351
|
Giacomelli E, Mummery CL, Bellin M. Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 2017; 74:3711-3739. [PMID: 28573431 PMCID: PMC5597692 DOI: 10.1007/s00018-017-2546-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current literature clearly shows that hPSC-CMs recapitulate many molecular, cellular, and functional aspects of human heart pathophysiology and their responses to cardioactive drugs. Here, we provide a comprehensive overview of hPSC-CMs models that have been described to date and highlight their most recent and remarkable contributions to research on cardiovascular diseases and disorders with cardiac traits. We conclude discussing immediate challenges, limitations, and emerging solutions.
Collapse
Affiliation(s)
- E Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - C L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Building Zuidhorst, 7500 AE, Enschede, The Netherlands
| | - M Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
352
|
Moreau A, Boutjdir M, Chahine M. Induced pluripotent stem-cell-derived cardiomyocytes: cardiac applications, opportunities, and challenges. Can J Physiol Pharmacol 2017; 95:1108-1116. [DOI: 10.1139/cjpp-2016-0726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Chronic diseases are the primary cause of mortality worldwide, accounting for 67% of deaths. One of the major challenges in developing new treatments is the lack of understanding of the exact underlying biological and molecular mechanisms. Chronic cardiovascular diseases are the single most common cause of death worldwide, and sudden deaths due to cardiac arrhythmias account for approximately 50% of all such cases. Traditional genetic screening for genes involved in cardiac disorders is labourious and frequently fails to detect the mutation that explains or causes the disorder. However, when mutations are identified, human induced pluripotent stem cells (hiPSCs) derived from affected patients make it possible to address fundamental research questions directly relevant to human health. As such, hiPSC technology has recently been used to model human diseases and patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) thus offer a unique opportunity to investigate potential disease-causing genetic variants in their natural environment. The purpose of this review is to present the current state of knowledge regarding hiPSC-CMs, including their potential, limitations, and challenges and to discuss future prospects.
Collapse
Affiliation(s)
- Adrien Moreau
- Centre de recherche de l’Institut universitaire en santé mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare, Brooklyn, New York, USA
| | - Mohamed Chahine
- Centre de recherche de l’Institut universitaire en santé mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Université Laval, Quebec City, QC G1K 7P4, Canada
| |
Collapse
|
353
|
Peischard S, Piccini I, Strutz-Seebohm N, Greber B, Seebohm G. From iPSC towards cardiac tissue-a road under construction. Pflugers Arch 2017; 469:1233-1243. [PMID: 28573409 PMCID: PMC5590027 DOI: 10.1007/s00424-017-2003-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/16/2023]
Abstract
The possibility to generate induced pluripotent stem cells (iPSC) opens the way to generate virtually all cell types of our human body. In combination with modern gene editing techniques like CRISPR/CAS, a new set of powerful tools becomes available for life science. Scientific fields like genotype and cell type-specific pharmacology, disease modeling, stem cell biology, and developmental biology have been dramatically fostered and their faces have been changed. However, as golden as the age of iPSC-derived cells and their manipulation has started, the shine begins to tarnish. Researchers face more and more practical problems intrinsic to the system. These problems are related to the specific culturing conditions which are not yet sufficient to mimic the natural environment of native stem cells differentiating towards adult cells. However, researchers work hard to uncover these factors. Here, we review a common standard approach to generate iPSCs and transduce these to iPSC cardiomyocytes. Further, we review recent achievements and discuss their current limitations and future perspectives. We are on track, but the road is still under construction.
Collapse
Affiliation(s)
- Stefan Peischard
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany
| | - Ilaria Piccini
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany
- Human Stem Cell Pluripotency Group, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227, Münster, Germany
- Innovative Medizinische Forschung (IMF), Münster, Germany
| | - Nathalie Strutz-Seebohm
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany
| | - Boris Greber
- Human Stem Cell Pluripotency Group, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227, Münster, Germany
| | - Guiscard Seebohm
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany.
- Innovative Medizinische Forschung (IMF), Münster, Germany.
- Institut für Genetik von Herzerkrankungen (IfGH), Department für Kardiologie und Angiologie, Universitätsklinikum Münster, 48149, Münster, Germany.
| |
Collapse
|
354
|
Abstract
Cardiomyopathy is a disease of the heart muscle leading to abnormal structure or function in the absence of coronary artery disease, hypertension, or valvular or congenital heart disease. Currently, cardiomyopathy is the leading diagnosis of heart transplant patients worldwide. Incorporation of next-generation sequencing strategies will likely revolutionize genetic testing in cardiomyopathy. The use of patient-specific pluripotent stem cell-derived cardiomyocytes for disease modeling and therapeutic testing has opened a new avenue for precision medicine in cardiomyopathy. Stem cell therapy, gene therapy, interfering RNA, and small molecules are actively being evaluated in clinical trials.
Collapse
Affiliation(s)
- Paulino Alvarez
- Department of Cardiovascular Medicine, Heart and Vascular Institute , Cleveland Clinic, Cleveland, Ohio, USA
| | - Wh Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute , Cleveland Clinic, Cleveland, Ohio, USA.,Center for Clinical Genomics, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
355
|
Streckfuss-Bömeke K, Tiburcy M, Fomin A, Luo X, Li W, Fischer C, Özcelik C, Perrot A, Sossalla S, Haas J, Vidal RO, Rebs S, Khadjeh S, Meder B, Bonn S, Linke WA, Zimmermann WH, Hasenfuss G, Guan K. Severe DCM phenotype of patient harboring RBM20 mutation S635A can be modeled by patient-specific induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2017; 113:9-21. [PMID: 28941705 DOI: 10.1016/j.yjmcc.2017.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/01/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
The ability to generate patient-specific induced pluripotent stem cells (iPSCs) provides a unique opportunity for modeling heart disease in vitro. In this study, we generated iPSCs from a patient with dilated cardiomyopathy (DCM) caused by a missense mutation S635A in RNA-binding motif protein 20 (RBM20) and investigated the functionality and cell biology of cardiomyocytes (CMs) derived from patient-specific iPSCs (RBM20-iPSCs). The RBM20-iPSC-CMs showed abnormal distribution of sarcomeric α-actinin and defective calcium handling compared to control-iPSC-CMs, suggesting disorganized myofilament structure and altered calcium machinery in CMs of the RBM20 patient. Engineered heart muscles (EHMs) from RBM20-iPSC-CMs showed that not only active force generation was impaired in RBM20-EHMs but also passive stress of the tissue was decreased, suggesting a higher visco-elasticity of RBM20-EHMs. Furthermore, we observed a reduced titin (TTN) N2B-isoform expression in RBM20-iPSC-CMs by demonstrating a reduction of exon skipping in the PEVK region of TTN and an inhibition of TTN isoform switch. In contrast, in control-iPSC-CMs both TTN isoforms N2B and N2BA were expressed, indicating that the TTN isoform switch occurs already during early cardiogenesis. Using next generation RNA sequencing, we mapped transcriptome and splicing target profiles of RBM20-iPSC-CMs and identified different cardiac gene networks in response to the analyzed RBM20 mutation in cardiac-specific processes. These findings shed the first light on molecular mechanisms of RBM20-dependent pathological cardiac remodeling leading to DCM. Our data demonstrate that iPSC-CMs coupled with EHMs provide a powerful tool for evaluating disease-relevant functional defects and for a deeper mechanistic understanding of alternative splicing-related cardiac diseases.
Collapse
Affiliation(s)
- Katrin Streckfuss-Bömeke
- Department of Cardiology and Pneumology, Universitätsmedizin Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Malte Tiburcy
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany; Institute of Pharmacology and Toxicology, Universitätsmedizin Göttingen, Germany
| | - Andrey Fomin
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany; Department of Cardiovascular Physiology, Ruhr University Bochum, Germany
| | - Xiaojing Luo
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany
| | - Wener Li
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany
| | - Claudia Fischer
- Department of Cardiology and Pneumology, Universitätsmedizin Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Cemil Özcelik
- Cardiovascular Genetics, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Germany; Medizinischen Klinik I Kardiologie, Gastroenterologie und Diabetologie, Knappschaftskrankenhaus Recklingshausen, Germany
| | - Andreas Perrot
- Cardiovascular Genetics, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Germany
| | - Samuel Sossalla
- Department of Cardiology and Pneumology, Universitätsmedizin Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany; Department of Internal Medicine 2 - Cardiology, University Medical Center Regensburg, Germany
| | - Jan Haas
- Department of Cardiology, University of Heidelberg, Germany; DZHK, Partner Site Heidelberg, Germany
| | | | - Sabine Rebs
- Department of Cardiology and Pneumology, Universitätsmedizin Göttingen, Germany
| | - Sara Khadjeh
- Department of Cardiology and Pneumology, Universitätsmedizin Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Benjamin Meder
- Department of Cardiology, University of Heidelberg, Germany; DZHK, Partner Site Heidelberg, Germany
| | - Stefan Bonn
- German Center for Neurodegenerative Diseases, Göttingen and Tübingen, Germany; Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang A Linke
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany; Department of Cardiovascular Physiology, Ruhr University Bochum, Germany
| | - Wolfram-Hubertus Zimmermann
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany; Institute of Pharmacology and Toxicology, Universitätsmedizin Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, Universitätsmedizin Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Kaomei Guan
- Department of Cardiology and Pneumology, Universitätsmedizin Göttingen, Germany; Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany.
| |
Collapse
|
356
|
Weinberger F, Mannhardt I, Eschenhagen T. Engineering Cardiac Muscle Tissue: A Maturating Field of Research. Circ Res 2017; 120:1487-1500. [PMID: 28450366 DOI: 10.1161/circresaha.117.310738] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Twenty years after the initial description of a tissue engineered construct, 3-dimensional human cardiac tissues of different kinds are now generated routinely in many laboratories. Advances in stem cell biology and engineering allow for the generation of constructs that come close to recapitulating the complex structure of heart muscle and might, therefore, be amenable to industrial (eg, drug screening) and clinical (eg, cardiac repair) applications. Whether the more physiological structure of 3-dimensional constructs provides a relevant advantage over standard 2-dimensional cell culture has yet to be shown in head-to-head-comparisons. The present article gives an overview on current strategies of cardiac tissue engineering with a focus on different hydrogel methods and discusses perspectives and challenges for necessary steps toward the real-life application of cardiac tissue engineering for disease modeling, drug development, and cardiac repair.
Collapse
Affiliation(s)
- Florian Weinberger
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Ingra Mannhardt
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Eschenhagen
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
357
|
Sabater-Molina M, Pérez-Sánchez I, Hernández del Rincón J, Gimeno J. Genetics of hypertrophic cardiomyopathy: A review of current state. Clin Genet 2017; 93:3-14. [DOI: 10.1111/cge.13027] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Affiliation(s)
- M. Sabater-Molina
- Inherited Cardiac Disease Unit; University Hospital Virgen Arrixaca; Murcia Spain
- Internal Medicine Department, University of Murcia; Murcia Spain
| | - I. Pérez-Sánchez
- Inherited Cardiac Disease Unit; University Hospital Virgen Arrixaca; Murcia Spain
| | - J.P. Hernández del Rincón
- Internal Medicine Department, University of Murcia; Murcia Spain
- Pathology Department; Institute of Legal Medicine; Murcia Spain
| | - J.R. Gimeno
- Inherited Cardiac Disease Unit; University Hospital Virgen Arrixaca; Murcia Spain
- Internal Medicine Department, University of Murcia; Murcia Spain
| |
Collapse
|
358
|
Quick and easy microfabrication of T-shaped cantilevers to generate arrays of microtissues. Biomed Microdevices 2017; 18:43. [PMID: 27165103 DOI: 10.1007/s10544-016-0067-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Over the past decade, a major effort was made to miniaturize engineered tissues, as to further improve the throughput of such approach. Most existing methods for generating microtissues thus rely on T-shaped cantilevers made by soft lithography and based on the use of negative SU-8 photoresist. However, photopatterning T-shaped microstructures with these negative photoresists is fastidious and time-consuming. Here we introduce a novel method to quickly generate T-shaped cantilevers dedicated to generation of cellular microtissues, based on the use of positive photoresist. With only two layers of photoresist and one photomask, we were able to fabricate arrays of microwells in less than 3 h, each containing two T-shaped cantilevers presenting either a rectangular or a circular geometry. As a proof of concept, these arrays were then replicated in poly(dimethylsiloxane) and microtissues composed of NIH 3T3 fibroblasts encapsulated in collagen I were generated, while the two cantilevers simultaneously constrain and report forces generated by the microtissues. Immunostainings showed longitudinally aligned and elongated fibroblasts over the whole microtissue after 8 days of culture. The method described here opens the potential to quick prototyping platforms for high-throughput, low-volume screening applications.
Collapse
|
359
|
Cadar AG, Feaster TK, Durbin MD, Hong CC. Production of Single Contracting Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Matrigel Mattress Technique. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2017; 42:4A.14.1-4A.14.7. [PMID: 28806851 PMCID: PMC5577013 DOI: 10.1002/cpsc.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This unit describes the published Matrigel mattress method. Briefly, we describe the preparation of the mattress, replating of the human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) on the Matrigel mattress, and hiPSC-CM mattress maintenance. Adherence to this protocol will yield individual, robustly shortening hiPSC-CMs, which can be used for downstream applications. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Adrian G. Cadar
- Department of Molecular Physiology & Biophysics, Nashville, TN 37232 USA
- Department of Medicine/Division of Cardiovascular Medicine, Nashville, TN 37232 USA
| | | | - Matthew D. Durbin
- Department of Pediatrics/Division of Neonatology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Charles C. Hong
- Department of Medicine/Division of Cardiovascular Medicine, Nashville, TN 37232 USA
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System Nashville, TN 37212
| |
Collapse
|
360
|
Wang J, Cui C, Nan H, Yu Y, Xiao Y, Poon E, Yang G, Wang X, Wang C, Li L, Boheler KR, Ma X, Cheng X, Ni Z, Chen M. Graphene Sheet-Induced Global Maturation of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25929-25940. [PMID: 28718622 DOI: 10.1021/acsami.7b08777] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) can proliferate infinitely. Their ability to differentiate into cardiomyocytes provides abundant sources for disease modeling, drug screening and regenerative medicine. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) display a low degree of maturation and fetal-like properties. Current in vitro differentiation methods do not mimic the structural, mechanical, or physiological properties of the cardiogenesis niche. Recently, we present an efficient cardiac maturation platform that combines hiPSCs monolayer cardiac differentiation with graphene substrate, which is a biocompatible and superconductive material. The hiPSCs lines were successfully maintained on the graphene sheets and were able to differentiate into functional cardiomyocytes. This strategy markedly increased the myofibril ultrastructural organization, elevated the conduction velocity, and enhanced both the Ca2+ handling and electrophysiological properties in the absence of electrical stimulation. On the graphene substrate, the expression of connexin 43 increased along with the conduction velocity. Interestingly, the bone morphogenetic proteins signaling was also significantly activated during early cardiogenesis, confirmed by RNA sequencing analysis. Here, we reasoned that graphene substrate as a conductive biomimetic surface could facilitate the intrinsic electrical propagation, mimicking the microenvironment of the native heart, to further promote the global maturation of hiPSC-CMs. Our findings highlight the capability of electrically active substrates to influence cardiomyocyte development. We believe that application of graphene sheets will be useful for simple, fast, and scalable maturation of regenerated cardiomyocytes.
Collapse
Affiliation(s)
- Jiaxian Wang
- National Center for Human Genetics, National Research Institute for Family Planning , Beijing 100081, China
| | - Chang Cui
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029, China
| | - Haiyan Nan
- Department of Physics, Southeast University , Nanjing 211189, China
| | - Yuanfang Yu
- Department of Physics, Southeast University , Nanjing 211189, China
| | - Yini Xiao
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences , Shanghai 200031, China
| | - Ellen Poon
- Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong , Pokfulam 999077, Hong Kong
| | - Gang Yang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029, China
| | - Xijie Wang
- National Shanghai Center for New Drug Safety Evaluation and Research , Shanghai 201210, China
| | - Chenchen Wang
- SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences , Shanghai 201210, China
| | - Lingsong Li
- SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences , Shanghai 201210, China
| | - Kenneth Richard Boheler
- Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong , Pokfulam 999077, Hong Kong
| | - Xu Ma
- National Center for Human Genetics, National Research Institute for Family Planning , Beijing 100081, China
| | - Xin Cheng
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences , Shanghai 200031, China
| | - Zhenhua Ni
- Department of Physics, Southeast University , Nanjing 211189, China
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029, China
| |
Collapse
|
361
|
Caddeo S, Boffito M, Sartori S. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models. Front Bioeng Biotechnol 2017; 5:40. [PMID: 28798911 PMCID: PMC5526851 DOI: 10.3389/fbioe.2017.00040] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
In the tissue engineering (TE) paradigm, engineering and life sciences tools are combined to develop bioartificial substitutes for organs and tissues, which can in turn be applied in regenerative medicine, pharmaceutical, diagnostic, and basic research to elucidate fundamental aspects of cell functions in vivo or to identify mechanisms involved in aging processes and disease onset and progression. The complex three-dimensional (3D) microenvironment in which cells are organized in vivo allows the interaction between different cell types and between cells and the extracellular matrix, the composition of which varies as a function of the tissue, the degree of maturation, and health conditions. In this context, 3D in vitro models can more realistically reproduce a tissue or organ than two-dimensional (2D) models. Moreover, they can overcome the limitations of animal models and reduce the need for in vivo tests, according to the "3Rs" guiding principles for a more ethical research. The design of 3D engineered tissue models is currently in its development stage, showing high potential in overcoming the limitations of already available models. However, many issues are still opened, concerning the identification of the optimal scaffold-forming materials, cell source and biofabrication technology, and the best cell culture conditions (biochemical and physical cues) to finely replicate the native tissue and the surrounding environment. In the near future, 3D tissue-engineered models are expected to become useful tools in the preliminary testing and screening of drugs and therapies and in the investigation of the molecular mechanisms underpinning disease onset and progression. In this review, the application of TE principles to the design of in vitro 3D models will be surveyed, with a focus on the strengths and weaknesses of this emerging approach. In addition, a brief overview on the development of in vitro models of healthy and pathological bone, heart, pancreas, and liver will be presented.
Collapse
Affiliation(s)
- Silvia Caddeo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, Amsterdam, Netherlands
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
362
|
Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and Mechanistic Insights Into the Genetics of Cardiomyopathy. J Am Coll Cardiol 2017; 68:2871-2886. [PMID: 28007147 DOI: 10.1016/j.jacc.2016.08.079] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Abstract
Over the last quarter-century, there has been tremendous progress in genetics research that has defined molecular causes for cardiomyopathies. More than a thousand mutations have been identified in many genes with varying ontologies, therein indicating the diverse molecules and pathways that cause hypertrophic, dilated, restrictive, and arrhythmogenic cardiomyopathies. Translation of this research to the clinic via genetic testing can precisely group affected patients according to molecular etiology, and identify individuals without evidence of disease who are at high risk for developing cardiomyopathy. These advances provide insights into the earliest manifestations of cardiomyopathy and help to define the molecular pathophysiological basis for cardiac remodeling. Although these efforts remain incomplete, new genomic technologies and analytic strategies provide unparalleled opportunities to fully explore the genetic architecture of cardiomyopathies. Such data hold the promise that mutation-specific pathophysiology will uncover novel therapeutic targets, and herald the beginning of precision therapy for cardiomyopathy patients.
Collapse
Affiliation(s)
- Michael A Burke
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia; Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Stuart A Cook
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; National Heart Centre Singapore, Singapore; Duke-National University of Singapore, Singapore
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland.
| |
Collapse
|
363
|
Liang P, Sallam K, Wu H, Li Y, Itzhaki I, Garg P, Zhang Y, Vermglinchan V, Lan F, Gu M, Gong T, Zhuge Y, He C, Ebert AD, Sanchez-Freire V, Churko J, Hu S, Sharma A, Lam CK, Scheinman MM, Bers DM, Wu JC. Patient-Specific and Genome-Edited Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Brugada Syndrome. J Am Coll Cardiol 2017; 68:2086-2096. [PMID: 27810048 DOI: 10.1016/j.jacc.2016.07.779] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Brugada syndrome (BrS), a disorder associated with characteristic electrocardiogram precordial ST-segment elevation, predisposes afflicted patients to ventricular fibrillation and sudden cardiac death. Despite marked achievements in outlining the organ level pathophysiology of the disorder, the understanding of human cellular phenotype has lagged due to a lack of adequate human cellular models of the disorder. OBJECTIVES The objective of this study was to examine single cell mechanism of Brugada syndrome using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS This study recruited 2 patients with type 1 BrS carrying 2 different sodium voltage-gated channel alpha subunit 5 variants as well as 2 healthy control subjects. We generated iPSCs from their skin fibroblasts by using integration-free Sendai virus. We used directed differentiation to create purified populations of iPSC-CMs. RESULTS BrS iPSC-CMs showed reductions in inward sodium current density and reduced maximal upstroke velocity of action potential compared with healthy control iPSC-CMs. Furthermore, BrS iPSC-CMs demonstrated increased burden of triggered activity, abnormal calcium (Ca2+) transients, and beating interval variation. Correction of the causative variant by genome editing was performed, and resultant iPSC-CMs showed resolution of triggered activity and abnormal Ca2+ transients. Gene expression profiling of iPSC-CMs showed clustering of BrS compared with control subjects. Furthermore, BrS iPSC-CM gene expression correlated with gene expression from BrS human cardiac tissue gene expression. CONCLUSIONS Patient-specific iPSC-CMs were able to recapitulate single-cell phenotype features of BrS, including blunted inward sodium current, increased triggered activity, and abnormal Ca2+ handling. This novel human cellular model creates future opportunities to further elucidate the cellular disease mechanism and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Ping Liang
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Karim Sallam
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Haodi Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Yingxin Li
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Ilanit Itzhaki
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Priyanka Garg
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Ying Zhang
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Vittavat Vermglinchan
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Feng Lan
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Mingxia Gu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Tingyu Gong
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Zhuge
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Chunjiang He
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Antje D Ebert
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Veronica Sanchez-Freire
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Jared Churko
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Shijun Hu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Arun Sharma
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Melvin M Scheinman
- Department of Medicine, Division of Cardiology, University of California, San Francisco, California
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
364
|
Abstract
Cardiomyopathies represent a heterogeneous group of diseases that negatively affect heart function. Primary cardiomyopathies specifically target the myocardium, and may arise from genetic [hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D), mitochondrial cardiomyopathy] or genetic and acquired [dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM)] etiology. Modern genomics has identified mutations that are common in these populations, while in vitro and in vivo experimentation with these mutations have provided invaluable insight into the molecular mechanisms native to these diseases. For example, increased myosin heavy chain (MHC) binding and ATP utilization lead to the hypercontractile sarcomere in HCM, while abnormal protein–protein interaction and impaired Ca2+ flux underlie the relaxed sarcomere of DCM. Furthermore, expanded access to genetic testing has facilitated identification of potential risk factors that appear through inheritance and manifest sometimes only in the advanced stages of the disease. In this review, we discuss the genetic and molecular abnormalities unique to and shared between these primary cardiomyopathies and discuss some of the important advances made using more traditional basic science experimentation.
Collapse
|
365
|
Affiliation(s)
- Yoshinori Yoshida
- From the Center for iPS Cell Research and Application, Kyoto University, Japan (Y.Y., S.Y.); and Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA (S.Y.)
| | - Shinya Yamanaka
- From the Center for iPS Cell Research and Application, Kyoto University, Japan (Y.Y., S.Y.); and Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA (S.Y.)
| |
Collapse
|
366
|
Zhang C, Zhang H, Wu G, Luo X, Zhang C, Zou Y, Wang H, Hui R, Wang J, Song L. Titin-Truncating Variants Increase the Risk of Cardiovascular Death in Patients With Hypertrophic Cardiomyopathy. Can J Cardiol 2017; 33:1292-1297. [PMID: 28822653 DOI: 10.1016/j.cjca.2017.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Titin-truncating variants (TTNtv) have been detected in a variety of cardiomyopathies and represent the most common cause of dilated cardiomyopathy. However, their significance in hypertrophic cardiomyopathy (HCM) is still unclear. METHODS The titin gene (TTN) was sequenced for truncating variants in a cohort of 529 Chinese patients with HCM and 307 healthy controls. Baseline and follow-up clinical data (for 4.7 ± 3.2 years) from these patients were obtained. RESULTS We identified 13 and 8 TTNtv in patients with HCM (13 of 529 [2.5%]) and controls (8 of 307 [2.6%]), respectively. The prevalence of TTNtv in patients with HCM and in healthy controls was comparable (P = 0.895). There were no significant differences in baseline characteristics between patients with and those without TTNtv. However, during follow-up, patients with TTNtv (3 of 13 [23.1%]) were more likely to experience cardiovascular death compared with those without TTNtv (39 of 516 [7.6%]) [adjusted hazard ratio, 6.88; 95% confidence interval, 2.04-23.20; P = 0.002). CONCLUSIONS Our study suggests that TTNtv might be a genetic modifier of HCM and confer an increased risk for cardiovascular death.
Collapse
Affiliation(s)
- Ce Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongju Zhang
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, Minnesota, USA; Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Guixin Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoliang Luo
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Channa Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yubao Zou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Lei Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
367
|
Sayed N, Liu C, Wu JC. Translation of Human-Induced Pluripotent Stem Cells: From Clinical Trial in a Dish to Precision Medicine. J Am Coll Cardiol 2017; 67:2161-2176. [PMID: 27151349 DOI: 10.1016/j.jacc.2016.01.083] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/14/2022]
Abstract
The prospect of changing the plasticity of terminally differentiated cells toward pluripotency has completely altered the outlook for biomedical research. Human-induced pluripotent stem cells (iPSCs) provide a new source of therapeutic cells free from the ethical issues or immune barriers of human embryonic stem cells. iPSCs also confer considerable advantages over conventional methods of studying human diseases. Since its advent, iPSC technology has expanded with 3 major applications: disease modeling, regenerative therapy, and drug discovery. Here we discuss, in a comprehensive manner, the recent advances in iPSC technology in relation to basic, clinical, and population health.
Collapse
Affiliation(s)
- Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California.
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
368
|
Abstract
The induced pluripotent stem cell (iPSC) was first described more than 10 years ago and is currently used in various basic science and clinical research fields. The aim of this report is to examine the trends in research using iPSCs over the last 10 years. The 2006-2016 PubMed database was searched using the MeSH term "induced pluripotent stem cells." Only original research articles were selected, with a total of 3323 articles. These were classified according to research theme into reprogramming, differentiation protocols for specific cells and/or tissues, pathophysiological research on diseases, and discovery of new drugs, and then the trends over the years were analyzed. We also focused on 232 research publications on the pathophysiological causes of diseases and drug discovery with impact factor (IF; Thomson Reuters) of six or more. The IF of each article was summed up by year, by main target disease, and by country, and the total IF score was expressed as trends of research. The trends of research activities of reprogramming and differentiation on specific cells and/or tissues reached maxima in 2013/2014. On the other hand, research on pathophysiology and drug discovery increased continuously. The 232 articles with IF ≥6 dealt with neurological, immunological/hematological, cardiovascular, and digestive tract diseases, in that order. The majority of articles were published from the United States, followed by Japan, Germany, and United Kingdom. In conclusion, iPSCs have become a general tool for pathophysiological research on disease and drug discovery.
Collapse
Affiliation(s)
- Takaharu Negoro
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hanayuki Okura
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Akifumi Matsuyama
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
369
|
Differential Sarcomere and Electrophysiological Maturation of Human iPSC-Derived Cardiac Myocytes in Monolayer vs. Aggregation-Based Differentiation Protocols. Int J Mol Sci 2017; 18:ijms18061173. [PMID: 28587156 PMCID: PMC5485997 DOI: 10.3390/ijms18061173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) represent a powerful human model to study cardiac disease in vitro, notably channelopathies and sarcomeric cardiomyopathies. Different protocols for cardiac differentiation of iPSCs have been proposed either based on embroid body formation (3D) or, more recently, on monolayer culture (2D). We performed a direct comparison of the characteristics of the derived cardiomyocytes (iPSC-CMs) on day 27 ± 2 of differentiation between 3D and 2D differentiation protocols with two different Wnt-inhibitors were compared: IWR1 (inhibitor of Wnt response) or IWP2 (inhibitor of Wnt production). We firstly found that the level of Troponin T (TNNT2) expression measured by FACS was significantly higher for both 2D protocols as compared to the 3D protocol. In the three methods, iPSC-CM show sarcomeric structures. However, iPSC-CM generated in 2D protocols constantly displayed larger sarcomere lengths as compared to the 3D protocol. In addition, mRNA and protein analyses reveal higher cTNi to ssTNi ratios in the 2D protocol using IWP2 as compared to both other protocols, indicating a higher sarcomeric maturation. Differentiation of cardiac myocytes with 2D monolayer-based protocols and the use of IWP2 allows the production of higher yield of cardiac myocytes that have more suitable characteristics to study sarcomeric cardiomyopathies.
Collapse
|
370
|
Prondzynski M, Krämer E, Laufer SD, Shibamiya A, Pless O, Flenner F, Müller OJ, Münch J, Redwood C, Hansen A, Patten M, Eschenhagen T, Mearini G, Carrier L. Evaluation of MYBPC3 trans-Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624223 PMCID: PMC5458066 DOI: 10.1016/j.omtn.2017.05.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gene therapy is a promising option for severe forms of genetic diseases. We previously provided evidence for the feasibility of trans-splicing, exon skipping, and gene replacement in a mouse model of hypertrophic cardiomyopathy (HCM) carrying a mutation in MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C). Here we used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from an HCM patient carrying a heterozygous c.1358-1359insC MYBPC3 mutation and from a healthy donor. HCM hiPSC-CMs exhibited ∼50% lower MYBPC3 mRNA and cMyBP-C protein levels than control, no truncated cMyBP-C, larger cell size, and altered gene expression, thus reproducing human HCM features. We evaluated RNA trans-splicing and gene replacement after transducing hiPSC-CMs with adeno-associated virus. trans-splicing with 5' or 3' pre-trans-splicing molecules represented ∼1% of total MYBPC3 transcripts in healthy hiPSC-CMs. In contrast, gene replacement with the full-length MYBPC3 cDNA resulted in ∼2.5-fold higher MYBPC3 mRNA levels in HCM and control hiPSC-CMs. This restored the cMyBP-C level to 81% of the control level, suppressed hypertrophy, and partially restored gene expression to control level in HCM cells. This study provides evidence for (1) the feasibility of trans-splicing, although with low efficiency, and (2) efficient gene replacement in hiPSC-CMs with a MYBPC3 mutation.
Collapse
Affiliation(s)
- Maksymilian Prondzynski
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Elisabeth Krämer
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Sandra D Laufer
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Hamburg Zentrum für Experimentelle Therapieforschung (HEXT) Stem Cell Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Aya Shibamiya
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Hamburg Zentrum für Experimentelle Therapieforschung (HEXT) Stem Cell Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ole Pless
- Fraunhofer IME Screening-Port, 22525 Hamburg, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Oliver J Müller
- Department of Cardiology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Julia Münch
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Charles Redwood
- Radcliffe Department of Medicine, University of Oxford, Oxford OX1 3PA, UK
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Monica Patten
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Giulia Mearini
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
371
|
Cui C, Geng L, Shi J, Zhu Y, Yang G, Wang Z, Wang J, Chen M. Structural and electrophysiological dysfunctions due to increased endoplasmic reticulum stress in a long-term pacing model using human induced pluripotent stem cell-derived ventricular cardiomyocytes. Stem Cell Res Ther 2017; 8:109. [PMID: 28490375 PMCID: PMC5426064 DOI: 10.1186/s13287-017-0566-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/16/2017] [Accepted: 04/26/2017] [Indexed: 01/15/2023] Open
Abstract
Background Long-term ventricular pacing has deleterious effects and becomes more significant when cumulative percent ventricular pacing (Cum%VP) exceeds 40% of time. However, cellular disturbances and pathways by which pacing leads to myocardial disorders are not well understood. Attempts to resolve these questions have been hampered by difficulties in obtaining human cardiac tissue and the inability to build a longer-lasting (lasting longer than weeks) pacing model in vitro. Methods Human induced pluripotent stem cell-derived ventricular cardiomyocytes (VCMs) were cultured in the presence of electrical stimulation for 2 weeks. Quantitative structural and electrophysiological analyses were used to define the functional disturbances of pacing. Results Compared to controls, paced VCMs exhibited a remarkable reduction in the contractile protein expression, an increased apoptosis ratio and electrophysiological remodelling in a Cum%VP-dependent manner. Investigation of the protein expression levels revealed that long-term pacing universally activated both ER stress and downstream calpain. Moreover, the inhibition of calpain attenuated the adverse effects on the structural remodelling and increased the ICa, L in paced VCMs. Conclusions The results demonstrated that pacing VCMs for 2 weeks in vitro led to a series of structural and electrophysiological dysfunctions. The increased ER stress and downstream calpain could be a central mechanism underlying the disease pathogenesis. This finding could represent a new therapeutic target in the management of long-term pacing patients. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0566-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chang Cui
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Le Geng
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiaojiao Shi
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yue Zhu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Gang Yang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zidun Wang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiaxian Wang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
372
|
Abstract
Since the advent of the generation of human induced pluripotent stem cells (hiPSCs), numerous protocols have been developed to differentiate hiPSCs into cardiomyocytes and then subsequently assess their ability to recapitulate the properties of adult human cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) are often assessed in single-cell assays. A shortcoming of these assays is the limited ability to characterize the physiological parameters of cardiomyocytes, such as contractile force, due to random orientations. This protocol describes the differentiation of cardiomyocytes from hiPSCs, which occurs within 14 d. After casting, cardiomyocytes undergo 3D assembly. This produces fibrin-based engineered heart tissues (EHTs)-in a strip format-that generate force under auxotonic stretch conditions. 10-15 d after casting, the EHTs can be used for contractility measurements. This protocol describes parallel expansion of hiPSCs; standardized generation of defined embryoid bodies, growth factor and small-molecule-based cardiac differentiation; and standardized generation of EHTs. To carry out the protocol, experience in advanced cell culture techniques is required.
Collapse
|
373
|
|
374
|
Jagla K, Kalman B, Boudou T, Hénon S, Batonnet-Pichon S. Beyond mice: Emerging and transdisciplinary models for the study of early-onset myopathies. Semin Cell Dev Biol 2017; 64:171-180. [DOI: 10.1016/j.semcdb.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 01/23/2023]
|
375
|
Abstract
The National Institutes of Health Microphysiological Systems (MPS) program, led by the National Center for Advancing Translational Sciences, is part of a joint effort on MPS development with the Defense Advanced Research Projects Agency and with regulatory guidance from FDA, is now in its final year of funding. The program has produced many tangible outcomes in tissue chip development in terms of stem cell differentiation, microfluidic engineering, platform development, and single and multi-organ systems-and continues to help facilitate the acceptance and use of tissue chips by the wider community. As the first iteration of the program draws to a close, this Commentary will highlight some of the goals met, and lay out some of the challenges uncovered that will remain to be addressed as the field progresses. The future of the program will also be outlined. Impact statement This work is important to the field as it outlines the progress and challenges faced by the NIH Microphysiological Systems program to date, and the future of the program. This is useful information for the field to be aware of, both for current program stakeholders and future awardees and partners.
Collapse
Affiliation(s)
- Lucie A Low
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
376
|
Buikema JW, Wu SM. Untangling the Biology of Genetic Cardiomyopathies with Pluripotent Stem Cell Disease Models. Curr Cardiol Rep 2017; 19:30. [DOI: 10.1007/s11886-017-0842-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
377
|
Briana DD, Germanou K, Boutsikou M, Boutsikou T, Athanasopoulos N, Marmarinos A, Gourgiotis D, Malamitsi-Puchner A. Potential prognostic biomarkers of cardiovascular disease in fetal macrosomia: the impact of gestational diabetes. J Matern Fetal Neonatal Med 2017; 31:895-900. [PMID: 28298172 DOI: 10.1080/14767058.2017.1300651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Fetal macrosomia is associated with cardiac hypertrophy and increased cardiovascular risk. Cardiac biomarkers may play diagnostic/prognostic role in cardiovascular disease. We tested whether cardiac biomarkers are differentially expressed in cord blood samples of full-term singleton large-for-gestational-age (LGA), as compared to appropriate-for-gestational-age (AGA) pregnancies. METHODS Cardiotrophin-1 (CT-1), Titin, pentraxin (PTX-3) and soluble CD36 (sCD36) concentrations were determined in 80 cord blood samples from a) LGA pregnancies due to maternal diabetes (n = 8), overweight/obese (n = 11), excessive weight gain (n = 7), without specific pathology (n = 14), b) AGA normal pregnancies (controls, n = 40). Neonates were classified as LGA or AGA based on customized birth weight (BW) standards. RESULTS CT-1 and Titin concentrations were higher in LGA than AGA pregnancies (p < .001 and p = .023, respectively). A subgroup analysis (in the LGA group) showed increased CT-1 concentrations only in diabetic pregnancies. PTX-3 and sCD36 concentrations were similar in LGA and AGA fetuses. In the LGA group, PTX-3 concentrations positively correlated with birth-weight (r = .416, p = .008) and respective sCD36 concentrations (r = .443, p = .004). CONCLUSION Higher Titin concentrations in LGAs possibly represent a candidate molecular mechanism underlying the association between fetal macrosomia and cardiomyocyte/diastolic dysfunction. CT-1 is up-regulated only in LGAs exposed to maternal diabetes. PTX-3 and sCD36 are probably not affected by excessive fetal growth.
Collapse
Affiliation(s)
- Despina D Briana
- a Department of Neonatology , National and Kapodistrian University of Athens , Athens , Greece
| | - Kleopatra Germanou
- a Department of Neonatology , National and Kapodistrian University of Athens , Athens , Greece
| | - Maria Boutsikou
- a Department of Neonatology , National and Kapodistrian University of Athens , Athens , Greece
| | - Theodora Boutsikou
- a Department of Neonatology , National and Kapodistrian University of Athens , Athens , Greece
| | - Nikolaos Athanasopoulos
- a Department of Neonatology , National and Kapodistrian University of Athens , Athens , Greece
| | - Antonios Marmarinos
- b Laboratory of Clinical Biochemistry-Molecular Diagnostics, 2nd Department of Pediatrics , National and Kapodistrian University of Athens , Athens , Greece
| | - Dimitrios Gourgiotis
- b Laboratory of Clinical Biochemistry-Molecular Diagnostics, 2nd Department of Pediatrics , National and Kapodistrian University of Athens , Athens , Greece
| | | |
Collapse
|
378
|
Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, Park SJ, Kotikian A, Nesmith AP, Campbell PH, Vlassak JJ, Lewis JA, Parker KK. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. NATURE MATERIALS 2017; 16:303-308. [PMID: 27775708 PMCID: PMC5321777 DOI: 10.1038/nmat4782] [Citation(s) in RCA: 439] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/23/2016] [Indexed: 05/18/2023]
Abstract
Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.
Collapse
Affiliation(s)
- Johan U. Lind
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
| | - Travis A. Busbee
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
| | - Alexander D. Valentine
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
| | - Francesco S. Pasqualini
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
| | - Hongyan Yuan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
| | - Moran Yadid
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
| | - Sung-Jin Park
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
| | - Arda Kotikian
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
| | - Alexander P. Nesmith
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
| | - Patrick H. Campbell
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
| | - Joost J. Vlassak
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
| | - Jennifer A. Lewis
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
- Correspondence should be addressed to: Kevin Kit Parker, 29 Oxford St., Cambridge, MA 02138, Phone: (617) 495-2850, Fax: (617) 495-9837, . Jennifer A. Lewis, 29 Oxford St., Cambridge, MA 02138, Phone: (617) 496-0233,
| | - Kevin K. Parker
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
- Correspondence should be addressed to: Kevin Kit Parker, 29 Oxford St., Cambridge, MA 02138, Phone: (617) 495-2850, Fax: (617) 495-9837, . Jennifer A. Lewis, 29 Oxford St., Cambridge, MA 02138, Phone: (617) 496-0233,
| |
Collapse
|
379
|
Kofron CM, Mende U. In vitro models of the cardiac microenvironment to study myocyte and non-myocyte crosstalk: bioinspired approaches beyond the polystyrene dish. J Physiol 2017; 595:3891-3905. [PMID: 28116799 DOI: 10.1113/jp273100] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022] Open
Abstract
The heart is a complex pluricellular organ composed of cardiomyocytes and non-myocytes including fibroblasts, endothelial cells and immune cells. Myocytes are responsible for electrical conduction and contractile force generation, while the other cell types are responsible for matrix deposition, vascularization, and injury response. Myocytes and non-myocytes are known to communicate and exert mutual regulatory effects. In concert, they determine the structural, electrical and mechanical characteristics in the healthy and remodelled myocardium. Dynamic crosstalk between myocytes and non-myocytes plays a crucial role in stress/injury-induced hypertrophy and fibrosis development that can ultimately lead to heart failure and arrhythmias. Investigations of heterocellular communication in the myocardium are hampered by the intricate interspersion of the different cell types and the complexity of the tissue architecture. In vitro models have facilitated investigations of cardiac cells in a direct and controllable manner and have provided important functional and mechanistic insights. However, these cultures often lack regulatory input from the other cell types as well as additional topographical, electrical, mechanical and biochemical cues from the cardiac microenvironment that all contribute to modulating cell differentiation, maturation, alignment, function and survival. Advancements in the development of more complex pluricellular physiological platforms that incorporate diverse cues from the myocardial microenvironment are expected to lead to more physiologically relevant cardiac tissue-like in vitro models for mechanistic biological research, disease modelling, therapeutic target identification, drug testing and regeneration.
Collapse
Affiliation(s)
- Celinda M Kofron
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
380
|
Tayal U, Prasad S, Cook SA. Genetics and genomics of dilated cardiomyopathy and systolic heart failure. Genome Med 2017; 9:20. [PMID: 28228157 PMCID: PMC5322656 DOI: 10.1186/s13073-017-0410-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heart failure is a major health burden, affecting 40 million people globally. One of the main causes of systolic heart failure is dilated cardiomyopathy (DCM), the leading global indication for heart transplantation. Our understanding of the genetic basis of both DCM and systolic heart failure has improved in recent years with the application of next-generation sequencing and genome-wide association studies (GWAS). This has enabled rapid sequencing at scale, leading to the discovery of many novel rare variants in DCM and of common variants in both systolic heart failure and DCM. Identifying rare and common genetic variants contributing to systolic heart failure has been challenging given its diverse and multiple etiologies. DCM, however, although rarer, is a reasonably specific and well-defined condition, leading to the identification of many rare genetic variants. Truncating variants in titin represent the single largest genetic cause of DCM. Here, we review the progress and challenges in the detection of rare and common variants in DCM and systolic heart failure, and the particular challenges in accurate and informed variant interpretation, and in understanding the effects of these variants. We also discuss how our increasing genetic knowledge is changing clinical management. Harnessing genetic data and translating it to improve risk stratification and the development of novel therapeutics represents a major challenge and unmet critical need for patients with heart failure and their families.
Collapse
Affiliation(s)
- Upasana Tayal
- National Heart Lung Institute, Imperial College London, Cale Street, London, SW3 6LY, UK.,Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
| | - Sanjay Prasad
- National Heart Lung Institute, Imperial College London, Cale Street, London, SW3 6LY, UK.,Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
| | - Stuart A Cook
- National Heart Lung Institute, Imperial College London, Cale Street, London, SW3 6LY, UK. .,Duke National University Hospital, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
381
|
Dalin MG, Engström PG, Ivarsson EG, Unneberg P, Light S, Schaufelberger M, Gilljam T, Andersson B, Bergo MO. Massive parallel sequencing questions the pathogenic role of missense variants in dilated cardiomyopathy. Int J Cardiol 2017; 228:742-748. [DOI: 10.1016/j.ijcard.2016.11.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/05/2016] [Indexed: 01/13/2023]
|
382
|
Rowe GC, Asimaki A, Graham EL, Martin KD, Margulies KB, Das S, Saffitz J, Arany Z. Development of dilated cardiomyopathy and impaired calcium homeostasis with cardiac-specific deletion of ESRRβ. Am J Physiol Heart Circ Physiol 2017; 312:H662-H671. [PMID: 28130335 DOI: 10.1152/ajpheart.00446.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 11/22/2022]
Abstract
Mechanisms underlying the development of idiopathic dilated cardiomyopathy (DCM) remain poorly understood. Using transcription factor expression profiling, we identified estrogen-related receptor-β (ESRRβ), a member of the nuclear receptor family of transcription factors, as highly expressed in murine hearts and other highly oxidative striated muscle beds. Mice bearing cardiac-specific deletion of ESRRβ (MHC-ERRB KO) develop DCM and sudden death at ~10 mo of age. Isolated adult cardiomyocytes from the MHC-ERRB KO mice showed an increase in calcium sensitivity and impaired cardiomyocyte contractility, which preceded echocardiographic cardiac remodeling and dysfunction by several months. Histological analyses of myocardial biopsies from patients with various cardiomyopathies revealed that ESRRβ protein is absent from the nucleus of cardiomyocytes from patients with DCM but not other forms of cardiomyopathy (ischemic, hypertrophic, and arrhythmogenic right ventricular cardiomyopathy). Taken together these observations suggest that ESRRβ is a critical component in the onset of DCM by affecting contractility and calcium balance.NEW & NOTEWORTHY Estrogen-related receptor-β (ESRRβ) is highly expressed in the heart and cardiac-specific deletion results in the development of a dilated cardiomyopathy (DCM). ESRRβ is mislocalized in human myocardium samples with DCM, suggesting a possible role for ESRRβ in the pathogenesis of DCM in humans.
Collapse
Affiliation(s)
- Glenn C Rowe
- Cardiovascular Institute, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts; .,Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Angeliki Asimaki
- Pathology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts
| | - Evan L Graham
- Cardiovascular Institute, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kimberly D Martin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kenneth B Margulies
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saumya Das
- Cardiovascular Institute, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts.,Division of Cardiology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jeffery Saffitz
- Pathology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts
| | - Zoltan Arany
- Cardiovascular Institute, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| |
Collapse
|
383
|
Abstract
PURPOSE OF REVIEW The article provides an overview of advances in the induced pluripotent stem cell field to model cardiomyopathies of inherited inborn errors of metabolism and acquired metabolic syndromes in vitro. RECENT FINDINGS Several inborn errors of metabolism have been studied using 'disease in a dish' models, including Pompe disease, Danon disease, Fabry disease, and Barth syndrome. Disease phenotypes of complex metabolic syndromes, such as diabetes mellitus and aldehyde dehydrogenase 2 deficiency, have also been observed. SUMMARY Differentiation of patient and disease-specific induced pluripotent stem cell-derived cardiomyocytes has provided the capacity to model deleterious cardiometabolic diseases to understand molecular mechanisms, perform drug screens, and identify novel drug targets.
Collapse
|
384
|
Hackman P, Udd B, Bönnemann CG, Ferreiro A. 219th ENMC International Workshop Titinopathies International database of titin mutations and phenotypes, Heemskerk, The Netherlands, 29 April-1 May 2016. Neuromuscul Disord 2017; 27:396-407. [PMID: 28214268 DOI: 10.1016/j.nmd.2017.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Peter Hackman
- Folkhälsan Institute of Genetics, University of Helsinki, Finland.
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University, Finland
| | | | - Ana Ferreiro
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Diderot/CNRS, France; Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, AP-HP, France
| | | |
Collapse
|
385
|
N. Randolph L, Jiang Y, Lian X. Stem Cell Engineering and Differentiation for Disease Modeling and Cell-based Therapies. ACTA ACUST UNITED AC 2017. [DOI: 10.3934/celltissue.2017.2.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
386
|
Hinson JT, Chopra A, Lowe A, Sheng CC, Gupta RM, Kuppusamy R, O'Sullivan J, Rowe G, Wakimoto H, Gorham J, Burke MA, Zhang K, Musunuru K, Gerszten RE, Wu SM, Chen CS, Seidman JG, Seidman CE. Integrative Analysis of PRKAG2 Cardiomyopathy iPS and Microtissue Models Identifies AMPK as a Regulator of Metabolism, Survival, and Fibrosis. Cell Rep 2016; 17:3292-3304. [PMID: 28009297 PMCID: PMC5193246 DOI: 10.1016/j.celrep.2016.11.066] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/19/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a metabolic enzyme that can be activated by nutrient stress or genetic mutations. Missense mutations in the regulatory subunit, PRKAG2, activate AMPK and cause left ventricular hypertrophy, glycogen accumulation, and ventricular pre-excitation. Using human iPS cell models combined with three-dimensional cardiac microtissues, we show that activating PRKAG2 mutations increase microtissue twitch force by enhancing myocyte survival. Integrating RNA sequencing with metabolomics, PRKAG2 mutations that activate AMPK remodeled global metabolism by regulating RNA transcripts to favor glycogen storage and oxidative metabolism instead of glycolysis. As in patients with PRKAG2 cardiomyopathy, iPS cell and mouse models are protected from cardiac fibrosis, and we define a crosstalk between AMPK and post-transcriptional regulation of TGFβ isoform signaling that has implications in fibrotic forms of cardiomyopathy. Our results establish critical connections among metabolic sensing, myocyte survival, and TGFβ signaling.
Collapse
Affiliation(s)
- J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Cardiology Center, University of Connecticut Health, Farmington, CT 06030, USA.
| | - Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Andre Lowe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Calvin C Sheng
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rajat M Gupta
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rajarajan Kuppusamy
- Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John O'Sullivan
- Division of Cardiovascular Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Glenn Rowe
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Burke
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kehan Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Kiran Musunuru
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Cardiovascular Medicine, Beth Israel Deaconess Hospital, Boston, MA 02115, USA
| | - Sean M Wu
- Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
387
|
Abstract
Defined genetic models based on human pluripotent stem cells have opened new avenues for understanding disease mechanisms and drug screening. Many of these models assume cell-autonomous mechanisms of disease but it is possible that disease phenotypes or drug responses will only be evident if all cellular and extracellular components of a tissue are present and functionally mature. To derive optimal benefit from such models, complex multicellular structures with vascular components that mimic tissue niches will thus likely be necessary. Here we consider emerging research creating human tissue mimics and provide some recommendations for moving the field forward.
Collapse
|
388
|
Affiliation(s)
- Calum A MacRae
- From Cardiovascular Medicine Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (C.A.M., J.L.); Harvard Medical School, Boston, MA (C.A.M., J.L.); and Cardiology Division, Department of Medicine, Vanderbilt University Medical School, Nashville, TN (D.M.R.).
| | - Dan M Roden
- From Cardiovascular Medicine Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (C.A.M., J.L.); Harvard Medical School, Boston, MA (C.A.M., J.L.); and Cardiology Division, Department of Medicine, Vanderbilt University Medical School, Nashville, TN (D.M.R.)
| | - Joseph Loscalzo
- From Cardiovascular Medicine Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (C.A.M., J.L.); Harvard Medical School, Boston, MA (C.A.M., J.L.); and Cardiology Division, Department of Medicine, Vanderbilt University Medical School, Nashville, TN (D.M.R.)
| |
Collapse
|
389
|
Affiliation(s)
- Richard T Lee
- From Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and the Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (R.T.L.); and Whitaker Cardiovascular Institute, Boston University, Boston, MA (K.W.).
| | - Kenneth Walsh
- From Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and the Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (R.T.L.); and Whitaker Cardiovascular Institute, Boston University, Boston, MA (K.W.).
| |
Collapse
|
390
|
Bezzerides VJ, Zhang D, Pu WT. Modeling Inherited Arrhythmia Disorders Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ J 2016; 81:12-21. [PMID: 27916777 DOI: 10.1253/circj.cj-16-1113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited arrhythmia disorders (IADs) are a group of potentially lethal diseases that remain diagnostic and management challenges. Although the genetic basis for many of these disorders is well known, the pathogenicity of individual mutations and the resulting clinical outcomes are difficult to predict. Treatment options remain imperfect, and optimizing therapy for individual patients can be difficult. Recent advances in the derivation of induced pluripotent stem cells (iPSCs) from patients and creation of genetically engineered human models using CRISPR/Cas9 has the potential to dramatically advance translational arrhythmia research. In this review, we discuss the current state of modeling IADs using human iPSC-derived cardiomyocytes. We also discuss current limitations and areas for further study.
Collapse
|
391
|
Vujic A, Mahmoud AI, Lee RT. A Breakdown in Cooperativity Leads to Cardiac Identity Crisis. Cell 2016; 167:1674-1676. [DOI: 10.1016/j.cell.2016.11.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
392
|
Abstract
Cells dynamically assemble and organize into complex tissues during development, and the resulting three-dimensional (3D) arrangement of cells and their surrounding extracellular matrix in turn feeds back to regulate cell and tissue function. Recent advances in engineered cultures of cells to model 3D tissues or organoids have begun to capture this dynamic reciprocity between form and function. Here, we describe the underlying principles that have advanced the field, focusing in particular on recent progress in using mechanical constraints to recapitulate the structure and function of musculoskeletal tissues.
Collapse
Affiliation(s)
- Jeroen Eyckmans
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA .,The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher S Chen
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA .,The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
393
|
Genetic basis of dilated cardiomyopathy. Int J Cardiol 2016; 224:461-472. [PMID: 27736720 DOI: 10.1016/j.ijcard.2016.09.068] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 01/19/2023]
|
394
|
Bodez D, Hocini H, Tchitchek N, Tisserand P, Benhaiem N, Barau C, Kharoubi M, Guellich A, Guendouz S, Radu C, Couetil JP, Ghaleh B, Dubois-Randé JL, Teiger E, Hittinger L, Levy Y, Damy T. Myocardial Gene Expression Profiling to Predict and Identify Cardiac Allograft Acute Cellular Rejection: The GET-Study. PLoS One 2016; 11:e0167213. [PMID: 27898719 PMCID: PMC5127573 DOI: 10.1371/journal.pone.0167213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/10/2016] [Indexed: 11/24/2022] Open
Abstract
Aims Serial invasive endomyocardial biopsies (EMB) remain the gold standard for acute cellular rejection (ACR) diagnosis. However histological grading has several limitations. We aimed to explore the value of myocardial Gene Expression Profiling (GEP) for diagnosing and identifying predictive biomarkers of ACR. Methods A case-control study nested within a retrospective heart transplant patients cohort included 126 patients with median (IQR) age 50 (41–57) years and 111 (88%) males. Among 1157 EMB performed, 467 were eligible (i.e, corresponding to either ISHLT grade 0 or ≥3A), among which 36 were selected for GEP according to the grading: 0 (CISHLT, n = 13); rejection ≥3A (RISHLT, n = 13); 0 one month before ACR (BRISHLT, n = 10). Results We found 294 genes differentially expressed between CISHLT and RISHLT, mainly involved in immune activation, and inflammation. Hierarchical clustering showed a clear segregation of CISHLT and RISHLT groups and heterogeneity of GEP within RISHLT. All EMB presented immune activation, but some RISHLT EMB were strongly subject to inflammation, whereas others, closer to CISHLT, were characterized by structural modifications with lower inflammation level. We identified 15 probes significantly different between BRISHLT and CISHLT, including the gene of the muscular protein TTN. This result suggests that structural alterations precede inflammation in ACR. Linear Discriminant Analysis based on these 15 probes was able to identify the histological status of every 36 samples. Conclusion Myocardial GEP is a helpful method to accurately diagnose ACR, and predicts rejection one month before its histological occurrence. These results should be considered in cardiac allograft recipients’ care.
Collapse
Affiliation(s)
- Diane Bodez
- AP-HP, Department of Cardiology, Henri Mondor Teaching Hospital, Créteil, France
- School of Medicine, Paris-Est-Créteil University (UPEC), Créteil, France
- IMRB INSERM U955, Paris-Est-Créteil University (UPEC), Créteil F-94000, France`
- DHU ATVB, Henri Mondor Teaching Hospital, Creteil, France
| | - Hakim Hocini
- School of Medicine, Paris-Est-Créteil University (UPEC), Créteil, France
- IMRB INSERM U955, Paris-Est-Créteil University (UPEC), Créteil F-94000, France`
- Vaccine Research Institute (VRI), Henri Mondor Teaching Hospital, Créteil, France
| | - Nicolas Tchitchek
- CEA, DSV/iMETI, Immunology of viral infections and autoimmune diseases research unit, Fontenay-aux-Roses, France
- UMR1184, IDMIT infrastructure, Fontenay-aux-Roses, France
| | - Pascaline Tisserand
- School of Medicine, Paris-Est-Créteil University (UPEC), Créteil, France
- IMRB INSERM U955, Paris-Est-Créteil University (UPEC), Créteil F-94000, France`
- Vaccine Research Institute (VRI), Henri Mondor Teaching Hospital, Créteil, France
| | - Nicole Benhaiem
- AP-HP, Department of Pathology, Henri Mondor Teaching Hospital, Créteil, France
| | - Caroline Barau
- School of Medicine, Paris-Est-Créteil University (UPEC), Créteil, France
- IMRB INSERM U955, Paris-Est-Créteil University (UPEC), Créteil F-94000, France`
- AP-HP, Platform of Biological Resources, Henri Mondor Teaching Hospital, Créteil, France
| | - Mounira Kharoubi
- AP-HP, Department of Cardiology, Henri Mondor Teaching Hospital, Créteil, France
- GRC Amyloid Research Institute, Henri Mondor Teaching Hospital, Créteil, France
| | - Aziz Guellich
- AP-HP, Department of Cardiology, Henri Mondor Teaching Hospital, Créteil, France
- School of Medicine, Paris-Est-Créteil University (UPEC), Créteil, France
- IMRB INSERM U955, Paris-Est-Créteil University (UPEC), Créteil F-94000, France`
- DHU ATVB, Henri Mondor Teaching Hospital, Creteil, France
- GRC Amyloid Research Institute, Henri Mondor Teaching Hospital, Créteil, France
| | - Soulef Guendouz
- AP-HP, Department of Cardiology, Henri Mondor Teaching Hospital, Créteil, France
- School of Medicine, Paris-Est-Créteil University (UPEC), Créteil, France
- DHU ATVB, Henri Mondor Teaching Hospital, Creteil, France
- GRC Amyloid Research Institute, Henri Mondor Teaching Hospital, Créteil, France
| | - Costin Radu
- AP-HP, Department of Cardiac Surgery, Henri Mondor Teaching Hospital, Créteil, France
| | - Jean-Paul Couetil
- School of Medicine, Paris-Est-Créteil University (UPEC), Créteil, France
- IMRB INSERM U955, Paris-Est-Créteil University (UPEC), Créteil F-94000, France`
- AP-HP, Department of Cardiac Surgery, Henri Mondor Teaching Hospital, Créteil, France
| | - Bijan Ghaleh
- School of Medicine, Paris-Est-Créteil University (UPEC), Créteil, France
- IMRB INSERM U955, Paris-Est-Créteil University (UPEC), Créteil F-94000, France`
- AP-HP, Platform of Biological Resources, Henri Mondor Teaching Hospital, Créteil, France
| | - Jean-Luc Dubois-Randé
- AP-HP, Department of Cardiology, Henri Mondor Teaching Hospital, Créteil, France
- School of Medicine, Paris-Est-Créteil University (UPEC), Créteil, France
- IMRB INSERM U955, Paris-Est-Créteil University (UPEC), Créteil F-94000, France`
- DHU ATVB, Henri Mondor Teaching Hospital, Creteil, France
| | - Emmanuel Teiger
- AP-HP, Department of Cardiology, Henri Mondor Teaching Hospital, Créteil, France
- School of Medicine, Paris-Est-Créteil University (UPEC), Créteil, France
- IMRB INSERM U955, Paris-Est-Créteil University (UPEC), Créteil F-94000, France`
- DHU ATVB, Henri Mondor Teaching Hospital, Creteil, France
| | - Luc Hittinger
- AP-HP, Department of Cardiology, Henri Mondor Teaching Hospital, Créteil, France
- School of Medicine, Paris-Est-Créteil University (UPEC), Créteil, France
- IMRB INSERM U955, Paris-Est-Créteil University (UPEC), Créteil F-94000, France`
- DHU ATVB, Henri Mondor Teaching Hospital, Creteil, France
| | - Yves Levy
- School of Medicine, Paris-Est-Créteil University (UPEC), Créteil, France
- IMRB INSERM U955, Paris-Est-Créteil University (UPEC), Créteil F-94000, France`
- Vaccine Research Institute (VRI), Henri Mondor Teaching Hospital, Créteil, France
- AP-HP, Clinical Immunology, Henri Mondor Teaching Hospital, Créteil, France
- * E-mail: (YL); (TD)
| | - Thibaud Damy
- AP-HP, Department of Cardiology, Henri Mondor Teaching Hospital, Créteil, France
- School of Medicine, Paris-Est-Créteil University (UPEC), Créteil, France
- IMRB INSERM U955, Paris-Est-Créteil University (UPEC), Créteil F-94000, France`
- DHU ATVB, Henri Mondor Teaching Hospital, Creteil, France
- GRC Amyloid Research Institute, Henri Mondor Teaching Hospital, Créteil, France
- * E-mail: (YL); (TD)
| |
Collapse
|
395
|
Zaunbrecher R, Regnier M. Connecting Sarcomere Protein Mutations to Pathogenesis in Cardiomyopathies: The Development of "Disease in a Dish" Models. Front Physiol 2016; 7:566. [PMID: 27920728 PMCID: PMC5118458 DOI: 10.3389/fphys.2016.00566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022] Open
Abstract
Recent technological and protocol developments have greatly increased the ability to utilize stem cells transformed into cardiomyocytes as models to study human heart muscle development and how this is affected by disease associated mutations in a variety of sarcomere proteins. In this perspective we provide an overview of these emerging technologies and how they are being used to create better models of “disease in a dish” for both research and screening assays. We also consider the value of these assays as models to explore the seminal processes in initiation of the disease development and the possibility of early interventions.
Collapse
Affiliation(s)
| | - Michael Regnier
- Department of Bioengineering, University of WashingtonSeattle, WA, USA; Center for Cardiovascular BiologySeattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattle, WA, USA
| |
Collapse
|
396
|
Titin-truncating variants affect heart function in disease cohorts and the general population. Nat Genet 2016; 49:46-53. [PMID: 27869827 PMCID: PMC5201198 DOI: 10.1038/ng.3719] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/18/2016] [Indexed: 11/08/2022]
Abstract
Titin-truncating variants (TTNtv) commonly cause dilated cardiomyopathy (DCM). TTNtv are also encountered in ∼1% of the general population, where they may be silent, perhaps reflecting allelic factors. To better understand TTNtv, we integrated TTN allelic series, cardiac imaging and genomic data in humans and studied rat models with disparate TTNtv. In patients with DCM, TTNtv throughout titin were significantly associated with DCM. Ribosomal profiling in rat showed the translational footprint of premature stop codons in Ttn, TTNtv-position-independent nonsense-mediated degradation of the mutant allele and a signature of perturbed cardiac metabolism. Heart physiology in rats with TTNtv was unremarkable at baseline but became impaired during cardiac stress. In healthy humans, machine-learning-based analysis of high-resolution cardiac imaging showed TTNtv to be associated with eccentric cardiac remodeling. These data show that TTNtv have molecular and physiological effects on the heart across species, with a continuum of expressivity in health and disease.
Collapse
|
397
|
Shih YH, Dvornikov AV, Zhu P, Ma X, Kim M, Ding Y, Xu X. Exon- and contraction-dependent functions of titin in sarcomere assembly. Development 2016; 143:4713-4722. [PMID: 27836965 DOI: 10.1242/dev.139246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/02/2016] [Indexed: 01/21/2023]
Abstract
Titin-truncating variants (TTNtvs) are the major cause of dilated cardiomyopathy (DCM); however, allelic heterogeneity (TTNtvs in different exons) results in variable phenotypes, and remains a major hurdle for disease diagnosis and therapy. Here, we generated a panel of ttn mutants in zebrafish. Four single deletion mutants in ttn.2 or ttn.1 resulted in four phenotypes and three double ttn.2/ttn.1 mutants exhibited more severe phenotypes in somites. Protein analysis identified ttnxu071 as a near-null mutant and the other six mutants as hypomorphic alleles. Studies of ttnxu071 uncovered a function of titin in guiding the assembly of nascent myofibrils from premyofibrils. By contrast, sarcomeres were assembled in the hypomorphic ttn mutants but either became susceptible to biomechanical stresses such as contraction or degenerated during development. Further genetic studies indicated that the exon usage hypothesis, but not the toxic peptide or the Cronos hypothesis, could account for these exon-dependent effects. In conclusion, we modeled TTNtv allelic heterogeneity during development and paved the way for future studies to decipher allelic heterogeneity in adult DCM.
Collapse
Affiliation(s)
- Yu-Huan Shih
- Department of Biochemistry and Molecular Biology, Division of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Division of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Division of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Xiao Ma
- Department of Biochemistry and Molecular Biology, Division of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Maengjo Kim
- Department of Biochemistry and Molecular Biology, Division of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Division of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Division of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
398
|
Jansweijer JA, Nieuwhof K, Russo F, Hoorntje ET, Jongbloed JDH, Lekanne Deprez RH, Postma AV, Bronk M, van Rijsingen IAW, de Haij S, Biagini E, van Haelst PL, van Wijngaarden J, van den Berg MP, Wilde AAM, Mannens MMAM, de Boer RA, van Spaendonck-Zwarts KY, van Tintelen JP, Pinto YM. Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. Eur J Heart Fail 2016; 19:512-521. [PMID: 27813223 DOI: 10.1002/ejhf.673] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 11/09/2022] Open
Abstract
AIMS Truncating titin mutations (tTTN) occur in 25% of dilated cardiomyopathy (DCM) cases, but the phenotype and severity of disease they cause have not yet been systematically studied. We studied whether tTTN variants are associated with a clinically distinguishable form of DCM. METHODS AND RESULTS We compared clinical data on DCM probands and relatives with a tTTN mutation (n = 45, n = 73), LMNA mutation (n = 28, n = 29), and probands who tested negative for both genes [idiopathic DCM (iDCM); n = 60]. Median follow-up was at least 2.5 years in each group. TTN subjects presented with DCM at higher age than LMNA subjects (probands 47.9 vs. 40.4 years, P = 0.004; relatives 59.8 vs. 47.0 years, P = 0.01), less often developed LVEF <35% [probands hazard ratio (HR) 0.38, P = 0.002], had higher age of death (probands 70.4 vs. 59.4 years, P < 0.001; relatives 74.1 vs. 58.4 years, P = 0.008), and had better composite outcome (malignant ventricular arrhythmia, heart transplantation, or death; probands HR 0.09, P < 0.001; relatives HR 0.21, P = 0.02) than LMNA subjects and iDCM subjects (HR 0.36, P = 0.07). An LVEF increase of at least 10% occurred in 46.9% of TTN subjects after initiation of standard heart failure treatment, while this only occurred in 6.5% of LMNA subjects (P < 0.001) and 18.5% of iDCM subjects (P = 0.02). This was confirmed in families with co-segregation, in which the 10% point LVEF increase occurred in 55.6% of subjects (P = 0.003 vs. LMNA, P = 0.079 vs. iDCM). CONCLUSIONS This study shows that tTTN-associated DCM is less severe at presentation and more amenable to standard therapy than LMNA mutation-induced DCM or iDCM.
Collapse
Affiliation(s)
- Joeri A Jansweijer
- AMC Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Karin Nieuwhof
- Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Francesco Russo
- Department of Clinical Genetics, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Edgar T Hoorntje
- Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan D H Jongbloed
- Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald H Lekanne Deprez
- Department of Clinical Genetics, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex V Postma
- Department of Anatomy, Embryology and Physiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieke Bronk
- Department of Clinical Genetics, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingrid A W van Rijsingen
- AMC Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Simone de Haij
- Department of Clinical Genetics, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Elena Biagini
- Department of Cardiology, S. Orsola-Malpighi Hospital, Bologna University, Italy
| | | | | | - Maarten P van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arthur A M Wilde
- AMC Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel M A M Mannens
- Department of Clinical Genetics, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Karin Y van Spaendonck-Zwarts
- Department of Clinical Genetics, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - J Peter van Tintelen
- Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Clinical Genetics, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Yigal M Pinto
- AMC Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
399
|
Kodo K, Ong SG, Jahanbani F, Termglinchan V, Hirono K, InanlooRahatloo K, Ebert AD, Shukla P, Abilez OJ, Churko JM, Karakikes I, Jung G, Ichida F, Wu SM, Snyder MP, Bernstein D, Wu JC. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 2016; 18:1031-42. [PMID: 27642787 PMCID: PMC5042877 DOI: 10.1038/ncb3411] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 08/12/2016] [Indexed: 02/07/2023]
Abstract
Left ventricular non-compaction (LVNC) is the third most prevalent cardiomyopathy in children and its pathogenesis has been associated with the developmental defect of the embryonic myocardium. We show that patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from LVNC patients carrying a mutation in the cardiac transcription factor TBX20 recapitulate a key aspect of the pathological phenotype at the single-cell level and this was associated with perturbed transforming growth factor beta (TGF-β) signalling. LVNC iPSC-CMs have decreased proliferative capacity due to abnormal activation of TGF-β signalling. TBX20 regulates the expression of TGF-β signalling modifiers including one known to be a genetic cause of LVNC, PRDM16, and genome editing of PRDM16 caused proliferation defects in iPSC-CMs. Inhibition of TGF-β signalling and genome correction of the TBX20 mutation were sufficient to reverse the disease phenotype. Our study demonstrates that iPSC-CMs are a useful tool for the exploration of pathological mechanisms underlying poorly understood cardiomyopathies including LVNC.
Collapse
Affiliation(s)
- Kazuki Kodo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Vittavat Termglinchan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Keiichi Hirono
- Department of Pediatrics, University of Toyama, Toyama-shi, Toyama 930-8555, Japan
| | - Kolsoum InanlooRahatloo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Antje D Ebert
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Praveen Shukla
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Oscar J Abilez
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jared M Churko
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gwanghyun Jung
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Fukiko Ichida
- Department of Pediatrics, University of Toyama, Toyama-shi, Toyama 930-8555, Japan
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel Bernstein
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
400
|
Chen CS. 3D Biomimetic Cultures: The Next Platform for Cell Biology. Trends Cell Biol 2016; 26:798-800. [PMID: 27637342 DOI: 10.1016/j.tcb.2016.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 01/06/2023]
Abstract
Advances in engineering of cells and culture formats have led to the development of a new generation of 3D cultures that can recapitulate a variety of multicell-type, morphogenetic behaviors that were previously largely observable only in in vivo settings. Ultimately, these systems are likely to be assimilated into and forever change the landscape of biomedical research.
Collapse
Affiliation(s)
- Christopher S Chen
- Biomedical Engineering and The Biological Design Center, Boston University, Boston, MA, USA; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA.
| |
Collapse
|