task, and Mesulam and Behavioural Inattention Test cancellation tests. A principal component analysis of the behavioural tests revealed a main factor accounting for 34% of variance that captured three correlated behavioural deficits: visual neglect of the contralesional visual field, visuomotor neglect of the contralesional field, and low overall performance. In an independent sample (21 healthy subjects), we defined 10 resting state networks consisting of 169 brain regions: visual-fovea and visual-periphery, sensory-motor, auditory, dorsal attention, ventral attention, language, fronto-parietal control, cingulo-opercular control, and default mode. We correlated the neglect factor score with the strength of resting state functional connectivity within and across the 10 resting state networks. All damaged brain voxels were removed from the functional connectivity:behaviour correlational analysis. We found that the correlated behavioural deficits summarized by the factor score were associated with correlated multi-network patterns of abnormal functional connectivity involving large swaths of cortex. Specifically, dorsal attention and sensory-motor networks showed: (i) reduced interhemispheric functional connectivity; (ii) reduced anti-correlation with fronto-parietal and default mode networks in the right hemisphere; and (iii) increased intrahemispheric connectivity with the basal ganglia. These patterns of functional connectivity:behaviour correlations were stronger in patients with right- as compared to left-hemisphere damage and were independent of lesion volume. Our findings identify large-scale changes in resting state network interactions that are a physiological signature of spatial neglect and may relate to its right hemisphere lateralization.
Collapse
Affiliation(s)
- Antonello Baldassarre
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA 2 Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti G. d'Annunzio, via dei Vestini 33, 66013, Chieti, Italy 3 Institute for Advanced Biomedical Technologies, G. d'Annunzio University Foundation, University of Chieti G. d'Annunzio, via dei Vestini 33, 66013, Chieti, Italy
| | - Lenny Ramsey
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Carl L Hacker
- 4 Department of Biomedical Engineering, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Alicia Callejas
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Serguei V Astafiev
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Nicholas V Metcalf
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Kristi Zinn
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Jennifer Rengachary
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Abraham Z Snyder
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA 5 Department of Radiology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Alex R Carter
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Gordon L Shulman
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Maurizio Corbetta
- 1 Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA 2 Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti G. d'Annunzio, via dei Vestini 33, 66013, Chieti, Italy 3 Institute for Advanced Biomedical Technologies, G. d'Annunzio University Foundation, University of Chieti G. d'Annunzio, via dei Vestini 33, 66013, Chieti, Italy 4 Department of Biomedical Engineering, Washington University in St. Louis School of Medicine, St. Louis, MO, USA 5 Department of Radiology, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA 6 Department of Anatomy and Neurobiology, Washington University in St. Louis School of Medicine,660 S Euclid Ave, St. Louis, MO 63110, USA
| |
Collapse
|
373
|
Transcranial direct current stimulation for motor recovery of upper limb function after stroke. Neurosci Biobehav Rev 2014; 47:245-59. [DOI: 10.1016/j.neubiorev.2014.07.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 01/20/2023]
|
374
|
Butz M, Steenbuck ID, van Ooyen A. Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke. Front Neuroanat 2014; 8:115. [PMID: 25360087 PMCID: PMC4199279 DOI: 10.3389/fnana.2014.00115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/24/2014] [Indexed: 01/12/2023] Open
Abstract
After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity—a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.
Collapse
Affiliation(s)
- Markus Butz
- Simulation Lab Neuroscience - Bernstein Facility for Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Forschungszentrum Jülich Jülich, Germany
| | - Ines D Steenbuck
- Student of the Medical Faculty, University of Freiburg Freiburg, Germany
| | - Arjen van Ooyen
- Department of Integrative Neurophysiology, VU University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
375
|
Dacosta-Aguayo R, Graña M, Iturria-Medina Y, Fernández-Andújar M, López-Cancio E, Cáceres C, Bargalló N, Barrios M, Clemente I, Toran P, Forés R, Dávalos A, Auer T, Mataró M. Impairment of functional integration of the default mode network correlates with cognitive outcome at three months after stroke. Hum Brain Mapp 2014; 36:577-90. [PMID: 25324040 PMCID: PMC4312977 DOI: 10.1002/hbm.22648] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 08/14/2014] [Accepted: 09/23/2014] [Indexed: 01/05/2023] Open
Abstract
Resting‐state studies conducted with stroke patients are scarce. The study of brain activity and connectivity at rest provides a unique opportunity for the investigation of brain rewiring after stroke and plasticity changes. This study sought to identify dynamic changes in the functional organization of the default mode network (DMN) of stroke patients at three months after stroke. Eleven patients (eight male and three female; age range: 48–72) with right cortical and subcortical ischemic infarctions and 17 controls (eleven males and six females; age range: 57–69) were assessed by neurological and neuropsychological examinations and scanned with resting‐state functional magnetic ressonance imaging. First, we explored group differences in functional activity within the DMN by means of probabilistic independent component analysis followed by a dual regression approach. Second, we estimated functional connectivity between 11 DMN nodes both locally by means of seed‐based connectivity analysis, as well as globally by means of graph‐computation analysis. We found that patients had greater DMN activity in the left precuneus and the left anterior cingulate gyrus when compared with healthy controls (P < 0.05 family‐wise error corrected). Seed‐based connectivity analysis showed that stroke patients had significant impairment (P = 0.014; threshold = 2.00) in the connectivity between the following five DMN nodes: left superior frontal gyrus (lSFG) and posterior cingulate cortex (t = 2.01); left parahippocampal gyrus and right superior frontal gyrus (t = 2.11); left parahippocampal gyrus and lSFG (t = 2.39); right parietal and lSFG (t = 2.29). Finally, mean path length obtained from graph‐computation analysis showed positive correlations with semantic fluency test (rs = 0.454; P = 0.023), phonetic fluency test (rs = 0.523; P = 0.007) and the mini mental state examination (rs = 0.528; P = 0.007). In conclusion, the ability to regulate activity of the DMN appears to be a central part of normal brain function in stroke patients. Our study expands the understanding of the changes occurring in the brain after stroke providing a new avenue for investigating lesion‐induced network plasticity. Hum Brain Mapp 36:577–590, 2015. © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rosalia Dacosta-Aguayo
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain; Group of Computational Intelligence, Department of CCIA, University of the Basque Country UPV/EHU, San Sebastian, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Cui L, Duchamp NS, Boston DJ, Ren X, Zhang X, Hu H, Zhao LR. NF-κB is involved in brain repair by stem cell factor and granulocyte-colony stimulating factor in chronic stroke. Exp Neurol 2014; 263:17-27. [PMID: 25281484 DOI: 10.1016/j.expneurol.2014.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/13/2014] [Accepted: 08/25/2014] [Indexed: 01/08/2023]
Abstract
Chronic stroke is the phase of brain recovery and repair generally beginning 3 months after stroke onset. No pharmaceutical approach is currently available to enhance brain repair in chronic stroke. We have previously determined the therapeutic effects of stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF) alone or in combination (SCF+G-CSF) in an animal model of chronic stroke and demonstrated that only SCF+G-CSF induces long-term functional recovery. However, the mechanism underlying the SCF+G-CSF-induced brain repair in chronic stroke remains largely elusive. In the present study, we determined the role of nuclear factor-kappa B (NF-κB) in neurovascular network remodeling and motor function improvement by SCF+G-CSF treatment in chronic stroke. SCF+G-CSF was subcutaneously administered for 7 days beginning 17 weeks after induction of experimental stroke. To inhibit NF-κB activation, NF-κB inhibitor was infused into the brain before SCF+G-CSF treatment. We observed that NF-κB inhibitor abolished the SCF+G-CSF-induced axonal sprouting, synaptogenesis and angiogenesis in the ipsilesional somatosensorimotor cortex. In addition, blockage of NF-κB activation resulted in elimination of the SCF+G-CSF-induced motor functional restoration in chronic stroke. These data suggest that NF-κB is required for the SCF+G-CSF-induced neuron-vascular network remodeling in the ipsilesional somatosensorimotor cortex and motor functional recovery in chronic stroke.
Collapse
Affiliation(s)
- Lili Cui
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA; Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Nicolas S Duchamp
- Louisiana State University Medical School, Shreveport, LA 71130, USA
| | - Dakota J Boston
- Louisiana State University Medical School, Shreveport, LA 71130, USA
| | - Xuefang Ren
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Heng Hu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA; Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
377
|
Li W, Li Y, Zhu W, Chen X. Changes in brain functional network connectivity after stroke. Neural Regen Res 2014; 9:51-60. [PMID: 25206743 PMCID: PMC4146323 DOI: 10.4103/1673-5374.125330] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2013] [Indexed: 01/15/2023] Open
Abstract
Studies have shown that functional network connection models can be used to study brain network changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlated to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea-lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, Wuhan, Hubei Province, China ; Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yapeng Li
- Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, Wuhan, Hubei Province, China ; Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Chen
- Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, Wuhan, Hubei Province, China ; Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
378
|
Wiest R, Abela E, Missimer J, Schroth G, Hess CW, Sturzenegger M, Wang DJJ, Weder B, Federspiel A. Interhemispheric cerebral blood flow balance during recovery of motor hand function after ischemic stroke--a longitudinal MRI study using arterial spin labeling perfusion. PLoS One 2014; 9:e106327. [PMID: 25191858 PMCID: PMC4156327 DOI: 10.1371/journal.pone.0106327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Unilateral ischemic stroke disrupts the well balanced interactions within bilateral cortical networks. Restitution of interhemispheric balance is thought to contribute to post-stroke recovery. Longitudinal measurements of cerebral blood flow (CBF) changes might act as surrogate marker for this process. OBJECTIVE To quantify longitudinal CBF changes using arterial spin labeling MRI (ASL) and interhemispheric balance within the cortical sensorimotor network and to assess their relationship with motor hand function recovery. METHODS Longitudinal CBF data were acquired in 23 patients at 3 and 9 months after cortical sensorimotor stroke and in 20 healthy controls using pulsed ASL. Recovery of grip force and manual dexterity was assessed with tasks requiring power and precision grips. Voxel-based analysis was performed to identify areas of significant CBF change. Region-of-interest analyses were used to quantify the interhemispheric balance across nodes of the cortical sensorimotor network. RESULTS Dexterity was more affected, and recovered at a slower pace than grip force. In patients with successful recovery of dexterous hand function, CBF decreased over time in the contralesional supplementary motor area, paralimbic anterior cingulate cortex and superior precuneus, and interhemispheric balance returned to healthy control levels. In contrast, patients with poor recovery presented with sustained hypoperfusion in the sensorimotor cortices encompassing the ischemic tissue, and CBF remained lateralized to the contralesional hemisphere. CONCLUSIONS Sustained perfusion imbalance within the cortical sensorimotor network, as measured with task-unrelated ASL, is associated with poor recovery of dexterous hand function after stroke. CBF at rest might be used to monitor recovery and gain prognostic information.
Collapse
Affiliation(s)
- Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland
- * E-mail:
| | - Eugenio Abela
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland
- Department of Neurology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - John Missimer
- Paul Scherrer Institute, Laboratory of Biomolecular Research, Villigen, Switzerland
| | - Gerhard Schroth
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Christian W. Hess
- Department of Neurology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Matthias Sturzenegger
- Department of Neurology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Danny J. J. Wang
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bruno Weder
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Neurology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry and University of Bern, Bern, Switzerland
| |
Collapse
|
379
|
Abstract
The prefrontal cortex (PFC), a cortical region that was once thought to be functionally insignificant, is now known to play an essential role in the organization and control of goal-directed thought and behavior. Neuroimaging, neurophysiological, and modeling techniques have led to tremendous advances in our understanding of PFC functions over the last few decades. It should be noted, however, that neurological, neuropathological, and neuropsychological studies have contributed some of the most essential, historical, and often prescient conclusions regarding the functions of this region. Importantly, examination of patients with brain damage allows one to draw conclusions about whether a brain area is necessary for a particular function. Here, we provide a broad overview of PFC functions based on behavioral and neural changes resulting from damage to PFC in both human patients and nonhuman primates.
Collapse
Affiliation(s)
- Sara M Szczepanski
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
380
|
Hou JM, Sun TS, Xiang ZM, Zhang JZ, Zhang ZC, Zhao M, Zhong JF, Liu J, Zhang H, Liu HL, Yan RB, Li HT. Alterations of resting-state regional and network-level neural function after acute spinal cord injury. Neuroscience 2014; 277:446-54. [DOI: 10.1016/j.neuroscience.2014.07.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 01/12/2023]
|
381
|
Astrand E, Wardak C, Ben Hamed S. Selective visual attention to drive cognitive brain-machine interfaces: from concepts to neurofeedback and rehabilitation applications. Front Syst Neurosci 2014; 8:144. [PMID: 25161613 PMCID: PMC4130369 DOI: 10.3389/fnsys.2014.00144] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/23/2014] [Indexed: 02/02/2023] Open
Abstract
Brain–machine interfaces (BMIs) using motor cortical activity to drive an external effector like a screen cursor or a robotic arm have seen enormous success and proven their great rehabilitation potential. An emerging parallel effort is now directed to BMIs controlled by endogenous cognitive activity, also called cognitive BMIs. While more challenging, this approach opens new dimensions to the rehabilitation of cognitive disorders. In the present work, we focus on BMIs driven by visuospatial attention signals and we provide a critical review of these studies in the light of the accumulated knowledge about the psychophysics, anatomy, and neurophysiology of visual spatial attention. Importantly, we provide a unique comparative overview of the several studies, ranging from non-invasive to invasive human and non-human primates studies, that decode attention-related information from ongoing neuronal activity. We discuss these studies in the light of the challenges attention-driven cognitive BMIs have to face. In a second part of the review, we discuss past and current attention-based neurofeedback studies, describing both the covert effects of neurofeedback onto neuronal activity and its overt behavioral effects. Importantly, we compare neurofeedback studies based on the amplitude of cortical activity to studies based on the enhancement of cortical information content. Last, we discuss several lines of future research and applications for attention-driven cognitive brain-computer interfaces (BCIs), including the rehabilitation of cognitive deficits, restored communication in locked-in patients, and open-field applications for enhanced cognition in normal subjects. The core motivation of this work is the key idea that the improvement of current cognitive BMIs for therapeutic and open field applications needs to be grounded in a proper interdisciplinary understanding of the physiology of the cognitive function of interest, be it spatial attention, working memory or any other cognitive signal.
Collapse
Affiliation(s)
- Elaine Astrand
- CNRS, Cognitive Neuroscience Center, UMR 5229, University of Lyon 1 Bron Cedex, France
| | - Claire Wardak
- CNRS, Cognitive Neuroscience Center, UMR 5229, University of Lyon 1 Bron Cedex, France
| | - Suliann Ben Hamed
- CNRS, Cognitive Neuroscience Center, UMR 5229, University of Lyon 1 Bron Cedex, France
| |
Collapse
|
382
|
Yeo SS, Jang SH, Son SM. The different maturation of the corticospinal tract and corticoreticular pathway in normal brain development: diffusion tensor imaging study. Front Hum Neurosci 2014; 8:573. [PMID: 25309378 PMCID: PMC4163649 DOI: 10.3389/fnhum.2014.00573] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/14/2014] [Indexed: 11/26/2022] Open
Abstract
Background and Purpose: The corticospinal tract (CST) and corticoreticular pathway (CRP) are known to be important neural tracts for motor development. However, little is known about the difference in maturation of the CST and CRP. In this study, using diffusion tensor imaging (DTI), we investigated maturation of the CST and CRP in typically developed children and normal healthy adults. Methods: We recruited 75 normal healthy subjects for this study. DTI was performed using 1.5-T, and the CST and CRP were reconstructed using DTI-Studio software. Values of fractional anisotropy (FA) and fiber volume (FV) of the CST and CRP were measured. Results: In the current study, the threshold points for CST and CRP maturation were different in normal brain development. Change in FA value of the CST showed a steep increase until 7 years of age and then a gradual increase until adulthood, however, the CRP showed a steep increase only until 2 years of age and then a very gradual increase or plateau until adulthood. In terms of FV, the CST showed a steep increase until 12 years and then a gradual increase until adulthood, in contrast, the CRP showed gradual increase of FV across whole age range (0–25 years). Conclusion: The difference in maturation process between CST and CRP appears to be related to different periods of fine and gross motor development. This radiologic information can provide a scientific basis for understanding development in motor function.
Collapse
Affiliation(s)
- Sang Seok Yeo
- Department of Physical Therapy, College of Health Sciences, Dankook University Cheonan, South Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Taegu, South Korea
| | - Su Min Son
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Taegu, South Korea
| |
Collapse
|
383
|
López-Gil X, Amat-Roldan I, Tudela R, Castañé A, Prats-Galino A, Planas AM, Farr TD, Soria G. DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests. Front Aging Neurosci 2014; 6:167. [PMID: 25100993 PMCID: PMC4107676 DOI: 10.3389/fnagi.2014.00167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023] Open
Abstract
The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm3 isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.
Collapse
Affiliation(s)
- Xavier López-Gil
- Experimental 7T MRI Unit, IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | | | - Raúl Tudela
- Experimental 7T MRI Unit, IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain ; Group of Biomedical Imaging of the University of Barcelona, CIBER de Bioingenieria, Biomateriales y Nanomedicina Barcelona, Spain
| | - Anna Castañé
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) Barcelona, Spain ; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII Madrid, Spain
| | - Alberto Prats-Galino
- Human Anatomy and Embryology Unit, Laboratory of Surgical NeuroAnatomy, Facultat de Medicina, Universitat de Barcelona Barcelona, Spain
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) Barcelona, Spain
| | - Tracy D Farr
- Department of Experimental Neurology, Center for Stroke Research Berlin Charité, Berlin, Germany
| | - Guadalupe Soria
- Experimental 7T MRI Unit, IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain ; Group of Biomedical Imaging of the University of Barcelona, CIBER de Bioingenieria, Biomateriales y Nanomedicina Barcelona, Spain
| |
Collapse
|
384
|
Ovadia-Caro S, Margulies DS, Villringer A. The value of resting-state functional magnetic resonance imaging in stroke. Stroke 2014; 45:2818-24. [PMID: 25013022 DOI: 10.1161/strokeaha.114.003689] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Smadar Ovadia-Caro
- From the Mind-Brain Institute at the Berlin School of Mind and Brain, Charité and Humboldt University, Berlin, Germany (S.O.-C., D.S.M., A.V.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (S.O.-C., D.S.M., A.V.); Institute of Psychology, Humboldt University, Berlin, Germany (S.O.-C.); Center for Stroke Research, Charité Universitätsmedizin Berlin, Berlin, Germany (A.V.); and Department of Cognitive Neurology, University Hospital, Leipzig, Germany (A.V.).
| | - Daniel S Margulies
- From the Mind-Brain Institute at the Berlin School of Mind and Brain, Charité and Humboldt University, Berlin, Germany (S.O.-C., D.S.M., A.V.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (S.O.-C., D.S.M., A.V.); Institute of Psychology, Humboldt University, Berlin, Germany (S.O.-C.); Center for Stroke Research, Charité Universitätsmedizin Berlin, Berlin, Germany (A.V.); and Department of Cognitive Neurology, University Hospital, Leipzig, Germany (A.V.)
| | - Arno Villringer
- From the Mind-Brain Institute at the Berlin School of Mind and Brain, Charité and Humboldt University, Berlin, Germany (S.O.-C., D.S.M., A.V.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (S.O.-C., D.S.M., A.V.); Institute of Psychology, Humboldt University, Berlin, Germany (S.O.-C.); Center for Stroke Research, Charité Universitätsmedizin Berlin, Berlin, Germany (A.V.); and Department of Cognitive Neurology, University Hospital, Leipzig, Germany (A.V.)
| |
Collapse
|
385
|
Young BM, Nigogosyan Z, Remsik A, Walton LM, Song J, Nair VA, Grogan SW, Tyler ME, Edwards DF, Caldera K, Sattin JA, Williams JC, Prabhakaran V. Changes in functional connectivity correlate with behavioral gains in stroke patients after therapy using a brain-computer interface device. FRONTIERS IN NEUROENGINEERING 2014; 7:25. [PMID: 25071547 PMCID: PMC4086321 DOI: 10.3389/fneng.2014.00025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/19/2014] [Indexed: 11/26/2022]
Abstract
Brain-computer interface (BCI) technology is being incorporated into new stroke rehabilitation devices, but little is known about brain changes associated with its use. We collected anatomical and functional MRI of nine stroke patients with persistent upper extremity motor impairment before, during, and after therapy using a BCI system. Subjects were asked to perform finger tapping of the impaired hand during fMRI. Action Research Arm Test (ARAT), 9-Hole Peg Test (9-HPT), and Stroke Impact Scale (SIS) domains of Hand Function (HF) and Activities of Daily Living (ADL) were also assessed. Group-level analyses examined changes in whole-brain task-based functional connectivity (FC) to seed regions in the motor network observed during and after BCI therapy. Whole-brain FC analyses seeded in each thalamus showed FC increases from baseline at mid-therapy and post-therapy (p < 0.05). Changes in FC between seeds at both the network and the connection levels were examined for correlations with changes in behavioral measures. Average motor network FC was increased post-therapy, and changes in average network FC correlated (p < 0.05) with changes in performance on ARAT (R2 = 0.21), 9-HPT (R2 = 0.41), SIS HF (R2 = 0.27), and SIS ADL (R2 = 0.40). Multiple individual connections within the motor network were found to correlate in change from baseline with changes in behavioral measures. Many of these connections involved the thalamus, with change in each of four behavioral measures significantly correlating with change from baseline FC of at least one thalamic connection. These preliminary results show changes in FC that occur with the administration of rehabilitative therapy using a BCI system. The correlations noted between changes in FC measures and changes in behavioral outcomes indicate that both adaptive and maladaptive changes in FC may develop with this therapy and also suggest a brain-behavior relationship that may be stimulated by the neuromodulatory component of BCI therapy.
Collapse
Affiliation(s)
- Brittany Mei Young
- Department of Radiology, University of Wisconsin - Madison Madison, WI, USA ; Medical Scientist Training Program, University of Wisconsin - Madison Madison, WI, USA ; Neuroscience Training Program, University of Wisconsin - Madison Madison, WI, USA
| | - Zack Nigogosyan
- Department of Radiology, University of Wisconsin - Madison Madison, WI, USA
| | - Alexander Remsik
- Department of Radiology, University of Wisconsin - Madison Madison, WI, USA
| | - Léo M Walton
- Neuroscience Training Program, University of Wisconsin - Madison Madison, WI, USA ; Department of Biomedical Engineering, University of Wisconsin - Madison Madison, WI, USA
| | - Jie Song
- Department of Radiology, University of Wisconsin - Madison Madison, WI, USA ; Department of Biomedical Engineering, University of Wisconsin - Madison Madison, WI, USA
| | - Veena A Nair
- Department of Radiology, University of Wisconsin - Madison Madison, WI, USA
| | - Scott W Grogan
- Department of Radiology, University of Wisconsin - Madison Madison, WI, USA
| | - Mitchell E Tyler
- Department of Biomedical Engineering, University of Wisconsin - Madison Madison, WI, USA
| | - Dorothy Farrar Edwards
- Departments of Kinesiology and Medicine, University of Wisconsin - Madison Madison, WI, USA
| | - Kristin Caldera
- Department of Orthopedics and Rehabilitation, University of Wisconsin - Madison Madison, WI, USA
| | - Justin A Sattin
- Department of Neurology, University of Wisconsin - Madison Madison, WI, USA
| | - Justin C Williams
- Neuroscience Training Program, University of Wisconsin - Madison Madison, WI, USA ; Department of Biomedical Engineering, University of Wisconsin - Madison Madison, WI, USA ; Department of Neurosurgery, University of Wisconsin - Madison Madison, WI, USA
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin - Madison Madison, WI, USA ; Medical Scientist Training Program, University of Wisconsin - Madison Madison, WI, USA ; Neuroscience Training Program, University of Wisconsin - Madison Madison, WI, USA ; Department of Neurology, University of Wisconsin - Madison Madison, WI, USA ; Departments of Psychology and Psychiatry, University of Wisconsin - Madison Madison, WI, USA
| |
Collapse
|
386
|
Modulatory effect of acupuncture at Waiguan (TE5) on the functional connectivity of the central nervous system of patients with ischemic stroke in the left basal ganglia. PLoS One 2014; 9:e96777. [PMID: 24927275 PMCID: PMC4057077 DOI: 10.1371/journal.pone.0096777] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/08/2014] [Indexed: 11/19/2022] Open
Abstract
Objective To study the influence of acupuncture at Waiguan (TE5) on the functional connectivity of the central nervous system of patients with ischemic stroke. Methods Twenty-four patients with ischemic stroke in the left basal ganglia were randomized based on gender to receive TE5 acupuncture (n = 12) or nonacupoint acupuncture (n = 12). Each group underwent sham acupuncture and then verum acupuncture while being scanned with functional magnetic resonance imaging. Six regions of interest (ROI) were defined, including bilateral motor, somatosensory, and bilateral basal ganglia areas. The functional connectivity between these ROIs and all voxels of the brain was analyzed in Analysis of Functional NeuroImages(AFNI) to explore the differences between verum acupuncture and sham acupuncture at TE5 and between TE5 acupuncture and nonacupoint acupuncture. The participants were blinded to the allocation. Result The effect of acupuncture on six seed-associated networks was explored. The result demonstrated that acupuncture at Waiguan (TE5) can regulate the sensorimotor network of the ipsilesional hemisphere, stimulate the contralesional sensorimotor network, increase cooperation of bilateral sensorimotor networks, and change the synchronization between the cerebellum and cerebrum. Furthermore, a lot of differences of effect existed between verum acupuncture and sham acupuncture at TE5, but there was little difference between TE5 acupuncture and nonacupoint acupuncture. Conclusion The modulation of synchronizations between different regions within different brain networks might be the mechanism of acupuncture at Waiguan (TE5). Stimulation of the contralesional sensorimotor network and increase of cooperation of bilateral hemispheres imply a compensatory effect of the intact hemisphere, whereas changes in synchronization might influence the sensorimotor function of the affected side of the body. Trial Registration Chinese Clinical Trial Registry ChiCTR-ONRC-08000255
Collapse
|
387
|
Lee SH, Yoon S, Kim JI, Jin SH, Chung CK. Functional connectivity of resting state EEG and symptom severity in patients with post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51:51-7. [PMID: 24447944 DOI: 10.1016/j.pnpbp.2014.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Post-traumatic stress disorder (PTSD) is thought to be a brain network disorder. This study aimed to examine the resting-state functional connectivity (FC) in patients with PTSD. METHODS Thirty-three PTSD patients and 30 age- and gender-matched healthy controls were recruited. Symptom severity of the PTSD patients was assessed, and 62-channel EEG was measured. EEGs were recorded during the resting state, with the eyes closed. Three nodal network measures to assess nodal centrality [nodal degree (Dnodal; connection strength), nodal efficiency (Enodal; communication efficiency), and betweenness centrality (BC; connection centrality)] were calculated in the delta, theta, alpha, beta, and gamma bands. RESULTS Dnodal and Enodal of the beta and gamma bands were decreased in PTSD patients compared to healthy controls. These decreased nodal centrality values were observed primarily at the frontocentral electrodes. In addition, Dnodal of the beta and gamma bands was significantly correlated with depressive symptoms and increased arousal symptoms, respectively. Enodal of the beta and gamma bands was significantly correlated with re-experience, increased arousal, and the severity and frequency of general PTSD symptoms. CONCLUSION Compared to controls, patients with PTSD were found to have decreased resting-state FC, and these FC measures were significantly correlated with PTSD symptom severity. Our results suggest that resting-state FC could be a useful biomarker for PTSD.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Department of Psychiatry, Inje University, Ilsan-Paik Hospital, 2240 Daehwa-dong, Ilsanseo-gu, Goyang, Republic of Korea; Clinical Emotion and Cognition Research Laboratory, 2240 Daehwa-dong, Ilsanseo-gu, Goyang, Republic of Korea.
| | - Sunkyung Yoon
- Clinical Emotion and Cognition Research Laboratory, 2240 Daehwa-dong, Ilsanseo-gu, Goyang, Republic of Korea; Department of Psychology, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Jeong-In Kim
- Clinical Emotion and Cognition Research Laboratory, 2240 Daehwa-dong, Ilsanseo-gu, Goyang, Republic of Korea
| | - Seung-Hyun Jin
- Department of Neurosurgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
388
|
Abstract
After a century of false hopes, recent studies have placed the concept of diaschisis at the centre of the understanding of brain function. Originally, the term 'diaschisis' was coined by von Monakow in 1914 to describe the neurophysiological changes that occur distant to a focal brain lesion. In the following decades, this concept triggered widespread clinical interest in an attempt to describe symptoms and signs that the lesion could not fully explain. However, the first imaging studies, in the late 1970s, only partially confirmed the clinical significance of diaschisis. Focal cortical areas of diaschisis (i.e. focal diaschisis) contributed to the clinical deficits after subcortical but only rarely after cortical lesions. For this reason, the concept of diaschisis progressively disappeared from the mainstream of research in clinical neurosciences. Recent evidence has unexpectedly revitalized the notion. The development of new imaging techniques allows a better understanding of the complexity of brain organization. It is now possible to reliably investigate a new type of diaschisis defined as the changes of structural and functional connectivity between brain areas distant to the lesion (i.e. connectional diaschisis). As opposed to focal diaschisis, connectional diaschisis, focusing on determined networks, seems to relate more consistently to the clinical findings. This is particularly true after stroke in the motor and attentional networks. Furthermore, normalization of remote connectivity changes in these networks relates to a better recovery. In the future, to investigate the clinical role of diaschisis, a systematic approach has to be considered. First, emerging imaging and electrophysiological techniques should be used to precisely map and selectively model brain lesions in human and animals studies. Second, the concept of diaschisis must be applied to determine the impact of a focal lesion on new representations of the complexity of brain organization. As an example, the evaluation of remote changes in the structure of the connectome has so far mainly been tested by modelization of focal brain lesions. These changes could now be assessed in patients suffering from focal brain lesions (i.e. connectomal diaschisis). Finally, and of major significance, focal and non-focal neurophysiological changes distant to the lesion should be the target of therapeutic strategies. Neuromodulation using transcranial magnetic stimulation is one of the most promising techniques. It is when this last step will be successful that the concept of diaschisis will gain all the clinical respectability that could not be obtained in decades of research.
Collapse
Affiliation(s)
- Emmanuel Carrera
- 1 Department of Clinical Neurosciences, University Hospital, Geneva, Switzerland2 Department of Psychiatry, Madison, Wisconsin, USA
| | | |
Collapse
|
389
|
Guo X, Jin Z, Feng X, Tong S. Enhanced effective connectivity in mild occipital stroke patients with hemianopia. IEEE Trans Neural Syst Rehabil Eng 2014; 22:1210-7. [PMID: 24876132 DOI: 10.1109/tnsre.2014.2325601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Plasticity-based spontaneous recovery and rehabilitation intervention of stroke-induced hemianopia have drawn great attention in recent years. However, the underlying neural mechanism remains unknown. This study aims to investigate brain network disruption and reorganization in hemianopia patients due to mild occipital stroke. Resting-state networks were constructed from 12 hemianopia patients with right occipital infarct by partial directed coherence analysis of multi-channel electroencephalograms. Compared with control subjects, the patients presented enhanced connectivity owing to newly formed connections. Compensational connections mostly originated from the peri-infarct area and targeted contralesional frontal, central, and parietal cortices. These new ipsilesional-to-contralesional inter-hemispheric connections coordinately presented significant correlation with the extent of vision loss. The enhancement of connectivity might be the neural substrate for brain plasticity in stroke-induced hemianopia and may shed light on plasticity-based recovery or rehabilitation.
Collapse
|
390
|
Rehme AK, Volz LJ, Feis DL, Bomilcar-Focke I, Liebig T, Eickhoff SB, Fink GR, Grefkes C. Identifying Neuroimaging Markers of Motor Disability in Acute Stroke by Machine Learning Techniques. Cereb Cortex 2014; 25:3046-56. [PMID: 24836690 DOI: 10.1093/cercor/bhu100] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Conventional mass-univariate analyses have been previously used to test for group differences in neural signals. However, machine learning algorithms represent a multivariate decoding approach that may help to identify neuroimaging patterns associated with functional impairment in "individual" patients. We investigated whether fMRI allows classification of individual motor impairment after stroke using support vector machines (SVMs). Forty acute stroke patients and 20 control subjects underwent resting-state fMRI. Half of the patients showed significant impairment in hand motor function. Resting-state connectivity was computed by means of whole-brain correlations of seed time-courses in ipsilesional primary motor cortex (M1). Lesion location was identified using diffusion-weighted images. These features were used for linear SVM classification of unseen patients with respect to motor impairment. SVM results were compared with conventional mass-univariate analyses. Resting-state connectivity classified patients with hand motor deficits compared with controls and nonimpaired patients with 82.6-87.6% accuracy. Classification was driven by reduced interhemispheric M1 connectivity and enhanced connectivity between ipsilesional M1 and premotor areas. In contrast, lesion location provided only 50% sensitivity to classify impaired patients. Hence, resting-state fMRI reflects behavioral deficits more accurately than structural MRI. In conclusion, multivariate fMRI analyses offer the potential to serve as markers for endophenotypes of functional impairment.
Collapse
Affiliation(s)
- A K Rehme
- Max Planck Institute for Neurological Research, Cologne, Germany Department of Neurology, University of Cologne, Cologne, Germany Institute of Neuroscience and Medicine (INM-2, INM-3), Research Centre Juelich, Juelich, Germany
| | - L J Volz
- Max Planck Institute for Neurological Research, Cologne, Germany Department of Neurology, University of Cologne, Cologne, Germany
| | - D-L Feis
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - I Bomilcar-Focke
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - T Liebig
- Department of Radiology and Neuroradiology, University of Cologne, Cologne, Germany
| | - S B Eickhoff
- Institute of Neuroscience and Medicine (INM-2, INM-3), Research Centre Juelich, Juelich, Germany Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - G R Fink
- Department of Neurology, University of Cologne, Cologne, Germany Institute of Neuroscience and Medicine (INM-2, INM-3), Research Centre Juelich, Juelich, Germany
| | - C Grefkes
- Max Planck Institute for Neurological Research, Cologne, Germany Department of Neurology, University of Cologne, Cologne, Germany Institute of Neuroscience and Medicine (INM-2, INM-3), Research Centre Juelich, Juelich, Germany
| |
Collapse
|
391
|
Shin DJ, Jung WH, He Y, Wang J, Shim G, Byun MS, Jang JH, Kim SN, Lee TY, Park HY, Kwon JS. The effects of pharmacological treatment on functional brain connectome in obsessive-compulsive disorder. Biol Psychiatry 2014; 75:606-14. [PMID: 24099506 DOI: 10.1016/j.biopsych.2013.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous neuroimaging studies of obsessive-compulsive disorder (OCD) have reported both baseline functional alterations and pharmacological changes in localized brain regions and connections; however, the effects of selective serotonin reuptake inhibitor (SSRI) treatment on the whole-brain functional network have not yet been elucidated. METHODS Twenty-five drug-free OCD patients underwent resting-state functional magnetic resonance imaging. After 16-weeks, seventeen patients who received SSRI treatment were rescanned. Twenty-three matched healthy control subjects were examined at baseline for comparison, and 21 of them were rescanned after 16 weeks. Topological properties of brain networks (including small-world, efficiency, modularity, and connectivity degree) were analyzed cross-sectionally and longitudinally with graph-theory approach. RESULTS At baseline, OCD patients relative to healthy control subjects showed decreased small-world efficiency (including local clustering coefficient, local efficiency, and small-worldness) and functional association between default-mode and frontoparietal modules as well as widespread altered connectivity degrees in many brain areas. We observed clinical improvement in OCD patients after 16 weeks of SSRI treatment, which was accompanied by significantly elevated small-world efficiency, modular organization, and connectivity degree. Improvement of obsessive-compulsive symptoms was significantly correlated with changes in connectivity degree in right ventral frontal cortex in OCD patients after treatment. CONCLUSIONS This is first study to use graph-theory approach for investigating valuable biomarkers for the effects of SSRI on neuronal circuitries of OCD patients. Our findings suggest that OCD phenomenology might be the outcome of disrupted optimal balance in the brain networks and that reinstating this balance after SSRI treatment accompanies significant symptom improvement.
Collapse
Affiliation(s)
- Da-Jung Shin
- Department of Brain and Cognitive Sciences-World Class University Program, College of Natural Sciences, Seoul, Republic of Korea
| | - Wi Hoon Jung
- Institute of Human Behavioral Medicine, Seoul National University-MRC, Seoul, Republic of Korea
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jinhui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Geumsook Shim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Soo Byun
- Institute of Human Behavioral Medicine, Seoul National University-MRC, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joon Hwan Jang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Nyun Kim
- Institute of Human Behavioral Medicine, Seoul National University-MRC, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Institute of Human Behavioral Medicine, Seoul National University-MRC, Seoul, Republic of Korea
| | - Hye Youn Park
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences-World Class University Program, College of Natural Sciences, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University-MRC, Seoul, Republic of Korea.
| |
Collapse
|
392
|
Butz M, Steenbuck ID, van Ooyen A. Homeostatic structural plasticity increases the efficiency of small-world networks. Front Synaptic Neurosci 2014; 6:7. [PMID: 24744727 PMCID: PMC3978244 DOI: 10.3389/fnsyn.2014.00007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/10/2014] [Indexed: 11/24/2022] Open
Abstract
In networks with small-world topology, which are characterized by a high clustering coefficient and a short characteristic path length, information can be transmitted efficiently and at relatively low costs. The brain is composed of small-world networks, and evolution may have optimized brain connectivity for efficient information processing. Despite many studies on the impact of topology on information processing in neuronal networks, little is known about the development of network topology and the emergence of efficient small-world networks. We investigated how a simple growth process that favors short-range connections over long-range connections in combination with a synapse formation rule that generates homeostasis in post-synaptic firing rates shapes neuronal network topology. Interestingly, we found that small-world networks benefited from homeostasis by an increase in efficiency, defined as the averaged inverse of the shortest paths through the network. Efficiency particularly increased as small-world networks approached the desired level of electrical activity. Ultimately, homeostatic small-world networks became almost as efficient as random networks. The increase in efficiency was caused by the emergent property of the homeostatic growth process that neurons started forming more long-range connections, albeit at a low rate, when their electrical activity was close to the homeostatic set-point. Although global network topology continued to change when neuronal activities were around the homeostatic equilibrium, the small-world property of the network was maintained over the entire course of development. Our results may help understand how complex systems such as the brain could set up an efficient network topology in a self-organizing manner. Insights from our work may also lead to novel techniques for constructing large-scale neuronal networks by self-organization.
Collapse
Affiliation(s)
- Markus Butz
- Simulation Lab Neuroscience, Bernstein Facility for Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Forschungszentrum Jülich Jülich, Germany
| | - Ines D Steenbuck
- Student of the Medical Faculty, University of Freiburg Freiburg, Germany
| | - Arjen van Ooyen
- Department of Integrative Neurophysiology, VU University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
393
|
Wang C, Qin W, Zhang J, Tian T, Li Y, Meng L, Zhang X, Yu C. Altered functional organization within and between resting-state networks in chronic subcortical infarction. J Cereb Blood Flow Metab 2014; 34:597-605. [PMID: 24398939 PMCID: PMC3982082 DOI: 10.1038/jcbfm.2013.238] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/07/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Abstract
This study aimed to investigate the changes in functional connectivity (FC) within each resting-state network (RSN) and between RSNs in subcortical stroke patients who were well recovered in global motor function. Eleven meaningful RSNs were identified via functional magnetic resonance imaging data from 25 subcortical stroke patients and 22 normal controls using independent component analysis. Compared with normal controls, stroke patients exhibited increased intranetwork FC in the sensorimotor (SMN), visual (VN), auditory (AN), dorsal attention (DAN), and default mode (DMN) networks; they also exhibited decreased intranetwork FC in the frontoparietal network (FPN) and anterior DMN. Stroke patients displayed a shift from no FC in controls to negative internetwork FC between the VN and AN as well as between the VN and SMN. Stroke patients also exhibited weakened positive (anterior and posterior DMN; posterior DMN and right FPN) or negative (AN and right FPN; posterior DMN and dorsal SMN) internetwork FC when compared with normal controls. We suggest that subcortical stroke may induce connectivity changes in multiple functional networks, affecting not only the intranetwork FC within RSNs but also the internetwork FC between these RSNs.
Collapse
Affiliation(s)
- Caihong Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Tian Tian
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Liangliang Meng
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Chunshui Yu
- 1] Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China [2] School of Medical Imaging, Tianjin Medical University, Tianjin, China
| |
Collapse
|
394
|
Grefkes C, Fink GR. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol 2014; 13:206-16. [PMID: 24457190 DOI: 10.1016/s1474-4422(13)70264-3] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
After focal damage, cerebral networks reorganise their structural and functional anatomy to compensate for both the lesion itself and remote effects. Novel developments in the analysis of functional neuroimaging data enable us to assess in vivo the specific contributions of individual brain areas to recovery of function and the effect of treatment on cortical reorganisation. Connectivity analyses can be used to investigate the effect of stroke on cerebral networks, and help us to understand why some patients make a better recovery than others. This systems-level view also provides insights into how neuromodulatory interventions might target pathological network configurations associated with incomplete recovery. In the future, such analyses of connectivity could help to optimise treatment regimens based on the individual network pathology underlying a particular neurological deficit, thereby opening the way for stratification of patients based on the possible response to an intervention.
Collapse
Affiliation(s)
- Christian Grefkes
- Department of Neurology, University Hospital Cologne, Köln, Germany; Neuromodulation and Neurorehabilitation, Max Planck Institute for Neurological Research, Köln, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Köln, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
395
|
Acupuncture Enhances Effective Connectivity between Cerebellum and Primary Sensorimotor Cortex in Patients with Stable Recovery Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:603909. [PMID: 24734108 PMCID: PMC3966489 DOI: 10.1155/2014/603909] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 01/29/2023]
Abstract
Recent neuroimaging studies have demonstrated that stimulation of acupuncture at motor-implicated acupoints modulates activities of brain areas relevant to the processing of motor functions. This study aims to investigate acupuncture-induced changes in effective connectivity among motor areas in hemiparetic stroke patients by using the multivariate Granger causal analysis. A total of 9 stable recovery stroke patients and 8 healthy controls were recruited and underwent three runs of fMRI scan: passive finger movements and resting state before and after manual acupuncture stimuli. Stroke patients showed significantly attenuated effective connectivity between cortical and subcortical areas during passive motor task, which indicates inefficient information transmissions between cortical and subcortical motor-related regions. Acupuncture at motor-implicated acupoints showed specific modulations of motor-related network in stroke patients relative to healthy control subjects. This specific modulation enhanced bidirectionally effective connectivity between the cerebellum and primary sensorimotor cortex in stroke patients, which may compensate for the attenuated effective connectivity between cortical and subcortical areas during passive motor task and, consequently, contribute to improvement of movement coordination and motor learning in subacute stroke patients. Our results suggested that further efficacy studies of acupuncture in motor recovery can focus on the improvement of movement coordination and motor learning during motor rehabilitation.
Collapse
|
396
|
Acupuncture modulates the functional connectivity of the default mode network in stroke patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:765413. [PMID: 24734113 PMCID: PMC3963376 DOI: 10.1155/2014/765413] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 01/18/2023]
Abstract
Abundant evidence from previous fMRI studies on acupuncture has revealed significant modulatory effects at widespread brain regions. However, few reports on the modulation to the default mode network (DMN) of stroke patients have been investigated in the field of acupuncture. To study the modulatory effects of acupuncture on the DMN of stroke patients, eight right hemispheric infarction and stable ischemic stroke patients and ten healthy subjects were recruited to undergo resting state fMRI scanning before and after acupuncture stimulation. Functional connectivity analysis was applied with the bilateral posterior cingulate cortices chosen as the seed regions. The main finding demonstrated that the interregional interactions between the ACC and PCC especially enhanced after acupuncture at GB34 in stroke patients, compared with healthy controls. The results indicated that the possible mechanisms of the modulatory effects of acupuncture on the DMN of stroke patients could be interpreted in terms of cognitive ability and motor function recovery.
Collapse
|
397
|
Zhang J, Meng L, Qin W, Liu N, Shi FD, Yu C. Structural damage and functional reorganization in ipsilesional m1 in well-recovered patients with subcortical stroke. Stroke 2014; 45:788-93. [PMID: 24496396 DOI: 10.1161/strokeaha.113.003425] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Both structural atrophy and functional reorganization of the primary motor cortex (M1) have been reported in patients with subcortical infarctions affecting the motor pathway. However, the relationship between structural impairment and functional reorganization in M1 remains unclear. METHODS Twenty-six patients exhibiting significant recovery after subcortical infarctions were investigated using multimodal MRI techniques. Structural impairment was assessed via cortical thickness, and functional reorganization was analyzed using task-evoked activation, amplitude of low-frequency fluctuation, and resting-state functional connectivity. RESULTS Compared with healthy controls, patients with stroke exhibited reduced cortical thickness in the ipsilesional M1; however, this region exhibited increased task-evoked activation, amplitude of low-frequency fluctuation, and resting-state functional connectivity in these patients. Patients with stroke demonstrated increased task-evoked activation in another ipsilesional M1 region, in which increased amplitude of low-frequency fluctuation and resting-state functional connectivity were observed. The structural and functional changes in M1 were located selectively in the ipsilesional hemisphere. CONCLUSIONS We provide convincing evidence that indicates extensive functional reorganization in the ipsilesional M1 of patients with chronic subcortical infarctions, including the structurally impaired M1 region.
Collapse
Affiliation(s)
- Jing Zhang
- From the Department of Radiology, Tianjin Key Laboratory of Functional Imaging (J.Z., L.M., W.Q., N.L., C.Y.) and Department of Neurology, Tianjin Neurological Institute (F.-D.S.), Tianjin Medical University General Hospital, Tianjin, China
| | | | | | | | | | | |
Collapse
|
398
|
Engel AK, Gerloff C, Hilgetag CC, Nolte G. Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron 2014; 80:867-86. [PMID: 24267648 DOI: 10.1016/j.neuron.2013.09.038] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 01/10/2023]
Abstract
Intrinsic coupling constitutes a key feature of ongoing brain activity, which exhibits rich spatiotemporal patterning and contains information that influences cognitive processing. We discuss evidence for two distinct types of intrinsic coupling modes which seem to reflect the operation of different coupling mechanisms. One type arises from phase coupling of band-limited oscillatory signals, whereas the other results from coupled aperiodic fluctuations of signal envelopes. The two coupling modes differ in their dynamics, their origins, and their putative functions and with respect to their alteration in neuropsychiatric disorders. We propose that the concept of intrinsic coupling modes can provide a unifying framework for capturing the dynamics of intrinsically generated neuronal interactions at multiple spatial and temporal scales.
Collapse
Affiliation(s)
- Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | | | | | | |
Collapse
|
399
|
Jin SH, Jeong W, Lee DS, Jeon BS, Chung CK. Preserved high-centrality hubs but efficient network reorganization during eyes-open state compared with eyes-closed resting state: an MEG study. J Neurophysiol 2014; 111:1455-65. [PMID: 24431400 DOI: 10.1152/jn.00585.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A question to be addressed in the present study is how different the eyes-closed (EC) and eyes-open (EO) resting states are across frequency bands in terms of efficiency and centrality of the brain functional network. We investigated both the global and nodal efficiency and betweenness centrality in the EC and EO resting states from 39 volunteers. Mutual information was used to obtain the functional connectivity for each of the four frequency bands (theta, alpha, beta, and gamma). We showed that the cortical hubs with high betweenness centrality were maintained in the EC and EO resting states. We further showed that these hubs were associated with more than three frequency bands, suggesting that these hubs play an important role in the brain functional network at multiple temporal scales in the resting states. Enhanced global efficiency values were found in the theta and alpha bands in the EO state compared with those in the EC state. Moreover, it turned out that in the EO state the functional network was reorganized to enhance nodal efficiency at the nodes related to both the default mode and the dorsal attention networks and sensory-related resting-state networks. This result suggests that in the EO state the brain functional network was efficiently reorganized, facilitating the adaptation of the brain network to the change in state, which could help in understanding brain disorders that have a disturbance in communication with external environments by using the adaptation ability of brain functional networks.
Collapse
Affiliation(s)
- Seung-Hyun Jin
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
400
|
Xu H, Qin W, Chen H, Jiang L, Li K, Yu C. Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke. PLoS One 2014; 9:e84729. [PMID: 24416273 PMCID: PMC3885617 DOI: 10.1371/journal.pone.0084729] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/19/2013] [Indexed: 01/13/2023] Open
Abstract
It remains uncertain if the contralesional primary sensorimotor cortex (CL_PSMC) contributes to motor recovery after stroke. Here we investigated longitudinal changes in the resting-state functional connectivity (rsFC) of the CL_PSMC and their association with motor recovery. Thirteen patients who had experienced subcortical stroke underwent a series of resting-state fMRI and clinical assessments over a period of 1 year at 5 time points, i.e., within the first week, at 2 weeks, 1 month, 3 months, and 1 year after stroke onset. Thirteen age- and gender-matched healthy subjects were recruited as controls. The CL_PSMC was defined as a region centered at the voxel that had greatest activation during hand motion task. The dynamic changes in the rsFCs of the CL_PSMC within the whole brain were evaluated and correlated with the Motricity Index (MI) scores. Compared with healthy controls, the rsFCs of the CL_PSMC with the bilateral PSMC were initially decreased, then gradually increased, and finally restored to the normal level 1 year later. Moreover, the dynamic change in the inter-hemispheric rsFC between the bilateral PSMC in these patients was positively correlated with the MI scores. However, the intra-hemispheric rsFC of the CL_PSMC was not correlated with the MI scores. This study shows dynamic changes in the rsFCs of the CL_PSMC after stroke and suggests that the increased inter-hemispheric rsFC between the bilateral PSMC may facilitate motor recovery in stroke patients. However, generalization of our findings is limited by the small sample size of our study and needs to be confirmed.
Collapse
Affiliation(s)
- Huijuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Hai Chen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lin Jiang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- * E-mail:
| |
Collapse
|