351
|
Kim H, Jang J, Song MJ, Park CH, Lee DH, Lee SH, Chung JH. Inhibition of matrix metalloproteinase expression by selective clearing of senescent dermal fibroblasts attenuates ultraviolet-induced photoaging. Biomed Pharmacother 2022; 150:113034. [PMID: 35489284 DOI: 10.1016/j.biopha.2022.113034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 11/02/2022] Open
Abstract
Photoaging mainly occurs due to ultraviolet (UV) radiation, and is accompanied by increased secretion of matrix metalloproteinases (MMPs) and degradation of collagen. UV radiation induces cell senescence in the skin; however, the role of senescent cells in photoaging remains unclear. Therefore, to elucidate the role of senescent cells in photoaging, we evaluated the effect of senolytics in a photoaging mouse model and investigated the underlying mechanism of their antiaging effect. Both UV-induced senescent human dermal fibroblasts and a photoaging mouse model, ABT-263 and ABT-737, demonstrated senolytic effects on senescent fibroblasts. Moreover, we found that several senescence-associated secretory phenotype factors, such as IL-6, CCL5, CCL7, CXCL12, and SCF, induced MMP-1 expression in dermal fibroblasts, which decreased after treatment with ABT-263 and ABT-737 in vivo and in vitro. Both senolytic drugs attenuated the induction of MMPs and decreased collagen density in the photoaging mouse model. Our data suggest that senolytic agents reduce UV-induced photoaging, making strategies for targeting senescent dermal fibroblasts promising options for the treatment of photoaging.
Collapse
Affiliation(s)
- Haesoo Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Jeehee Jang
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Min Ji Song
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Chi-Hyun Park
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Si-Hyung Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea.
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Institute on Aging, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
352
|
Abstract
Senescence is a cellular response to a variety of stress signals that is characterized by a stable withdrawal from the cell cycle and major changes in cell morphology and physiology. While most research on senescence has been performed on non-cancer cells, it is evident that cancer cells can also mount a senescence response. In this Review, we discuss how senescence can be induced in cancer cells. We describe the distinctive features of senescent cancer cells and how these changes in cellular physiology might be exploited for the selective eradication of these cells (senolysis). We discuss activation of the host immune system as a particularly attractive way to clear senescent cancer cells. Finally, we consider the challenges and opportunities provided by a 'one-two punch' sequential treatment of cancer with pro-senescence therapy followed by senolytic therapy.
Collapse
Affiliation(s)
- Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lina Lankhorst
- Cancer, Stem Cells & Developmental Biology programme, Utrecht University, Utrecht, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
353
|
Duan H, Pan J, Guo M, Li J, Yu L, Fan L. Dietary strategies with anti-aging potential: dietary patterns and supplements. Food Res Int 2022; 158:111501. [DOI: 10.1016/j.foodres.2022.111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
|
354
|
Nacarino-Palma A, Rico-Leo EM, Campisi J, Ramanathan A, González-Rico FJ, Rejano-Gordillo CM, Ordiales-Talavero A, Merino JM, Fernández-Salguero PM. Aryl hydrocarbon receptor blocks aging-induced senescence in the liver and fibroblast cells. Aging (Albany NY) 2022; 14:4281-4304. [PMID: 35619220 PMCID: PMC9186759 DOI: 10.18632/aging.204103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/06/2022] [Indexed: 01/10/2023]
Abstract
Aging impairs organismal homeostasis leading to multiple pathologies. Yet, the mechanisms and molecular intermediates involved are largely unknown. Here, we report that aged aryl hydrocarbon receptor-null mice (AhR-/-) had exacerbated cellular senescence and more liver progenitor cells. Senescence-associated markers β-galactosidase (SA-β-Gal), p16Ink4a and p21Cip1 and genes encoding senescence-associated secretory phenotype (SASP) factors TNF and IL1 were overexpressed in aged AhR-/- livers. Chromatin immunoprecipitation showed that AhR binding to those gene promoters repressed their expression, thus adjusting physiological levels in AhR+/+ livers. MCP-2, MMP12 and FGF secreted by senescent cells were overproduced in aged AhR-null livers. Supporting the relationship between senescence and stemness, liver progenitor cells were overrepresented in AhR-/- mice, probably contributing to increased hepatocarcinoma burden. These AhR roles are not liver-specific since adult and embryonic AhR-null fibroblasts underwent senescence in culture, overexpressing SA-β-Gal, p16Ink4a and p21Cip1. Notably, depletion of senescent cells with the senolytic agent navitoclax restored expression of senescent markers in AhR-/- fibroblasts, whereas senescence induction by palbociclib induced an AhR-null-like phenotype in AhR+/+ fibroblasts. AhR levels were downregulated by senescence in mouse lungs but restored upon depletion of p16Ink4a-expressing senescent cells. Thus, AhR restricts age-induced senescence associated to a differentiated phenotype eventually inducing resistance to liver tumorigenesis.
Collapse
Affiliation(s)
- Ana Nacarino-Palma
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Eva M Rico-Leo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Francisco J González-Rico
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Claudia M Rejano-Gordillo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Ana Ordiales-Talavero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| |
Collapse
|
355
|
Pedroza-Diaz J, Arroyave-Ospina JC, Serna Salas S, Moshage H. Modulation of Oxidative Stress-Induced Senescence during Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:antiox11050975. [PMID: 35624839 PMCID: PMC9137746 DOI: 10.3390/antiox11050975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease is characterized by disturbed lipid metabolism and increased oxidative stress. These conditions lead to the activation of different cellular response mechanisms, including senescence. Cellular senescence constitutes an important response to injury in the liver. Recent findings show that chronic oxidative stress can induce senescence, and this might be a driving mechanism for NAFLD progression, aggravating the disturbance of lipid metabolism, organelle dysfunction, pro-inflammatory response and hepatocellular damage. In this context, the modulation of cellular senescence can be beneficial to ameliorate oxidative stress-related damage during NAFLD progression. This review focuses on the role of oxidative stress and senescence in the mechanisms leading to NAFLD and discusses the possibilities to modulate senescence as a therapeutic strategy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Johanna Pedroza-Diaz
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Grupo de Investigación e Innovación Biomédica GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050536, Colombia
| | - Johanna C. Arroyave-Ospina
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Correspondence:
| | - Sandra Serna Salas
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| | - Han Moshage
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| |
Collapse
|
356
|
Woo J, Shin S, Ji H, Ryu D, Cho E, Kim Y, Kim J, Park D, Jung E. Isatis tinctoria L. Leaf Extract Inhibits Replicative Senescence in Dermal Fibroblasts by Regulating mTOR-NF-κB-SASP Signaling. Nutrients 2022; 14:nu14091979. [PMID: 35565945 PMCID: PMC9102489 DOI: 10.3390/nu14091979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Senescent fibroblasts progressively deteriorate the functional properties of skin tissue. Senescent cells secrete senescence-associated secretory phenotype (SASP) factor, which causes the aging of surrounding non-senescent cells and accelerates aging in the individuals. Recent findings suggested the senomorphic targeting of the SASP regulation as a new generation of effective therapeutics. We investigated whether Isatis tinctoria L. leaf extract (ITE) inhibited senescence biomarkers p53, p21CDKN1A, and p16INK4A gene expression, and SASP secretions by inhibiting cellular senescence in the replicative senescent human dermal fibroblast (RS-HDF). ITE has been demonstrated to inhibit the secretion of SASP factors in several senomorphic types by regulating the MAPK/NF-κB pathway via its inhibitory effect on mTOR. ITE suppressed the inflammatory response by inhibiting mTOR, MAPK, and IκBα phosphorylation, and blocking the nuclear translocation of NF-κB. In addition, we observed that autophagy pathway was related to inhibitory effect of ITE on cellular senescence. From these results, we concluded that ITE can prevent and restore senescence by blocking the activation and secretion of senescence-related factors generated from RS-HDFs through mTOR-NF-κB regulation.
Collapse
Affiliation(s)
- Jieun Woo
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Seoungwoo Shin
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Hyanggi Ji
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Dehun Ryu
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Eunae Cho
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Youngseok Kim
- Shinsegae International Technology Innovation Center, 449, Dosan-daero, Seoul 06015, Korea; (Y.K.); (J.K.)
| | - Junoh Kim
- Shinsegae International Technology Innovation Center, 449, Dosan-daero, Seoul 06015, Korea; (Y.K.); (J.K.)
| | - Deokhoon Park
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Eunsun Jung
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
- Correspondence:
| |
Collapse
|
357
|
Kim C, Lee SG, Lim S, Jung M, Kwon SP, Hong J, Kang M, Sohn HS, Go S, Moon S, Lee SJ, Kim JS, Kim BS. A Senolytic-Eluting Coronary Stent for the Prevention of In-Stent Restenosis. ACS Biomater Sci Eng 2022; 8:1921-1929. [PMID: 35416659 DOI: 10.1021/acsbiomaterials.1c01611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The vast majority of drug-eluting stents (DES) elute either sirolimus or one of its analogues. While limus drugs stymie vascular smooth muscle cell (VSMC) proliferation to prevent in-stent restenosis, their antiproliferative nature is indiscriminate and limits healing of the endothelium in stented vessels, increasing the risk of late-stent thrombosis. Oxidative stress, which is associated with vascular injury from stent implantation, can induce VSMCs to undergo senescence, and senescent VSMCs can produce pro-inflammatory cytokines capable of inducing proliferation of neighboring nonsenescent VSMCs. We explored the potential of senolytic therapy, which involves the selective elimination of senescent cells, in the form of a senolytic-eluting stent (SES) for interventional cardiology. Oxidative stress was modeled in vitro by exposing VSMCs to H2O2, and H2O2-mediated senescence was evaluated by cytochemical staining of senescence-associated β-galactosidase activity and qRT-PCR. Quiescent VSMCs were then treated with the conditioned medium (CM) of H2O2-treated VSMCs. Proliferative effects of CM were analyzed by staining for proliferating cell nuclear antigen. Senolytic effects of the first-generation senolytic ABT263 were observed in vitro, and the effects of ABT263 on endothelial cells were also investigated through an in vitro re-endothelialization assay. SESs were prepared by dip coating. Iliofemoral arteries of hypercholesteremic rabbits were implanted with SES, everolimus-eluting stents (EESs), or bare-metal stents (BMSs), and the area of stenosis was measured 4 weeks post-implantation using optical coherence tomography. We found that a portion of H2O2-treated VSMCs underwent senescence, and that CM of H2O2-treated senescent VSMCs triggered the proliferation of quiescent VSMCs. ABT263 reverted H2O2-mediated senescence and the proliferative capacity of senescent VSMC CM. Unlike everolimus, ABT263 did not affect endothelial cell migration and/or proliferation. SES, but not EES, significantly reduced stenosis area in vivo compared with bare-metal stents (BMSs). This study shows the potential of SES as an alternative to current forms of DES.
Collapse
Affiliation(s)
- Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seul-Gee Lee
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Songhyun Lim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Jun Lee
- Cardiology Division, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung-Sun Kim
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Cardiology Division, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Chemical Processes, Institute of Engineering Research, and BioMAX, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
358
|
Fielder E, Wan T, Alimohammadiha G, Ishaq A, Low E, Weigand BM, Kelly G, Parker C, Griffin B, Jurk D, Korolchuk VI, von Zglinicki T, Miwa S. Short senolytic or senostatic interventions rescue progression of radiation-induced frailty and premature ageing in mice. eLife 2022; 11:75492. [PMID: 35507395 PMCID: PMC9154747 DOI: 10.7554/elife.75492] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer survivors suffer from progressive frailty, multimorbidity, and premature morbidity. We hypothesise that therapy-induced senescence and senescence progression via bystander effects are significant causes of this premature ageing phenotype. Accordingly, the study addresses the question whether a short anti-senescence intervention is able to block progression of radiation-induced frailty and disability in a pre-clinical setting. Male mice were sublethally irradiated at 5 months of age and treated (or not) with either a senolytic drug (Navitoclax or dasatinib + quercetin) for 10 days or with the senostatic metformin for 10 weeks. Follow-up was for 1 year. Treatments commencing within a month after irradiation effectively reduced frailty progression (p<0.05) and improved muscle (p<0.01) and liver (p<0.05) function as well as short-term memory (p<0.05) until advanced age with no need for repeated interventions. Senolytic interventions that started late, after radiation-induced premature frailty was manifest, still had beneficial effects on frailty (p<0.05) and short-term memory (p<0.05). Metformin was similarly effective as senolytics. At therapeutically achievable concentrations, metformin acted as a senostatic neither via inhibition of mitochondrial complex I, nor via improvement of mitophagy or mitochondrial function, but by reducing non-mitochondrial reactive oxygen species production via NADPH oxidase 4 inhibition in senescent cells. Our study suggests that the progression of adverse long-term health and quality-of-life effects of radiation exposure, as experienced by cancer survivors, might be rescued by short-term adjuvant anti-senescence interventions.
Collapse
Affiliation(s)
- Edward Fielder
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Tengfei Wan
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Ghazaleh Alimohammadiha
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Abbas Ishaq
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Evon Low
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - B Melanie Weigand
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - George Kelly
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Craig Parker
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Brigid Griffin
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Diana Jurk
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Viktor I Korolchuk
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Thomas von Zglinicki
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Satomi Miwa
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| |
Collapse
|
359
|
Tan H, Xu J, Liu Y. Ageing, cellular senescence and chronic kidney disease: experimental evidence. Curr Opin Nephrol Hypertens 2022; 31:235-243. [PMID: 35142744 PMCID: PMC9035037 DOI: 10.1097/mnh.0000000000000782] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is often viewed as an accelerated and premature ageing of the kidney, as they share common pathological features characterized by cellular senescence. In this review, we summarize the experimental evidence linking cellular senescence to the pathobiology of kidney ageing and CKD, and discuss the strategies for targeting senescent cells in developing therapeutics for ageing-related kidney disorders. RECENT FINDINGS Kidney ageing and CKD are featured with increased cellular senescence, an irreversible state of cell cycle arrest and the cessation of cell division. Senescent cells secrete a diverse array of proinflammatory and profibrotic factors known as senescence-associated secretory phenotype (SASP). Secondary senescence can be induced by primary senescent cells via a mechanism involving direct contact or the SASP. Various senolytic therapies aiming to selectively remove senescent cells in vivo have been developed. Senostatic approaches to suppress senescence or inhibit SASP, as well as nutrient signalling regulators are also validated in animal models of ageing. SUMMARY These recent studies provide experimental evidence supporting the notion that accumulation of senescent cells and their associated SASP is a main driver leading to structural and functional organ degeneration in CKD and other ageing-related disorder.
Collapse
Affiliation(s)
- Huishi Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
360
|
SENESCENCE-MEDIATED ANTI-CANCER EFFECTS OF QUERCETI. Nutr Res 2022; 104:82-90. [DOI: 10.1016/j.nutres.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023]
|
361
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
362
|
He W, Li X, Morsch M, Ismail M, Liu Y, Rehman FU, Zhang D, Wang Y, Zheng M, Chung R, Zou Y, Shi B. Brain-Targeted Codelivery of Bcl-2/Bcl-xl and Mcl-1 Inhibitors by Biomimetic Nanoparticles for Orthotopic Glioblastoma Therapy. ACS NANO 2022; 16:6293-6308. [PMID: 35353498 DOI: 10.1021/acsnano.2c00320] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glioblastoma (GBM) is among the most treatment-resistant solid tumors and often recurrs after resection. One of the mechanisms through which GBM escapes various treatment modalities is the overexpression of anti-apoptotic Bcl-2 family proteins (e.g., Bcl-2, Bcl-xl, and Mcl-1) in tumor cells. Small-molecule inhibitors such as ABT-263 (ABT), which can promote mitochondrial-mediated cell apoptosis by selectively inhibiting the function of Bcl-2 and Bcl-xl, have been proven to be promising anticancer agents in clinical trials. However, the therapeutic prospects of ABT for GBM treatment are hampered by its limited blood-brain barrier (BBB) penetration, dose-dependent thrombocytopenia, and the drug resistance driven by Mcl-1, which is overexpressed in GBM cells and further upregulated upon treatment with ABT. Herein, we reported that the Mcl-1-specific inhibitor A-1210477 (A12) can act synergistically with ABT to induce potent cell apoptosis in U87 MG cells, drug-resistant U251 cells, and patient-derived GBM cancer stem cells. We further designed a biomimetic nanomedicine, based on the apolipoprotein E (ApoE) peptide-decorated red blood cell membrane and pH-sensitive dextran nanoparticles, for the brain-targeted delivery of ABT and A12. The synergistic anti-GBM effect was retained after encapsulation in the nanomedicine. Additionally, the obtained nanomedicine possessed good biocompatibility, exhibited efficient BBB penetration, and could effectively suppress tumor growth and prolong the survival time of mice bearing orthotopic GBM xenografts without inducing detectable adverse effects.
Collapse
Affiliation(s)
| | | | - Marco Morsch
- Center for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | | | | | | | | - Roger Chung
- Center for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yan Zou
- Center for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bingyang Shi
- Center for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
363
|
Single-cell transcriptomics identifies Mcl-1 as a target for senolytic therapy in cancer. Nat Commun 2022; 13:2177. [PMID: 35449130 PMCID: PMC9023465 DOI: 10.1038/s41467-022-29824-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/24/2022] [Indexed: 01/10/2023] Open
Abstract
Cells subjected to treatment with anti-cancer therapies can evade apoptosis through cellular senescence. Persistent senescent tumor cells remain metabolically active, possess a secretory phenotype, and can promote tumor proliferation and metastatic dissemination. Removal of senescent tumor cells (senolytic therapy) has therefore emerged as a promising therapeutic strategy. Here, using single-cell RNA-sequencing, we find that senescent tumor cells rely on the anti-apoptotic gene Mcl-1 for their survival. Mcl-1 is upregulated in senescent tumor cells, including cells expressing low levels of Bcl-2, an established target for senolytic therapy. While treatment with the Bcl-2 inhibitor Navitoclax results in the reduction of metastases in tumor bearing mice, treatment with the Mcl-1 inhibitor S63845 leads to complete elimination of senescent tumor cells and metastases. These findings provide insights on the mechanism by which senescent tumor cells survive and reveal a vulnerability that can be exploited for cancer therapy. Cell senescence remains a barrier to tumor elimination in many cancers. Here, the authors use single cell RNA-seq to identify a role for Mcl-1 in senescent cell survival, and show that Mcl-1 inhibition may be an effective therapeutic strategy.
Collapse
|
364
|
Astrike-Davis EM, Coryell P, Loeser RF. Targeting cellular senescence as a novel treatment for osteoarthritis. Curr Opin Pharmacol 2022; 64:102213. [PMID: 35447516 DOI: 10.1016/j.coph.2022.102213] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
Cellular senescence is associated with normal development and wound healing, but has also been implicated in the pathogenesis of numerous aging-related diseases including osteoarthritis (OA). Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of the senescence-associated secretory phenotype (SASP). The field of potential therapies continues to expand as new mechanistic targets of cell senescence and the SASP are identified. Ongoing pre-clinical and clinical studies of drugs targeting cellular senescence yield significant promise, but have yet to demonstrate long-term efficacy. Therapeutic targeting of senescence is challenged by the diverse phenotypes of senescent cells, which can vary depending on age, species, tissue source, and type of physiologic stressor. Accordingly, there remains considerable demand for more studies to further develop and assess senotherapeutics as disease-modifying treatments for OA.
Collapse
Affiliation(s)
- Emma M Astrike-Davis
- Division of Rheumatology, Allergy, and Immunology, The Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Philip Coryell
- Division of Rheumatology, Allergy, and Immunology, The Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology, The Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
365
|
Moaddel R, Rossi M, Rodriguez S, Munk R, Khadeer M, Abdelmohsen K, Gorospe M, Ferrucci L. Identification of gingerenone A as a novel senolytic compound. PLoS One 2022; 17:e0266135. [PMID: 35349590 PMCID: PMC8963586 DOI: 10.1371/journal.pone.0266135] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Senescent cells accumulate with aging and have been shown to contribute to age-associated diseases and organ dysfunction. Eliminating senescent cells with senolytic drugs has been shown to improve age phenotypes in mouse models and there is some initial evidence that it may improve the health of persons with chronic diseases. In this study, we employed WI-38 human fibroblasts rendered senescent by exposure to ionizing radiation (IR) to screen several plant extracts for their potential senolytic and/or senomorphic activity. Of these, ginger extract (Zingiber officinale Rosc.) selectively caused the death of senescent cells without affecting proliferating cells. Among the major individual components of ginger extract, gingerenone A and 6-shogaol showed promising senolytic properties, with gingerenone A selectively eliminating senescent cells. Similar to the senolytic cocktail dasatinib and quercetin (D+Q), gingerenone A and 6-shogaol elicited an apoptotic program. Additionally, both D+Q and gingerenone A had a pronounced effect on suppressing the senescence-associated secretory phenotype (SASP). Gingerenone A selectively promotes the death of senescent cells with no effect on non-senescent cells and these characteristics strongly support the idea that this natural compound may have therapeutic benefit in diseases characterized by senescent cell accumulation.
Collapse
Affiliation(s)
- Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, NIH, Baltimore, MD, United States of America
- * E-mail:
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, NIH, Baltimore, MD, United States of America
| | - Stephanie Rodriguez
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, NIH, Baltimore, MD, United States of America
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, NIH, Baltimore, MD, United States of America
| | - Mohammed Khadeer
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, NIH, Baltimore, MD, United States of America
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, NIH, Baltimore, MD, United States of America
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, NIH, Baltimore, MD, United States of America
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, NIH, Baltimore, MD, United States of America
| |
Collapse
|
366
|
Kudlova N, De Sanctis JB, Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int J Mol Sci 2022; 23:ijms23084168. [PMID: 35456986 PMCID: PMC9028163 DOI: 10.3390/ijms23084168] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is defined as irreversible cell cycle arrest caused by various processes that render viable cells non-functional, hampering normal tissue homeostasis. It has many endogenous and exogenous inducers, and is closely connected with age, age-related pathologies, DNA damage, degenerative disorders, tumor suppression and activation, wound healing, and tissue repair. However, the literature is replete with contradictory findings concerning its triggering mechanisms, specific biomarkers, and detection protocols. This may be partly due to the wide range of cellular and in vivo animal or human models of accelerated aging that have been used to study senescence and test senolytic drugs. This review summarizes recent findings concerning senescence, presents some widely used cellular and animal senescence models, and briefly describes the best-known senolytic agents.
Collapse
Affiliation(s)
- Natalie Kudlova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
- Correspondence: ; Tel.: +42-0-585632082
| |
Collapse
|
367
|
Senotherapeutics in Cancer and HIV. Cells 2022; 11:cells11071222. [PMID: 35406785 PMCID: PMC8997781 DOI: 10.3390/cells11071222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a stress-response mechanism that contributes to homeostasis maintenance, playing a beneficial role during embryogenesis and in normal adult organisms. In contrast, chronic senescence activation may be responsible for other events such as age-related disorders, HIV and cancer development. Cellular senescence activation can be triggered by different insults. Regardless of the inducer, there are several phenotypes generally shared among senescent cells: cell division arrest, an aberrant shape, increased size, high granularity because of increased numbers of lysosomes and vacuoles, apoptosis resistance, defective metabolism and some chromatin alterations. Senescent cells constitute an important area for research due to their contributions to the pathogenesis of different diseases such as frailty, sarcopenia and aging-related diseases, including cancer and HIV infection, which show an accelerated aging. Hence, a new pharmacological category of treatments called senotherapeutics is under development. This group includes senolytic drugs that selectively attack senescent cells and senostatic drugs that suppress SASP factor delivery, inhibiting senescent cell development. These new drugs can have positive therapeutic effects on aging-related disorders and act in cancer as antitumor drugs, avoiding the undesired effects of senescent cells such as those from SASP. Here, we review senotherapeutics and how they might affect cancer and HIV disease, two very different aging-related diseases, and review some compounds acting as senolytics in clinical trials.
Collapse
|
368
|
Mehdizadeh M, Aguilar M, Thorin E, Ferbeyre G, Nattel S. The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nat Rev Cardiol 2022; 19:250-264. [PMID: 34667279 DOI: 10.1038/s41569-021-00624-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
Cellular senescence, classically defined as stable cell cycle arrest, is implicated in biological processes such as embryogenesis, wound healing and ageing. Senescent cells have a complex senescence-associated secretory phenotype (SASP), involving a range of pro-inflammatory factors with important paracrine and autocrine effects on cell and tissue biology. Clinical evidence and experimental studies link cellular senescence, senescent cell accumulation, and the production and release of SASP components with age-related cardiac pathologies such as heart failure, myocardial ischaemia and infarction, and cancer chemotherapy-related cardiotoxicity. However, the precise role of senescent cells in these conditions is unclear and, in some instances, both detrimental and beneficial effects have been reported. The involvement of cellular senescence in other important entities, such as cardiac arrhythmias and remodelling, is poorly understood. In this Review, we summarize the basic biology of cellular senescence and discuss what is known about the role of cellular senescence and the SASP in heart disease. We then consider the various approaches that are being developed to prevent the accumulation of senescent cells and their consequences. Many of these strategies are applicable in vivo and some are being investigated for non-cardiac indications in clinical trials. We end by considering important knowledge gaps, directions for future research and the potential implications for improving the management of patients with heart disease.
Collapse
Affiliation(s)
- Mozhdeh Mehdizadeh
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Martin Aguilar
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Eric Thorin
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Surgery, Université de Montréal, Montreal, QC, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal and CRCHUM, Montreal, QC, Canada
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, Canada. .,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. .,IHU LIRYC and Fondation Bordeaux, Université Bordeaux, Bordeaux, France.
| |
Collapse
|
369
|
Suzuki K, Kawamura K, Ujiie R, Nakayama T, Mitsutake N. Characterization of radiation-induced micronuclei associated with premature senescence, and their selective removal by senolytic drug, ABT-263. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503448. [PMID: 35483779 DOI: 10.1016/j.mrgentox.2022.503448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Radiotherapy is well-recognized as an efficient non-invasive remedy for cancer treatment. Since 10 Gy, a weekly total dose for conventional radiotherapy, was proven to create unreparable and residual DNA double-strand breaks (DSBs), they were found to give rise to mitotic failure, such as mitotic catastrophe, which resulted in multiple micronuclei associated with premature senescence. We demonstrated that pulverization of micronuclear DNA was caspase-dependent and triggered not ATM-dependent but DNA-PK-dependent DNA damage response, including phosphorylation of histone H2AX. Pulverization of micronuclear DNA and senescence-associated secretory phenotype (SASP) worsen tumor microenvironment after radiotherapy, so that senolytic drug was applied to eliminate senescent cancer cells. Prematurely senescent cancer cells with micronuclei caused by 10 Gy of γ-irradiation were subjected to 5 μM of ABT-263, a Bcl-2 family inhibitor, and selective cancer cell death by apoptosis was observed, while ABT-263 had little effect on growing cancer cells. Western blot analysis showed augmented expression of both apoptotic and anti-apoptotic proteins in senescent cells, indicating that increased apoptotic factors are essential for selective apoptotic cell death in combination with ABT-263. Our results suggested that selective elimination of senescent cells alleviates SASP and micronuclei-mediated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation, both of which lead to unfavorable adverse effects caused by radiotherapy.
Collapse
Affiliation(s)
- Keiji Suzuki
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Kasumi Kawamura
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Risa Ujiie
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Takahumi Nakayama
- Department of Molecular Medicine, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
370
|
Xu W, Zhao T, Chen H, Huang N, Gong H, Zhang J, Yang Y, Li T, Zhang G, Gong C, Yang M, Xiao H. Pan-mTOR inhibitors sensitize the senolytic activity of Navitoclax via mTORC2 inhibition-mediated apoptotic signaling. Biochem Pharmacol 2022; 200:115045. [DOI: 10.1016/j.bcp.2022.115045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
|
371
|
Abdelgawad IY, Agostinucci K, Zordoky BN. Cardiovascular ramifications of therapy-induced endothelial cell senescence in cancer survivors. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166352. [PMID: 35041996 PMCID: PMC8844223 DOI: 10.1016/j.bbadis.2022.166352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/15/2022]
Abstract
Cancer survivorship has remarkably improved over the past decades; nevertheless, cancer survivors are burdened with multiple health complications primarily caused by their cancer therapy. Therapy-induced senescence is recognized as a fundamental mechanism contributing to adverse health complications in cancer survivors. In this mini-review, we will discuss the recent literature describing the mechanisms of cancer therapy-induced senescence. We will focus on endothelial cell senescence since it has been shown to be a key player in numerous cardiovascular complications. We will also discuss novel senotherapeutic approaches that have the potential to combat therapy-induced endothelial cell senescence.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Kevin Agostinucci
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| |
Collapse
|
372
|
Bouvier DS, Fixemer S, Heurtaux T, Jeannelle F, Frauenknecht KBM, Mittelbronn M. The Multifaceted Neurotoxicity of Astrocytes in Ageing and Age-Related Neurodegenerative Diseases: A Translational Perspective. Front Physiol 2022; 13:814889. [PMID: 35370777 PMCID: PMC8969602 DOI: 10.3389/fphys.2022.814889] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
In a healthy physiological context, astrocytes are multitasking cells contributing to central nervous system (CNS) homeostasis, defense, and immunity. In cell culture or rodent models of age-related neurodegenerative diseases (NDDs), such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), numerous studies have shown that astrocytes can adopt neurotoxic phenotypes that could enhance disease progression. Chronic inflammatory responses, oxidative stress, unbalanced phagocytosis, or alteration of their core physiological roles are the main manifestations of their detrimental states. However, if astrocytes are directly involved in brain deterioration by exerting neurotoxic functions in patients with NDDs is still controversial. The large spectrum of NDDs, with often overlapping pathologies, and the technical challenges associated with the study of human brain samples complexify the analysis of astrocyte involvement in specific neurodegenerative cascades. With this review, we aim to provide a translational overview about the multi-facets of astrocyte neurotoxicity ranging from in vitro findings over mouse and human cell-based studies to rodent NDDs research and finally evidence from patient-related research. We also discuss the role of ageing in astrocytes encompassing changes in physiology and response to pathologic stimuli and how this may prime detrimental responses in NDDs. To conclude, we discuss how potentially therapeutic strategies could be adopted to alleviate or reverse astrocytic toxicity and their potential to impact neurodegeneration and dementia progression in patients.
Collapse
Affiliation(s)
- David S. Bouvier
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- *Correspondence: David S. Bouvier,
| | - Sonja Fixemer
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Systems Biology Group, Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Félicia Jeannelle
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Katrin B. M. Frauenknecht
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Institute of Neuropathology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Faculty of Science, Technology, and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Michel Mittelbronn,
| |
Collapse
|
373
|
Huart C, Fransolet M, Demazy C, Le Calvé B, Lucas S, Michiels C, Wéra AC. Taking Advantage of the Senescence-Promoting Effect of Olaparib after X-ray and Proton Irradiation Using the Senolytic Drug, ABT-263. Cancers (Basel) 2022; 14:cancers14061460. [PMID: 35326611 PMCID: PMC8946554 DOI: 10.3390/cancers14061460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Radiotherapy (RT) is a key component of cancer treatment. Although improvements have been made over the years, radioresistance remains a challenge. For this reason, a better understanding of cell fates in response to RT could improve therapeutic options to enhance cell death and reduce adverse effects. Here, we showed that combining RT (photons and protons) to noncytotoxic concentration of PARP inhibitor, Olaparib, induced a cell line-dependent senescence-like phenotype. The senescent cells were characterized by morphological changes, an increase in p21 mRNA expression as well as an increase in senescence-associated β-galactosidase activity. We demonstrated that these senescent cells could be specifically targeted by Navitoclax (ABT-263), a Bcl-2 family inhibitor. This senolytic drug led to significant cell death when combined with RT and Olaparib, while limited cytotoxicity was observed when used alone. These results demonstrate that a combination of RT with PARP inhibition and senolytics could be a promising therapeutic approach for cancer patients.
Collapse
Affiliation(s)
- Camille Huart
- Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium; (C.H.); (M.F.); (C.D.); (B.L.C.); (C.M.)
| | - Maude Fransolet
- Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium; (C.H.); (M.F.); (C.D.); (B.L.C.); (C.M.)
| | - Catherine Demazy
- Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium; (C.H.); (M.F.); (C.D.); (B.L.C.); (C.M.)
| | - Benjamin Le Calvé
- Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium; (C.H.); (M.F.); (C.D.); (B.L.C.); (C.M.)
| | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| | - Carine Michiels
- Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium; (C.H.); (M.F.); (C.D.); (B.L.C.); (C.M.)
| | - Anne-Catherine Wéra
- Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium; (C.H.); (M.F.); (C.D.); (B.L.C.); (C.M.)
- Molecular Imaging, Radiation and Oncology (MIRO) Lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium
- Correspondence:
| |
Collapse
|
374
|
Poisa-Beiro L, Landry JJM, Raffel S, Tanaka M, Zaugg J, Gavin AC, Ho AD. Glucose Metabolism and Aging of Hematopoietic Stem and Progenitor Cells. Int J Mol Sci 2022; 23:ijms23063028. [PMID: 35328449 PMCID: PMC8955027 DOI: 10.3390/ijms23063028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Comprehensive proteomics studies of human hematopoietic stem and progenitor cells (HSPC) have revealed that aging of the HSPC compartment is characterized by elevated glycolysis. This is in addition to deregulations found in murine transcriptomics studies, such as an increased differentiation bias towards the myeloid lineage, alterations in DNA repair, and a decrease in lymphoid development. The increase in glycolytic enzyme activity is caused by the expansion of a more glycolytic HSPC subset. We therefore developed a method to isolate HSPC into three distinct categories according to their glucose uptake (GU) levels, namely the GUhigh, GUinter and GUlow subsets. Single-cell transcriptomics studies showed that the GUhigh subset is highly enriched for HSPC with a differentiation bias towards myeloid lineages. Gene set enrichment analysis (GSEA) demonstrated that the gene sets for cell cycle arrest, senescence-associated secretory phenotype, and the anti-apoptosis and P53 pathways are significantly upregulated in the GUhigh population. With this series of studies, we have produced a comprehensive proteomics and single-cell transcriptomics atlas of molecular changes in human HSPC upon aging. Although many of the molecular deregulations are similar to those found in mice, there are significant differences. The most unique finding is the association of elevated central carbon metabolism with senescence. Due to the lack of specific markers, the isolation and collection of senescent cells have yet to be developed, especially for human HSPC. The GUhigh subset from the human HSPC compartment possesses all the transcriptome characteristics of senescence. This property may be exploited to accurately enrich, visualize, and trace senescence development in human bone marrow.
Collapse
Affiliation(s)
- Laura Poisa-Beiro
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (L.P.-B.); (S.R.)
- Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL) & Heidelberg University, 69120 Heidelberg, Germany; (J.Z.); (A.-C.G.)
| | - Jonathan J. M. Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany;
| | - Simon Raffel
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (L.P.-B.); (S.R.)
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Inst, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany;
| | - Judith Zaugg
- Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL) & Heidelberg University, 69120 Heidelberg, Germany; (J.Z.); (A.-C.G.)
- European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Anne-Claude Gavin
- Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL) & Heidelberg University, 69120 Heidelberg, Germany; (J.Z.); (A.-C.G.)
- Department for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Anthony D. Ho
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (L.P.-B.); (S.R.)
- Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL) & Heidelberg University, 69120 Heidelberg, Germany; (J.Z.); (A.-C.G.)
- Correspondence:
| |
Collapse
|
375
|
Hu L, Li H, Zi M, Li W, Liu J, Yang Y, Zhou D, Kong QP, Zhang Y, He Y. Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic Development. Front Cell Dev Biol 2022; 10:822816. [PMID: 35252191 PMCID: PMC8890612 DOI: 10.3389/fcell.2022.822816] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a process that leads to a state of irreversible cell growth arrest induced by a variety of intrinsic and extrinsic stresses. Senescent cells (SnCs) accumulate with age and have been implicated in various age-related diseases in part via expressing the senescence-associated secretory phenotype. Elimination of SnCs has the potential to delay aging, treat age-related diseases and extend healthspan. However, once cells becoming senescent, they are more resistant to apoptotic stimuli. Senolytics can selectively eliminate SnCs by targeting the SnC anti-apoptotic pathways (SCAPs). They have been developed as a novel pharmacological strategy to treat various age-related diseases. However, the heterogeneity of the SnCs indicates that SnCs depend on different proteins or pathways for their survival. Thus, a better understanding of the underlying mechanisms for apoptotic resistance of SnCs will provide new molecular targets for the development of cell-specific or broad-spectrum therapeutics to clear SnCs. In this review, we discussed the latest research progresses and challenge in senolytic development, described the significance of regulation of senescence and apoptosis in aging, and systematically summarized the SCAPs involved in the apoptotic resistance in SnCs.
Collapse
Affiliation(s)
- Li Hu
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,College of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Huiqin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meiting Zi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen Li
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Jing Liu
- Lab of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yang Yang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yunxia Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,College of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
376
|
Kim K, Admasu TD, Stolzing A, Sharma A. Enhanced co-culture and enrichment of human natural killer cells for the selective clearance of senescent cells. Aging (Albany NY) 2022; 14:2131-2147. [PMID: 35245208 PMCID: PMC8954966 DOI: 10.18632/aging.203931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
In the context of aging and age-associated diseases, Natural Killer (NK) cells have been revealed as a key cell type responsible for the immune clearance of senescent cells. Subsequently, NK cell-based therapies have emerged as promising alternatives to drug-based therapeutic interventions for the prevention and treatment of age-related disease and debility. Given the promise of NK cell-mediated immunotherapies as a safe and effective treatment strategy, we outline an improved method by which primary NK cells can be efficiently enriched from human peripheral blood across multiple donors (ages 20-42 years old), with a practical protocol that reliably enhances both CD56dim and CD56bright NK cells by 15-fold and 3-fold, respectively. Importantly, we show that our co-culture protocol can be used as an easily adaptable tool to assess highly efficient and selective killing of senescent cells by primary NK cells enriched via our method using longer co-culture durations and a low target to effector ratio, which may be more physiological than has been achieved in previous literature.
Collapse
Affiliation(s)
- Kristie Kim
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | | - Alexandra Stolzing
- SENS Research Foundation, Mountain View, CA 94041, USA.,Loughborough University, Centre for Biological Engineering, Wolfson School of Electrical, Material and Manufacturing Engineering, Loughborough, UK
| | - Amit Sharma
- SENS Research Foundation, Mountain View, CA 94041, USA
| |
Collapse
|
377
|
Morsli S, Doherty GJ, Muñoz-Espín D. Activatable senoprobes and senolytics: Novel strategies to detect and target senescent cells. Mech Ageing Dev 2022; 202:111618. [PMID: 34990647 DOI: 10.1016/j.mad.2021.111618] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023]
Abstract
Pharmacologically active compounds that manipulate cellular senescence (senotherapies) have recently shown great promise in multiple pre-clinical disease models, and some of them are now being tested in clinical trials. Despite promising proof-of-principle evidence, there are known on- and off-target toxicities associated with these compounds, and therefore more refined and novel strategies to improve their efficacy and specificity for senescent cells are being developed. Preferential release of drugs and macromolecular formulations within senescent cells has been predominantly achieved by exploiting one of the most widely used biomarkers of senescence, the increase in lysosomal senescence-associated β-galactosidase (SA-β-gal) activity, a common feature of most reported senescent cell types. Galacto-conjugation is a versatile therapeutic and detection strategy to facilitate preferential targeting of senescent cells by using a variety of existing formulations, including modular systems, nanocarriers, activatable prodrugs, probes, and small molecules. We discuss the benefits and drawbacks of these specific senescence targeting tools and how the strategy of galacto-conjugation might be utilised to design more specific and sophisticated next-generation senotherapeutics, as well as theranostic agents. Finally, we discuss some innovative strategies and possible future directions for the field.
Collapse
Affiliation(s)
- Samir Morsli
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Gary J Doherty
- Department of Oncology, Box 193, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
| |
Collapse
|
378
|
Liberale L, Badimon L, Montecucco F, Lüscher TF, Libby P, Camici GG. Inflammation, Aging, and Cardiovascular Disease: JACC Review Topic of the Week. J Am Coll Cardiol 2022; 79:837-847. [PMID: 35210039 PMCID: PMC8881676 DOI: 10.1016/j.jacc.2021.12.017] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023]
Abstract
Aging and inflammation both contribute pivotally to cardiovascular (CV) and cerebrovascular disease, the leading causes of death and disability worldwide. The concept of inflamm-aging recognizes that low-grade inflammatory pathways observed in the elderly contribute to CV risk. Understanding the mechanisms that link inflammation and aging could reveal new therapeutic targets and offer options to cope with the growing aging population worldwide. This review reports recent scientific advances in the pathways through which inflamm-aging mediates age-dependent decline in CV function and disease onset and considers critically the translational potential of such concepts into everyday clinical practice.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy. https://twitter.com/liberale_luca
| | - Lina Badimon
- Cardiovascular Research Program ICCC, IR-IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, CiberCV-Institute Carlos III, Barcelona, Spain. https://twitter.com/lbadimon
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom. https://twitter.com/TomLuscher
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland; Department of Research and Education, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
379
|
Ahmadinejad F, Bos T, Hu B, Britt E, Koblinski J, Souers AJ, Leverson JD, Faber AC, Gewirtz DA, Harada H. Senolytic-Mediated Elimination of Head and Neck Tumor Cells Induced Into Senescence by Cisplatin. Mol Pharmacol 2022; 101:168-180. [PMID: 34907000 PMCID: PMC8969145 DOI: 10.1124/molpharm.121.000354] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023] Open
Abstract
Therapeutic outcomes achieved in head and neck squamous cell carcinoma (HNSCC) patients by concurrent cisplatin-based chemoradiotherapy initially reflect both tumor regression and tumor stasis. However, local and distant metastasis and disease relapse are common in HNSCC patients. In the current work, we demonstrate that cisplatin treatment induces senescence in both p53 wild-type HN30 and p53 mutant HN12 head and neck cancer models. We also show that tumor cells can escape from senescence both in vitro and in vivo. We further establish the effectiveness of the senolytic, ABT-263 (Navitoclax), in elimination of senescent tumor cells after cisplatin treatment. Navitoclax increased apoptosis by 3.3-fold (P ≤ 0.05) at day 7 compared with monotherapy by cisplatin. Additionally, we show that ABT-263 interferes with the interaction between B-cell lymphoma-x large (BCL-XL) and BAX, anti- and pro-apoptotic proteins, respectively, followed by BAX activation, suggesting that ABT-263-induced apoptotic cell death is mediated through BAX. Our in vivo studies also confirm senescence induction in tumor cells by cisplatin, and the promotion of apoptosis coupled with a significant delay of tumor growth after sequential treatment with ABT-263. Sequential treatment with cisplatin followed by ABT-263 extended the humane endpoint to ∼130 days compared with cisplatin alone, where mice survived ∼75 days. These results support the premise that senolytic agents could be used to eliminate residual senescent tumor cells after chemotherapy and thereby potentially delay disease recurrence in head and neck cancer patients. SIGNIFICANCE STATEMENT: Disease recurrence is the most common cause of death in head and neck cancer patients. B-cell lymphoma-x large inhibitors such as ABT-263 (Navitoclax) have the capacity to be used in combination with cisplatin in head and neck cancer patients to eliminate senescent cells and possibly prevent disease relapse.
Collapse
Affiliation(s)
- Fereshteh Ahmadinejad
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Tasia Bos
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Bin Hu
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Erin Britt
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Jennifer Koblinski
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Andrew J Souers
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Joel D Leverson
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Anthony C Faber
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - David A Gewirtz
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Hisashi Harada
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| |
Collapse
|
380
|
Föger-Samwald U, Kerschan-Schindl K, Butylina M, Pietschmann P. Age Related Osteoporosis: Targeting Cellular Senescence. Int J Mol Sci 2022; 23:ijms23052701. [PMID: 35269841 PMCID: PMC8910503 DOI: 10.3390/ijms23052701] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Age-related chronic diseases are an enormous burden to modern societies worldwide. Among these, osteoporosis, a condition that predisposes individuals to an increased risk of fractures, substantially contributes to increased mortality and health-care costs in elderly. It is now well accepted that advanced chronical age is one of the main risk factors for chronical diseases. Hence, targeting fundamental aging mechanisms such as senescence has become a promising option in the treatment of these diseases. Moreover, for osteoporosis, the main pathophysiological concepts arise from menopause causing estrogen deficiency, and from aging. Here, we focus on recent advances in the understanding of senescence-related mechanisms contributing to age-related bone loss. Furthermore, treatment options for senile osteoporosis targeting senescent cells are reviewed.
Collapse
Affiliation(s)
- Ursula Föger-Samwald
- Medical Science and Human Medicine Study Programme, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
- Correspondence:
| | | | - Maria Butylina
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (P.P.)
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (P.P.)
| |
Collapse
|
381
|
Wei X, Li M, Zheng Z, Ma J, Gao Y, Chen L, Peng Y, Yu S, Yang L. Senescence in chronic wounds and potential targeted therapies. BURNS & TRAUMA 2022; 10:tkab045. [PMID: 35187179 PMCID: PMC8853744 DOI: 10.1093/burnst/tkab045] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023]
Abstract
Chronic wounds (e.g. diabetic wounds, pressure wounds, vascular ulcers, etc.) do not usually heal in a timely and orderly manner but rather last for years and may lead to irreversible adverse events, resulting in a substantial financial burden for patients and society. Recently, a large amount of evidence has proven that cellular senescence has a crucial influence on chronic nonhealing wounds. As a defensive mechanism, cell senescence is a manner of cell-cycle arrest with increased secretory phenotype to resist death, preventing cells from stress-induced damage in cancer and noncancer diseases. A growing amount of research has advanced the perception of cell senescence in various chronic wounds and focuses on pathological and physiological processes and therapies targeting senescent cells. However, previous reviews have failed to sum up novel understandings of senescence in chronic wounds and emerging strategies targeting senescence. Herein, we discuss the characteristics and mechanisms of cellular senescence and the link between senescence and chronic wounds as well as some novel antisenescence strategies targeting other diseases that may be applied for chronic wounds.
Collapse
Affiliation(s)
- Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yujie Peng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| |
Collapse
|
382
|
Fayed EA, Gohar NA, Farrag AM, Ammar YA. Upregulation of BAX and caspase-3, as well as downregulation of Bcl-2 during treatment with indeno[1,2-b]quinoxalin derivatives, mediated apoptosis in human cancer cells. Arch Pharm (Weinheim) 2022; 355:e2100454. [PMID: 35174895 DOI: 10.1002/ardp.202100454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 11/06/2022]
Abstract
Cancer is the world's foremost cause of death. There are over 100 different forms of cancer. Cancers are frequently named after the organs or tissues in which they develop. As a part of our aim to develop promising anticancer agents, a series of new indeno[1,2-b]quinoxaline derivatives were synthesized. All of the synthesized compounds were tested for anticancer activity in vitro in three human cancer cell lines: the HCT-116 colon cancer cell line, the HepG-2 liver cancer cell line, and the MCF-7 breast cancer cell line. Among the tested derivatives, 2, 3, 5, 12, 21, and 22 showed exceptional antiproliferative activities against the three tested cell lines compared to the reference standard imatinib. These compounds were, therefore, selected for further investigations. Evaluation of their cytotoxicity against a normal human cell line (WI-38) was performed, to ensure their safety and selectivity (IC50 > 92 μM). Then, induction of apoptosis by the most active compounds was found to be accomplished by downregulation of Bcl-2 and upregulation of BAX and caspase-3. After that, the most promising apoptotic compound that increases the caspase-3 and BAX expression and downregulates Bcl-2 activity (3) was assessed for its impact on the cell cycle distribution in HepG-2 cells: The most potent derivative (3) induced cell cycle arrest at the G2/M phase. Finally, in silico evaluation of the ADME properties indicated that compound 3 is orally bioavailable and can be readily synthesized on a large scale.
Collapse
Affiliation(s)
- Eman A Fayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nirvana A Gohar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, MTI University, Cairo, Egypt
| | - Amel M Farrag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
383
|
Emergent players in renovascular disease. Clin Sci (Lond) 2022; 136:239-256. [PMID: 35129198 DOI: 10.1042/cs20210509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
Renovascular disease (RVD) remains a common etiology of secondary hypertension. Recent clinical trials revealed unsatisfactory therapeutic outcomes of renal revascularization, leading to extensive investigation to unravel key pathophysiological mechanisms underlying irreversible functional loss and structural damage in the chronically ischemic kidney. Research studies identified complex interactions among various players, including inflammation, fibrosis, mitochondrial injury, cellular senescence, and microvascular remodeling. This interplay resulted in a shift of our understanding of RVD from a mere hemodynamic disorder to a pro-inflammatory and pro-fibrotic pathology strongly influenced by systemic diseases like metabolic syndrome (MetS), hypertension, diabetes mellitus, and hyperlipidemia. Novel diagnostic approaches have been tested for early detection and follow-up of RVD progression, using new imaging techniques and biochemical markers of renal injury and dysfunction. Therapies targeting some of the pathological pathways governing the development of RVD have shown promising results in animal models, and a few have moved from bench to clinical research. This review summarizes evolving understanding in chronic ischemic kidney injury.
Collapse
|
384
|
Leung WH, Shih JW, Chen JS, Mokgautsi N, Wei PL, Huang YJ. Preclinical Identification of Sulfasalazine's Therapeutic Potential for Suppressing Colorectal Cancer Stemness and Metastasis through Targeting KRAS/MMP7/CD44 Signaling. Biomedicines 2022; 10:377. [PMID: 35203586 PMCID: PMC8962339 DOI: 10.3390/biomedicines10020377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Approximately 25% of colorectal cancer (CRC) patients will develop metastatic (m)CRC despite treatment interventions. In this setting, tumor cells are attracted to the epidermal growth factor receptor (EGFR) oncogene. Kirsten rat sarcoma (RAS) 2 viral oncogene homolog (KRAS) mutations were reported to drive CRC by promoting cancer progression in activating Wnt/β-catenin and RAS/extracellular signal-regulated kinase (ERK) pathways. In addition, KRAS is associated with almost 40% of patients who acquire resistance to EGFR inhibitors in mCRC. Multiple studies have demonstrated that cancer stem cells (CSCs) promote tumorigenesis, tumor growth, and resistance to therapy. One of the most common CSC prognostic markers widely reported in CRC is a cluster of differentiation 44 (CD44), which regulates matrix metalloproteinases 7/9 (MMP7/9) to promote tumor progression and metastasis; however, the molecular role of CD44 in CRC is still unclear. In invasive CRC, overexpression of MMP7 was reported in tumor cells compared to normal cells and plays a crucial function in CRC cetuximab and oxaliplatin resistance and distant metastasis. Here, we utilized a bioinformatics analysis and identified overexpression of KRAS/MMP7/CD44 oncogenic signatures in CRC tumor tissues compared to normal tissues. In addition, a high incidence of mutations in KRAS and CD44 were associated with some of the top tumorigenic oncogene's overexpression, which ultimately promoted a poor response to chemotherapy and resistance to some FDA-approved drugs. Based on these findings, we explored a computational approach to drug repurposing of the drug, sulfasalazine, and our in silico molecular docking revealed unique interactions of sulfasalazine with the KRAS/MMP7/CD44 oncogenes, resulting in high binding affinities compared to those of standard inhibitors. Our in vitro analysis demonstrated that sulfasalazine combined with cisplatin reduced cell viability, colony, and sphere formation in CRC cell lines. In addition, sulfasalazine alone and combined with cisplatin suppressed the expression of KRAS/MMP7/CD44 in DLD-1 and HCT116 cell lines. Thus, sulfasalazine is worthy of further investigation as an adjuvant agent for improving chemotherapeutic responses in CRC patients.
Collapse
Affiliation(s)
- Wai-Hung Leung
- Division of Colon and Rectal Surgery, Department of Surgery, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei 10449, Taiwan; (W.-H.L.); (J.-S.C.)
| | - Jing-Wen Shih
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (J.-W.S.); (N.M.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Jian-Syun Chen
- Division of Colon and Rectal Surgery, Department of Surgery, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei 10449, Taiwan; (W.-H.L.); (J.-S.C.)
| | - Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (J.-W.S.); (N.M.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yan-Jiun Huang
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
385
|
Raffaele M, Kovacovicova K, Biagini T, Lo Re O, Frohlich J, Giallongo S, Nhan JD, Giannone AG, Cabibi D, Ivanov M, Tonchev AB, Mistrik M, Lacey M, Dzubak P, Gurska S, Hajduch M, Bartek J, Mazza T, Micale V, Curran SP, Vinciguerra M. Nociceptin/orphanin FQ opioid receptor (NOP) selective ligand MCOPPB links anxiolytic and senolytic effects. GeroScience 2022; 44:463-483. [PMID: 34820764 PMCID: PMC8612119 DOI: 10.1007/s11357-021-00487-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Accumulation of senescent cells may drive age-associated alterations and pathologies. Senolytics are promising therapeutics that can preferentially eliminate senescent cells. Here, we performed a high-throughput automatized screening (HTS) of the commercial LOPAC®Pfizer library on aphidicolin-induced senescent human fibroblasts, to identify novel senolytics. We discovered the nociceptin receptor FQ opioid receptor (NOP) selective ligand 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole (MCOPPB, a compound previously studied as potential anxiolytic) as the best scoring hit. The ability of MCOPPB to eliminate senescent cells in in vitro models was further tested in mice and in C. elegans. MCOPPB reduced the senescence cell burden in peripheral tissues but not in the central nervous system. Mice and worms exposed to MCOPPB also exhibited locomotion and lipid storage changes. Mechanistically, MCOPPB treatment activated transcriptional networks involved in the immune responses to external stressors, implicating Toll-like receptors (TLRs). Our study uncovers MCOPPB as a NOP ligand that, apart from anxiolytic effects, also shows tissue-specific senolytic effects.
Collapse
Affiliation(s)
- Marco Raffaele
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Kristina Kovacovicova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Psychogenics Inc, Tarrytown, NY, USA
| | - Tommaso Biagini
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Sebastiano Giallongo
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - James D Nhan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, Arts, and Sciences, Dornsife College of Letters, University of Southern California, Los Angeles, CA, USA
| | - Antonino Giulio Giannone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Pathologic Anatomy Unit-University of Palermo, Palermo, Italy
| | - Daniela Cabibi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Pathologic Anatomy Unit-University of Palermo, Palermo, Italy
| | - Martin Ivanov
- Department of Anatomy and Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Sona Gurska
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiri Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Tommaso Mazza
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, Arts, and Sciences, Dornsife College of Letters, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria.
| |
Collapse
|
386
|
Kolodkin-Gal D, Roitman L, Ovadya Y, Azazmeh N, Assouline B, Schlesinger Y, Kalifa R, Horwitz S, Khalatnik Y, Hochner-Ger A, Imam A, Demma JA, Winter E, Benyamini H, Elgavish S, Khatib AAS, Meir K, Atlan K, Pikarsky E, Parnas O, Dor Y, Zamir G, Ben-Porath I, Krizhanovsky V. Senolytic elimination of Cox2-expressing senescent cells inhibits the growth of premalignant pancreatic lesions. Gut 2022; 71:345-355. [PMID: 33649045 PMCID: PMC8762039 DOI: 10.1136/gutjnl-2020-321112] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Cellular senescence limits tumourigenesis by blocking the proliferation of premalignant cells. Additionally, however, senescent cells can exert paracrine effects influencing tumour growth. Senescent cells are present in premalignant pancreatic intraepithelial neoplasia (PanIN) lesions, yet their effects on the disease are poorly characterised. It is currently unknown whether senolytic drugs, aimed at eliminating senescent cells from lesions, could be beneficial in blocking tumour development. DESIGN To uncover the functions of senescent cells and their potential contribution to early pancreatic tumourigenesis, we isolated and characterised senescent cells from PanINs formed in a Kras-driven mouse model, and tested the consequences of their targeted elimination through senolytic treatment. RESULTS We found that senescent PanIN cells exert a tumour-promoting effect through expression of a proinflammatory signature that includes high Cox2 levels. Senolytic treatment with the Bcl2-family inhibitor ABT-737 eliminated Cox2-expressing senescent cells, and an intermittent short-duration treatment course dramatically reduced PanIN development and progression to pancreatic ductal adenocarcinoma. CONCLUSIONS These findings reveal that senescent PanIN cells support tumour growth and progression, and provide a first indication that elimination of senescent cells may be effective as preventive therapy for the progression of precancerous lesions.
Collapse
Affiliation(s)
- Dror Kolodkin-Gal
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel,Department of Surgery, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Lior Roitman
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yossi Ovadya
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Narmen Azazmeh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Benjamin Assouline
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Yehuda Schlesinger
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Rachel Kalifa
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel,Department of Surgery, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Shaul Horwitz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel,Department of Surgery, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Yonatan Khalatnik
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel,Department of Surgery, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Anna Hochner-Ger
- Department of Developmental Biology and Cancer Research, Institute for Medical Research – Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem, Israel,Department of Surgery, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Ashraf Imam
- Department of Surgery, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | | | - Eitan Winter
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Areej AS Khatib
- Master of Biotechnology Department, Faculty of Science, Bethlehem University, Bethlehem, Palestine
| | - Karen Meir
- Department of Pathology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Karine Atlan
- Department of Pathology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Pathology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Oren Parnas
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Gideon Zamir
- Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
387
|
Dookun E, Passos JF, Arthur HM, Richardson GD. Therapeutic Potential of Senolytics in Cardiovascular Disease. Cardiovasc Drugs Ther 2022; 36:187-196. [PMID: 32979174 PMCID: PMC8770386 DOI: 10.1007/s10557-020-07075-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Ageing is the biggest risk factor for impaired cardiovascular health, with cardiovascular disease being the leading cause of death in 40% of individuals over 65 years old. Ageing is associated with both an increased prevalence of cardiovascular disease including heart failure, coronary artery disease, and myocardial infarction. Furthermore, ageing is associated with a poorer prognosis to these diseases. Genetic models allowing the elimination of senescent cells revealed that an accumulation of senescence contributes to the pathophysiology of cardiovascular ageing and promotes the progression of cardiovascular disease through the expression of a proinflammatory and profibrotic senescence-associated secretory phenotype. These studies have resulted in an effort to identify pharmacological therapeutics that enable the specific elimination of senescent cells through apoptosis induction. These senescent cell apoptosis-inducing compounds are termed senolytics and their potential to ameliorate age-associated cardiovascular disease is the focus of this review.
Collapse
Affiliation(s)
- Emily Dookun
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Helen M Arthur
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Gavin D Richardson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
388
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
389
|
Xing X, Huang H, Gao X, Yang J, Tang Q, Xu X, Wu Y, Li M, Liang C, Tan L, Liao L, Tian W. Local Elimination of Senescent Cells Promotes Bone Defect Repair during Aging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3885-3899. [PMID: 35014784 DOI: 10.1021/acsami.1c22138] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to the declined function of bone marrow mesenchymal stem cells (BMSCs), the repair of bone defects in the elderly is retarded. Elimination of senescent cells emerges as a promising strategy for treating age-related diseases. However, whether the local elimination of senescent BMSCs can promote bone regeneration in the elderly remains elusive. To tackle the above issue, we first screened out the specific senolytics for BMSCs and confirmed their effect of eliminating senescent BMSCs in vitro. Treatment with quercetin, which is determined the best senolytics for senescent BMSCs, efficiently removed senescent cells in the population. Moreover, the self-renewal capacity was restored as well as osteogenic ability of BMSCs after treatment. We then designed a microenvironment-responsive hydrogel based on the MMPs secreted by senescent cells. This quercetin-encapsulated hydrogel exhibited a stable microstructure and responsively released quercetin in the presence of senescence in vitro. In vivo, the quercetin-loaded hydrogel effectively cleared the local senescent cells and reduced the secretion of MMPs in the bone. Due to the removal of local senescent cells, the hydrogel significantly accelerated the repair of bone defects in the femur and skull of old rats. Taken together, our study revealed the role of removing senescent cells in bone regeneration and provided a novel therapeutic approach for bone defects in aged individuals.
Collapse
Affiliation(s)
- Xiaotao Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Haisen Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of stomatology, West China School of Public Health & West China Fourth Hospital, Chengdu, Sichuan 610041, China
| | - Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yutao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lin Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
390
|
Skin senescence: mechanisms and impact on whole-body aging. Trends Mol Med 2022; 28:97-109. [PMID: 35012887 DOI: 10.1016/j.molmed.2021.12.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023]
Abstract
The skin is the largest organ and has a key protective role. Similar to any other tissue, the skin is influenced not only by intrinsic/chronological aging, but also by extrinsic aging, triggered by environmental factors that contribute to accelerating the skin aging process. Aged skin shows structural, cellular, and molecular changes and accumulation of senescent cells. These senescent cells can induce or accelerate the age-related dysfunction of other nearby cells from the skin, or from different origins. However, the extent and underlying mechanisms remain unknown. In this opinion, we discuss the possible relevant role of skin senescence in the induction of aging phenotypes to other organs/tissues, contributing to whole-body aging. Moreover, we suggest that topical administration of senolytics/senotherapeutics could counteract the overall whole-body aging phenotype.
Collapse
|
391
|
Dungan CM, Murach KA, Zdunek CJ, Tang ZJ, Nolt GL, Brightwell CR, Hettinger Z, Englund D, Liu Z, Fry CS, Filareto A, Franti M, Peterson CA. Deletion of SA β-Gal+ cells using senolytics improves muscle regeneration in old mice. Aging Cell 2022; 21:e13528. [PMID: 34904366 PMCID: PMC8761017 DOI: 10.1111/acel.13528] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/05/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022] Open
Abstract
Systemic deletion of senescent cells leads to robust improvements in cognitive, cardiovascular, and whole-body metabolism, but their role in tissue reparative processes is incompletely understood. We hypothesized that senolytic drugs would enhance regeneration in aged skeletal muscle. Young (3 months) and old (20 months) male C57Bl/6J mice were administered the senolytics dasatinib (5 mg/kg) and quercetin (50 mg/kg) or vehicle bi-weekly for 4 months. Tibialis anterior (TA) was then injected with 1.2% BaCl2 or PBS 7- or 28 days prior to euthanization. Senescence-associated β-Galactosidase positive (SA β-Gal+) cell abundance was low in muscle from both young and old mice and increased similarly 7 days following injury in both age groups, with no effect of D+Q. Most SA β-Gal+ cells were also CD11b+ in young and old mice 7- and 14 days following injury, suggesting they are infiltrating immune cells. By 14 days, SA β-Gal+/CD11b+ cells from old mice expressed senescence genes, whereas those from young mice expressed higher levels of genes characteristic of anti-inflammatory macrophages. SA β-Gal+ cells remained elevated in old compared to young mice 28 days following injury, which were reduced by D+Q only in the old mice. In D+Q-treated old mice, muscle regenerated following injury to a greater extent compared to vehicle-treated old mice, having larger fiber cross-sectional area after 28 days. Conversely, D+Q blunted regeneration in young mice. In vitro experiments suggested D+Q directly improve myogenic progenitor cell proliferation. Enhanced physical function and improved muscle regeneration demonstrate that senolytics have beneficial effects only in old mice.
Collapse
Affiliation(s)
- Cory M. Dungan
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Kevin A. Murach
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Present address:
Department of Health, Human Performance, and Recreation, and Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | | | - Zuo Jian Tang
- Computational BiologyGCBDSBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Georgia L. Nolt
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Camille R. Brightwell
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Athletic Training and Clinical NutritionCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Zachary Hettinger
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Davis A. Englund
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Zheng Liu
- Computational BiologyGCBDSBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Christopher S. Fry
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Athletic Training and Clinical NutritionCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Antonio Filareto
- Regenerative MedicineBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Michael Franti
- Regenerative MedicineBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Charlotte A. Peterson
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
392
|
Fatt MP, Tran LM, Vetere G, Storer MA, Simonetta JV, Miller FD, Frankland PW, Kaplan DR. Restoration of hippocampal neural precursor function by ablation of senescent cells in the aging stem cell niche. Stem Cell Reports 2022; 17:259-275. [PMID: 35063124 PMCID: PMC8828532 DOI: 10.1016/j.stemcr.2021.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 10/31/2022] Open
Abstract
Senescent cells are responsible, in part, for tissue decline during aging. Here, we focused on CNS neural precursor cells (NPCs) to ask if this is because senescent cells in stem cell niches impair precursor-mediated tissue maintenance. We demonstrate an aging-dependent accumulation of senescent cells, largely senescent NPCs, within the hippocampal stem cell niche coincident with declining adult neurogenesis. Pharmacological ablation of senescent cells via acute systemic administration of the senolytic drug ABT-263 (Navitoclax) caused a rapid increase in NPC proliferation and neurogenesis. Genetic ablation of senescent cells similarly activated hippocampal NPCs. This acute burst of neurogenesis had long-term effects in middle-aged mice. One month post-ABT-263, adult-born hippocampal neuron numbers increased and hippocampus-dependent spatial memory was enhanced. These data support a model where senescent niche cells negatively influence neighboring non-senescent NPCs during aging, and ablation of these senescent cells partially restores neurogenesis and hippocampus-dependent cognition. Senescent neural precursor cells accumulate in the hippocampus with age Senescent precursor accumulation is coincident with declining adult neurogenesis Ablating senescent precursors increases precursor proliferation and neurogenesis Ablating senescent precursors improves hippocampus-dependent spatial memory
Collapse
|
393
|
Gonzales MM, Garbarino VR, Marques Zilli E, Petersen RC, Kirkland JL, Tchkonia T, Musi N, Seshadri S, Craft S, Orr ME. Senolytic Therapy to Modulate the Progression of Alzheimer's Disease (SToMP-AD): A Pilot Clinical Trial. J Prev Alzheimers Dis 2022; 9:22-29. [PMID: 35098970 PMCID: PMC8612719 DOI: 10.14283/jpad.2021.62] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Preclinical studies indicate an age-associated accumulation of senescent cells across multiple organ systems. Emerging evidence suggests that tau protein accumulation, which closely correlates with cognitive decline in Alzheimer's disease and other tauopathies, drives cellular senescence in the brain. Pharmacologically clearing senescent cells in mouse models of tauopathy reduced brain pathogenesis. Compared to vehicle treated mice, intermittent senolytic administration reduced tau accumulation and neuroinflammation, preserved neuronal and synaptic density, restored aberrant cerebral blood flow, and reduced ventricular enlargement. Intermittent dosing of the senolytics, dasatinib plus quercetin, has shown an acceptable safety profile in clinical studies for other senescence-associated conditions. With these data, we proposed and herein describe the objectives and methods for a clinical vanguard study. This initial open-label clinical trial pilots an intermittent senolytic combination therapy of dasatinib plus quercetin in five older adults with early-stage Alzheimer's disease. The primary objective is to evaluate the central nervous system penetration of dasatinib and quercetin through analysis of cerebrospinal fluid collected at baseline and after 12 weeks of treatment. Further, through a series of secondary outcome measures to assess target engagement of the senolytic compounds and Alzheimer's disease-relevant cognitive, functional, and physical outcomes, we will collect preliminary data on safety, feasibility, and efficacy. The results of this study will be used to inform the development of a randomized, double-blind, placebo-controlled multicenter phase II trial to further explore of the safety, feasibility, and efficacy of senolytics for modulating the progression of Alzheimer's disease. Clinicaltrials.gov registration number and date: NCT04063124 (08/21/2019).
Collapse
Affiliation(s)
- Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - V. R. Garbarino
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - E. Marques Zilli
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | | | - J. L. Kirkland
- Mayo Clinic, Robert and Arlene Kogod Center on Aging, Rochester, MN USA
| | - T. Tchkonia
- Mayo Clinic, Robert and Arlene Kogod Center on Aging, Rochester, MN USA
| | - N. Musi
- University of Texas Health Science Center at San Antonio, Barshop Institute for Longevity and Aging Studies, San Antonio Geriatric Research, Education and Clinical Center (GRECC), Department of Medicine, San Antonio, TX USA
| | - S. Seshadri
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
- Boston University School of Medicine, Department of Neurology, Boston, MA USA
| | - S. Craft
- Wake Forest School of Medicine, Gerontology and Geriatric Medicine, 575 Patterson Avenue, Winston-Salem, NC 27101 USA
| | - Miranda E. Orr
- Wake Forest School of Medicine, Gerontology and Geriatric Medicine, 575 Patterson Avenue, Winston-Salem, NC 27101 USA
| |
Collapse
|
394
|
Nayeri Rad A, Shams G, Avelar RA, Morowvat MH, Ghasemi Y. Potential senotherapeutic candidates and their combinations derived from transcriptional connectivity and network measures. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
395
|
Cai Y, Wang S, Qu J, Belmonte JCI, Liu GH. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:231-238. [PMID: 35303745 PMCID: PMC8968747 DOI: 10.1093/stcltm/szab012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/17/2021] [Indexed: 11/14/2022] Open
Abstract
Stem cell therapies, including stem cell transplantation and rejuvenation of stem cells in situ, are promising avenues for tackling a broad range of diseases. Stem cells can both self-renew and differentiate into other cell types, and play a significant role in the regulation of tissue homeostasis and regeneration after cell degeneration or injury. However, stem cell exhaustion or dysfunction increases with age and impedes the normal function of multiple tissues and systems. Thus, stem cell therapies could provide a solution to aging and age-associated diseases. Here, we discuss recent advances in understanding the mechanisms that regulate stem cell regeneration. We also summarize potential strategies for rejuvenating stem cells that leverage intrinsic and extrinsic factors. These approaches may pave the way toward therapeutic interventions aiming at extending both health and life span.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People’s Republic of China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, People’s Republic of China
- Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People’s Republic of China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Corresponding author: Jing Qu, PhD, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, People’s Republic of China. Tel: +86-10-64807768;
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Juan Carlos Izpisúa-Belmonte, PhD, Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, USA. Tel: (858) 453-4100 x1130;
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, People’s Republic of China
- Guanghui Liu, PhD, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 3A Datun Road, Chaoyang District, Beijing 100101, People’s Republic of China. Tel: +86-10-64807852;
| |
Collapse
|
396
|
Yue Y, Lin X, Qiu X, Yang L, Wang R. The Molecular Roles and Clinical Implications of Non-Coding RNAs in Gastric Cancer. Front Cell Dev Biol 2021; 9:802745. [PMID: 34966746 PMCID: PMC8711095 DOI: 10.3389/fcell.2021.802745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. It is also the fifth most common cancer in China. In recent years, a large number of studies have proved that non-coding RNAs (ncRNAs) can regulate cell proliferation, invasion, metastasis, apoptosis, and angiogenesis. NcRNAs also influence the therapeutic resistance of gastric cancer. NcRNAs mainly consist of miRNAs, lncRNAs and circRNAs. In this paper, we summarized ncRNAs as biomarkers and therapeutic targets for gastric cancer, and also reviewed their role in clinical trials and diagnosis. We sum up different ncRNAs and related moleculars and signaling pathway in gastric cancer, like Bcl-2, PTEN, Wnt signaling. In addition, the potential clinical application of ncRNAs in overcoming chemotherapy and radiotherapy resistance in GC in the future were also focused on.
Collapse
Affiliation(s)
- Yanping Yue
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyue Qiu
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Lei Yang
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
397
|
PARP Inhibitors and Myeloid Neoplasms: A Double-Edged Sword. Cancers (Basel) 2021; 13:cancers13246385. [PMID: 34945003 PMCID: PMC8699275 DOI: 10.3390/cancers13246385] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Poly(ADP-ribose) polymerase (PARP) inhibitors, which are medications approved to treat various solid tumors, including breast, prostate, ovarian, and prostate cancers, are being examined in hematological malignancies. This review summarizes the potential role of PARP inhibitors in the treatment of myeloid diseases, particularly acute myeloid leukemia (AML). We review ongoing clinical studies investigating the safety and efficacy of PARP inhibitors in the treatment of AML, focusing on specific molecular and genetic AML subgroups that could be particularly sensitive to PARP inhibitor treatment. We also discuss reports describing an increased risk of treatment-related myeloid neoplasms in patients receiving PARP inhibitors for solid tumors. Abstract Despite recent discoveries and therapeutic advances in aggressive myeloid neoplasms, there remains a pressing need for improved therapies. For instance, in acute myeloid leukemia (AML), while most patients achieve a complete remission with conventional chemotherapy or the combination of a hypomethylating agent and venetoclax, de novo or acquired drug resistance often presents an insurmountable challenge, especially in older patients. Poly(ADP-ribose) polymerase (PARP) enzymes, PARP1 and PARP2, are involved in detecting DNA damage and repairing it through multiple pathways, including base excision repair, single-strand break repair, and double-strand break repair. In the context of AML, PARP inhibitors (PARPi) could potentially exploit the frequently dysfunctional DNA repair pathways that, similar to deficiencies in homologous recombination in BRCA-mutant disease, set the stage for cell killing. PARPi appear to be especially effective in AML with certain gene rearrangements and molecular characteristics (RUNX1-RUNX1T1 and PML-RARA fusions, FLT3- and IDH1-mutated). In addition, PARPi can enhance the efficacy of other agents, particularly alkylating agents, TOP1 poisons, and hypomethylating agents, that induce lesions ordinarily repaired via PARP1-dependent mechanisms. Conversely, emerging reports suggest that long-term treatment with PARPi for solid tumors is associated with an increased incidence of myelodysplastic syndrome (MDS) and AML. Here, we (i) review the pre-clinical and clinical data on the role of PARPi, specifically olaparib, talazoparib, and veliparib, in aggressive myeloid neoplasms and (ii) discuss the reported risk of MDS/AML with PARPi, especially as the indications for PARPi use expand to include patients with potentially curable cancer.
Collapse
|
398
|
Woo J, Shin S, Cho E, Ryu D, Garandeau D, Chajra H, Fréchet M, Park D, Jung E. Senotherapeutic-like effect of Silybum marianum flower extract revealed on human skin cells. PLoS One 2021; 16:e0260545. [PMID: 34914725 PMCID: PMC8675675 DOI: 10.1371/journal.pone.0260545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence causes irreversible growth arrest of cells. Prolonged accumulation of senescent cells in tissues leads to increased detrimental effects due to senescence associated secretory phenotype (SASP). Recent findings suggest that elimination of senescent cells has a beneficial effect on organismal aging and lifespan. In this study, using a validated replicative senescent human dermal fibroblasts (HDFs) model, we showed that elimination of senescent cells is possible through the activation of an apoptotic mechanism. We have shown in this replicative senescence model, that cell senescence is associated with DNA damage and cell cycle arrest (p21, p53 markers). We have shown that Silybum marianum flower extract (SMFE) is a safe and selective senolytic agent targeting only senescent cells. The elimination of the cells is induced through the activation of apoptotic pathway confirmed by annexin V/propidium iodide and caspase-3/PARP staining. Moreover, SMFE suppresses the expression of SASP factors such as IL-6 and MMP-1 in senescent HDFs. In a co-culture model of senescent and young fibroblasts, we demonstrated that senescent cells impaired the proliferative capacities of young cells. Interestingly, when the co-culture is treated with SMFE, the cell proliferation rate of young cells is increased due to the decrease of the senescent burden. Moreover, we demonstrated in vitro that senescent fibroblasts trigger senescent process in normal keratinocytes through a paracrine effect. Indeed, the conditioned medium of senescent HDFs treated with SMFE reduced the level of senescence-associated beta-galactosidase (SA-β-Gal), p16INK4A and SASP factors in keratinocytes compared with CM of senescent HDFs. These results indicate that SMFE can prevent premature aging due to senescence and even reprograms aged skin. Indeed, thanks to its senolytic and senomorphic properties SMFE is a candidate for anti-senescence strategies.
Collapse
Affiliation(s)
- Jieun Woo
- BioSpectrum Life Science Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seoungwoo Shin
- BioSpectrum Life Science Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Eunae Cho
- BioSpectrum Life Science Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dehun Ryu
- BioSpectrum Life Science Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | | | | | | | - Deokhoon Park
- BioSpectrum Life Science Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Eunsun Jung
- BioSpectrum Life Science Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
399
|
Mehta PH, Fiorenza S, Koldej RM, Jaworowski A, Ritchie DS, Quinn KM. T Cell Fitness and Autologous CAR T Cell Therapy in Haematologic Malignancy. Front Immunol 2021; 12:780442. [PMID: 34899742 PMCID: PMC8658247 DOI: 10.3389/fimmu.2021.780442] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
A range of emerging therapeutic approaches for the treatment of cancer aim to induce or augment endogenous T cell responses. Chimeric antigen receptor (CAR) T cell therapy (CTT) is one such approach that utilises the patient’s own T cells, engineered ex vivo to target cell surface antigens, to eliminate haematological malignancies. Despite mediating high rates of responses in some clinical trials, this approach can be limited by dysfunctional T cells if they are present at high frequencies either in the starting material from the patient or the CAR T cell product. The fitness of an individual’s T cells, driven by age, chronic infection, disease burden and cancer treatment, is therefore likely to be a crucial limiting factor of CTT. Currently, T cell dysfunction and its impact on CTT is not specifically quantified when patients are considering the therapy. Here, we review our current understanding of T cell fitness for CTT, how fitness may be impacted by age, chronic infection, malignancy, and treatment. Finally, we explore options to specifically tailor clinical decision-making and the CTT protocol for patients with more extensive dysfunction to improve treatment efficacy. A greater understanding of T cell fitness throughout a patient’s treatment course could ultimately be used to identify patients likely to achieve favourable CTT outcomes and improve methods for T cell collection and CTT delivery.
Collapse
Affiliation(s)
- Palak H Mehta
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Salvatore Fiorenza
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Rachel M Koldej
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - David S Ritchie
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia.,Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
400
|
Effects and Related Mechanisms of the Senolytic Agent ABT-263 on the Survival of Irradiated A549 and Ca9-22 Cancer Cells. Int J Mol Sci 2021; 22:ijms222413233. [PMID: 34948029 PMCID: PMC8704639 DOI: 10.3390/ijms222413233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Senolytic agents eliminate senescent cells and are expected to reduce senescent cell-mediated adverse effects in cancer therapy. However, the effects of senolytic agents on the survival of irradiated cancer cells remain unknown. Here, the effects of the senolytic agent ABT-263 on the survival of irradiated A549 and Ca9-22 cancer cells were investigated. ABT-263 was added to the culture medium after irradiation. SA-β-gal activity and cell size, which are hallmarks of cell senescence, were evaluated using a flow cytometer. The colony-forming assay and annexin V staining were performed to test cell survival. We first confirmed that radiation increased the proportion of cells with high SA-β-gal activity and that ABT-263 decreased it. Of note, ABT-263 decreased the survival of irradiated cancer cells and increased the proportion of radiation-induced annexin V+ cells. Furthermore, the caspase inhibitor suppressed the ABT-263-induced decrease in the survival of irradiated cells. Intriguingly, ABT-263 decreased the proportion of SA-β-gal low-activity/large cells in the irradiated A549 cells, which was recovered by the caspase inhibitor. Together, these findings suggest that populations maintaining the ability to proliferate existed among the irradiated cancer cells showing senescence-related features and that ABT-263 eliminated the population, which led to decreased survival of irradiated cancer cells.
Collapse
|