351
|
Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 2011; 8:109. [PMID: 21878125 PMCID: PMC3179447 DOI: 10.1186/1742-2094-8-109] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/30/2011] [Indexed: 12/23/2022] Open
Abstract
Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.
Collapse
Affiliation(s)
- Shlomo Rotshenker
- Dept. of Medical Neurobiology, IMRIC, Hebrew University, Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
352
|
Yu Q, Wang T, Zhou X, Wu J, Chen X, Liu Y, Wu D, Zhai Q. Wld(S) reduces paraquat-induced cytotoxicity via SIRT1 in non-neuronal cells by attenuating the depletion of NAD. PLoS One 2011; 6:e21770. [PMID: 21750730 PMCID: PMC3130051 DOI: 10.1371/journal.pone.0021770] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/07/2011] [Indexed: 11/30/2022] Open
Abstract
WldS is a fusion protein with NAD synthesis activity, and has been reported to protect axonal and synaptic compartments of neurons from various mechanical, genetic and chemical insults. However, whether WldS can protect non-neuronal cells against toxic chemicals is largely unknown. Here we found that WldS significantly reduced the cytotoxicity of bipyridylium herbicides paraquat and diquat in mouse embryonic fibroblasts, but had no effect on the cytotoxicity induced by chromium (VI), hydrogen peroxide, etoposide, tunicamycin or brefeldin A. WldS also slowed down the death of mice induced by intraperitoneal injection of paraquat. Further studies demonstrated that WldS markedly attenuated mitochondrial injury including disruption of mitochondrial membrane potential, structural damage and decline of ATP induced by paraquat. Disruption of the NAD synthesis activity of WldS by an H112A or F116S point mutation resulted in loss of its protective function against paraquat-induced cell death. Furthermore, WldS delayed the decrease of intracellular NAD levels induced by paraquat. Similarly, treatment with NAD or its precursor nicotinamide mononucleotide attenuated paraquat-induced cytotoxicity and decline of ATP and NAD levels. In addition, we showed that SIRT1 was required for both exogenous NAD and WldS-mediated cellular protection against paraquat. These findings suggest that NAD and SIRT1 mediate the protective function of WldS against the cytotoxicity induced by paraquat, which provides new clues for the mechanisms underlying the protective function of WldS in both neuronal and non-neuronal cells, and implies that attenuation of NAD depletion may be effective to alleviate paraquat poisoning.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Blotting, Western
- Cell Survival/drug effects
- Cells, Cultured
- Embryo, Mammalian/cytology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Herbicides/administration & dosage
- Herbicides/toxicity
- Hydrogen Peroxide/toxicity
- Injections, Intraperitoneal
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/physiology
- Mitochondria, Liver/ultrastructure
- Mutation
- NAD/metabolism
- NAD/pharmacology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nicotinamide Mononucleotide/pharmacology
- Oxidants/toxicity
- Paraquat/administration & dosage
- Paraquat/toxicity
- Reactive Oxygen Species/metabolism
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
Collapse
Affiliation(s)
- Qiujing Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuexia Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingxia Wu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingmiao Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yang Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dongmei Wu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
353
|
Conforti L, Janeckova L, Wagner D, Mazzola F, Cialabrini L, Di Stefano M, Orsomando G, Magni G, Bendotti C, Smyth N, Coleman M. Reducing expression of NAD+ synthesizing enzyme NMNAT1 does not affect the rate of Wallerian degeneration. FEBS J 2011; 278:2666-79. [PMID: 21615689 DOI: 10.1111/j.1742-4658.2011.08193.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
NAD(+) synthesizing enzyme NMNAT1 constitutes most of the sequence of neuroprotective protein Wld(S), which delays axon degeneration by 10-fold. NMNAT1 activity is necessary but not sufficient for Wld(S) neuroprotection in mice and 70 amino acids at the N-terminus of Wld(S), derived from polyubiquitination factor Ube4b, enhance axon protection by NMNAT1. NMNAT1 activity can confer neuroprotection when redistributed outside the nucleus or when highly overexpressed in vitro and partially in Drosophila. However, the role of endogenous NMNAT1 in normal axon maintenance and in Wallerian degeneration has not been elucidated yet. To address this question we disrupted the Nmnat1 locus by gene targeting. Homozygous Nmnat1 knockout mice do not survive to birth, indicating that extranuclear NMNAT isoforms cannot compensate for its loss. Heterozygous Nmnat1 knockout mice develop normally and do not show spontaneous neurodegeneration or axon pathology. Wallerian degeneration after sciatic nerve lesion is neither accelerated nor delayed in these mice, consistent with the proposal that other endogenous NMNAT isoforms play a principal role in Wallerian degeneration.
Collapse
|
354
|
Wen Y, Parrish JZ, He R, Zhai RG, Kim MD. Nmnat exerts neuroprotective effects in dendrites and axons. Mol Cell Neurosci 2011; 48:1-8. [PMID: 21596138 DOI: 10.1016/j.mcn.2011.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 11/30/2022] Open
Abstract
Dendrites can be maintained for extended periods of time after they initially establish coverage of their receptive field. The long-term maintenance of dendrites underlies synaptic connectivity, but how neurons establish and then maintain their dendritic arborization patterns throughout development is not well understood. Here, we show that the NAD synthase Nicotinamide mononucleotide adenylyltransferase (Nmnat) is cell-autonomously required for maintaining type-specific dendritic coverage of Drosophila dendritic arborization (da) sensory neurons. In nmnat heterozygous mutants, dendritic arborization patterns of class IV da neurons are properly established before increased retraction and decreased growth of terminal branches lead to progressive defects in dendritic coverage during later stages of development. Although sensory axons are largely intact in nmnat heterozygotes, complete loss of nmnat function causes severe axonal degeneration, demonstrating differential requirements for nmnat dosage in the maintenance of dendritic arborization patterns and axonal integrity. Overexpression of Nmnat suppresses dendrite maintenance defects associated with loss of the tumor suppressor kinase Warts (Wts), providing evidence that Nmnat, in addition to its neuroprotective role in axons, can function as a protective factor against progressive dendritic loss. Moreover, motor neurons deficient for nmnat show progressive defects in both dendrites and axons. Our studies reveal an essential role for endogenous Nmnat function in the maintenance of both axonal and dendritic integrity and present evidence of a broad neuroprotective role for Nmnat in the central nervous system.
Collapse
Affiliation(s)
- Yuhui Wen
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
355
|
Casson RJ, Chidlow G, Ebneter A, Wood JPM, Crowston J, Goldberg I. Translational neuroprotection research in glaucoma: a review of definitions and principles. Clin Exp Ophthalmol 2011; 40:350-7. [PMID: 22697056 DOI: 10.1111/j.1442-9071.2011.02563.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The maintenance of vision, through prevention and attenuation of neuronal injury in glaucoma, forms the basis of current clinical practice. Currently, the reduction of intraocular pressure is the only proven method to achieve these goals. Although this strategy enjoys considerable success, some patients progress to blindness; hence, additional management options are highly desirable. Several terms describing treatment modalities of neuronal diseases with potential applicability to glaucoma are used in the literature, including neuroprotection, neurorecovery, neurorescue and neuroregeneration. These phenomena have not been defined within a coherent framework. Here, we suggest a set of definitions, postulates and principles to form a foundation for the successful translation of novel glaucoma therapies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Robert J Casson
- South Australian Institute of Ophthalmology, Hanson Institute and Adelaide University, Adelaide, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
356
|
Ali YO, McCormack R, Darr A, Zhai RG. Nicotinamide mononucleotide adenylyltransferase is a stress response protein regulated by the heat shock factor/hypoxia-inducible factor 1alpha pathway. J Biol Chem 2011; 286:19089-99. [PMID: 21478149 DOI: 10.1074/jbc.m111.219295] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Stress responses are cellular processes essential for maintenance of cellular integrity and defense against environmental and intracellular insults. Neurodegenerative conditions are linked with inadequate stress responses. Several stress-responsive genes encoding neuroprotective proteins have been identified, and among them, the heat shock proteins comprise an important group of molecular chaperones that have neuroprotective functions. However, evidence for other critical stress-responsive genes is lacking. Recent studies on the NAD synthesis enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) have uncovered a novel neuronal maintenance and protective function against activity-, injury-, or misfolded protein-induced degeneration in Drosophila and in mammalian neurons. Here, we show that NMNAT is also a novel stress response protein required for thermotolerance and mitigation of oxidative stress-induced shortened lifespan. NMNAT is transcriptionally regulated during various stress conditions including heat shock and hypoxia through heat shock factor (HSF) and hypoxia-inducible factor 1α in vivo. HSF binds to nmnat promoter and induces NMNAT expression under heat shock. In contrast, under hypoxia, HIF1α up-regulates NMNAT indirectly through the induction of HSF. Our studies provide an in vivo mechanism for transcriptional regulation of NMNAT under stress and establish an essential role for this neuroprotective factor in cellular stress response.
Collapse
Affiliation(s)
- Yousuf O Ali
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
357
|
Brunetti L, Di Stefano M, Ruggieri S, Cimadamore F, Magni G. Homology modeling and deletion mutants of human nicotinamide mononucleotide adenylyltransferase isozyme 2: new insights on structure and function relationship. Protein Sci 2011; 19:2440-50. [PMID: 20954240 DOI: 10.1002/pro.526] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes the formation of NAD by means of nucleophilic attack by 5'-phosphoryl of NMN on the α-phosphoryl group of ATP. Humans possess three NMNAT isozymes (NMNAT1, NMNAT2, and NMNAT3) that differ in size and sequence, gene expression pattern, subcellular localization, oligomeric state and catalytic properties. Of these, NMNAT2, the least abundant isozyme, is the only one whose much-needed crystal structure has not been solved as yet. To fill this gap, we used the crystal structures of human NMNAT1 and NMNAT3 as templates for homology-based structural modeling of NMNAT2, and the resulting raw structure was then refined by molecular dynamics simulations in a water box to obtain a model of the final folded structure. We investigated the importance of NMNAT2's central domain, which we postulated to be dispensable for catalytic activity, instead representing an isozyme-specific control domain within the overall architecture of NMNAT2. Indeed, we experimentally confirmed that removal of different-length fragments from this central domain did not compromise the enzyme's catalytic activity or the overall tridimensional structure of the active site.
Collapse
Affiliation(s)
- Lucia Brunetti
- Dipartimento di Patologia Molecolare e Terapie Innovative, sezione di Biochimica, Università Politecnica delle Marche, 60131 Ancona, Italy
| | | | | | | | | |
Collapse
|
358
|
Abstract
Traditionally, researchers have believed that axons are highly dependent on their cell bodies for long-term survival. However, recent studies point to the existence of axon-autonomous mechanism(s) that regulate rapid axon degeneration after axotomy. Here, we review the cellular and molecular events that underlie this process, termed Wallerian degeneration. We describe the biphasic nature of axon degeneration after axotomy and our current understanding of how Wld(S)--an extraordinary protein formed by fusing a Ube4b sequence to Nmnat1--acts to protect severed axons. Interestingly, the neuroprotective effects of Wld(S) span all species tested, which suggests that there is an ancient, Wld(S)-sensitive axon destruction program. Recent studies with Wld(S) also reveal that Wallerian degeneration is genetically related to several dying back axonopathies, thus arguing that Wallerian degeneration can serve as a useful model to understand, and potentially treat, axon degeneration in diverse traumatic or disease contexts.
Collapse
Affiliation(s)
- Michael P Coleman
- Laboratory of Molecular Signaling, The Babraham Institute, Cambridge CB223AT, United Kingdom
| | | |
Collapse
|
359
|
Kalantari-Dehaghi M, Molina DM, Farhadieh M, John Morrow W, Liang X, Felgner PL, Grando SA. New targets of pemphigus vulgaris antibodies identified by protein array technology. Exp Dermatol 2011; 20:154-6. [DOI: 10.1111/j.1600-0625.2010.01193.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
360
|
Barrientos SA, Martinez NW, Yoo S, Jara JS, Zamorano S, Hetz C, Twiss JL, Alvarez J, Court FA. Axonal degeneration is mediated by the mitochondrial permeability transition pore. J Neurosci 2011; 31:966-78. [PMID: 21248121 PMCID: PMC3245862 DOI: 10.1523/jneurosci.4065-10.2011] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/27/2010] [Accepted: 11/01/2010] [Indexed: 01/23/2023] Open
Abstract
Axonal degeneration is an active process that has been associated with neurodegenerative conditions triggered by mechanical, metabolic, infectious, toxic, hereditary and inflammatory stimuli. This degenerative process can cause permanent loss of function, so it represents a focus for neuroprotective strategies. Several signaling pathways are implicated in axonal degeneration, but identification of an integrative mechanism for this self-destructive process has remained elusive. Here, we show that rapid axonal degeneration triggered by distinct mechanical and toxic insults is dependent on the activation of the mitochondrial permeability transition pore (mPTP). Both pharmacological and genetic targeting of cyclophilin D, a functional component of the mPTP, protects severed axons and vincristine-treated neurons from axonal degeneration in ex vivo and in vitro mouse and rat model systems. These effects were observed in axons from both the peripheral and central nervous system. Our results suggest that the mPTP is a key effector of axonal degeneration, upon which several independent signaling pathways converge. Since axonal and synapse degeneration are increasingly considered early pathological events in neurodegeneration, our work identifies a potential target for therapeutic intervention in a wide variety of conditions that lead to loss of axons and subsequent functional impairment.
Collapse
Affiliation(s)
- Sebastian A. Barrientos
- Department of Physiology, Faculty of Biology, Catholic University of Chile, Santiago 8331150, Chile
| | - Nicolas W. Martinez
- Department of Physiology, Faculty of Biology, Catholic University of Chile, Santiago 8331150, Chile
| | - Soonmoon Yoo
- Nemours Biomedical Research Institute, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19716
| | - Juan S. Jara
- Department of Physiology, Faculty of Biology, Catholic University of Chile, Santiago 8331150, Chile
| | - Sebastian Zamorano
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell and Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Claudio Hetz
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell and Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Department of Immunology and Infectious Diseases, Harvard University School of Public Health, Boston, Massachusetts 02115
- NeuroUnion Biomedical Foundation, Santiago 7630614, Chile, and
| | - Jeffery L. Twiss
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Jaime Alvarez
- Department of Physiology, Faculty of Biology, Catholic University of Chile, Santiago 8331150, Chile
| | - Felipe A. Court
- Department of Physiology, Faculty of Biology, Catholic University of Chile, Santiago 8331150, Chile
- NeuroUnion Biomedical Foundation, Santiago 7630614, Chile, and
| |
Collapse
|
361
|
Abstract
Axons depend critically on axonal transport both for supplying materials and for communicating with cell bodies. This chapter looks at each activity, asking what aspects are essential for axon survival. Axonal transport declines in neurodegenerative disorders, such as Alzheimer's disease, amyotrophic lateral sclerosis, and multiple sclerosis, and in normal ageing, but whether all cargoes are equally affected and what limits axon survival remains unclear. Cargoes can be differentially blocked in some disorders, either individually or in groups. Each missing protein cargo results in localized loss-of-function that can be partially modeled by disrupting the corresponding gene, sometimes with surprising results. The axonal response to losing specific proteins also depends on the rates of protein turnover and on whether the protein can be locally synthesized. Among cargoes with important axonal roles are components of the PI3 kinase, Mek/Erk, and Jnk signaling pathways, which help to communicate with cell bodies and to regulate axonal transport itself. Bidirectional trafficking of Bdnf, NT-3, and other neurotrophic factors contribute to intra- and intercellular signaling, affecting the axon's cellular environment and survival. Finally, several adhesion molecules and gangliosides are key determinants of axon survival, probably by mediating axon-glia interactions. Thus, failure of long-distance intracellular transport can deprive axons of one, few, or many cargoes. This can lead to axon degeneration either directly, through the absence of essential axonal proteins, or indirectly, through failures in communication with cell bodies and nonneuronal cells.
Collapse
|
362
|
Mayer PR, Huang N, Dewey CM, Dries DR, Zhang H, Yu G. Expression, localization, and biochemical characterization of nicotinamide mononucleotide adenylyltransferase 2. J Biol Chem 2010; 285:40387-96. [PMID: 20943658 PMCID: PMC3001018 DOI: 10.1074/jbc.m110.178913] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/10/2010] [Indexed: 12/11/2022] Open
Abstract
Nicotinamide mononucleotide (NMN) adenylyltransferase 2 (Nmnat2) catalyzes the synthesis of NAD from NMN and ATP. The Nmnat2 transcript is expressed predominately in the brain; we report here that Nmnat2 is a low abundance protein expressed in neurons. Previous studies indicate that Nmnat2 localizes to Golgi. As Nmnat2 is not predicted to contain a signal sequence, lipid-binding domain, or transmembrane domain, we investigated the nature of this interaction. These experiments reveal that Nmnat2 is palmitoylated in vitro, and this modification is required for membrane association. Surprisingly, exogenous Nmnat2 is toxic to neurons, indicating that protein levels must be tightly regulated. To analyze Nmnat2 localization in neurons (previous experiments relied on exogenous expression in HeLa cells), mouse brains were fractionated, showing that Nmnat2 is enriched in numerous membrane compartments including synaptic terminals. In HeLa cells, in addition to Golgi, Nmnat2 localizes to Rab7-containing late endosomes. These studies show that Nmnat2 is a neuronal protein peripherally attached to membranes via palmitoylation and suggest that Nmnat2 is transported to synaptic terminals via an endosomal pathway.
Collapse
Affiliation(s)
| | - Nian Huang
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | | - Hong Zhang
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Gang Yu
- From the Departments of Neuroscience and
| |
Collapse
|
363
|
The Wlds transgene reduces axon loss in a Charcot-Marie-Tooth disease 1A rat model and nicotinamide delays post-traumatic axonal degeneration. Neurobiol Dis 2010; 42:1-8. [PMID: 21168501 DOI: 10.1016/j.nbd.2010.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 12/02/2010] [Accepted: 12/10/2010] [Indexed: 11/20/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy and a duplication of the peripheral myelin protein of 22 kDa (PMP22) gene causes the most frequent subform CMT1A. Clinical impairments are determined by the amount of axonal loss. Axons of the spontaneous mouse mutant Wallerian degeneration slow (Wlds) show markedly reduced degeneration following various types of injuries. Protection is conferred by a chimeric Wlds gene encoding an N-terminal part of ubiquitination factor Ube4b and full length nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1). Nmnat1 enzyme generates nicotinamide adenine dinucleotide (NAD) from nicotinamide mononucleotide. Here, in a Pmp22 transgenic animal model of Charcot-Marie-Tooth disease type 1A (CMT rat), the Wlds transgene reduced axonal loss and clinical impairments without altering demyelination. Furthermore, nicotinamide - substrate precursor of the Nmnat1 enzyme - transiently delayed posttraumatic axonal degeneration in an in vivo model of acute peripheral nerve injury, but to a lower extent than Wlds. In contrast, 8 weeks of nicotinamide treatment did not influence axonal loss or clinical manifestations in the CMT rat. Therefore, nicotinamide can partially substitute for the protective Wlds effect in acute traumatic, but not in chronic secondary axonal injury. Future studies are needed to develop axon protective therapy in CMT1A which may be combined with therapeutic strategies aimed at downregulation of toxic PMP22 overexpression.
Collapse
|
364
|
Martin SM, O'Brien GS, Portera-Cailliau C, Sagasti A. Wallerian degeneration of zebrafish trigeminal axons in the skin is required for regeneration and developmental pruning. Development 2010; 137:3985-94. [PMID: 21041367 DOI: 10.1242/dev.053611] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fragments of injured axons that detach from their cell body break down by the molecularly regulated process of Wallerian degeneration (WD). Although WD resembles local axon degeneration, a common mechanism for refining neuronal structure, several previously examined instances of developmental pruning were unaffected by WD pathways. We used laser axotomy and time-lapse confocal imaging to characterize and compare peripheral sensory axon WD and developmental pruning in live zebrafish larvae. Detached fragments of single injured axon arbors underwent three stereotyped phases of WD: a lag phase, a fragmentation phase and clearance. The lag phase was developmentally regulated, becoming shorter as embryos aged, while the length of the clearance phase increased with the amount of axon debris. Both cell-specific inhibition of ubiquitylation and overexpression of the Wallerian degeneration slow protein (Wld(S)) lengthened the lag phase dramatically, but neither affected fragmentation. Persistent Wld(S)-expressing axon fragments directly repelled regenerating axon branches of their parent arbor, similar to self-repulsion among sister branches of intact arbors. Expression of Wld(S) also disrupted naturally occurring local axon pruning and axon degeneration in spontaneously dying trigeminal neurons: although pieces of Wld(S)-expressing axons were pruned, and some Wld(S)-expressing cells still died during development, in both cases detached axon fragments failed to degenerate. We propose that spontaneously pruned fragments of peripheral sensory axons must be removed by a WD-like mechanism to permit efficient innervation of the epidermis.
Collapse
Affiliation(s)
- Seanna M Martin
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
365
|
Abstract
Axon and synapse degeneration are common components of many neurodegenerative diseases, and their rescue is essential for effective neuroprotection. The chimeric Wallerian degeneration slow protein (Wld(S)) protects axons dose dependently, but its mechanism is still elusive. We recently showed that Wld(S) acts at a non-nuclear location and is present in axons. This and other recent reports support a model in which Wld(S) protects by extranuclear redistribution of its nuclear NMNAT1 portion. However, it remains unclear whether cytoplasmic NMNAT1 acts locally in axons and synapses or at a non-nuclear site within cell bodies. The potency of axon protection by non-nuclear NMNAT1 relative to Wld(S) also needs to be established in vivo. Because the N-terminal portion of Wld(S) (N70) localized to axons, we hypothesized that it mediates the trafficking of the NMNAT1 portion. To test this, we substituted N70 with an axonal targeting peptide derived from amyloid precursor protein, and fused this to NMNAT1 with disrupted nuclear targeting. In transgenic mice, this transformed NMNAT1 from a molecule unable to inhibit Wallerian degeneration, even at high expression levels, into a protein more potent than Wld(S), able to preserve injured axons for several weeks at undetectable expression levels. Preventing NMNAT1 axonal delivery abolished its protective effect. Axonally targeted NMNAT1 localized to vesicular structures, colocalizing with extranuclear Wld(S), and was cotransported at least partially with mitochondria. We conclude that axonal targeting of NMNAT activity is both necessary and sufficient to delay Wallerian degeneration, and that promoting axonal and synaptic delivery greatly enhances the effectiveness.
Collapse
|
366
|
Feng Y, Yan T, Zheng J, Ge X, Mu Y, Zhang Y, Wu D, Du JL, Zhai Q. Overexpression of Wldsor Nmnat2 in mauthner cells by single-cell electroporation delays axon degeneration in live zebrafish. J Neurosci Res 2010; 88:3319-27. [DOI: 10.1002/jnr.22498] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
367
|
Saggu SK, Chotaliya HP, Blumbergs PC, Casson RJ. Wallerian-like axonal degeneration in the optic nerve after excitotoxic retinal insult: an ultrastructural study. BMC Neurosci 2010; 11:97. [PMID: 20707883 PMCID: PMC2930628 DOI: 10.1186/1471-2202-11-97] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 08/13/2010] [Indexed: 12/20/2022] Open
Abstract
Background Excitotoxicity is involved in the pathogenesis of a number neurodegenerative diseases, and axonopathy is an early feature in several of these disorders. In models of excitotoxicity-associated neurological disease, an excitotoxin delivered to the central nervous system (CNS), could trigger neuronal death not only in the somatodendritic region, but also in the axonal region, via oligodendrocyte N-methyl-D-aspartate (NMDA) receptors. The retina and optic nerve, as approachable regions of the brain, provide a unique anatomical substrate to investigate the "downstream" effect of isolated excitotoxic perikaryal injury on central nervous system (CNS) axons, potentially providing information about the pathogenesis of the axonopathy in clinical neurological disorders. Herein, we provide ultrastructural information about the retinal ganglion cell (RGC) somata and their axons, both unmyelinated and myelinated, after NMDA-induced retinal injury. Male Sprague-Dawley rats were killed at 0 h, 24 h, 72 h and 7 days after injecting 20 nM NMDA into the vitreous chamber of the left eye (n = 8 in each group). Saline-injected right eyes served as controls. After perfusion fixation, dissection, resin-embedding and staining, ultrathin sections of eyes and proximal (intraorbital) and distal (intracranial) optic nerve segments were evaluated by transmission electron tomography (TEM). Results TEM demonstrated features of necrosis in RGCs: mitochondrial and endoplasmic reticulum swelling, disintegration of polyribosomes, rupture of membranous organelle and formation of myelin bodies. Ultrastructural damage in the optic nerve mimicked the changes of Wallerian degeneration; early nodal/paranodal disturbances were followed by the appearance of three major morphological variants: dark degeneration, watery degeneration and demyelination. Conclusion NMDA-induced excitotoxic retinal injury causes mainly necrotic RGC somal death with Wallerian-like degeneration of the optic nerve. Since axonal degeneration associated with perikaryal excitotoxic injury is an active, regulated process, it may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Sarabjit K Saggu
- Ophthalmic Research Laboratories, Hanson Institute, and The University of Adelaide, SA 5000, Australia
| | | | | | | |
Collapse
|
368
|
Irobi J, Almeida-Souza L, Asselbergh B, De Winter V, Goethals S, Dierick I, Krishnan J, Timmermans JP, Robberecht W, De Jonghe P, Van Den Bosch L, Janssens S, Timmerman V. Mutant HSPB8 causes motor neuron-specific neurite degeneration. Hum Mol Genet 2010; 19:3254-65. [PMID: 20538880 PMCID: PMC2908473 DOI: 10.1093/hmg/ddq234] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Missense mutations (K141N and K141E) in the α-crystallin domain of the small heat shock protein HSPB8 (HSP22) cause distal hereditary motor neuropathy (distal HMN) or Charcot-Marie-Tooth neuropathy type 2L (CMT2L). The mechanism through which mutant HSPB8 leads to a specific motor neuron disease phenotype is currently unknown. To address this question, we compared the effect of mutant HSPB8 in primary neuronal and glial cell cultures. In motor neurons, expression of both HSPB8 K141N and K141E mutations clearly resulted in neurite degeneration, as manifested by a reduction in number of neurites per cell, as well as in a reduction in average length of the neurites. Furthermore, expression of the K141E (and to a lesser extent, K141N) mutation also induced spheroids in the neurites. We did not detect any signs of apoptosis in motor neurons, showing that mutant HSPB8 resulted in neurite degeneration without inducing neuronal death. While overt in motor neurons, these phenotypes were only very mildly present in sensory neurons and completely absent in cortical neurons. Also glial cells did not show an altered phenotype upon expression of mutant HSPB8. These findings show that despite the ubiquitous presence of HSPB8, only motor neurons appear to be affected by the K141N and K141E mutations which explain the predominant motor neuron phenotype in distal HMN and CMT2L.
Collapse
Affiliation(s)
- Joy Irobi
- Peripheral Neuropathy, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|