351
|
da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev 2016; 29:90-112. [PMID: 27353257 PMCID: PMC5991498 DOI: 10.1016/j.arr.2016.06.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Answering the question as to why we age is tantamount to answering the question of what is life itself. There are countless theories as to why and how we age, but, until recently, the very definition of aging - senescence - was still uncertain. Here, we summarize the main views of the different models of senescence, with a special emphasis on the biochemical processes that accompany aging. Though inherently complex, aging is characterized by numerous changes that take place at different levels of the biological hierarchy. We therefore explore some of the most relevant changes that take place during aging and, finally, we overview the current status of emergent aging therapies and what the future holds for this field of research. From this multi-dimensional approach, it becomes clear that an integrative approach that couples aging research with systems biology, capable of providing novel insights into how and why we age, is necessary.
Collapse
Affiliation(s)
- João Pinto da Costa
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gustavo M Silva
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Christine Vogel
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Armando C Duarte
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
352
|
Garratt M, Nakagawa S, Simons MJP. Comparative idiosyncrasies in life extension by reduced mTOR signalling and its distinctiveness from dietary restriction. Aging Cell 2016; 15:737-43. [PMID: 27139919 PMCID: PMC4933670 DOI: 10.1111/acel.12489] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 01/15/2023] Open
Abstract
Reduced mechanistic target of rapamycin (mTOR) signalling extends lifespan in yeast, nematodes, fruit flies and mice, highlighting a physiological pathway that could modulate aging in evolutionarily divergent organisms. This signalling system is also hypothesized to play a central role in lifespan extension via dietary restriction. By collating data from 48 available published studies examining lifespan with reduced mTOR signalling, we show that reduced mTOR signalling provides similar increases in median lifespan across species, with genetic mTOR manipulations consistently providing greater life extension than pharmacological treatment with rapamycin. In contrast to the consistency in changes in median lifespan, however, the demographic causes for life extension are highly species specific. Reduced mTOR signalling extends lifespan in nematodes by strongly reducing the degree to which mortality rates increase with age (aging rate). By contrast, life extension in mice and yeast occurs largely by pushing back the onset of aging, but not altering the shape of the mortality curve once aging starts. Importantly, in mice, the altered pattern of mortality induced by reduced mTOR signalling is different to that induced by dietary restriction, which reduces the rate of aging. Effects of mTOR signalling were also sex dependent, but only within mice, and not within flies, thus again species specific. An alleviation of age‐associated mortality is not a shared feature of reduced mTOR signalling across model organisms and does not replicate the established age‐related survival benefits of dietary restriction.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Pathology; University of Michigan Medical School; Ann Arbor MI 48109 USA
| | - Shinichi Nakagawa
- Evolution and Ecology Research Group and School of Biological; Earth and Environmental Sciences; The University of New South Wales; Sydney NSW 2052 Australia
- Diabetes and Metabolism Division; Garvan Institute of Medical Research; Sydney NSW 2010 Australia
| | - Mirre J. P. Simons
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| |
Collapse
|
353
|
Frasca D, Diaz A, Romero M, Blomberg BB. Ageing and obesity similarly impair antibody responses. Clin Exp Immunol 2016; 187:64-70. [PMID: 27314456 DOI: 10.1111/cei.12824] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/19/2022] Open
Abstract
Ageing is characterized by increased low-grade chronic inflammation, which is a significant risk factor for morbidity and mortality of elderly individuals. Similar to ageing, obesity is considered to be an inflammatory predisposition associated with chronic activation of immune cells and consequent local and systemic inflammation. Both ageing and obesity are characterized by reduced innate and adaptive immune responses. This review focuses on B cells, how they may contribute, at least locally, to low-grade chronic inflammation in ageing and obesity and on the mechanisms involved.
Collapse
Affiliation(s)
- D Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| | - A Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| | - M Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| | - B B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
354
|
|
355
|
Salminen A, Kaarniranta K, Kauppinen A. Age-related changes in AMPK activation: Role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res Rev 2016; 28:15-26. [PMID: 27060201 DOI: 10.1016/j.arr.2016.04.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/18/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
AMP-activated protein kinase (AMPK) is a fundamental regulator of energy metabolism, stress resistance, and cellular proteostasis. AMPK signaling controls an integrated signaling network which is involved in the regulation of healthspan and lifespan e.g. via FoxO, mTOR/ULK1, CRCT-1/CREB, and SIRT1 signaling pathways. Several studies have demonstrated that the activation capacity of AMPK signaling declines with aging, which impairs the maintenance of efficient cellular homeostasis and enhances the aging process. However, it seems that the aging process affects AMPK activation in a context-dependent manner since occasionally, it can also augment AMPK activation, possibly attributable to the type of insult and tissue homeostasis. Three protein phosphatases, PP1, PP2A, and PP2C, inhibit AMPK activation by dephosphorylating the Thr172 residue of AMPKα, required for AMPK activation. In addition, several upstream signaling pathways can phosphorylate Ser/Thr residues in the β/γ interaction domain of the AMPKα subunit that subsequently blocks the activation of AMPK. These inhibitory pathways include the insulin/AKT, cyclic AMP/PKA, and RAS/MEK/ERK pathways. We will examine the evidence whether the efficiency of AMPK responsiveness declines during the aging process. Next, we will review the mechanisms involved in curtailing the activation of AMPK. Finally, we will elucidate the potential age-related changes in the inhibitory regulation of AMPK signaling that might be a part of the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
356
|
Mitchell SJ, Madrigal-Matute J, Scheibye-Knudsen M, Fang E, Aon M, González-Reyes JA, Cortassa S, Kaushik S, Gonzalez-Freire M, Patel B, Wahl D, Ali A, Calvo-Rubio M, Burón MI, Guiterrez V, Ward TM, Palacios HH, Cai H, Frederick DW, Hine C, Broeskamp F, Habering L, Dawson J, Beasley TM, Wan J, Ikeno Y, Hubbard G, Becker KG, Zhang Y, Bohr VA, Longo DL, Navas P, Ferrucci L, Sinclair DA, Cohen P, Egan JM, Mitchell JR, Baur JA, Allison DB, Anson RM, Villalba JM, Madeo F, Cuervo AM, Pearson KJ, Ingram DK, Bernier M, de Cabo R. Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metab 2016; 23:1093-1112. [PMID: 27304509 PMCID: PMC4911707 DOI: 10.1016/j.cmet.2016.05.027] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023]
Abstract
Calorie restriction (CR) is the most robust non-genetic intervention to delay aging. However, there are a number of emerging experimental variables that alter CR responses. We investigated the role of sex, strain, and level of CR on health and survival in mice. CR did not always correlate with lifespan extension, although it consistently improved health across strains and sexes. Transcriptional and metabolomics changes driven by CR in liver indicated anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. CR prevented age-associated decline in the liver proteostasis network while increasing mitochondrial number, preserving mitochondrial ultrastructure and function with age. Abrogation of mitochondrial function negated life-prolonging effects of CR in yeast and worms. Our data illustrate the complexity of CR in the context of aging, with a clear separation of outcomes related to health and survival, highlighting complexities of translation of CR into human interventions.
Collapse
Affiliation(s)
- Sarah J Mitchell
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Julio Madrigal-Matute
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Morten Scheibye-Knudsen
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA; Laboratory of Molecular Gerontology, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA; Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Evandro Fang
- Laboratory of Molecular Gerontology, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Miguel Aon
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - José A González-Reyes
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Agrifood Campus of International Excellence, ceiA3, 14071 Córdoba, Spain
| | - Sonia Cortassa
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marta Gonzalez-Freire
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Bindi Patel
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Devin Wahl
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Ahmed Ali
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Miguel Calvo-Rubio
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Agrifood Campus of International Excellence, ceiA3, 14071 Córdoba, Spain
| | - María I Burón
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Agrifood Campus of International Excellence, ceiA3, 14071 Córdoba, Spain
| | - Vincent Guiterrez
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Theresa M Ward
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Hector H Palacios
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Huan Cai
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - David W Frederick
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Hine
- Department of Genetics and Complex Diseases, Harvard University, Boston, MA 02115, USA
| | - Filomena Broeskamp
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, and BioTechMed Graz, 8010 Graz, Austria
| | - Lukas Habering
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, and BioTechMed Graz, 8010 Graz, Austria
| | - John Dawson
- Department of Biostatistics, University of Alabama, Birmingham, AL 35294, USA; GRECC, Birmingham/Atlanta Veterans Administration Hospital, Birmingham, AL 35294, USA
| | - T Mark Beasley
- Department of Biostatistics, University of Alabama, Birmingham, AL 35294, USA; GRECC, Birmingham/Atlanta Veterans Administration Hospital, Birmingham, AL 35294, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Gene Hubbard
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Kevin G Becker
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Dan L Longo
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Placido Navas
- Centro Andaluz de Biologia del Desarrollo, and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC, 41013 Sevilla, Spain
| | - Luigi Ferrucci
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard University, Boston, MA 02115, USA
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David B Allison
- Department of Biostatistics, University of Alabama, Birmingham, AL 35294, USA; GRECC, Birmingham/Atlanta Veterans Administration Hospital, Birmingham, AL 35294, USA
| | - R Michael Anson
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - José M Villalba
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Agrifood Campus of International Excellence, ceiA3, 14071 Córdoba, Spain
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, and BioTechMed Graz, 8010 Graz, Austria
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA; Graduate Center for Nutritional Sciences, University of Kentucky, C.T. Wethington Building, Room 591, 900 South Limestone, Lexington, KY 40536, USA
| | - Donald K Ingram
- Pennington Biomedical Research Center, Baton Rouge, LA 70809, USA
| | - Michel Bernier
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
357
|
Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a Tool to Target Aging. Cell Metab 2016; 23:1060-1065. [PMID: 27304507 PMCID: PMC5943638 DOI: 10.1016/j.cmet.2016.05.011] [Citation(s) in RCA: 719] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023]
Abstract
Aging has been targeted by genetic and dietary manipulation and by drugs in order to increase lifespan and health span in numerous models. Metformin, which has demonstrated protective effects against several age-related diseases in humans, will be tested in the TAME (Targeting Aging with Metformin) trial, as the initial step in the development of increasingly effective next-generation drugs.
Collapse
Affiliation(s)
- Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jill P Crandall
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Stephen B Kritchevsky
- Wake Forest Older Americans Independence Center and the Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mark A Espeland
- Wake Forest Older Americans Independence Center and the Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
358
|
The Metabolic Impact on Histone Acetylation and Transcription in Ageing. Trends Biochem Sci 2016; 41:700-711. [PMID: 27283514 DOI: 10.1016/j.tibs.2016.05.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/09/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022]
Abstract
Loss of cellular homeostasis during aging results in altered tissue functions and leads to a general decline in fitness and, ultimately, death. As animals age, the control of gene expression, which is orchestrated by multiple epigenetic factors, degenerates. In parallel, metabolic activity and mitochondrial protein acetylation levels also change. These two hallmarks of aging are effectively linked through the accumulating evidence that histone acetylation patterns are susceptible to alterations in key metabolites such as acetyl-CoA and NAD(+), allowing chromatin to function as a sensor of cellular metabolism. In this review we discuss experimental data supporting these connections and provide a context for the possible medical and physiological relevance.
Collapse
|
359
|
Moskalev A, Chernyagina E, Tsvetkov V, Fedintsev A, Shaposhnikov M, Krut'ko V, Zhavoronkov A, Kennedy BK. Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell 2016; 15:407-15. [PMID: 26970234 PMCID: PMC4854916 DOI: 10.1111/acel.12463] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 01/15/2023] Open
Abstract
In the coming decades, a massive shift in the aging segment of the population will have major social and economic consequences around the world. One way to offset this increase is to expedite the development of geroprotectors, substances that slow aging, repair age‐associated damage and extend healthy lifespan, or healthspan. While over 200 geroprotectors are now reported in model organisms and some are in human use for specific disease indications, the path toward determining whether they affect aging in humans remains obscure. Translation to the clinic is hampered by multiple issues including absence of a common set of criteria to define, select, and classify these substances, given the complexity of the aging process and their enormous diversity in mechanism of action. Translational research efforts would benefit from the formation of a scientific consensus on the following: the definition of ‘geroprotector’, the selection criteria for geroprotectors, a comprehensive classification system, and an analytical model. Here, we review current approaches to selection and put forth our own suggested selection criteria. Standardizing selection of geroprotectors will streamline discovery and analysis of new candidates, saving time and cost involved in translation to clinic.
Collapse
Affiliation(s)
- Alexey Moskalev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences Moscow 119991 Russia
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences Syktyvkar 167982 Russia
- Moscow Institute of Physics and Technology Dolgoprudny 141700 Russia
| | | | - Vasily Tsvetkov
- Moscow Institute of Physics and Technology Dolgoprudny 141700 Russia
- The Research Institute for Translational Medicine Pirogov Russian National Research Medical University Moscow 117997 Russia
| | - Alexander Fedintsev
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences Syktyvkar 167982 Russia
| | - Mikhail Shaposhnikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences Moscow 119991 Russia
| | - Vyacheslav Krut'ko
- Institute for Systems Analysis Russian Academy of Sciences Moscow 117312 Russia
| | - Alex Zhavoronkov
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences Syktyvkar 167982 Russia
- D. Rogachev FRC Center for Pediatric Hematology, Oncology and Immunology Samory Machela 1 Moscow 117997 Russia
- The Biogerontology Research Foundation 2354 Chynoweth House, Trevissome Park, Blackwater, Truro Cornwall TR4 8UN UK
| | | |
Collapse
|
360
|
Aiello A, Accardi G, Candore G, Carruba G, Davinelli S, Passarino G, Scapagnini G, Vasto S, Caruso C. Nutrigerontology: a key for achieving successful ageing and longevity. IMMUNITY & AGEING 2016; 13:17. [PMID: 27213002 PMCID: PMC4875663 DOI: 10.1186/s12979-016-0071-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/01/2016] [Indexed: 02/02/2023]
Abstract
During the last two centuries the average lifespan has increased at a rate of approximately 3 months/year in both sexes, hence oldest old people are becoming the population with the fastest growth in Western World. Although the average life expectancy is increasing dramatically, the healthy lifespan is not going at the same pace. This underscores the importance of studies on the prevention of age-related diseases, in order to satisfactorily decrease the medical, economic and social problems associated to advancing age, related to an increased number of individuals not autonomous and affected by invalidating pathologies. In particular, data from experimental studies in model organisms have consistently shown that nutrient signalling pathways are involved in longevity, affecting the prevalence of age-related loss of function, including age-related diseases. Accordingly, nutrigerontology is defined as the scientific discipline that studies the impact of nutrients, foods, macronutrient ratios, and diets on lifespan, ageing process, and age-related diseases. To discuss the potential relevance of this new science in the attainment of successful ageing and longevity, three original studies performed in Sicily with local foods and two reviews have been assembled in this series. Data clearly demonstrate the positive effects of nutraceuticals, functional foods and Mediterranean Diet on several biological parameters. In fact, they could represent a prevention for many age-related diseases, and, although not a solution for this social plague, at least a remedy to alleviate it. Thus, the possibility to create a dietary pattern, based on the combined strategy of the use of both nutraceuticals and functional foods should permit to create a new therapeutic strategy, based not only on a specific bioactive molecule or on a specific food but on a integrated approach that, starting from the local dietary habits, can be led to a “nutrafunctional diet” applicable worldwide.
Collapse
Affiliation(s)
- Anna Aiello
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Giuseppe Carruba
- Division of Research and Internationalization, ARNAS-Civico Di Cristina e Benfratelli, Palermo, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences, School of Medicine, University of Molise, Campobasso, 86100 Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), 87036 Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences, School of Medicine, University of Molise, Campobasso, 86100 Italy
| | - Sonya Vasto
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy and Institute of biomedicine and molecular immunology "Alberto Monroy" CNR, Palermo, Italy
| | - Calogero Caruso
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| |
Collapse
|
361
|
Abstract
Ageing-associated changes that affect articular tissues promote the development of osteoarthritis (OA). Although ageing and OA are closely linked, they are independent processes. Several potential mechanisms by which ageing contributes to OA have been elucidated. This Review focuses on the contributions of the following factors: age-related inflammation (also referred to as 'inflammaging'); cellular senescence (including the senescence-associated secretory phenotype (SASP)); mitochondrial dysfunction and oxidative stress; dysfunction in energy metabolism due to reduced activity of 5'-AMP-activated protein kinase (AMPK), which is associated with reduced autophagy; and alterations in cell signalling due to age-related changes in the extracellular matrix. These various processes contribute to the development of OA by promoting a proinflammatory, catabolic state accompanied by increased susceptibility to cell death that together lead to increased joint tissue destruction and defective repair of damaged matrix. The majority of studies to date have focused on articular cartilage, and it will be important to determine whether similar mechanisms occur in other joint tissues. Improved understanding of ageing-related mechanisms that promote OA could lead to the discovery of new targets for therapies that aim to slow or stop the progression of this chronic and disabling condition.
Collapse
Affiliation(s)
- Richard F Loeser
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, 3300 Thurston Building, Campus Box 7280, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7280, USA
| | - John A Collins
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, 3300 Thurston Building, Campus Box 7280, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7280, USA
| | - Brian O Diekman
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 450 West Drive, Campus Box 7295, Chapel Hill, North Carolina 27599-7295, USA
| |
Collapse
|
362
|
Aunan JR, Watson MM, Hagland HR, Søreide K. Molecular and biological hallmarks of ageing. Br J Surg 2016; 103:e29-46. [PMID: 26771470 DOI: 10.1002/bjs.10053] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ageing is the inevitable time-dependent decline in physiological organ function that eventually leads to death. Age is a major risk factor for many of the most common medical conditions, such as cardiovascular disease, cancer, diabetes and Alzheimer's disease. This study reviews currently known hallmarks of ageing and their clinical implications. METHODS A literature search of PubMed/MEDLINE was conducted covering the last decade. RESULTS Average life expectancy has increased dramatically over the past century and is estimated to increase even further. Maximum longevity, however, appears unchanged, suggesting a universal limitation to the human organism. Understanding the underlying molecular processes of ageing and health decline may suggest interventions that, if used at an early age, can prevent, delay, alleviate or even reverse age-related diseases. Hallmarks of ageing can be grouped into three main categories. The primary hallmarks cause damage to cellular functions: genomic instability, telomere attrition, epigenetic alterations and loss of proteostasis. These are followed by antagonistic responses to such damage: deregulated nutrient sensing, altered mitochondrial function and cellular senescence. Finally, integrative hallmarks are possible culprits of the clinical phenotype (stem cell exhaustion and altered intercellular communication), which ultimately contribute to the clinical effects of ageing as seen in physiological loss of reserve, organ decline and reduced function. CONCLUSION The sum of these molecular hallmarks produces the clinical picture of the elderly surgical patient: frailty, sarcopenia, anaemia, poor nutrition and a blunted immune response system. Improved understanding of the ageing processes may give rise to new biomarkers of risk or prognosis, novel treatment targets and translational approaches across disciplines that may improve outcomes.
Collapse
Affiliation(s)
- J R Aunan
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
| | - M M Watson
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
| | - H R Hagland
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Stavanger University Hospital, Stavanger, Norway.,Centre for Organelle Research (CORE), Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - K Søreide
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
363
|
Abstract
Aging is a risk factor for several of the world's most prevalent diseases, including neurodegenerative disorders, cancer, cardiovascular disease and metabolic disease. Although our understanding of the molecular pathways that contribute to the aging process and age-related disease is progressing through the use of model organisms, how to apply this knowledge in the clinic is less clear. In September, Nature Medicine, in collaboration with the Volkswagen Foundation, hosted a conference at the beautiful Herrenhausen Palace in Hannover, Germany with the goal of broadening our understanding of the aging process and its meaning as a 'risk factor' in disease. Here, several of the speakers at that conference answer questions posed by Nature Medicine.
Collapse
|
364
|
Abstract
Recent studies indicate that dietary interventions have the potential to prevent and even treat cardiovascular disease, which is the leading cause of death. Many of these studies have focused on various animal models that are able to recreate one or more conditions or elevate risk factors that characterize the disease. Here, we highlight macronutrient-focused interventions in both mammalian model organisms and humans with emphasis on some of the most relevant and well-established diets known to be associated with cardiovascular disease prevention and treatment. We also discuss more recent dietary interventions in rodents, monkeys, and humans, which affect atherosclerosis and cardiovascular diseases with focus on those that also delay aging.
Collapse
|
365
|
Vaiserman AM, Marotta F. Longevity-Promoting Pharmaceuticals: Is it a Time for Implementation? Trends Pharmacol Sci 2016; 37:331-333. [PMID: 27113007 DOI: 10.1016/j.tips.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
Recent experimental studies demonstrate that medications targeting aging (antioxidants, calorie restriction mimetics, autophagy inductors, etc.) can substantially promote health and extend lifespan. Pharmacologically targeting aging appears to be more effective in preventing age-related pathology compared with treatments targeted to particular pathologies. The development of new antiaging drugs represents a great opportunity for the pharmaceutical and healthcare industries.
Collapse
Affiliation(s)
| | - Francesco Marotta
- ReGenera Research Group for Aging-Intervention and Montenapoleone Medical Center, Healthy Aging Unit, Milano, Italy
| |
Collapse
|
366
|
Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol 2016; 17:308-21. [PMID: 26956196 PMCID: PMC5161407 DOI: 10.1038/nrm.2016.14] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases.
Collapse
Affiliation(s)
- Evandro Fei Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Katrin F Chua
- Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, School of Medicine, Stanford University, Stanford, California 94305, USA
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
367
|
Castillo-Quan JI, Li L, Kinghorn KJ, Ivanov DK, Tain LS, Slack C, Kerr F, Nespital T, Thornton J, Hardy J, Bjedov I, Partridge L. Lithium Promotes Longevity through GSK3/NRF2-Dependent Hormesis. Cell Rep 2016; 15:638-650. [PMID: 27068460 PMCID: PMC4850359 DOI: 10.1016/j.celrep.2016.03.041] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/31/2016] [Accepted: 03/10/2016] [Indexed: 01/06/2023] Open
Abstract
The quest to extend healthspan via pharmacological means is becoming increasingly urgent, both from a health and economic perspective. Here we show that lithium, a drug approved for human use, promotes longevity and healthspan. We demonstrate that lithium extends lifespan in female and male Drosophila, when administered throughout adulthood or only later in life. The life-extending mechanism involves the inhibition of glycogen synthase kinase-3 (GSK-3) and activation of the transcription factor nuclear factor erythroid 2-related factor (NRF-2). Combining genetic loss of the NRF-2 repressor Kelch-like ECH-associated protein 1 (Keap1) with lithium treatment revealed that high levels of NRF-2 activation conferred stress resistance, while low levels additionally promoted longevity. The discovery of GSK-3 as a therapeutic target for aging will likely lead to more effective treatments that can modulate mammalian aging and further improve health in later life.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany; Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Li Li
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Kerri J Kinghorn
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dobril K Ivanov
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Luke S Tain
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany
| | - Cathy Slack
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany
| | - Fiona Kerr
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Tobias Nespital
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany
| | - Janet Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Ivana Bjedov
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Linda Partridge
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany.
| |
Collapse
|
368
|
Liu WS, Ma JE, Li WX, Zhang JG, Wang J, Nie QH, Qiu FF, Fang MX, Zeng F, Wang X, Lin XR, Zhang L, Chen SH, Zhang XQ. The Long Intron 1 of Growth Hormone Gene from Reeves' Turtle (Chinemys reevesii) Correlates with Negatively Regulated GH Expression in Four Cell Lines. Int J Mol Sci 2016; 17:543. [PMID: 27077853 PMCID: PMC4848999 DOI: 10.3390/ijms17040543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/16/2022] Open
Abstract
Turtles grow slowly and have a long lifespan. Ultrastructural studies of the pituitary gland in Reeves’ turtle (Chinemys reevesii) have revealed that the species possesses a higher nucleoplasmic ratio and fewer secretory granules in growth hormone (GH) cells than other animal species in summer and winter. C. reevesii GH gene was cloned and species-specific similarities and differences were investigated. The full GH gene sequence in C. reevesii contains 8517 base pairs (bp), comprising five exons and four introns. Intron 1 was found to be much longer in C. reevesii than in other species. The coding sequence (CDS) of the turtle’s GH gene, with and without the inclusion of intron 1, was transfected into four cell lines, including DF-1 chicken embryo fibroblasts, Chinese hamster ovary (CHO) cells, human embryonic kidney 293FT cells, and GH4C1 rat pituitary cells; the turtle growth hormone (tGH) gene mRNA and protein expression levels decreased significantly in the intron-containing CDS in these cell lines, compared with that of the corresponding intronless CDS. Thus, the long intron 1 of GH gene in Reeves’ turtle might correlate with downregulated gene expression.
Collapse
Affiliation(s)
- Wen-Sheng Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Jing-E Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wei-Xia Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jin-Ge Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qing-Hua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Feng-Fang Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Mei-Xia Fang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Zeng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Ran Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Li Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shao-Hao Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Quan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
369
|
Accardi G, Aiello A, Gargano V, Gambino CM, Caracappa S, Marineo S, Vesco G, Carru C, Zinellu A, Zarcone M, Caruso C, Candore G. Nutraceutical effects of table green olives: a pilot study with Nocellara del Belice olives. IMMUNITY & AGEING 2016; 13:11. [PMID: 27053940 PMCID: PMC4822236 DOI: 10.1186/s12979-016-0067-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/30/2016] [Indexed: 11/10/2022]
Abstract
Background The aim of this study was to analyse the nutraceutical properties of table green olives Nocellara del Belice, a traditional Mediterranean food. The Mediterranean Diet has as key elements olives and extra virgin olive oil, common to all Mediterranean countries. Olive oil is the main source of fat and can modulate oxidative stress and inflammation, whereas little is known about the role of olives. Moreover, emerging evidences underline the association between gut microbiota and food as the basis of many phenomena that affect health and delay or avoid the onset of some age-related chronic diseases. Methods In order to show if table green olives have nutraceutical properties and/or probiotic effect, we performed a nutritional intervention, administering to 25 healthy subjects (mean age 38,3), 12 table green olives/day for 30 days. We carried out anthropometric, biochemical, oxidative stress and cytokines analyses at the beginning of the study and at the end. Moreover, we also collected fecal samples to investigate about the possible variation of concentration of Lactobacilli, after the olives consumption. Result Our results showed a significant variation of one molecule related to oxidative stress, malondialdehyde, confirming that Nocellara del Belice green olives could have an anti-oxidant effect. In addition, the level of interleukin-6 decreased significantly, demonstrating how this food could be able to modulate the inflammatory response. Moreover, it is noteworthy the reduction of fat mass with an increase of muscle mass, suggesting a possible effect on long time assumption of table olives on body mass variation. No statistically significant differences were observed in the amount of Lactobacilli, although a trend towards an increased concentration of them at the end of the intervention could be related to the nutraceutical effects of olives. Conclusion These preliminary results suggest a possible nutraceutical effect of daily consumption of green table olives Nocellara del Belice. To best of our knowledge, this is the first study performed to assess nutraceutical properties of this food. Of course, it is necessary to verify the data in a larger sample of individuals to confirm their role as nutraceuticals.
Collapse
Affiliation(s)
- Giulia Accardi
- Sezione di Patologia generale del Dipartimento di Biopatologia e Biotecnologie Mediche (DIBIMED), Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Anna Aiello
- Sezione di Patologia generale del Dipartimento di Biopatologia e Biotecnologie Mediche (DIBIMED), Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Valeria Gargano
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Caterina Maria Gambino
- Sezione di Patologia generale del Dipartimento di Biopatologia e Biotecnologie Mediche (DIBIMED), Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Santo Caracappa
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Sandra Marineo
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Gesualdo Vesco
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Ciriaco Carru
- Dipartimento di Scienze Biomediche, Università di Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Angelo Zinellu
- Dipartimento di Scienze Biomediche, Università di Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Maurizio Zarcone
- UOC Epidemiologia Clinica con registro tumori di Palermo e provincia, AOUP "Paolo Giaccone", Palermo, c/o Dipartimento di Scienze per la promozione della salute e materno infantile "G. D'Alessandro", Università di Palermo, Via del Vespro 133, 90131 Palermo, Italy
| | - Calogero Caruso
- Sezione di Patologia generale del Dipartimento di Biopatologia e Biotecnologie Mediche (DIBIMED), Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Giuseppina Candore
- Sezione di Patologia generale del Dipartimento di Biopatologia e Biotecnologie Mediche (DIBIMED), Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy
| |
Collapse
|
370
|
Human longevity: Genetics or Lifestyle? It takes two to tango. IMMUNITY & AGEING 2016; 13:12. [PMID: 27053941 PMCID: PMC4822264 DOI: 10.1186/s12979-016-0066-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/30/2016] [Indexed: 12/24/2022]
Abstract
Healthy aging and longevity in humans are modulated by a lucky combination of genetic and non-genetic factors. Family studies demonstrated that about 25 % of the variation in human longevity is due to genetic factors. The search for genetic and molecular basis of aging has led to the identification of genes correlated with the maintenance of the cell and of its basic metabolism as the main genetic factors affecting the individual variation of the aging phenotype. In addition, studies on calorie restriction and on the variability of genes associated with nutrient-sensing signaling, have shown that ipocaloric diet and/or a genetically efficient metabolism of nutrients, can modulate lifespan by promoting an efficient maintenance of the cell and of the organism. Recently, epigenetic studies have shown that epigenetic modifications, modulated by both genetic background and lifestyle, are very sensitive to the aging process and can either be a biomarker of the quality of aging or influence the rate and the quality of aging. On the whole, current studies are showing that interventions modulating the interaction between genetic background and environment is essential to determine the individual chance to attain longevity.
Collapse
|
371
|
Abstract
Aging is characterized by the progressive accumulation of degenerative changes, culminating in impaired function and increased probability of death. It is the major risk factor for many human pathologies - including cancer, type 2 diabetes, and cardiovascular and neurodegenerative diseases - and consequently exerts an enormous social and economic toll. The major goal of aging research is to develop interventions that can delay the onset of multiple age-related diseases and prolong healthy lifespan (healthspan). The observation that enhanced longevity and health can be achieved in model organisms by dietary restriction or simple genetic manipulations has prompted the hunt for chemical compounds that can increase lifespan. Most of the pathways that modulate the rate of aging in mammals have homologs in yeast, flies, and worms, suggesting that initial screening to identify such pharmacological interventions may be possible using invertebrate models. In recent years, several compounds have been identified that can extend lifespan in invertebrates, and even in rodents. Here, we summarize the strategies employed, and the progress made, in identifying compounds capable of extending lifespan in organisms ranging from invertebrates to mice and discuss the formidable challenges in translating this work to human therapies.
Collapse
Affiliation(s)
- Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Institute of Gerontology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
372
|
Duzel E, van Praag H, Sendtner M. Can physical exercise in old age improve memory and hippocampal function? Brain 2016; 139:662-73. [PMID: 26912638 PMCID: PMC4766381 DOI: 10.1093/brain/awv407] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 01/19/2023] Open
Abstract
Physical exercise can convey a protective effect against cognitive decline in ageing and Alzheimer's disease. While the long-term health-promoting and protective effects of exercise are encouraging, it's potential to induce neuronal and vascular plasticity in the ageing brain is still poorly understood. It remains unclear whether exercise slows the trajectory of normal ageing by modifying vascular and metabolic risk factors and/or consistently boosts brain function by inducing structural and neurochemical changes in the hippocampus and related medial temporal lobe circuitry-brain areas that are important for learning and memory. Hence, it remains to be established to what extent exercise interventions in old age can improve brain plasticity above and beyond preservation of function. Existing data suggest that exercise trials aiming for improvement and preservation may require different outcome measures and that the balance between the two may depend on exercise intensity and duration, the presence of preclinical Alzheimer's disease pathology, vascular and metabolic risk factors and genetic variability.
Collapse
Affiliation(s)
- Emrah Duzel
- 1 Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany 2 German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany 3 Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK
| | - Henriette van Praag
- 4 Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael Sendtner
- 5 Institute of Clinical Neurobiology, University of Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| |
Collapse
|
373
|
Bartke A. Healthspan and longevity can be extended by suppression of growth hormone signaling. Mamm Genome 2016; 27:289-99. [PMID: 26909495 DOI: 10.1007/s00335-016-9621-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
Average and maximal lifespan are important biological characteristics of every species, but can be modified by mutations and by a variety of genetic, dietary, environmental, and pharmacological interventions. Mutations or disruption of genes required for biosynthesis or action of growth hormone (GH) produce remarkable extension of longevity in laboratory mice. Importantly, the long-lived GH-related mutants exhibit many symptoms of delayed and/or slower aging, including preservation of physical and cognitive functions and resistance to stress and age-related disease. These characteristics could be collectively described as "healthy aging" or extension of the healthspan. Extension of both the healthspan and lifespan in GH-deficient and GH-resistant mice appears to be due to multiple interrelated mechanisms. Some of these mechanisms have been linked to healthy aging and genetic predisposition to extended longevity in humans. Enhanced insulin sensitivity combined with reduced insulin levels, reduced adipose tissue, central nervous system inflammation, and increased levels of adiponectin represent such mechanisms. Further progress in elucidation of mechanisms that link reduced GH action to delayed and healthy aging should identify targets for lifestyle and pharmacological interventions that could benefit individuals as well as society.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois School of Medicine, Springfield, IL, USA.
| |
Collapse
|
374
|
Accardi G, Aiello A, Gambino CM, Virruso C, Caruso C, Candore G. Mediterranean nutraceutical foods: Strategy to improve vascular ageing. Mech Ageing Dev 2016; 159:63-70. [PMID: 26879630 DOI: 10.1016/j.mad.2016.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 01/06/2023]
Abstract
Ageing is characterized by a decline in all systemic functions. A greater susceptibility to apoptosis and senescence may contribute to proliferative and functional impairment of endothelial progenitor cells. They play an important role in neo-angiogenesis and endothelial repair. Vascular ageing is associated with changes in the structure and functions of vessels' wall. There are many possible causes of this damage. For sure, inflammation and oxidative stress play a fundamental role in the pathogenesis of endothelial dysfunction, commonly attributed to a reduced availability of nitric oxide. Inflammageing, the chronic low-grade inflammation that characterizes elderly people, aggravates vascular pathology and provokes atherosclerosis, the major cardiovascular disease. Nutraceutical and molecular biology represent new insights in this field. In fact, the first could represent a possible treatment in the prevention or delay of vascular ageing; the second could offer new possible targets for potential therapeutic interventions. In this review, we pay attention on the causes of vascular ageing and on the effects of nutraceuticals on it.
Collapse
Affiliation(s)
- Giulia Accardi
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Anna Aiello
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Caterina Maria Gambino
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Claudia Virruso
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Calogero Caruso
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Giuseppina Candore
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| |
Collapse
|
375
|
The impact of nutrients on the aging rate: A complex interaction of demographic, environmental and genetic factors. Mech Ageing Dev 2016; 154:49-61. [PMID: 26876763 DOI: 10.1016/j.mad.2016.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/05/2016] [Indexed: 12/27/2022]
Abstract
Nutrition has a strong influence on the health status of the elderly, with many dietary components associated to either an increased risk of disease or to an improvement of the quality of life and to a delay of age-related pathologies. A direct effect of a reduced caloric intake on the delay of aging phenotypes is documented in several organisms. The role of nutrients in the regulation of human lifespan is not easy to disentangle, influenced by a complex interaction of nutrition with environmental and genetic factors. The individual genetic background is fundamental for mediating the effects of nutritional components on aging. Classical genetic factors able to influence nutrient metabolism are considered those belonging to insulin/insulin growth factor (INS/IGF-1) signaling, TOR signaling and Sirtuins, but also genes involved in inflammatory/immune response and antioxidant activity can have a major role. Considering the worldwide increasing interest in nutrition to prevent age related diseases and achieve a healthy aging, in this review we will discuss this complex interaction, in the light of metabolic changes occurring with aging, with the aim of shedding a light on the enormous complexity of the metabolic scenario underlying longevity phenotype.
Collapse
|
376
|
|
377
|
Thorin-Trescases N, Thorin E. Lifelong Cyclic Mechanical Strain Promotes Large Elastic Artery Stiffening: Increased Pulse Pressure and Old Age-Related Organ Failure. Can J Cardiol 2015; 32:624-33. [PMID: 26961664 DOI: 10.1016/j.cjca.2015.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
The arterial wall is under a huge mechanical constraint imposed by the cardiac cycle that is bound to generate damage with time. Each heartbeat indeed imposes a pulsatile pressure that generates a vascular stretch. Lifetime accumulation of pulsatile stretches will eventually induce fatigue of the elastic large arterial walls, such as aortic and carotid artery walls, promoting their stiffening that will gradually perturb the normal blood flow and local pressure within the organs, and lead to organ failure. The augmented pulse pressure induced by arterial stiffening favours left ventricular hypertrophy because of the repeated extra work against stiff high-pressure arteries, and tissue damage as a result of excessive pulsatile pressure transmitted into the microcirculation, especially in low resistance/high-flow organs such as the brain and kidneys. Vascular aging is therefore characterized by the stiffening of large elastic arteries leading to a gradual increase in pulse pressure with age. In this review we focus on the effect of age-related stiffening of large elastic arteries. We report the clinical evidence linking arterial stiffness and organ failure and discuss the molecular pathways that are activated by the increase of mechanical stress in the wall. We also discuss the possible interventions that could limit arterial stiffening with age, such as regular aerobic exercise training, and some pharmacological approaches.
Collapse
Affiliation(s)
| | - Eric Thorin
- Montreal Heart Institute, Research Center, Montreal, Quebéc, Canada; Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebéc, Canada.
| |
Collapse
|
378
|
Crimmins EM. Lifespan and Healthspan: Past, Present, and Promise. THE GERONTOLOGIST 2015; 55:901-11. [PMID: 26561272 DOI: 10.1093/geront/gnv130] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/15/2015] [Indexed: 12/24/2022] Open
Abstract
The past century was a period of increasing life expectancy throughout the age range. This resulted in more people living to old age and to spending more years at the older ages. It is likely that increases in life expectancy at older ages will continue, but life expectancy at birth is unlikely to reach levels above 95 unless there is a fundamental change in our ability to delay the aging process. We have yet to experience much compression of morbidity as the age of onset of most health problems has not increased markedly. In recent decades, there have been some reductions in the prevalence of physical disability and dementia. At the same time, the prevalence of disease has increased markedly, in large part due to treatment which extends life for those with disease. Compressing morbidity or increasing the relative healthspan will require "delaying aging" or delaying the physiological change that results in disease and disability. While moving to life expectancies above age 95 and compressing morbidity substantially may require significant scientific breakthroughs; significant improvement in health and increases in life expectancy in the United States could be achieved with behavioral, life style, and policy changes that reduce socioeconomic disparities and allow us to reach the levels of health and life expectancy achieved in peer societies.
Collapse
Affiliation(s)
- Eileen M Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles.
| |
Collapse
|
379
|
Blocking IGF Signaling in Adult Neurons Alleviates Alzheimer's Disease Pathology through Amyloid-β Clearance. J Neurosci 2015; 35:11500-13. [PMID: 26290229 DOI: 10.1523/jneurosci.0343-15.2015] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Alzheimer's disease (AD) is a frequent and irreversible age-related neurodegeneration without efficient treatment. Experimental AD in mice responds positively to decreased insulin-like growth factor I (IGF-I) signaling, a pathway also implicated in aging. Here we aimed to protect the aging brain from devastating amyloid pathology by making specifically adult neurons resistant to IGF signaling. To achieve that, we knocked out neuronal IGF-1R during adulthood in APP/PS1 mice. We found that mutants exhibited improved spatial memory and reduced anxiety. Mutant brains displayed fewer amyloid plaques, less amyloid-β (Aβ), and diminished neuroinflammation. Surprisingly, adult neurons undergoing IGF-1R knock-out reduced their apical soma and developed leaner dendrites, indicative of remarkable structural plasticity entailing condensed forebrain neuroarchitecture. Neurons lacking IGF-1R in AD showed less accumulation of Aβ-containing autophagic vacuoles. At the same time, plasma Aβ levels were increased. Our data indicate that neuronal IGF-1R ablation, via preserved autophagic compartment and enhanced systemic elimination, offers lifelong protection from AD pathology by clearing toxic Aβ. Neuronal IGF-1R, and possibly other cell size-controlling pathways are promising targets for AD treatment. SIGNIFICANCE STATEMENT We found compelling evidence in vivo that Alzheimer's disease (AD) progression is significantly delayed when insulin-like growth factor (IGF) signaling is blocked in adult neurons. To show that, we built a novel mouse model, combining inducible neuron-specific IGF-1R knock-out with AD transgenics. Analysis of the experimental AD phenotype revealed less abundant amyloid-β (Aβ) peptides, fewer plaques, and diminished neuroinflammation in mutants with inactivated IGF signaling, together with clearly preserved behavioral and memory performances. We present for the first time evidence that IGF signaling has profound effects on neuronal proteostasis and maintenance of cell morphology in vivo. Our results indicate in a model highly pertinent to translational research that neuronal IGF resistance may represent a pathophysiologically relevant mechanism of the brain for preventing Aβ accumulation.
Collapse
|
380
|
Briga M, Verhulst S. What can long-lived mutants tell us about mechanisms causing aging and lifespan variation in natural environments? Exp Gerontol 2015; 71:21-6. [DOI: 10.1016/j.exger.2015.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/14/2022]
|
381
|
Fang EF, Scheibye-Knudsen M, Jahn HJ, Li J, Ling L, Guo H, Zhu X, Preedy V, Lu H, Bohr VA, Chan WY, Liu Y, Ng TB. A research agenda for aging in China in the 21st century. Ageing Res Rev 2015; 24:197-205. [PMID: 26304837 PMCID: PMC5179143 DOI: 10.1016/j.arr.2015.08.003] [Citation(s) in RCA: 411] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/03/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022]
Abstract
China is encountering formidable healthcare challenges brought about by the problem of aging. By 2050, there will be 400 million Chinese citizens aged 65+, 150 million of whom will be 80+. The undesirable consequences of the one-child policy, rural-to-urban migration, and expansion of the population of 'empty nest' elders are eroding the traditional family care of the elders, further exacerbating the burden borne by the current public healthcare system. The challenges of geriatric care demand prompt attention by proposing strategies for improvement in several key areas. Major diseases of the elderly that need more attention include chronic non-communicable diseases and mental health disorders. We suggest the establishment of a home care-dominated geriatric care system, and a proactive role for researchers on aging in reforming geriatric care through policy dialogs. We propose ideas for preparation of the impending aging burden and the creation of a nurturing environment conducive to healthy aging in China.
Collapse
Affiliation(s)
- Evandro Fei Fang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Laboratory of Molecular Gerontology, National Institute on Ageing, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Ageing, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Heiko J Jahn
- Department of Public Health Medicine, School of Public Health, Bielefeld University, Bielefeld 33615, Germany.
| | - Juan Li
- Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Li Ling
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Sun Yat-sen Center for Migrant Health Policy, Guangzhou 510080, China.
| | - Hongwei Guo
- School of Public Health, Fudan University, Shanghai 200032, China.
| | - Xinqiang Zhu
- Institute of Nutrition and Food Safety, and Department of Toxicology and Nutrition, School of Public Health, Zhejiang University, Hangzhou 310058, China.
| | - Victor Preedy
- Diabetes & Nutritional Sciences Division, School of Medicine, King's College London, London WC2R 2LS, UK.
| | - Huiming Lu
- Laboratory of Molecular Gerontology, National Institute on Ageing, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Ageing, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yuanli Liu
- Peking Union School of Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
382
|
Mini-review: Retarding aging in murine genetic models of neurodegeneration. Neurobiol Dis 2015; 85:73-80. [PMID: 26477301 DOI: 10.1016/j.nbd.2015.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 12/26/2022] Open
Abstract
Retardation of aging processes is a plausible approach to delaying the onset or slowing the progression of common neurodegenerative disorders. We review the results of experiments using murine genetic models of Alzheimer disease and Huntington disease to evaluate the effects of retarding aging. While positive results are reported in several of these experiments, there are several discrepancies in behavioral and pathologic outcomes both within and between different experiments. Similarly, different experiments yield varying assessments of potential proximate mechanisms of action of retarding aging. The anti-aging interventions used for some experiments include some that show only modest effects on lifespan, and others that have proven hard to reproduce. Several experiments used aggressive transgenic neurodegenerative disease models that may be less relevant in the context of age-related diseases. The experience with these models and interventions may be useful in designing future experiments assessing anti-aging interventions for disease-modifying treatment of neurodegenerative diseases.
Collapse
|
383
|
Castillo-Quan JI, Kinghorn KJ, Bjedov I. Genetics and pharmacology of longevity: the road to therapeutics for healthy aging. ADVANCES IN GENETICS 2015; 90:1-101. [PMID: 26296933 DOI: 10.1016/bs.adgen.2015.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging can be defined as the progressive decline in tissue and organismal function and the ability to respond to stress that occurs in association with homeostatic failure and the accumulation of molecular damage. Aging is the biggest risk factor for human disease and results in a wide range of aging pathologies. Although we do not completely understand the underlying molecular basis that drives the aging process, we have gained exceptional insights into the plasticity of life span and healthspan from the use of model organisms such as the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Single-gene mutations in key cellular pathways that regulate environmental sensing, and the response to stress, have been identified that prolong life span across evolution from yeast to mammals. These genetic manipulations also correlate with a delay in the onset of tissue and organismal dysfunction. While the molecular genetics of aging will remain a prosperous and attractive area of research in biogerontology, we are moving towards an era defined by the search for therapeutic drugs that promote healthy aging. Translational biogerontology will require incorporation of both therapeutic and pharmacological concepts. The use of model organisms will remain central to the quest for drug discovery, but as we uncover molecular processes regulated by repurposed drugs and polypharmacy, studies of pharmacodynamics and pharmacokinetics, drug-drug interactions, drug toxicity, and therapeutic index will slowly become more prevalent in aging research. As we move from genetics to pharmacology and therapeutics, studies will not only require demonstration of life span extension and an underlying molecular mechanism, but also the translational relevance for human health and disease prevention.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kerri J Kinghorn
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ivana Bjedov
- Cancer Institute, University College London, London, UK
| |
Collapse
|
384
|
Di Francesco A, de Cabo R. Two-Year Trial of Human Caloric Restriction. J Gerontol A Biol Sci Med Sci 2015; 70:1095-6. [PMID: 26187232 DOI: 10.1093/gerona/glv100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrea Di Francesco
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland.
| |
Collapse
|
385
|
Abstract
Antiaging therapies show promise in model organism research. Translation to humans is needed to address the challenges of an aging global population. Interventions to slow human aging will need to be applied to still-young individuals. However, most human aging research examines older adults, many with chronic disease. As a result, little is known about aging in young humans. We studied aging in 954 young humans, the Dunedin Study birth cohort, tracking multiple biomarkers across three time points spanning their third and fourth decades of life. We developed and validated two methods by which aging can be measured in young adults, one cross-sectional and one longitudinal. Our longitudinal measure allows quantification of the pace of coordinated physiological deterioration across multiple organ systems (e.g., pulmonary, periodontal, cardiovascular, renal, hepatic, and immune function). We applied these methods to assess biological aging in young humans who had not yet developed age-related diseases. Young individuals of the same chronological age varied in their "biological aging" (declining integrity of multiple organ systems). Already, before midlife, individuals who were aging more rapidly were less physically able, showed cognitive decline and brain aging, self-reported worse health, and looked older. Measured biological aging in young adults can be used to identify causes of aging and evaluate rejuvenation therapies.
Collapse
|