351
|
Resequencing and comparative genomics of Stagonospora nodorum: sectional gene absence and effector discovery. G3-GENES GENOMES GENETICS 2013; 3:959-69. [PMID: 23589517 PMCID: PMC3689807 DOI: 10.1534/g3.112.004994] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Stagonospora nodorum is an important wheat (Triticum aestivum) pathogen in many parts of the world, causing major yield losses. It was the first species in the large fungal Dothideomycete class to be genome sequenced. The reference genome sequence (SN15) has been instrumental in the discovery of genes encoding necrotrophic effectors that induce disease symptoms in specific host genotypes. Here we present the genome sequence of two further S. nodorum strains (Sn4 and Sn79) that differ in their effector repertoire from the reference. Sn79 is avirulent on wheat and produces no apparent effectors when infiltrated onto many cultivars and mapping population parents. Sn4 is pathogenic on wheat and has virulences not found in SN15. The new strains, sequenced with short-read Illumina chemistry, are compared with SN15 by a combination of mapping and de novo assembly approaches. Each of the genomes contains a large number of strain-specific genes, many of which have no meaningful similarity to any known gene. Large contiguous sections of the reference genome are absent in the two newly sequenced strains. We refer to these differences as “sectional gene absences.” The presence of genes in pathogenic strains and absence in Sn79 is added to computationally predicted properties of known proteins to produce a list of likely effector candidates. Transposon insertion was observed in the mitochondrial genomes of virulent strains where the avirulent strain retained the likely ancestral sequence. The study suggests that short-read enabled comparative genomics is an effective way to both identify new S. nodorum effector candidates and to illuminate evolutionary processes in this species.
Collapse
|
352
|
Syme RA, Hane JK, Friesen TL, Oliver RP. Resequencing and comparative genomics of Stagonospora nodorum: sectional gene absence and effector discovery. G3 (BETHESDA, MD.) 2013. [PMID: 23589517 DOI: 10.1534/g1533.1112.004994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Stagonospora nodorum is an important wheat (Triticum aestivum) pathogen in many parts of the world, causing major yield losses. It was the first species in the large fungal Dothideomycete class to be genome sequenced. The reference genome sequence (SN15) has been instrumental in the discovery of genes encoding necrotrophic effectors that induce disease symptoms in specific host genotypes. Here we present the genome sequence of two further S. nodorum strains (Sn4 and Sn79) that differ in their effector repertoire from the reference. Sn79 is avirulent on wheat and produces no apparent effectors when infiltrated onto many cultivars and mapping population parents. Sn4 is pathogenic on wheat and has virulences not found in SN15. The new strains, sequenced with short-read Illumina chemistry, are compared with SN15 by a combination of mapping and de novo assembly approaches. Each of the genomes contains a large number of strain-specific genes, many of which have no meaningful similarity to any known gene. Large contiguous sections of the reference genome are absent in the two newly sequenced strains. We refer to these differences as "sectional gene absences." The presence of genes in pathogenic strains and absence in Sn79 is added to computationally predicted properties of known proteins to produce a list of likely effector candidates. Transposon insertion was observed in the mitochondrial genomes of virulent strains where the avirulent strain retained the likely ancestral sequence. The study suggests that short-read enabled comparative genomics is an effective way to both identify new S. nodorum effector candidates and to illuminate evolutionary processes in this species.
Collapse
Affiliation(s)
- Robert Andrew Syme
- Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Department of Environment and Agriculture, Bentley WA 6845, Australia
| | | | | | | |
Collapse
|
353
|
Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen. PLoS Genet 2013; 9:e1003567. [PMID: 23785303 PMCID: PMC3681731 DOI: 10.1371/journal.pgen.1003567] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/01/2013] [Indexed: 12/12/2022] Open
Abstract
Chromosomal rearrangements are a major driver of eukaryotic genome evolution, affecting speciation, pathogenicity and cancer progression. Changes in chromosome structure are often initiated by mis-repair of double-strand breaks in the DNA. Mis-repair is particularly likely when telomeres are lost or when dispersed repeats misalign during crossing-over. Fungi carry highly polymorphic chromosomal complements showing substantial variation in chromosome length and number. The mechanisms driving chromosome polymorphism in fungi are poorly understood. We aimed to identify mechanisms of chromosomal rearrangements in the fungal wheat pathogen Zymoseptoria tritici. We combined population genomic resequencing and chromosomal segment PCR assays with electrophoretic karyotyping and resequencing of parents and offspring from experimental crosses to show that this pathogen harbors a highly diverse complement of accessory chromosomes that exhibits strong global geographic differentiation in numbers and lengths of chromosomes. Homologous chromosomes carried highly differentiated gene contents due to numerous insertions and deletions. The largest accessory chromosome recently doubled in length through insertions totaling 380 kb. Based on comparative genomics, we identified the precise breakpoint locations of these insertions. Nondisjunction during meiosis led to chromosome losses in progeny of three different crosses. We showed that a new accessory chromosome emerged in two viable offspring through a fusion between sister chromatids. Such chromosome fusion is likely to initiate a breakage-fusion-bridge (BFB) cycle that can rapidly degenerate chromosomal structure. We suggest that the accessory chromosomes of Z. tritici originated mainly from ancient core chromosomes through a degeneration process that included BFB cycles, nondisjunction and mutational decay of duplicated sequences. The rapidly evolving accessory chromosome complement may serve as a cradle for adaptive evolution in this and other fungal pathogens.
Collapse
|
354
|
Delaye L, García-Guzmán G, Heil M. Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits? FUNGAL DIVERS 2013. [DOI: 10.1007/s13225-013-0240-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
355
|
de Jonge R, Bolton MD, Kombrink A, van den Berg GCM, Yadeta KA, Thomma BPHJ. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res 2013; 23:1271-82. [PMID: 23685541 PMCID: PMC3730101 DOI: 10.1101/gr.152660.112] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sexual recombination drives genetic diversity in eukaryotic genomes and fosters adaptation to novel environmental challenges. Although strictly asexual microorganisms are often considered as evolutionary dead ends, they comprise many devastating plant pathogens. Presently, it remains unknown how such asexual pathogens generate the genetic variation that is required for quick adaptation and evolution in the arms race with their hosts. Here, we show that extensive chromosomal rearrangements in the strictly asexual plant pathogenic fungus Verticillium dahliae establish highly dynamic lineage-specific (LS) genomic regions that act as a source for genetic variation to mediate aggressiveness. We show that such LS regions are greatly enriched for in planta-expressed effector genes encoding secreted proteins that enable host colonization. The LS regions occur at the flanks of chromosomal breakpoints and are enriched for retrotransposons and other repetitive sequence elements. Our results suggest that asexual pathogens may evolve by prompting chromosomal rearrangements, enabling rapid development of novel effector genes. Likely, chromosomal reshuffling can act as a general mechanism for adaptation in asexually propagating organisms.
Collapse
Affiliation(s)
- Ronnie de Jonge
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
356
|
Balesdent MH, Fudal I, Ollivier B, Bally P, Grandaubert J, Eber F, Chèvre AM, Leflon M, Rouxel T. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. THE NEW PHYTOLOGIST 2013; 198:887-898. [PMID: 23406519 DOI: 10.1111/nph.12178] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/10/2013] [Indexed: 05/02/2023]
Abstract
Phytopathogenic fungi frequently contain dispensable chromosomes, some of which contribute to host range or pathogenicity. In Leptosphaeria maculans, the stem canker agent of oilseed rape (Brassica napus), the minichromosome was previously suggested to be dispensable, without evidence for any role in pathogenicity. Using genetic and genomic approaches, we investigated the inheritance and molecular determinant of an L. maculans-Brassica rapa incompatible interaction. Single gene control of the resistance was found, while all markers located on the L. maculans minichromosome, absent in the virulent parental isolate, co-segregated with the avirulent phenotype. Only one candidate avirulence gene was identified on the minichromosome, validated by complementation experiments and termed AvrLm11. The minichromosome was frequently lost following meiosis, but the frequency of isolates lacking it remained stable in field populations sampled at a 10-yr time interval, despite a yearly sexual stage in the L. maculans life cycle. This work led to the cloning of a new 'lost in the middle of nowhere' avirulence gene of L. maculans, interacting with a B. rapa resistance gene termed Rlm11 and introgressed into B. napus. It demonstrated the dispensability of the L. maculans minichromosome and suggested that its loss generates a fitness deficit.
Collapse
Affiliation(s)
- Marie-Hélène Balesdent
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Isabelle Fudal
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Bénédicte Ollivier
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Pascal Bally
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Jonathan Grandaubert
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Frédérique Eber
- INRA, UMR1349 IGEPP, BP35327, F-35653, Le Rheu Cedex, France
| | | | - Martine Leflon
- CETIOM, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Thierry Rouxel
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| |
Collapse
|
357
|
Brunner PC, Torriani SFF, Croll D, Stukenbrock EH, McDonald BA. Coevolution and life cycle specialization of plant cell wall degrading enzymes in a hemibiotrophic pathogen. Mol Biol Evol 2013; 30:1337-47. [PMID: 23515261 PMCID: PMC3649673 DOI: 10.1093/molbev/mst041] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zymoseptoria tritici is an important fungal pathogen on wheat that originated in the Fertile Crescent. Its closely related sister species Z. pseudotritici and Z. ardabiliae infect wild grasses in the same region. This recently emerged host–pathogen system provides a rare opportunity to investigate the evolutionary processes shaping the genome of an emerging pathogen. Here, we investigate genetic signatures in plant cell wall degrading enzymes (PCWDEs) that are likely affected by or driving coevolution in plant-pathogen systems. We hypothesize four main evolutionary scenarios and combine comparative genomics, transcriptomics, and selection analyses to assign the majority of PCWDEs in Z. tritici to one of these scenarios. We found widespread differential transcription among different members of the same gene family, challenging the idea of functional redundancy and suggesting instead that specialized enzymatic activity occurs during different stages of the pathogen life cycle. We also find that natural selection has significantly affected at least 19 of the 48 identified PCWDEs. The majority of genes showed signatures of purifying selection, typical for the scenario of conserved substrate optimization. However, six genes showed diversifying selection that could be attributed to either host adaptation or host evasion. This study provides a powerful framework to better understand the roles played by different members of multigene families and to determine which genes are the most appropriate targets for wet laboratory experimentation, for example, to elucidate enzymatic function during relevant phases of a pathogen’s life cycle.
Collapse
Affiliation(s)
- Patrick C Brunner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
358
|
Gan P, Ikeda K, Irieda H, Narusaka M, O'Connell RJ, Narusaka Y, Takano Y, Kubo Y, Shirasu K. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. THE NEW PHYTOLOGIST 2013; 197:1236-1249. [PMID: 23252678 DOI: 10.1111/nph.12085] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/05/2012] [Indexed: 05/04/2023]
Abstract
Hemibiotrophic fungal plant pathogens represent a group of agronomically significant disease-causing agents that grow first on living tissue and then cause host death in later, necrotrophic growth. Among these, Colletotrichum spp. are devastating pathogens of many crops. Identifying expanded classes of genes in the genomes of phytopathogenic Colletotrichum, especially those associated with specific stages of hemibiotrophy, can provide insights on how these pathogens infect a large number of hosts. The genomes of Colletotrichum orbiculare, which infects cucurbits and Nicotiana benthamiana, and C. gloeosporioides, which infects a wide range of crops, were sequenced and analyzed, focusing on features with potential roles in pathogenicity. Regulation of C. orbiculare gene expression was investigated during infection of N. benthamiana using a custom microarray. Genes expanded in both genomes compared to other fungi included sequences encoding small, secreted proteins (SSPs), secondary metabolite synthesis genes, proteases and carbohydrate-degrading enzymes. Many SSP and secondary metabolite synthesis genes were upregulated during initial stages of host colonization, whereas the necrotrophic stage of growth is characterized by upregulation of sequences encoding degradative enzymes. Hemibiotrophy in C. orbiculare is characterized by distinct stage-specific gene expression profiles of expanded classes of potential pathogenicity genes.
Collapse
Affiliation(s)
- Pamela Gan
- Plant Science Center, RIKEN, Yokohama, Japan
| | - Kyoko Ikeda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiroki Irieda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mari Narusaka
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Okayama, Japan
| | | | - Yoshihiro Narusaka
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Okayama, Japan
| | | | - Yasuyuki Kubo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Ken Shirasu
- Plant Science Center, RIKEN, Yokohama, Japan
| |
Collapse
|
359
|
Morrow CA, Fraser JA. Ploidy variation as an adaptive mechanism in human pathogenic fungi. Semin Cell Dev Biol 2013; 24:339-46. [PMID: 23380396 DOI: 10.1016/j.semcdb.2013.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 12/24/2022]
Abstract
Changes in ploidy have a profound and usually negative influence on cellular viability and proliferation, yet the vast majority of cancers and tumours exhibit an aneuploid karyotype. Whether this genomic plasticity is a cause or consequence of malignant transformation remains uncertain. Systemic fungal pathogens regularly develop aneuploidies in a similar manner during human infection, often far in excess of the natural rate of chromosome nondisjunction. As both processes fundamentally represent cells evolving under selective pressures, this suggests that changes in chromosome number may be a concerted mechanism to adapt to the hostile host environment. Here, we examine the mechanisms by which aneuploidy and polyploidy are generated in the fungal pathogens Candida albicans and Cryptococcus neoformans and investigate whether these represent an adaptive strategy under severe stress through the rapid generation of large-scale mutations. Insights into fungal ploidy changes, strategies for tolerating aneuploidies and proliferation during infection may yield novel targets for both antifungal and anticancer therapies.
Collapse
Affiliation(s)
- Carl A Morrow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane QLD 4072, Australia
| | | |
Collapse
|
360
|
Cools HJ, Hammond-Kosack KE. Exploitation of genomics in fungicide research: current status and future perspectives. MOLECULAR PLANT PATHOLOGY 2013; 14:197-210. [PMID: 23157348 PMCID: PMC6638899 DOI: 10.1111/mpp.12001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Every year, fungicide use to control plant disease caused by pathogenic fungi increases. The global fungicide market is now worth more than £5.3 billion, second only to the herbicide market in importance. In the UK, over 5500 tonnes of fungicide were applied to crops in 2010 (The Food and Environment Research Agency, Pesticide Usage Statistics), with 95.5% of the wheat-growing area receiving three fungicide sprays. Although dependence on fungicides to produce food securely, reliably and cheaply may be moderated in the future by further developments in crop biotechnology, modern crop protection will continue to require a diversity of solutions, including effective and safe chemical control. Therefore, investment in exploiting the increasingly available genome sequences of the most devastating fungal and oomycete phytopathogenic species should bring an array of new opportunities for chemical intervention. To date, the impact of whole genome research on the development, introduction and stewardship of fungicides has been limited, but ongoing improvements in computational analysis, molecular biology, chemical genetics, genome sequencing and transcriptomics will facilitate the development and registration of the future suite of crop protection chemicals.
Collapse
Affiliation(s)
- Hans J Cools
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | |
Collapse
|
361
|
Cools HJ, Fraaije BA. Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. PEST MANAGEMENT SCIENCE 2013; 69:150-5. [PMID: 22730104 DOI: 10.1002/ps.3348] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/29/2012] [Accepted: 04/26/2012] [Indexed: 05/06/2023]
Abstract
This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole target sterol 14α-demethylase (MgCYP51) enzyme in response to selection by the sequential introduction of progressively more effective azoles is described, and the contribution of individual MgCYP51 amino acid alterations and their combinations to azole resistance phenotypes and intrinsic enzyme activity is discussed. In addition, the recent identification of mechanisms independent of changes in MgCYP51 structure correlated with novel azole cross-resistant phenotypes suggests that the further evolution of M. graminicola under continued selection by azole fungicides could involve multiple mechanisms. The prospects for azole fungicides in controlling European M. graminicola populations in the future are discussed in the context of these new findings.
Collapse
Affiliation(s)
- Hans J Cools
- Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire, UK.
| | | |
Collapse
|
362
|
Newsome AW, Nelson D, Corran A, Kelly SL, Kelly DE. The cytochrome P450 complement (CYPome) of Mycosphaerella graminicola. Biotechnol Appl Biochem 2013; 60:52-64. [PMID: 23586992 DOI: 10.1002/bab.1062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/14/2012] [Indexed: 11/05/2022]
Abstract
Mycosphaerella graminicola is a key fungal pathogen of wheat and a major target for azole fungicides, many of whose central mode of action is through inhibition of cytochrome P450 51 (lanosterol 14α-demethylase) in the ergosterol biosynthetic pathway. The range of activities of other fungal CYPs is thought to be a reflection of the differences between different organisms and their range of secondary metabolic pathways as a response to their niche environments, for example, in the production of mycotoxins. The present study collates information from a range of databases, to classify the CYPs found in M. graminicola and assign them an internationally recognized nomenclature, which, when referenced to the recent publication of the JGI version 2.0 genome model, creates a current, robust model for the CYP complement (CYPome) of M. graminicola. These CYPome data, which examined 82 CYPs and one pseudo-gene, may be utilized not only to further characterize and describe the physiology of the organism but also to enhance our understanding of CYP function and diversity.
Collapse
Affiliation(s)
- Alun W Newsome
- Institute of Life Science, College of Medicine, Swansea University, Wales, UK
| | | | | | | | | |
Collapse
|
363
|
Condon BJ, Leng Y, Wu D, Bushley KE, Ohm RA, Otillar R, Martin J, Schackwitz W, Grimwood J, MohdZainudin N, Xue C, Wang R, Manning VA, Dhillon B, Tu ZJ, Steffenson BJ, Salamov A, Sun H, Lowry S, LaButti K, Han J, Copeland A, Lindquist E, Barry K, Schmutz J, Baker SE, Ciuffetti LM, Grigoriev IV, Zhong S, Turgeon BG. Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS Genet 2013; 9:e1003233. [PMID: 23357949 PMCID: PMC3554632 DOI: 10.1371/journal.pgen.1003233] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 11/14/2012] [Indexed: 11/17/2022] Open
Abstract
The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.
Collapse
Affiliation(s)
- Bradford J. Condon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Dongliang Wu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Kathryn E. Bushley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Robin A. Ohm
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Robert Otillar
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Joel Martin
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Wendy Schackwitz
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - NurAinIzzati MohdZainudin
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chunsheng Xue
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Rui Wang
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Viola A. Manning
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Braham Dhillon
- Department of Forest Sciences, University of British Columbia, Vancouver, Canada
| | - Zheng Jin Tu
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Asaf Salamov
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Hui Sun
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Steve Lowry
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Kurt LaButti
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - James Han
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Alex Copeland
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Erika Lindquist
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Kerrie Barry
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Jeremy Schmutz
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Scott E. Baker
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Lynda M. Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Igor V. Grigoriev
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - B. Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
364
|
Kubicek CP. Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol 2013; 163:133-42. [PMID: 22750088 PMCID: PMC3568919 DOI: 10.1016/j.jbiotec.2012.05.020] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 01/07/2023]
Abstract
Recent progress and improvement in "-omics" technologies has made it possible to study the physiology of organisms by integrated and genome-wide approaches. This bears the advantage that the global response, rather than isolated pathways and circuits within an organism, can be investigated ("systems biology"). The sequencing of the genome of Trichoderma reesei (teleomorph Hypocrea jecorina), a fungus that serves as a major producer of biomass-degrading enzymes for the use of renewable lignocellulosic material towards production of biofuels and biorefineries, has offered the possibility to study this organism and its enzyme production on a genome wide scale. In this review, I will highlight the use of genomics, transcriptomics, proteomics and metabolomics towards an improved and novel understanding of the biochemical processes that involve in the massive overproduction of secreted proteins.
Collapse
|
365
|
Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM, Figueroa M, Freitag M, Hane JK, Henrissat B, Holman WH, Kodira CD, Martin J, Oliver RP, Robbertse B, Schackwitz W, Schwartz DC, Spatafora JW, Turgeon BG, Yandava C, Young S, Zhou S, Zeng Q, Grigoriev IV, Ma LJ, Ciuffetti LM. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 (BETHESDA, MD.) 2013; 3:41-63. [PMID: 23316438 PMCID: PMC3538342 DOI: 10.1534/g3.112.004044] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/02/2012] [Indexed: 12/31/2022]
Abstract
Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.
Collapse
Affiliation(s)
- Viola A. Manning
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Iovanna Pandelova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Braham Dhillon
- Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Larry J. Wilhelm
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Carbone/Ferguson Laboratories, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon 97006
| | - Stephen B. Goodwin
- USDA–Agricultural Research Service, Purdue University, West Lafayette, Indiana 47907
| | | | - Melania Figueroa
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- USDA-Agricultural Research Service, Forage Seed and Cereal Research Unit, Oregon State University, Corvallis, Oregon 97331
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - James K. Hane
- Commonwealth Scientific and Industrial Research Organization−Plant Industry, Centre for Environment and Life Sciences, Floreat, Western Australia 6014, Australia
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Centre National de la Recherche Scientifique, 13288 Marseille cedex 9, France
| | - Wade H. Holman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Chinnappa D. Kodira
- The Broad Institute, Cambridge, Massachusetts 02142
- Roche 454, Branford, Connecticut 06405
| | - Joel Martin
- US DOE Joint Genome Institute, Walnut Creek, California 94598
| | - Richard P. Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6845, Australia
| | - Barbara Robbertse
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Centre National de la Recherche Scientifique, 13288 Marseille cedex 9, France
| | | | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - B. Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14850
| | | | - Sarah Young
- The Broad Institute, Cambridge, Massachusetts 02142
| | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | | | | | - Li-Jun Ma
- The Broad Institute, Cambridge, Massachusetts 02142
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Lynda M. Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
366
|
Santana MF, Silva JCF, Batista AD, Ribeiro LE, da Silva GF, de Araújo EF, de Queiroz MV. Abundance, distribution and potential impact of transposable elements in the genome of Mycosphaerella fijiensis. BMC Genomics 2012; 13:720. [PMID: 23260030 PMCID: PMC3562529 DOI: 10.1186/1471-2164-13-720] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 12/20/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mycosphaerella fijiensis is a ascomycete that causes Black Sigatoka in bananas. Recently, the M. fijiensis genome was sequenced. Repetitive sequences are ubiquitous components of fungal genomes. In most genomic analyses, repetitive sequences are associated with transposable elements (TEs). TEs are dispersed repetitive DNA sequences found in a host genome. These elements have the ability to move from one location to another within the genome, and their insertion can cause a wide spectrum of mutations in their hosts. Some of the deleterious effects of TEs may be due to ectopic recombination among TEs of the same family. In addition, some transposons are physically linked to genes and can control their expression. To prevent possible damage caused by the presence of TEs in the genome, some fungi possess TE-silencing mechanisms, such as RIP (Repeat Induced Point mutation). In this study, the abundance, distribution and potential impact of TEs in the genome of M. fijiensis were investigated. RESULTS A total of 613 LTR-Gypsy and 27 LTR-Copia complete elements of the class I were detected. Among the class II elements, a total of 28 Mariner, five Mutator and one Harbinger complete elements were identified. The results of this study indicate that transposons were and are important ectopic recombination sites. A distribution analysis of a transposable element from each class of the M. fijiensis isolates revealed variable hybridization profiles, indicating the activity of these elements. Several genes encoding proteins involved in important metabolic pathways and with potential correlation to pathogenicity systems were identified upstream and downstream of transposable elements. A comparison of the sequences from different transposon groups suggested the action of the RIP silencing mechanism in the genome of this microorganism. CONCLUSIONS The analysis of TEs in M. fijiensis suggests that TEs play an important role in the evolution of this organism because the activity of these elements, as well as the rearrangements caused by ectopic recombination, can result in deletion, duplication, inversion and translocation. Some of these changes can potentially modify gene structure or expression and, thus, facilitate the emergence of new strains of this pathogen.
Collapse
Affiliation(s)
- Mateus F Santana
- Present address: Laboratório de Genética Molecular e de Microrganismo, Universidade Federal de Viçosa, Viçosa, Brazil
| | - José CF Silva
- Present address: Diretoria de Tecnologia da Informação, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Aline D Batista
- Present address: Laboratório de Genética Molecular e de Microrganismo, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Lílian E Ribeiro
- Present address: Laboratório de Genética Molecular e de Microrganismo, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Elza F de Araújo
- Present address: Laboratório de Genética Molecular e de Microrganismo, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Marisa V de Queiroz
- Present address: Laboratório de Genética Molecular e de Microrganismo, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
367
|
Morais do Amaral A, Antoniw J, Rudd JJ, Hammond-Kosack KE. Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola. PLoS One 2012; 7:e49904. [PMID: 23236356 PMCID: PMC3517617 DOI: 10.1371/journal.pone.0049904] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/15/2012] [Indexed: 01/16/2023] Open
Abstract
The Dothideomycete fungus Mycosphaerella graminicola is the causal agent of Septoria tritici blotch, a devastating disease of wheat leaves that causes dramatic decreases in yield. Infection involves an initial extended period of symptomless intercellular colonisation prior to the development of visible necrotic disease lesions. Previous functional genomics and gene expression profiling studies have implicated the production of secreted virulence effector proteins as key facilitators of the initial symptomless growth phase. In order to identify additional candidate virulence effectors, we re-analysed and catalogued the predicted protein secretome of M. graminicola isolate IPO323, which is currently regarded as the reference strain for this species. We combined several bioinformatic approaches in order to increase the probability of identifying truly secreted proteins with either a predicted enzymatic function or an as yet unknown function. An initial secretome of 970 proteins was predicted, whilst further stringent selection criteria predicted 492 proteins. Of these, 321 possess some functional annotation, the composition of which may reflect the strictly intercellular growth habit of this pathogen, leaving 171 with no functional annotation. This analysis identified a protein family encoding secreted peroxidases/chloroperoxidases (PF01328) which is expanded within all members of the family Mycosphaerellaceae. Further analyses were done on the non-annotated proteins for size and cysteine content (effector protein hallmarks), and then by studying the distribution of homologues in 17 other sequenced Dothideomycete fungi within an overall total of 91 predicted proteomes from fungal, oomycete and nematode species. This detailed M. graminicola secretome analysis provides the basis for further functional and comparative genomics studies.
Collapse
|
368
|
Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC, Dhillon B, Glaser F, Hesse CN, Kosti I, LaButti K, Lindquist EA, Lucas S, Salamov AA, Bradshaw RE, Ciuffetti L, Hamelin RC, Kema GHJ, Lawrence C, Scott JA, Spatafora JW, Turgeon BG, de Wit PJGM, Zhong S, Goodwin SB, Grigoriev IV. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog 2012; 8:e1003037. [PMID: 23236275 PMCID: PMC3516569 DOI: 10.1371/journal.ppat.1003037] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 09/30/2012] [Indexed: 12/21/2022] Open
Abstract
The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress. Dothideomycetes is the largest and most ecologically diverse class of fungi that includes many plant pathogens with high economic impact. Currently 18 genome sequences of Dothideomycetes are available, 14 of which are newly described in this paper and in several companion papers, allowing unprecedented resolution in comparative analyses. These 18 organisms have diverse lifestyles and strategies of plant pathogenesis. Three feed on dead organic matter only, six are necrotrophs (killing the host plant cells), one is a biotroph (forming an association with and thus feeding on the living cells of the host plant cells) and 8 are hemibiotrophs (having an initial biotrophic stage, and killing the host plant at a later stage). These various lifestyles are also reflected in the gene sets present in each group. For example, sets of genes involved in carbohydrate degradation and secondary metabolism are expanded in necrotrophs. Many genes involved in pathogenesis are located near repetitive sequences, which are believed to speed up their evolution. Blocks of genes with conserved gene order were identified. In addition to this we deduce that the mechanism for mesosynteny, a type of genome evolution particular to Dothideomycetes, is by intra-chromosomal inversions.
Collapse
Affiliation(s)
- Robin A. Ohm
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
- * E-mail: (RAO); (IVG)
| | - Nicolas Feau
- Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS, Marseille, France
| | | | | | - Kerrie W. Barry
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Bradford J. Condon
- Department of Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Alex C. Copeland
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Braham Dhillon
- Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabian Glaser
- Bioinformatics Knowledge Unit, Technion - IIT, Haifa, Israel
| | - Cedar N. Hesse
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Idit Kosti
- Department of Biology, Technion - IIT, Haifa, Israel
| | - Kurt LaButti
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Erika A. Lindquist
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Susan Lucas
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Asaf A. Salamov
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Rosie E. Bradshaw
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Lynda Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Richard C. Hamelin
- Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Natural Resources Canada, Ste-Foy, Quebec, Canada
| | | | - Christopher Lawrence
- Virginia Bioinformatics Institute & Department of Biological Sciences, Blacksburg, Virginia, United States of America
| | - James A. Scott
- Division of Occupational & Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - B. Gillian Turgeon
- Department of Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | | | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Stephen B. Goodwin
- United States Department of Agriculture, Agricultural Research Service, Purdue University, West Lafayette, Indiana, United States of America
| | - Igor V. Grigoriev
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
- * E-mail: (RAO); (IVG)
| |
Collapse
|
369
|
Oliver R. Genomic tillage and the harvest of fungal phytopathogens. THE NEW PHYTOLOGIST 2012; 196:1015-1023. [PMID: 22998436 DOI: 10.1111/j.1469-8137.2012.04330.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/06/2012] [Indexed: 06/01/2023]
Abstract
Genome sequencing has been carried out on a small selection of major fungal ascomycete pathogens. These studies show that simple models whereby pathogens evolved from phylogenetically related saprobes by the acquisition or modification of a small number of key genes cannot be sustained.The genomes show that pathogens cannot be divided into three clearly delineated classes (biotrophs, hemibiotrophs and necrotrophs) but rather into a complex matrix of categories each with subtly different properties. It is clear that the evolution of pathogenicity is ancient, rapid and ongoing. Fungal pathogens have undergone substantial genomic rearrangements that can be appropriately described as 'genomic tillage'. Genomic tillage underpins the evolution and expression of large families of genes - known as effectors - that manipulate and exploit metabolic and defence processes of plants so as to allow the proliferation of pathogens.
Collapse
Affiliation(s)
- Richard Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6845, Australia
| |
Collapse
|
370
|
The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet 2012; 8:e1003088. [PMID: 23209441 PMCID: PMC3510045 DOI: 10.1371/journal.pgen.1003088] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/19/2012] [Indexed: 01/07/2023] Open
Abstract
We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.
Collapse
|
371
|
Gomes de Oliveira S, Cassia de Moura R, Martins C. B chromosome in the beetle Coprophanaeus cyanescens (Scarabaeidae): emphasis in the organization of repetitive DNA sequences. BMC Genet 2012; 13:96. [PMID: 23131070 PMCID: PMC3506448 DOI: 10.1186/1471-2156-13-96] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To contribute to the knowledge of coleopteran cytogenetics, especially with respect to the genomic content of B chromosomes, we analyzed the composition and organization of repetitive DNA sequences in the Coprophanaeus cyanescens karyotype. We used conventional staining and the application of fluorescence in situ hybridization (FISH) mapping using as probes C0t-1 DNA fraction, the 18S and 5S rRNA genes, and the LOA-like non-LTR transposable element (TE). RESULTS The conventional analysis detected 3 individuals (among 50 analyzed) carrying one small metacentric and mitotically unstable B chromosome. The FISH analysis revealed a pericentromeric block of C0t-1 DNA in the B chromosome but no 18S or 5S rDNA clusters in this extra element. Using the LOA-like TE probe, the FISH analysis revealed large pericentromeric blocks in eight autosomal bivalents and in the B chromosome, and a pericentromeric block extending to the short arm in one autosomal pair. No positive hybridization signal was observed for the LOA-like element in the sex chromosomes. CONCLUSIONS The results indicate that the origin of the B chromosome is associated with the autosomal elements, as demonstrated by the hybridization with C0t-1 DNA and the LOA-like TE. The present study is the first report on the cytogenetic mapping of a TE in coleopteran chromosomes. These TEs could have been involved in the origin and evolution of the B chromosome in C. cyanescens.
Collapse
Affiliation(s)
- Sarah Gomes de Oliveira
- Department of Morphology, Bioscience Institute, UNESP - Sao Paulo State University, Botucatu, SP, 18618-970, Brazil
| | | | | |
Collapse
|
372
|
Lind M, van der Nest M, Olson Å, Brandström-Durling M, Stenlid J. A 2nd generation linkage map of Heterobasidion annosum s.l. based on in silico anchoring of AFLP markers. PLoS One 2012; 7:e48347. [PMID: 23139779 PMCID: PMC3489678 DOI: 10.1371/journal.pone.0048347] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, we present a 2nd generation genetic linkage map of a cross between the North American species Heterobasidion irregulare and H. occidentale, based on the alignment of the previously published 1st generation map to the parental genomes. We anchored 216 of the original 308 AFLP markers to their respective restriction sites using an in silico-approach. The map resolution was improved by adding 146 sequence-tagged microsatellite markers and 39 sequenced gene markers. The new markers confirmed the positions of the anchored AFLP markers, fused the original 39 linkage groups together into 17, and fully expanded 12 of these to single groups covering entire chromosomes. Map coverage of the genome increased from 55.3% to 92.8%, with 96.3% of 430 markers collinearly aligned with the genome sequence. The anchored map also improved the H. irregulare assembly considerably. It identified several errors in scaffold arrangements and assisted in reducing the total number of major scaffolds from 18 to 15. This denser, more comprehensive map allowed sequence-based mapping of three intersterility loci and one mating type locus. This demonstrates the possibility to utilize an in silico procedure to convert anonymous markers into sequence-tagged ones, as well as the power of a sequence-anchored linkage map and its usefulness in the assembly of a whole genome sequence.
Collapse
Affiliation(s)
- Mårten Lind
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
373
|
Milani NA, Lawrence DP, Arnold AE, VanEtten HD. Origin of pisatin demethylase (PDA) in the genus Fusarium. Fungal Genet Biol 2012; 49:933-42. [PMID: 22985693 DOI: 10.1016/j.fgb.2012.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 11/25/2022]
Abstract
Host specificity of plant pathogens can be dictated by genes that enable pathogens to circumvent host defenses. Upon recognition of a pathogen, plants initiate defense responses that can include the production of antimicrobial compounds such as phytoalexins. The pea pathogen Nectria haematococca mating population VI (MPVI) is a filamentous ascomycete that contains a cluster of genes known as the pea pathogenicity (PEP) cluster in which the pisatin demethylase (PDA) gene resides. The PDA gene product is responsible for the detoxification of the phytoalexin pisatin, which is produced by the pea plant (Pisum sativum L.). This detoxification activity allows the pathogen to evade the phytoalexin defense mechanism. It has been proposed that the evolution of PDA and the PEP cluster reflects horizontal gene transfer (HGT). Previous observations consistent with this hypothesis include the location of the PEP cluster and PDA gene on a dispensable portion of the genome (a supernumerary chromosome), a phylogenetically discontinuous distribution of the cluster among closely related species, and a bias in G+C content and codon usage compared to other regions of the genome. In this study we compared the phylogenetic history of PDA, beta-tubulin, and translation elongation factor 1-alpha in three closely related fungi (Nectria haematococca, Fusarium oxysporum, and Neocosmospora species) to formally evaluate hypotheses regarding the origin and evolution of PDA. Our results, coupled with previous work, robustly demonstrate discordance between the gene genealogy of PDA and the organismal phylogeny of these species, and illustrate how HGT of pathogenicity genes can contribute to the expansion of host specificity in plant-pathogenic fungi.
Collapse
Affiliation(s)
- Nicholas A Milani
- School of Plant Sciences, College of Agriculture, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
374
|
|
375
|
Ipcho SVS, Hane JK, Antoni EA, Ahren D, Henrissat B, Friesen TL, Solomon PS, Oliver RP. Transcriptome analysis of Stagonospora nodorum: gene models, effectors, metabolism and pantothenate dispensability. MOLECULAR PLANT PATHOLOGY 2012; 13:531-45. [PMID: 22145589 PMCID: PMC6638697 DOI: 10.1111/j.1364-3703.2011.00770.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The wheat pathogen Stagonospora nodorum, causal organism of the wheat disease Stagonospora nodorum blotch, has emerged as a model for the Dothideomycetes, a large fungal taxon that includes many important plant pathogens. The initial annotation of the genome assembly included 16,586 nuclear gene models. These gene models were used to design a microarray that has been interrogated with labelled transcripts from six cDNA samples: four from infected wheat plants at time points spanning early infection to sporulation, and two time points taken from growth in artificial media. Positive signals of expression were obtained for 12,281 genes. This represents strong corroborative evidence of the validity of these gene models. Significantly differential expression between the various time points was observed. When infected samples were compared with axenic cultures, 2882 genes were expressed at a higher level in planta and 3630 were expressed more highly in vitro. Similar numbers were differentially expressed between different developmental stages. The earliest time points in planta were particularly enriched in differentially expressed genes. A disproportionate number of the early expressed gene products were predicted to be secreted, but otherwise had no obvious sequence homology to functionally characterized genes. These genes are candidate necrotrophic effectors. We have focused attention on genes for carbohydrate metabolism and the specific biosynthetic pathways active during growth in planta. The analysis points to a very dynamic adjustment of metabolism during infection. Functional analysis of a gene in the coenzyme A biosynthetic pathway showed that the enzyme was dispensable for growth, indicating that a precursor is supplied by the plant.
Collapse
Affiliation(s)
- Simon V S Ipcho
- Murdoch University, Heath Science, Murdoch, WA 6150, Australia
| | | | | | | | | | | | | | | |
Collapse
|
376
|
Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA. Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype. PEST MANAGEMENT SCIENCE 2012; 68:1034-40. [PMID: 22411894 DOI: 10.1002/ps.3263] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/16/2011] [Accepted: 01/06/2012] [Indexed: 05/26/2023]
Abstract
BACKGROUND The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown. RESULTS Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51. CONCLUSIONS The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Collapse
Affiliation(s)
- Hans J Cools
- Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire, UK.
| | | | | | | | | |
Collapse
|
377
|
Abstract
RNA interference (RNAi) is a conserved eukaryotic gene regulatory mechanism that uses small noncoding RNAs to mediate posttranscriptional/transcriptional gene silencing. The fission yeast Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa have served as important model systems for RNAi research. Studies on these two organisms and other fungi have contributed significantly to our understanding of the mechanisms and functions of RNAi in eukaryotes. In addition, surprisingly diverse RNAi-mediated processes and small RNA biogenesis pathways have been discovered in fungi. In this review, we give an overview of different fungal RNAi pathways with a focus on their mechanisms and functions.
Collapse
Affiliation(s)
- Shwu-Shin Chang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | |
Collapse
|
378
|
Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proc Natl Acad Sci U S A 2012; 109:10954-9. [PMID: 22711811 DOI: 10.1073/pnas.1201403109] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a genome alignment of five individuals of the ascomycete fungus Zymoseptoria pseudotritici, a close relative of the wheat pathogen Z. tritici (synonym Mycosphaerella graminicola), we observed peculiar diversity patterns. Long regions up to 100 kb without variation alternate with similarly long regions of high variability. The variable segments in the genome alignment are organized into two main haplotype groups that have diverged ∼3% from each other. The genome patterns in Z. pseudotritici are consistent with a hybrid speciation event resulting from a cross between two divergent haploid individuals. The resulting hybrids formed the new species without backcrossing to the parents. We observe no variation in 54% of the genome in the five individuals and estimate a complete loss of variation for at least 30% of the genome in the entire species. A strong population bottleneck following the hybridization event caused this loss of variation. Variable segments in the Z. pseudotritici genome exhibit the two haplotypes contributed by the parental individuals. From our previously estimated recombination map of Z. tritici and the size distribution of variable chromosome blocks untouched by recombination we estimate that the hybridization occurred ∼380 sexual generations ago. We show that the amount of lost variation is explained by genetic drift during the bottleneck and by natural selection, as evidenced by the correlation of presence/absence of variation with gene density and recombination rate. The successful spread of this unique reproductively isolated pathogen highlights the strong potential of hybridization in the emergence of pathogen species with sexual reproduction.
Collapse
|
379
|
Stukenbrock EH, Quaedvlieg W, Javan-Nikhah M, Zala M, Crous PW, McDonald BA. Zymoseptoria ardabiliae and Z. pseudotritici, two progenitor species of the septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola). Mycologia 2012; 104:1397-407. [PMID: 22675045 DOI: 10.3852/11-374] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Zymoseptoria is a newly described genus that includes the prominent wheat pathogen Zymoseptoria tritici (synonyms Mycosphaerella graminicola and Septoria tritici). Studies indicated that the center of origin of Z. tritici is in the Middle East where this important pathogen emerged during the domestication of wheat. Several Zymoseptoria species have been found on uncultivated grasses in the Middle East, and in this article we describe two new Zymoseptoria species from Iran. These species, isolated from Elymus repens, Dactylis glomerata and Lolium perenne, are named Z. ardabiliae and Z. pseudotritici. Both species were identified by means of morphological characteristics and phylogenetic analyses of a seven-gene DNA dataset. These taxa comprise some of the closest known relatives of the wheat pathogen Z. tritici, confirming the reported close phylogenetic relationship between Z. tritici and Z. pseudotritici.
Collapse
|
380
|
Lahrmann U, Zuccaro A. Opprimo ergo sum--evasion and suppression in the root endophytic fungus Piriformospora indica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:727-37. [PMID: 22352718 DOI: 10.1094/mpmi-11-11-0291] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The genetically tractable endophytic fungus Piriformospora indica is able to colonize the root cortex of a great variety of different plant species with beneficial effects to its hosts, and it represents a suitable model system to study symbiotic interactions. Recent cytological studies in barley and Arabidopsis showed that, upon penetration of the root, P. indica establishes a biotrophic interaction during which fungal cells are encased by the host plasma membrane. Large-scale transcriptional analyses of fungal and plant responses have shown that perturbance of plant hormone homeostasis and secretion of fungal lectins and other small proteins (effectors) may be involved in the evasion and suppression of host defenses at these early colonization steps. At later stages, P. indica is found more often in moribund host cells where it secretes a large variety of hydrolytic enzymes that degrade proteins. This strategy of colonizing plants is reminiscent of that of hemibiotrophic fungi, although a defined shift to necrotrophy with massive host cell death is missing. Instead, the association with the plant root leads to beneficial effects for the host such as growth promotion, increased resistance to root as well as leaf pathogens, and increased tolerance to abiotic stresses. This review describes current advances in understanding the components of the P. indica endophytic lifestyle from molecular and genomic analyses.
Collapse
Affiliation(s)
- Urs Lahrmann
- Max Planck Institute for Terrestrial Microbiology - Organismic Interations, Marburg, Germany
| | | |
Collapse
|
381
|
Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 2012; 10:417-30. [PMID: 22565130 DOI: 10.1038/nrmicro2790] [Citation(s) in RCA: 461] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many species of fungi and oomycetes are plant pathogens of great economic importance. Over the past 7 years, the genomes of more than 30 of these filamentous plant pathogens have been sequenced, revealing remarkable diversity in genome size and architecture. Whereas the genomes of many parasites and bacterial symbionts have been reduced over time, the genomes of several lineages of filamentous plant pathogens have been shaped by repeat-driven expansions. In these lineages, the genes encoding proteins involved in host interactions are frequently polymorphic and reside within repeat-rich regions of the genome. Here, we review the properties of these adaptable genome regions and the mechanisms underlying their plasticity, and we illustrate cases in which genome plasticity has contributed to the emergence of new virulence traits. We also discuss how genome expansions may have had an impact on the co-evolutionary conflict between these filamentous plant pathogens and their hosts.
Collapse
Affiliation(s)
- Sylvain Raffaele
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | | |
Collapse
|
382
|
Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD. The Top 10 fungal pathogens in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2012. [PMID: 22471698 DOI: 10.1111/j.1364-3703.2012.2011.00783.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10.
Collapse
Affiliation(s)
- Ralph Dean
- Department of Plant Pathology, Fungal Genomics Laboratory, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
383
|
Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD. The Top 10 fungal pathogens in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2012; 13:414-30. [PMID: 22471698 PMCID: PMC6638784 DOI: 10.1111/j.1364-3703.2011.00783.x] [Citation(s) in RCA: 2180] [Impact Index Per Article: 181.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10.
Collapse
Affiliation(s)
- Ralph Dean
- Department of Plant Pathology, Fungal Genomics Laboratory, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
384
|
Affiliation(s)
- Daniel Croll
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
385
|
Scalliet G, Bowler J, Luksch T, Kirchhofer-Allan L, Steinhauer D, Ward K, Niklaus M, Verras A, Csukai M, Daina A, Fonné-Pfister R. Mutagenesis and functional studies with succinate dehydrogenase inhibitors in the wheat pathogen Mycosphaerella graminicola. PLoS One 2012; 7:e35429. [PMID: 22536383 PMCID: PMC3334918 DOI: 10.1371/journal.pone.0035429] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/16/2012] [Indexed: 02/03/2023] Open
Abstract
A range of novel carboxamide fungicides, inhibitors of the succinate dehydrogenase enzyme (SDH, EC 1.3.5.1) is currently being introduced to the crop protection market. The aim of this study was to explore the impact of structurally distinct carboxamides on target site resistance development and to assess possible impact on fitness. We used a UV mutagenesis approach in Mycosphaerella graminicola, a key pathogen of wheat to compare the nature, frequencies and impact of target mutations towards five subclasses of carboxamides. From this screen we identified 27 amino acid substitutions occurring at 18 different positions on the 3 subunits constituting the ubiquinone binding (Qp) site of the enzyme. The nature of substitutions and cross resistance profiles indicated significant differences in the binding interaction to the enzyme across the different inhibitors. Pharmacophore elucidation followed by docking studies in a tridimensional SDH model allowed us to propose rational hypotheses explaining some of the differential behaviors for the first time. Interestingly all the characterized substitutions had a negative impact on enzyme efficiency, however very low levels of enzyme activity appeared to be sufficient for cell survival. In order to explore the impact of mutations on pathogen fitness in vivo and in planta, homologous recombinants were generated for a selection of mutation types. In vivo, in contrast to previous studies performed in yeast and other organisms, SDH mutations did not result in a major increase of reactive oxygen species levels and did not display any significant fitness penalty. However, a number of Qp site mutations affecting enzyme efficiency were shown to have a biological impact in planta. Using the combined approaches described here, we have significantly improved our understanding of possible resistance mechanisms to carboxamides and performed preliminary fitness penalty assessment in an economically important plant pathogen years ahead of possible resistance development in the field.
Collapse
|
386
|
de Jonge R, Peter van Esse H, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Zhang Z, Usami T, Lievens B, Subbarao KV, Thomma BPHJ. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci U S A 2012; 109:5110-5. [PMID: 22416119 PMCID: PMC3323992 DOI: 10.1073/pnas.1119623109] [Citation(s) in RCA: 390] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Fungal plant pathogens secrete effector molecules to establish disease on their hosts, and plants in turn use immune receptors to try to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and Verticillium albo-atrum, but the corresponding Verticillium effector remained unknown thus far. By high-throughput population genome sequencing, a single 50-Kb sequence stretch was identified that only occurs in race 1 strains, and subsequent transcriptome sequencing of Verticillium-infected Nicotiana benthamiana plants revealed only a single highly expressed ORF in this region, designated Ave1 (for Avirulence on Ve1 tomato). Functional analyses confirmed that Ave1 activates Ve1-mediated resistance and demonstrated that Ave1 markedly contributes to fungal virulence, not only on tomato but also on Arabidopsis. Interestingly, Ave1 is homologous to a widespread family of plant natriuretic peptides. Besides plants, homologous proteins were only found in the bacterial plant pathogen Xanthomonas axonopodis and the plant pathogenic fungi Colletotrichum higginsianum, Cercospora beticola, and Fusarium oxysporum f. sp. lycopersici. The distribution of Ave1 homologs, coincident with the presence of Ave1 within a flexible genomic region, strongly suggests that Verticillium acquired Ave1 from plants through horizontal gene transfer. Remarkably, by transient expression we show that also the Ave1 homologs from F. oxysporum and C. beticola can activate Ve1-mediated resistance. In line with this observation, Ve1 was found to mediate resistance toward F. oxysporum in tomato, showing that this immune receptor is involved in resistance against multiple fungal pathogens.
Collapse
Affiliation(s)
- Ronnie de Jonge
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - H. Peter van Esse
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | | | - Melvin D. Bolton
- Agricultural Research Service, Northern Crop Science Laboratory, US Department of Agriculture, Fargo, ND 58102
| | | | - Mojtaba Keykha Saber
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Zhao Zhang
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Toshiyuki Usami
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Bart Lievens
- Scientia Terrae Research Institute, B-2860 Sint-Katelijne-Waver, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Lessius University College, Campus De Nayer, Consortium for Industrial Microbiology and Biotechnology, Department of Microbial and Molecular Systems, KU Leuven Association, B-2860 Sint-Katelijne-Waver, Belgium; and
| | | | - Bart P. H. J. Thomma
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
387
|
Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 2012; 20:131-8. [PMID: 22326131 DOI: 10.1016/j.tim.2011.12.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/20/2011] [Accepted: 12/28/2011] [Indexed: 11/20/2022]
Abstract
The recently emerged plant pathogen Phytophthora ramorum is responsible for causing the sudden oak death epidemic. This review documents the emergence of P. ramorum based on evolutionary and population genetic analyses. Currently infection by P. ramorum occurs only in Europe and North America and three clonal lineages are distinguished: EU1, NA1 and NA2. Ancient divergence of these lineages supports a scenario in which P. ramorum originated from reproductively isolated populations and underwent at least four global migration events. This recent work sheds new light on mechanisms of emergence of exotic pathogens and provides crucial insights into migration pathways.
Collapse
|
388
|
Ishikawa FH, Souza EA, Shoji JY, Connolly L, Freitag M, Read ND, Roca MG. Heterokaryon incompatibility is suppressed following conidial anastomosis tube fusion in a fungal plant pathogen. PLoS One 2012; 7:e31175. [PMID: 22319613 PMCID: PMC3271119 DOI: 10.1371/journal.pone.0031175] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/03/2012] [Indexed: 01/25/2023] Open
Abstract
It has been hypothesized that horizontal gene/chromosome transfer and parasexual recombination following hyphal fusion between different strains may contribute to the emergence of wide genetic variability in plant pathogenic and other fungi. However, the significance of vegetative (heterokaryon) incompatibility responses, which commonly result in cell death, in preventing these processes is not known. In this study, we have assessed this issue following different types of hyphal fusion during colony initiation and in the mature colony. We used vegetatively compatible and incompatible strains of the common bean pathogen Colletotrichum lindemuthianum in which nuclei were labelled with either a green or red fluorescent protein in order to microscopically monitor the fates of nuclei and heterokaryotic cells following hyphal fusion. As opposed to fusion of hyphae in mature colonies that resulted in cell death within 3 h, fusions by conidial anastomosis tubes (CAT) between two incompatible strains during colony initiation did not induce the vegetative incompatibility response. Instead, fused conidia and germlings survived and formed heterokaryotic colonies that in turn produced uninucleate conidia that germinated to form colonies with phenotypic features different to those of either parental strain. Our results demonstrate that the vegetative incompatibility response is suppressed during colony initiation in C. lindemuthianum. Thus, CAT fusion may allow asexual fungi to increase their genetic diversity, and to acquire new pathogenic traits.
Collapse
Affiliation(s)
- Francine H. Ishikawa
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine A. Souza
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
- * E-mail:
| | - Jun-ya Shoji
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Lanelle Connolly
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Nick D. Read
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - M. Gabriela Roca
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
389
|
Stukenbrock EH, Dutheil JY. Comparing fungal genomes: insight into functional and evolutionary processes. Methods Mol Biol 2012; 835:531-548. [PMID: 22183676 DOI: 10.1007/978-1-61779-501-5_33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Large amount of genome data are being generated by second- and now also third-generation sequencing technologies. The challenge no longer lies in the generation of the data, but in the analyses of it. We present an overview of approaches and methods to compare complete sequences of related fungal genomes. We focus on evolutionary analyses of genome alignments to describe species divergence and to identify footprints of demography and natural selection within and between species.
Collapse
Affiliation(s)
- Eva H Stukenbrock
- Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str, Marburg, Germany.
| | | |
Collapse
|
390
|
Abstract
Biotrophy is a pervasive trait that evolved independently in plant pathogenic fungi and oomycetes. Comparative genomics of the first sequenced biotrophic pathogens highlight remarkable convergences, including gene losses in the metabolism of inorganic nitrogen, inorganic sulfur, and thiamine, and genes encoding carbohydrate active enzymes and secondary metabolism enzymes. Some biotrophs, but not all, display marked increases in overall genome size because of a proliferation of retrotransposons. I argue here that the release of constraints on transposon activity is driven by the advantages conferred by the genetic variability that results from transposition, in particular by the creation and diversification of broad palettes of effector genes. Increases in genome size and gene losses are the consequences of this trade-off. Genes that are not necessary for growth on a plant disappeared, but we still do not know what lost functions make some of these pathogens obligate.
Collapse
Affiliation(s)
- Pietro D Spanu
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
391
|
Muszewska A, Hoffman-Sommer M, Grynberg M. LTR retrotransposons in fungi. PLoS One 2011; 6:e29425. [PMID: 22242120 PMCID: PMC3248453 DOI: 10.1371/journal.pone.0029425] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 11/28/2011] [Indexed: 01/17/2023] Open
Abstract
Transposable elements with long terminal direct repeats (LTR TEs) are one of the best studied groups of mobile elements. They are ubiquitous elements present in almost all eukaryotic genomes. Their number and state of conservation can be a highlight of genome dynamics. We searched all published fungal genomes for LTR-containing retrotransposons, including both complete, functional elements and remnant copies. We identified a total of over 66,000 elements, all of which belong to the Ty1/Copia or Ty3/Gypsy superfamilies. Most of the detected Gypsy elements represent Chromoviridae, i.e. they carry a chromodomain in the pol ORF. We analyzed our data from a genome-ecology perspective, looking at the abundance of various types of LTR TEs in individual genomes and at the highest-copy element from each genome. The TE content is very variable among the analyzed genomes. Some genomes are very scarce in LTR TEs (<50 elements), others demonstrate huge expansions (>8000 elements). The data shows that transposon expansions in fungi usually involve an increase both in the copy number of individual elements and in the number of element types. The majority of the highest-copy TEs from all genomes are Ty3/Gypsy transposons. Phylogenetic analysis of these elements suggests that TE expansions have appeared independently of each other, in distant genomes and at different taxonomical levels. We also analyzed the evolutionary relationships between protein domains encoded by the transposon pol ORF and we found that the protease is the fastest evolving domain whereas reverse transcriptase and RNase H evolve much slower and in correlation with each other.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
392
|
Fitzpatrick DA. Horizontal gene transfer in fungi. FEMS Microbiol Lett 2011; 329:1-8. [DOI: 10.1111/j.1574-6968.2011.02465.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 01/11/2023] Open
Affiliation(s)
- David A. Fitzpatrick
- Genome Evolution Laboratory; Department of Biology; The National University of Ireland Maynooth; Maynooth; Ireland
| |
Collapse
|
393
|
Abstract
Fungi display a large diversity in genome size and complexity, variation that is often considered to be adaptive. But because nonadaptive processes can also have important consequences on the features of genomes, we investigated the relationship of genetic drift and genome size in the phylum Ascomycota using multiple indicators of genetic drift. We detected a complex relationship between genetic drift and genome size in fungi: genetic drift is associated with genome expansion on broad evolutionary timescales, as hypothesized for other eukaryotes; but within subphyla over smaller timescales, the opposite trend is observed. Moreover, fungi and bacteria display similar patterns of genome degradation that are associated with initial effects of genetic drift. We conclude that changes in genome size within Ascomycota have occurred using two different routes: large-scale genome expansions are catalyzed by increasing drift as predicted by the mutation-hazard model of genome evolution and small-scale modifications in genome size are independent of drift.
Collapse
|
394
|
Torriani SFF, Stukenbrock EH, Brunner PC, McDonald BA, Croll D. Evidence for extensive recent intron transposition in closely related fungi. Curr Biol 2011; 21:2017-22. [PMID: 22100062 DOI: 10.1016/j.cub.2011.10.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/26/2011] [Accepted: 10/26/2011] [Indexed: 11/30/2022]
Abstract
Though spliceosomal introns are a major structural component of most eukaryotic genes and intron density varies by more than three orders of magnitude among eukaryotes [1-3], the origins of introns are poorly understood, and only a few cases of unambiguous intron gain are known [4-8]. We utilized population genomic comparisons of three closely related fungi to identify crucial transitory phases of intron gain and loss. We found 74 intron positions showing intraspecific presence-absence polymorphisms (PAPs) for the entire intron. Population genetic analyses identified intron PAPs at different stages of fixation and showed that intron gain or loss was very recent. We found direct support for extensive intron transposition among unrelated genes. A substantial proportion of highly similar introns in the genome either were recently gained or showed a transient phase of intron PAP. We also identified an intron transfer among paralogous genes that created a new intron. Intron loss was due mainly to homologous recombination involving reverse-transcribed mRNA. The large number of intron positions in transient phases of either intron gain or loss shows that intron evolution is much faster than previously thought and provides an excellent model to study molecular mechanisms of intron gain.
Collapse
Affiliation(s)
- Stefano F F Torriani
- Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH Zurich), 8092 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
395
|
OmniMapFree: a unified tool to visualise and explore sequenced genomes. BMC Bioinformatics 2011; 12:447. [PMID: 22085540 PMCID: PMC3251307 DOI: 10.1186/1471-2105-12-447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/15/2011] [Indexed: 11/11/2022] Open
Abstract
• Background Acquiring and exploring whole genome sequence information for a species under investigation is now a routine experimental approach. On most genome browsers, typically, only the DNA sequence, EST support, motif search results, and GO annotations are displayed. However, for many species, a growing volume of additional experimental information is available but this is rarely searchable within the landscape of the entire genome. • Results We have developed a generic software which permits users to view a single genome in entirety either within its chromosome or supercontig context within a single window. This software permits the genome to be displayed at any scales and with any features. Different data types and data sets are displayed onto the genome, which have been acquired from other types of studies including classical genetics, forward and reverse genetics, transcriptomics, proteomics and improved annotation from alternative sources. In each display, different types of information can be overlapped, then retrieved in the desired combinations and scales and used in follow up analyses. The displays generated are of publication quality. • Conclusions OmniMapFree provides a unified, versatile and easy-to-use software tool for studying a single genome in association with all the other datasets and data types available for the organism.
Collapse
|
396
|
Stukenbrock EH, Bataillon T, Dutheil JY, Hansen TT, Li R, Zala M, McDonald BA, Wang J, Schierup MH. The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Res 2011; 21:2157-66. [PMID: 21994252 DOI: 10.1101/gr.118851.110] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The fungus Mycosphaerella graminicola emerged as a new pathogen of cultivated wheat during its domestication ~11,000 yr ago. We assembled 12 high-quality full genome sequences to investigate the genetic footprints of selection in this wheat pathogen and closely related sister species that infect wild grasses. We demonstrate a strong effect of natural selection in shaping the pathogen genomes with only ~3% of nonsynonymous mutations being effectively neutral. Forty percent of all fixed nonsynonymous substitutions, on the other hand, are driven by positive selection. Adaptive evolution has affected M. graminicola to the highest extent, consistent with recent host specialization. Positive selection has prominently altered genes encoding secreted proteins and putative pathogen effectors supporting the premise that molecular host-pathogen interaction is a strong driver of pathogen evolution. Recent divergence between pathogen sister species is attested by the high degree of incomplete lineage sorting (ILS) in their genomes. We exploit ILS to generate a genetic map of the species without any crossing data, document recent times of species divergence relative to genome divergence, and show that gene-rich regions or regions with low recombination experience stronger effects of natural selection on neutral diversity. Emergence of a new agricultural host selected a highly specialized and fast-evolving pathogen with unique evolutionary patterns compared with its wild relatives. The strong impact of natural selection, we document, is at odds with the small effective population sizes estimated and suggest that population sizes were historically large but likely unstable.
Collapse
Affiliation(s)
- Eva H Stukenbrock
- Bioinformatics Research Center, Aarhus University, C.F. Moellers Alle, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
397
|
Gurung S, Goodwin SB, Kabbage M, Bockus WW, Adhikari TB. Genetic differentiation at microsatellite loci among populations of Mycosphaerella graminicola from California, Indiana, Kansas, and North Dakota. PHYTOPATHOLOGY 2011; 101:1251-1259. [PMID: 21692645 DOI: 10.1094/phyto-08-10-0212] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mycosphaerella graminicola causes Septoria tritici blotch (STB) in wheat (Triticum aestivum) and is considered one of the most devastating pathogens of that crop in the United States. Although the genetic structures of M. graminicola populations from different countries have been analyzed using various molecular markers, relatively little is known about M. graminicola populations from geographically distinct areas of the United States and, in particular, of those from spring versus winter wheat. These are exposed to great differences in environmental conditions, length and season of host-free periods, and resistance sources used in geographically separated wheat breeding programs. Thus, there is more likely to be genetic differentiation between populations from spring versus winter wheat than there is among those within each region. To test this hypothesis, 330 single-spore isolates of M. graminicola representing 11 populations (1 from facultative winter wheat in California, 2 from spring wheat in North Dakota, and 8 from winter wheat in Indiana and Kansas) were analyzed for mating type frequency and for genetic variation at 17 microsatellite or simple-sequence repeat (SSR) loci. Analysis of clone-corrected data revealed an equal distribution of both mating types in the populations from Kansas, Indiana, and North Dakota, but a deviation from a 1:1 ratio in the California population. In total, 306 haplotypes were detected, almost all of which were unique in all 11 populations. High levels of gene diversity (H = 0.31 to 0.56) were observed within the 11 populations. Significant (P ≤ 0.05) gametic disequilibrium, as measured by the index of association (rBarD), was observed in California, one Indiana population (IN1), and three populations (KS1, KS2, and KS3) in Kansas that could not be explained by linkage. Corrected standardized fixation index (G″(ST)) values were 0.000 to 0.621 between the 11 populations and the majority of pairwise comparisons were statistically significant (P ≤ 0.001), suggesting some differentiation between populations. Analysis of molecular variance showed that there was a small but statistically significant level of genetic differentiation between populations from spring versus winter wheat. However, most of the total genetic variation (>98%) occurred within spring and winter wheat regions while <2% was due to genetic differentiation between these regions. Taken together, these results provide evidence that sexual recombination occurs frequently in the M. graminicola populations sampled and that most populations are genetically differentiated over the major spring- and winter-wheat-growing regions of the United States.
Collapse
Affiliation(s)
- Suraj Gurung
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | | | | | | | | |
Collapse
|
398
|
Hane JK, Rouxel T, Howlett BJ, Kema GHJ, Goodwin SB, Oliver RP. A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi. Genome Biol 2011; 12:R45. [PMID: 21605470 PMCID: PMC3219968 DOI: 10.1186/gb-2011-12-5-r45] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 04/27/2011] [Accepted: 05/24/2011] [Indexed: 12/20/2022] Open
Abstract
Background Gene loss, inversions, translocations, and other chromosomal rearrangements vary among species, resulting in different rates of structural genome evolution. Major chromosomal rearrangements are rare in most eukaryotes, giving large regions with the same genes in the same order and orientation across species. These regions of macrosynteny have been very useful for locating homologous genes in different species and to guide the assembly of genome sequences. Previous analyses in the fungi have indicated that macrosynteny is rare; instead, comparisons across species show no synteny or only microsyntenic regions encompassing usually five or fewer genes. To test the hypothesis that chromosomal evolution is different in the fungi compared to other eukaryotes, synteny was compared between species of the major fungal taxa. Results These analyses identified a novel form of evolution in which genes are conserved within homologous chromosomes, but with randomized orders and orientations. This mode of evolution is designated mesosynteny, to differentiate it from micro- and macrosynteny seen in other organisms. Mesosynteny is an alternative evolutionary pathway very different from macrosyntenic conservation. Surprisingly, mesosynteny was not found in all fungal groups. Instead, mesosynteny appears to be restricted to filamentous Ascomycetes and was most striking between species in the Dothideomycetes. Conclusions The existence of mesosynteny between relatively distantly related Ascomycetes could be explained by a high frequency of chromosomal inversions, but translocations must be extremely rare. The mechanism for this phenomenon is not known, but presumably involves generation of frequent inversions during meiosis.
Collapse
Affiliation(s)
- James K Hane
- Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth, 6845, Australia
| | | | | | | | | | | |
Collapse
|