351
|
Rogers A, Serbin SP, Ely KS, Wullschleger SD. Terrestrial biosphere models may overestimate Arctic CO 2 assimilation if they do not account for decreased quantum yield and convexity at low temperature. THE NEW PHYTOLOGIST 2019; 223:167-179. [PMID: 30767227 DOI: 10.1111/nph.15750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
How terrestrial biosphere models (TBMs) represent leaf photosynthesis and its sensitivity to temperature are two critical components of understanding and predicting the response of the Arctic carbon cycle to global change. We measured the effect of temperature on the response of photosynthesis to irradiance in six Arctic plant species and determined the quantum yield of CO2 fixation ( ϕCO2 ) and the convexity factor (θ). We also determined leaf absorptance (α) from measured reflectance to calculate ϕCO2 on an absorbed light basis ( ϕCO2.a ) and enabled comparison with nine TBMs. The mean ϕCO2.a was 0.045 mol CO2 mol-1 absorbed quanta at 25°C and closely agreed with the mean TBM parameterisation (0.044), but as temperature decreased measured ϕCO2.a diverged from TBMs. At 5°C measured ϕCO2.a was markedly reduced (0.025) and 60% lower than TBM estimates. The θ also showed a significant reduction between 25°C and 5°C. At 5°C θ was 38% lower than the common model parameterisation of 0.7. These data show that TBMs are not accounting for observed reductions in ϕCO2.a and θ that can occur at low temperature. Ignoring these reductions in ϕCO2.a and θ could lead to a marked (45%) overestimation of CO2 assimilation at subsaturating irradiance and low temperature.
Collapse
Affiliation(s)
- Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Shawn P Serbin
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Kim S Ely
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Stan D Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA
| |
Collapse
|
352
|
Turner MG, Braziunas KH, Hansen WD, Harvey BJ. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc Natl Acad Sci U S A 2019; 116:11319-11328. [PMID: 31110003 PMCID: PMC6561258 DOI: 10.1073/pnas.1902841116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Subalpine forests in the northern Rocky Mountains have been resilient to stand-replacing fires that historically burned at 100- to 300-year intervals. Fire intervals are projected to decline drastically as climate warms, and forests that reburn before recovering from previous fire may lose their ability to rebound. We studied recent fires in Greater Yellowstone (Wyoming, United States) and asked whether short-interval (<30 years) stand-replacing fires can erode lodgepole pine (Pinus contorta var. latifolia) forest resilience via increased burn severity, reduced early postfire tree regeneration, reduced carbon stocks, and slower carbon recovery. During 2016, fires reburned young lodgepole pine forests that regenerated after wildfires in 1988 and 2000. During 2017, we sampled 0.25-ha plots in stand-replacing reburns (n = 18) and nearby young forests that did not reburn (n = 9). We also simulated stand development with and without reburns to assess carbon recovery trajectories. Nearly all prefire biomass was combusted ("crown fire plus") in some reburns in which prefire trees were dense and small (≤4-cm basal diameter). Postfire tree seedling density was reduced sixfold relative to the previous (long-interval) fire, and high-density stands (>40,000 stems ha-1) were converted to sparse stands (<1,000 stems ha-1). In reburns, coarse wood biomass and aboveground carbon stocks were reduced by 65 and 62%, respectively, relative to areas that did not reburn. Increased carbon loss plus sparse tree regeneration delayed simulated carbon recovery by >150 years. Forests did not transition to nonforest, but extreme burn severity and reduced tree recovery foreshadow an erosion of forest resilience.
Collapse
Affiliation(s)
- Monica G Turner
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706;
| | - Kristin H Braziunas
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Brian J Harvey
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195
| |
Collapse
|
353
|
Vico G, Way DA, Hurry V, Manzoni S. Can leaf net photosynthesis acclimate to rising and more variable temperatures? PLANT, CELL & ENVIRONMENT 2019; 42:1913-1928. [PMID: 30706948 DOI: 10.1111/pce.13525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Under future climates, leaf temperature (Tl ) will be higher and more variable. This will affect plant carbon (C) balance because photosynthesis and respiration both respond to short-term (subdaily) fluctuations in Tl and acclimate in the longer term (days to months). This study asks the question: To what extent can the potential and speed of photosynthetic acclimation buffer leaf C gain from rising and increasing variable Tl ? We quantified how increases in the mean and variability of growth temperature affect leaf performance (mean net CO2 assimilation rates, Anet ; its variability; and time under near-optimal photosynthetic conditions), as mediated by thermal acclimation. To this aim, the probability distribution of Anet was obtained by combining a probabilistic description of short- and long-term changes in Tl with data on Anet responses to these changes, encompassing 75 genera and 111 species, including both C3 and C4 species. Our results show that (a) expected increases in Tl variability will decrease mean Anet and increase its variability, whereas the effects of higher mean Tl depend on species and initial Tl , and (b) acclimation reduces the effects of leaf warming, maintaining Anet at >80% of its maximum under most thermal regimes.
Collapse
Affiliation(s)
- Giulia Vico
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, 750 07, Sweden
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, N6A 5B7, Ontario, Canada
- Nicholas School of the Environment, Duke University, Durham, 27708, North Carolina, USA
| | - Vaughan Hurry
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Stefano Manzoni
- Department of Physical Geography, Stockholm University, Stockholm, 106 91, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, 106 91, Sweden
| |
Collapse
|
354
|
Yin X, Chávez León MASC, Osae R, Linus LO, Qi LW, Alolga RN. Xylopia aethiopica Seeds from Two Countries in West Africa Exhibit Differences in Their Proteomes, Mineral Content and Bioactive Phytochemical Composition. Molecules 2019; 24:molecules24101979. [PMID: 31126018 PMCID: PMC6572195 DOI: 10.3390/molecules24101979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
Aside from its multiple medicinal uses, the fruit of Xylopia aethiopica is widely used in Africa as food. Herein, we characterize the protein profiles, mineral content and bioactive phytochemical composition of the seeds of this plant sourced in Ghana and Nigeria. Using label-free proteomics, a total of 677 proteins were identified, with 260 found in the Ghana-sourced samples while 608 proteins were detected in the samples from Nigeria. However, 114 proteins were common between the samples from the two countries, among which 48 were significantly changed. Bioinformatics and functional analyses revealed that the differential levels of the proteins were mainly linked to pathways involved amino acids metabolism and biosynthesis. The significantly changed proteins related mainly to catalytic activity and carbon metabolism. The samples from Nigeria also exhibited superior qualities in terms of their antioxidant effects, and total phenolic and flavonoid content. Finally, only the content of Na varied to a statistically significant level. This study lends support to its culinary use and hints towards the impact of location of cultivation on the quality of the seeds. There is however need for further mechanistic investigations to unravel the underlying reasons for the observed differences.
Collapse
Affiliation(s)
- Xiaojian Yin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China.
| | - María A S C Chávez León
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| | - Richard Osae
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Loveth O Linus
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
355
|
Drake JE, Furze ME, Tjoelker MG, Carrillo Y, Barton CVM, Pendall E. Climate warming and tree carbon use efficiency in a whole-tree 13 CO 2 tracer study. THE NEW PHYTOLOGIST 2019; 222:1313-1324. [PMID: 30840319 DOI: 10.1111/nph.15721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Autotrophic respiration is a major driver of the global C cycle and may contribute a positive climate warming feedback through increased atmospheric concentrations of CO2 . The extent of this feedback depends on plants' ability to acclimate respiration to maintain a constant carbon use efficiency (CUE). We quantified respiratory partitioning of gross primary production (GPP) and CUE of field-grown trees in a long-term warming experiment (+3°C). We delivered a 13 C-CO2 pulse to whole tree crowns and chased that pulse in the respiration of leaves, whole crowns, roots, and soil. We also measured the isotopic composition of soil microbial biomass and the respiration rates of leaves and whole crowns. We documented homeostatic respiratory acclimation of foliar and whole-crown respiration rates; the trees adjusted to experimental warming such that leaf-level respiration rates were not increased. Experimental warming had no detectable impact on respiratory partitioning or mean residence times. Of the 13 C label acquired by the trees, aboveground respiration consumed 10%, belowground respiration consumed 40%, and the remaining 50% was retained. Experimental warming of +3°C did not alter respiratory partitioning at the scale of entire trees, suggesting that complete acclimation of respiration to warming is likely to dampen a positive climate warming feedback.
Collapse
Affiliation(s)
- John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Department of Forest and Natural Resources Management, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Morgan E Furze
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Yolima Carrillo
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Craig V M Barton
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
356
|
O'Leary BM, Asao S, Millar AH, Atkin OK. Core principles which explain variation in respiration across biological scales. THE NEW PHYTOLOGIST 2019; 222:670-686. [PMID: 30394553 DOI: 10.1111/nph.15576] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/18/2018] [Indexed: 05/02/2023]
Abstract
Contents Summary 670 I. Introduction 671 II. Principle 1 - Plant respiration performs three distinct functions 673 III. Principle 2 - Metabolic pathway flexibility underlies plant respiratory performance 676 IV. Principle 3 - Supply and demand interact over time to set plant respiration rate 677 V. Principle 4 - Plant respiratory acclimation involves adjustments in enzyme capacities 679 VI. Principle 5 - Respiration is a complex trait that helps to define, and is impacted by, plant lifestyle strategies 680 VII. Future directions 680 Acknowledgements 682 References 682 SUMMARY: Respiration is a core biological process that has important implications for the biochemistry, physiology, and ecology of plants. The study of plant respiration is thus conducted from several different perspectives by a range of scientific disciplines with dissimilar objectives, such as metabolic engineering, crop breeding, and climate-change modelling. One aspect in common among the different objectives is a need to understand and quantify the variation in respiration across scales of biological organization. The central tenet of this review is that different perspectives on respiration can complement each other when connected. To better accommodate interdisciplinary thinking, we identify distinct mechanisms which encompass the variation in respiratory rates and functions across biological scales. The relevance of these mechanisms towards variation in plant respiration are explained in the context of five core principles: (1) respiration performs three distinct functions; (2) metabolic pathway flexibility underlies respiratory performance; (3) supply and demand interact over time to set respiration rates; (4) acclimation involves adjustments in enzyme capacities; and (5) respiration is a complex trait that helps to define, and is impacted by, plant lifestyle strategies. We argue that each perspective on respiration rests on these principles to varying degrees and that broader appreciation of how respiratory variation occurs can unite research across scales.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Shinichi Asao
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Owen K Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
357
|
Jensen AM, Warren JM, King AW, Ricciuto DM, Hanson PJ, Wullschleger SD. Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology†. TREE PHYSIOLOGY 2019; 39:556-572. [PMID: 30668859 DOI: 10.1093/treephys/tpy140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/11/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
We quantified seasonal CO2 assimilation capacities for seven dominant vascular species in a wet boreal forest peatland then applied data to a land surface model parametrized to the site (ELM-SPRUCE) to test if seasonality in photosynthetic parameters results in differences in simulated plant responses to elevated CO2 and temperature. We collected seasonal leaf-level gas exchange, nutrient content and stand allometric data from the field-layer community (i.e., Maianthemum trifolium (L.) Sloboda), understory shrubs (Rhododendron groenlandicum (Oeder) Kron and Judd, Chamaedaphne calyculata (L.) Moench., Kalmia polifolia Wangenh. and Vaccinium angustifolium Alton.) and overstory trees (Picea mariana (Mill.) B.S.P. and Larix laricina (Du Roi) K. Koch). We found significant interspecific seasonal differences in specific leaf area, nitrogen content (by area; Na) and photosynthetic parameters (i.e., maximum rates of Rubisco carboxylation (Vcmax25°C), electron transport (Jmax25°C) and dark respiration (Rd25°C)), but minimal correlation between foliar Na and Vcmax25°C, Jmax25°C or Rd25°C, which illustrates that nitrogen alone is not a good correlate for physiological processes such as Rubisco activity that can change seasonally in this system. ELM-SPRUCE was sensitive to the introduction of observed interspecific seasonality in Vcmax25°C, Jmax25°C and Rd25°C, leading to simulated enhancement of net primary production (NPP) using seasonally dynamic parameters as compared with use of static parameters. This pattern was particularly pronounced under simulations with higher temperature and elevated CO2, suggesting a key hypothesis to address with future empirical or observational studies as climate changes. Inclusion of species-specific seasonal photosynthetic parameters should improve estimates of boreal ecosystem-level NPP, especially if impacts of seasonal physiological ontogeny can be separated from seasonal thermal acclimation.
Collapse
Affiliation(s)
- Anna M Jensen
- Climate Change Science Institute & Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jeffrey M Warren
- Climate Change Science Institute & Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Anthony W King
- Climate Change Science Institute & Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daniel M Ricciuto
- Climate Change Science Institute & Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Paul J Hanson
- Climate Change Science Institute & Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Stan D Wullschleger
- Climate Change Science Institute & Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
358
|
Zhao X, Li WF, Wang Y, Ma ZH, Yang SJ, Zhou Q, Mao J, Chen BH. Elevated CO 2 concentration promotes photosynthesis of grape (Vitis vinifera L. cv. 'Pinot noir') plantlet in vitro by regulating RbcS and Rca revealed by proteomic and transcriptomic profiles. BMC PLANT BIOLOGY 2019; 19:42. [PMID: 30696402 PMCID: PMC6352424 DOI: 10.1186/s12870-019-1644-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/10/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant photosynthesis can be improved by elevated CO2 concentration (eCO2). In vitro growth under CO2 enriched environment can lead to greater biomass accumulation than the conventional in micropropagation. However, little is know about how eCO2 promotes transformation of grape plantlets in vitro from heterotrophic to autotrophic. In addition, how photosynthesis-related genes and their proteins are expressed under eCO2 and the mechanisms of how eCO2 regulates RbcS, Rca and their proteins have not been reported. RESULTS Grape (Vitis vinifera L. cv. 'Pinot Noir') plantlets in vitro were cultured with 2% sucrose designated as control (CK), with eCO2 (1000 μmol·mol- 1) as C0, with both 2% sucrose and eCO2 as Cs. Here, transcriptomic and proteomic profiles associated with photosynthesis and growth in leaves of V. vinifera at different CO2 concentration were analyzed. A total of 1814 genes (465 up-regulated and 1349 down-regulated) and 172 proteins (80 up-regulated and 97 down-regulated) were significantly differentially expressed in eCO2 compared to CK. Photosynthesis-antenna, photosynthesis and metabolism pathways were enriched based on GO and KEGG. Simultaneously, 9, 6 and 48 proteins were involved in the three pathways, respectively. The leaf area, plantlet height, qP, ΦPSII and ETR increased under eCO2, whereas Fv/Fm and NPQ decreased. Changes of these physiological indexes are related to the function of DEPs. After combined analysis of proteomic and transcriptomic, the results make clear that eCO2 have different effects on gene transcription and translation. RbcS was not correlated with its mRNA level, suggesting that the change in the amount of RbcS is regulated at their transcript levels by eCO2. However, Rca was negatively correlated with its mRNA level, it is suggested that the change in the amount of its corresponding protein is regulated at their translation levels by eCO2. CONCLUSIONS Transcriptomic, proteomic and physiological analysis were used to evaluate eCO2 effects on photosynthesis. The eCO2 triggered the RbcS and Rca up-regulated, thus promoting photosynthesis and then advancing transformation of grape plantlets from heterotrophic to autotrophic. This research will helpful to understand the influence of eCO2 on plant growth and promote reveal the mechanism of plant transformation from heterotrophic to autotrophic.
Collapse
Affiliation(s)
- Xin Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Wen-Fang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Ying Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Zong-Huan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Shi-Jin Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Qi Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
359
|
Fernandez CW, Heckman K, Kolka R, Kennedy PG. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecol Lett 2019; 22:498-505. [DOI: 10.1111/ele.13209] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/24/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Randall Kolka
- USDA Forest Service Northern Research Station, Grand Rapids, MN USA
| | - Peter G. Kennedy
- Department of Plant & Microbial Biology University of Minnesota St. Paul MN USA
- Department of Ecology, Evolution, and Behavior St. Paul MN USA
| |
Collapse
|